Convert io_mem_watch to be a MemoryRegion
[qemu-kvm.git] / kvm-all.c
blob3174f42a371bed602594f149eb694d6da01cee45
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu-barrier.h"
25 #include "sysemu.h"
26 #include "hw/hw.h"
27 #include "gdbstub.h"
28 #include "kvm.h"
29 #include "bswap.h"
30 #include "memory.h"
32 /* This check must be after config-host.h is included */
33 #ifdef CONFIG_EVENTFD
34 #include <sys/eventfd.h>
35 #endif
37 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
38 #define PAGE_SIZE TARGET_PAGE_SIZE
40 //#define DEBUG_KVM
42 #ifdef DEBUG_KVM
43 #define DPRINTF(fmt, ...) \
44 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
45 #else
46 #define DPRINTF(fmt, ...) \
47 do { } while (0)
48 #endif
50 typedef struct KVMSlot
52 target_phys_addr_t start_addr;
53 ram_addr_t memory_size;
54 void *ram;
55 int slot;
56 int flags;
57 } KVMSlot;
59 typedef struct kvm_dirty_log KVMDirtyLog;
61 struct KVMState
63 KVMSlot slots[32];
64 int fd;
65 int vmfd;
66 int coalesced_mmio;
67 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
68 bool coalesced_flush_in_progress;
69 int broken_set_mem_region;
70 int migration_log;
71 int vcpu_events;
72 int robust_singlestep;
73 int debugregs;
74 #ifdef KVM_CAP_SET_GUEST_DEBUG
75 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
76 #endif
77 int irqchip_in_kernel;
78 int pit_in_kernel;
79 int xsave, xcrs;
80 int many_ioeventfds;
83 KVMState *kvm_state;
85 static const KVMCapabilityInfo kvm_required_capabilites[] = {
86 KVM_CAP_INFO(USER_MEMORY),
87 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
88 KVM_CAP_LAST_INFO
91 static KVMSlot *kvm_alloc_slot(KVMState *s)
93 int i;
95 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
96 if (s->slots[i].memory_size == 0) {
97 return &s->slots[i];
101 fprintf(stderr, "%s: no free slot available\n", __func__);
102 abort();
105 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
106 target_phys_addr_t start_addr,
107 target_phys_addr_t end_addr)
109 int i;
111 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
112 KVMSlot *mem = &s->slots[i];
114 if (start_addr == mem->start_addr &&
115 end_addr == mem->start_addr + mem->memory_size) {
116 return mem;
120 return NULL;
124 * Find overlapping slot with lowest start address
126 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
127 target_phys_addr_t start_addr,
128 target_phys_addr_t end_addr)
130 KVMSlot *found = NULL;
131 int i;
133 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
134 KVMSlot *mem = &s->slots[i];
136 if (mem->memory_size == 0 ||
137 (found && found->start_addr < mem->start_addr)) {
138 continue;
141 if (end_addr > mem->start_addr &&
142 start_addr < mem->start_addr + mem->memory_size) {
143 found = mem;
147 return found;
150 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
151 target_phys_addr_t *phys_addr)
153 int i;
155 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
156 KVMSlot *mem = &s->slots[i];
158 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
159 *phys_addr = mem->start_addr + (ram - mem->ram);
160 return 1;
164 return 0;
167 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
169 struct kvm_userspace_memory_region mem;
171 mem.slot = slot->slot;
172 mem.guest_phys_addr = slot->start_addr;
173 mem.memory_size = slot->memory_size;
174 mem.userspace_addr = (unsigned long)slot->ram;
175 mem.flags = slot->flags;
176 if (s->migration_log) {
177 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
179 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
182 static void kvm_reset_vcpu(void *opaque)
184 CPUState *env = opaque;
186 kvm_arch_reset_vcpu(env);
189 int kvm_irqchip_in_kernel(void)
191 return kvm_state->irqchip_in_kernel;
194 int kvm_pit_in_kernel(void)
196 return kvm_state->pit_in_kernel;
199 int kvm_init_vcpu(CPUState *env)
201 KVMState *s = kvm_state;
202 long mmap_size;
203 int ret;
205 DPRINTF("kvm_init_vcpu\n");
207 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
208 if (ret < 0) {
209 DPRINTF("kvm_create_vcpu failed\n");
210 goto err;
213 env->kvm_fd = ret;
214 env->kvm_state = s;
215 env->kvm_vcpu_dirty = 1;
217 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
218 if (mmap_size < 0) {
219 ret = mmap_size;
220 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
221 goto err;
224 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
225 env->kvm_fd, 0);
226 if (env->kvm_run == MAP_FAILED) {
227 ret = -errno;
228 DPRINTF("mmap'ing vcpu state failed\n");
229 goto err;
232 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
233 s->coalesced_mmio_ring =
234 (void *)env->kvm_run + s->coalesced_mmio * PAGE_SIZE;
237 ret = kvm_arch_init_vcpu(env);
238 if (ret == 0) {
239 qemu_register_reset(kvm_reset_vcpu, env);
240 kvm_arch_reset_vcpu(env);
242 err:
243 return ret;
247 * dirty pages logging control
250 static int kvm_mem_flags(KVMState *s, bool log_dirty)
252 return log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
255 static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
257 KVMState *s = kvm_state;
258 int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
259 int old_flags;
261 old_flags = mem->flags;
263 flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty);
264 mem->flags = flags;
266 /* If nothing changed effectively, no need to issue ioctl */
267 if (s->migration_log) {
268 flags |= KVM_MEM_LOG_DIRTY_PAGES;
271 if (flags == old_flags) {
272 return 0;
275 return kvm_set_user_memory_region(s, mem);
278 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
279 ram_addr_t size, bool log_dirty)
281 KVMState *s = kvm_state;
282 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
284 if (mem == NULL) {
285 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
286 TARGET_FMT_plx "\n", __func__, phys_addr,
287 (target_phys_addr_t)(phys_addr + size - 1));
288 return -EINVAL;
290 return kvm_slot_dirty_pages_log_change(mem, log_dirty);
293 static void kvm_log_start(MemoryListener *listener,
294 MemoryRegionSection *section)
296 int r;
298 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
299 section->size, true);
300 if (r < 0) {
301 abort();
305 static void kvm_log_stop(MemoryListener *listener,
306 MemoryRegionSection *section)
308 int r;
310 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
311 section->size, false);
312 if (r < 0) {
313 abort();
317 static int kvm_set_migration_log(int enable)
319 KVMState *s = kvm_state;
320 KVMSlot *mem;
321 int i, err;
323 s->migration_log = enable;
325 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
326 mem = &s->slots[i];
328 if (!mem->memory_size) {
329 continue;
331 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
332 continue;
334 err = kvm_set_user_memory_region(s, mem);
335 if (err) {
336 return err;
339 return 0;
342 /* get kvm's dirty pages bitmap and update qemu's */
343 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
344 unsigned long *bitmap)
346 unsigned int i, j;
347 unsigned long page_number, addr, addr1, c;
348 unsigned int len = ((section->size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
351 * bitmap-traveling is faster than memory-traveling (for addr...)
352 * especially when most of the memory is not dirty.
354 for (i = 0; i < len; i++) {
355 if (bitmap[i] != 0) {
356 c = leul_to_cpu(bitmap[i]);
357 do {
358 j = ffsl(c) - 1;
359 c &= ~(1ul << j);
360 page_number = i * HOST_LONG_BITS + j;
361 addr1 = page_number * TARGET_PAGE_SIZE;
362 addr = section->offset_within_region + addr1;
363 memory_region_set_dirty(section->mr, addr);
364 } while (c != 0);
367 return 0;
370 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
373 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
374 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
375 * This means all bits are set to dirty.
377 * @start_add: start of logged region.
378 * @end_addr: end of logged region.
380 static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section)
382 KVMState *s = kvm_state;
383 unsigned long size, allocated_size = 0;
384 KVMDirtyLog d;
385 KVMSlot *mem;
386 int ret = 0;
387 target_phys_addr_t start_addr = section->offset_within_address_space;
388 target_phys_addr_t end_addr = start_addr + section->size;
390 d.dirty_bitmap = NULL;
391 while (start_addr < end_addr) {
392 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
393 if (mem == NULL) {
394 break;
397 /* XXX bad kernel interface alert
398 * For dirty bitmap, kernel allocates array of size aligned to
399 * bits-per-long. But for case when the kernel is 64bits and
400 * the userspace is 32bits, userspace can't align to the same
401 * bits-per-long, since sizeof(long) is different between kernel
402 * and user space. This way, userspace will provide buffer which
403 * may be 4 bytes less than the kernel will use, resulting in
404 * userspace memory corruption (which is not detectable by valgrind
405 * too, in most cases).
406 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
407 * a hope that sizeof(long) wont become >8 any time soon.
409 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
410 /*HOST_LONG_BITS*/ 64) / 8;
411 if (!d.dirty_bitmap) {
412 d.dirty_bitmap = g_malloc(size);
413 } else if (size > allocated_size) {
414 d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
416 allocated_size = size;
417 memset(d.dirty_bitmap, 0, allocated_size);
419 d.slot = mem->slot;
421 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
422 DPRINTF("ioctl failed %d\n", errno);
423 ret = -1;
424 break;
427 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
428 start_addr = mem->start_addr + mem->memory_size;
430 g_free(d.dirty_bitmap);
432 return ret;
435 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
437 int ret = -ENOSYS;
438 KVMState *s = kvm_state;
440 if (s->coalesced_mmio) {
441 struct kvm_coalesced_mmio_zone zone;
443 zone.addr = start;
444 zone.size = size;
446 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
449 return ret;
452 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
454 int ret = -ENOSYS;
455 KVMState *s = kvm_state;
457 if (s->coalesced_mmio) {
458 struct kvm_coalesced_mmio_zone zone;
460 zone.addr = start;
461 zone.size = size;
463 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
466 return ret;
469 int kvm_check_extension(KVMState *s, unsigned int extension)
471 int ret;
473 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
474 if (ret < 0) {
475 ret = 0;
478 return ret;
481 static int kvm_check_many_ioeventfds(void)
483 /* Userspace can use ioeventfd for io notification. This requires a host
484 * that supports eventfd(2) and an I/O thread; since eventfd does not
485 * support SIGIO it cannot interrupt the vcpu.
487 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
488 * can avoid creating too many ioeventfds.
490 #if defined(CONFIG_EVENTFD)
491 int ioeventfds[7];
492 int i, ret = 0;
493 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
494 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
495 if (ioeventfds[i] < 0) {
496 break;
498 ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true);
499 if (ret < 0) {
500 close(ioeventfds[i]);
501 break;
505 /* Decide whether many devices are supported or not */
506 ret = i == ARRAY_SIZE(ioeventfds);
508 while (i-- > 0) {
509 kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false);
510 close(ioeventfds[i]);
512 return ret;
513 #else
514 return 0;
515 #endif
518 static const KVMCapabilityInfo *
519 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
521 while (list->name) {
522 if (!kvm_check_extension(s, list->value)) {
523 return list;
525 list++;
527 return NULL;
530 static void kvm_set_phys_mem(MemoryRegionSection *section, bool add)
532 KVMState *s = kvm_state;
533 KVMSlot *mem, old;
534 int err;
535 MemoryRegion *mr = section->mr;
536 bool log_dirty = memory_region_is_logging(mr);
537 target_phys_addr_t start_addr = section->offset_within_address_space;
538 ram_addr_t size = section->size;
539 void *ram = NULL;
541 /* kvm works in page size chunks, but the function may be called
542 with sub-page size and unaligned start address. */
543 size = TARGET_PAGE_ALIGN(size);
544 start_addr = TARGET_PAGE_ALIGN(start_addr);
546 if (!memory_region_is_ram(mr)) {
547 return;
550 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region;
552 while (1) {
553 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
554 if (!mem) {
555 break;
558 if (add && start_addr >= mem->start_addr &&
559 (start_addr + size <= mem->start_addr + mem->memory_size) &&
560 (ram - start_addr == mem->ram - mem->start_addr)) {
561 /* The new slot fits into the existing one and comes with
562 * identical parameters - update flags and done. */
563 kvm_slot_dirty_pages_log_change(mem, log_dirty);
564 return;
567 old = *mem;
569 /* unregister the overlapping slot */
570 mem->memory_size = 0;
571 err = kvm_set_user_memory_region(s, mem);
572 if (err) {
573 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
574 __func__, strerror(-err));
575 abort();
578 /* Workaround for older KVM versions: we can't join slots, even not by
579 * unregistering the previous ones and then registering the larger
580 * slot. We have to maintain the existing fragmentation. Sigh.
582 * This workaround assumes that the new slot starts at the same
583 * address as the first existing one. If not or if some overlapping
584 * slot comes around later, we will fail (not seen in practice so far)
585 * - and actually require a recent KVM version. */
586 if (s->broken_set_mem_region &&
587 old.start_addr == start_addr && old.memory_size < size && add) {
588 mem = kvm_alloc_slot(s);
589 mem->memory_size = old.memory_size;
590 mem->start_addr = old.start_addr;
591 mem->ram = old.ram;
592 mem->flags = kvm_mem_flags(s, log_dirty);
594 err = kvm_set_user_memory_region(s, mem);
595 if (err) {
596 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
597 strerror(-err));
598 abort();
601 start_addr += old.memory_size;
602 ram += old.memory_size;
603 size -= old.memory_size;
604 continue;
607 /* register prefix slot */
608 if (old.start_addr < start_addr) {
609 mem = kvm_alloc_slot(s);
610 mem->memory_size = start_addr - old.start_addr;
611 mem->start_addr = old.start_addr;
612 mem->ram = old.ram;
613 mem->flags = kvm_mem_flags(s, log_dirty);
615 err = kvm_set_user_memory_region(s, mem);
616 if (err) {
617 fprintf(stderr, "%s: error registering prefix slot: %s\n",
618 __func__, strerror(-err));
619 #ifdef TARGET_PPC
620 fprintf(stderr, "%s: This is probably because your kernel's " \
621 "PAGE_SIZE is too big. Please try to use 4k " \
622 "PAGE_SIZE!\n", __func__);
623 #endif
624 abort();
628 /* register suffix slot */
629 if (old.start_addr + old.memory_size > start_addr + size) {
630 ram_addr_t size_delta;
632 mem = kvm_alloc_slot(s);
633 mem->start_addr = start_addr + size;
634 size_delta = mem->start_addr - old.start_addr;
635 mem->memory_size = old.memory_size - size_delta;
636 mem->ram = old.ram + size_delta;
637 mem->flags = kvm_mem_flags(s, log_dirty);
639 err = kvm_set_user_memory_region(s, mem);
640 if (err) {
641 fprintf(stderr, "%s: error registering suffix slot: %s\n",
642 __func__, strerror(-err));
643 abort();
648 /* in case the KVM bug workaround already "consumed" the new slot */
649 if (!size) {
650 return;
652 if (!add) {
653 return;
655 mem = kvm_alloc_slot(s);
656 mem->memory_size = size;
657 mem->start_addr = start_addr;
658 mem->ram = ram;
659 mem->flags = kvm_mem_flags(s, log_dirty);
661 err = kvm_set_user_memory_region(s, mem);
662 if (err) {
663 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
664 strerror(-err));
665 abort();
669 static void kvm_region_add(MemoryListener *listener,
670 MemoryRegionSection *section)
672 kvm_set_phys_mem(section, true);
675 static void kvm_region_del(MemoryListener *listener,
676 MemoryRegionSection *section)
678 kvm_set_phys_mem(section, false);
681 static void kvm_log_sync(MemoryListener *listener,
682 MemoryRegionSection *section)
684 int r;
686 r = kvm_physical_sync_dirty_bitmap(section);
687 if (r < 0) {
688 abort();
692 static void kvm_log_global_start(struct MemoryListener *listener)
694 int r;
696 r = kvm_set_migration_log(1);
697 assert(r >= 0);
700 static void kvm_log_global_stop(struct MemoryListener *listener)
702 int r;
704 r = kvm_set_migration_log(0);
705 assert(r >= 0);
708 static MemoryListener kvm_memory_listener = {
709 .region_add = kvm_region_add,
710 .region_del = kvm_region_del,
711 .log_start = kvm_log_start,
712 .log_stop = kvm_log_stop,
713 .log_sync = kvm_log_sync,
714 .log_global_start = kvm_log_global_start,
715 .log_global_stop = kvm_log_global_stop,
718 static void kvm_handle_interrupt(CPUState *env, int mask)
720 env->interrupt_request |= mask;
722 if (!qemu_cpu_is_self(env)) {
723 qemu_cpu_kick(env);
727 int kvm_init(void)
729 static const char upgrade_note[] =
730 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
731 "(see http://sourceforge.net/projects/kvm).\n";
732 KVMState *s;
733 const KVMCapabilityInfo *missing_cap;
734 int ret;
735 int i;
737 s = g_malloc0(sizeof(KVMState));
739 #ifdef KVM_CAP_SET_GUEST_DEBUG
740 QTAILQ_INIT(&s->kvm_sw_breakpoints);
741 #endif
742 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
743 s->slots[i].slot = i;
745 s->vmfd = -1;
746 s->fd = qemu_open("/dev/kvm", O_RDWR);
747 if (s->fd == -1) {
748 fprintf(stderr, "Could not access KVM kernel module: %m\n");
749 ret = -errno;
750 goto err;
753 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
754 if (ret < KVM_API_VERSION) {
755 if (ret > 0) {
756 ret = -EINVAL;
758 fprintf(stderr, "kvm version too old\n");
759 goto err;
762 if (ret > KVM_API_VERSION) {
763 ret = -EINVAL;
764 fprintf(stderr, "kvm version not supported\n");
765 goto err;
768 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
769 if (s->vmfd < 0) {
770 #ifdef TARGET_S390X
771 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
772 "your host kernel command line\n");
773 #endif
774 ret = s->vmfd;
775 goto err;
778 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
779 if (!missing_cap) {
780 missing_cap =
781 kvm_check_extension_list(s, kvm_arch_required_capabilities);
783 if (missing_cap) {
784 ret = -EINVAL;
785 fprintf(stderr, "kvm does not support %s\n%s",
786 missing_cap->name, upgrade_note);
787 goto err;
790 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
792 s->broken_set_mem_region = 1;
793 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
794 if (ret > 0) {
795 s->broken_set_mem_region = 0;
798 #ifdef KVM_CAP_VCPU_EVENTS
799 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
800 #endif
802 s->robust_singlestep =
803 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
805 #ifdef KVM_CAP_DEBUGREGS
806 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
807 #endif
809 #ifdef KVM_CAP_XSAVE
810 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
811 #endif
813 #ifdef KVM_CAP_XCRS
814 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
815 #endif
817 ret = kvm_arch_init(s);
818 if (ret < 0) {
819 goto err;
822 kvm_state = s;
823 memory_listener_register(&kvm_memory_listener);
825 s->many_ioeventfds = kvm_check_many_ioeventfds();
827 cpu_interrupt_handler = kvm_handle_interrupt;
829 return 0;
831 err:
832 if (s) {
833 if (s->vmfd >= 0) {
834 close(s->vmfd);
836 if (s->fd != -1) {
837 close(s->fd);
840 g_free(s);
842 return ret;
845 static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
846 uint32_t count)
848 int i;
849 uint8_t *ptr = data;
851 for (i = 0; i < count; i++) {
852 if (direction == KVM_EXIT_IO_IN) {
853 switch (size) {
854 case 1:
855 stb_p(ptr, cpu_inb(port));
856 break;
857 case 2:
858 stw_p(ptr, cpu_inw(port));
859 break;
860 case 4:
861 stl_p(ptr, cpu_inl(port));
862 break;
864 } else {
865 switch (size) {
866 case 1:
867 cpu_outb(port, ldub_p(ptr));
868 break;
869 case 2:
870 cpu_outw(port, lduw_p(ptr));
871 break;
872 case 4:
873 cpu_outl(port, ldl_p(ptr));
874 break;
878 ptr += size;
882 static int kvm_handle_internal_error(CPUState *env, struct kvm_run *run)
884 fprintf(stderr, "KVM internal error.");
885 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
886 int i;
888 fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
889 for (i = 0; i < run->internal.ndata; ++i) {
890 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
891 i, (uint64_t)run->internal.data[i]);
893 } else {
894 fprintf(stderr, "\n");
896 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
897 fprintf(stderr, "emulation failure\n");
898 if (!kvm_arch_stop_on_emulation_error(env)) {
899 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
900 return EXCP_INTERRUPT;
903 /* FIXME: Should trigger a qmp message to let management know
904 * something went wrong.
906 return -1;
909 void kvm_flush_coalesced_mmio_buffer(void)
911 KVMState *s = kvm_state;
913 if (s->coalesced_flush_in_progress) {
914 return;
917 s->coalesced_flush_in_progress = true;
919 if (s->coalesced_mmio_ring) {
920 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
921 while (ring->first != ring->last) {
922 struct kvm_coalesced_mmio *ent;
924 ent = &ring->coalesced_mmio[ring->first];
926 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
927 smp_wmb();
928 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
932 s->coalesced_flush_in_progress = false;
935 static void do_kvm_cpu_synchronize_state(void *_env)
937 CPUState *env = _env;
939 if (!env->kvm_vcpu_dirty) {
940 kvm_arch_get_registers(env);
941 env->kvm_vcpu_dirty = 1;
945 void kvm_cpu_synchronize_state(CPUState *env)
947 if (!env->kvm_vcpu_dirty) {
948 run_on_cpu(env, do_kvm_cpu_synchronize_state, env);
952 void kvm_cpu_synchronize_post_reset(CPUState *env)
954 kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
955 env->kvm_vcpu_dirty = 0;
958 void kvm_cpu_synchronize_post_init(CPUState *env)
960 kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
961 env->kvm_vcpu_dirty = 0;
964 int kvm_cpu_exec(CPUState *env)
966 struct kvm_run *run = env->kvm_run;
967 int ret, run_ret;
969 DPRINTF("kvm_cpu_exec()\n");
971 if (kvm_arch_process_async_events(env)) {
972 env->exit_request = 0;
973 return EXCP_HLT;
976 cpu_single_env = env;
978 do {
979 if (env->kvm_vcpu_dirty) {
980 kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
981 env->kvm_vcpu_dirty = 0;
984 kvm_arch_pre_run(env, run);
985 if (env->exit_request) {
986 DPRINTF("interrupt exit requested\n");
988 * KVM requires us to reenter the kernel after IO exits to complete
989 * instruction emulation. This self-signal will ensure that we
990 * leave ASAP again.
992 qemu_cpu_kick_self();
994 cpu_single_env = NULL;
995 qemu_mutex_unlock_iothread();
997 run_ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
999 qemu_mutex_lock_iothread();
1000 cpu_single_env = env;
1001 kvm_arch_post_run(env, run);
1003 kvm_flush_coalesced_mmio_buffer();
1005 if (run_ret < 0) {
1006 if (run_ret == -EINTR || run_ret == -EAGAIN) {
1007 DPRINTF("io window exit\n");
1008 ret = EXCP_INTERRUPT;
1009 break;
1011 fprintf(stderr, "error: kvm run failed %s\n",
1012 strerror(-run_ret));
1013 abort();
1016 switch (run->exit_reason) {
1017 case KVM_EXIT_IO:
1018 DPRINTF("handle_io\n");
1019 kvm_handle_io(run->io.port,
1020 (uint8_t *)run + run->io.data_offset,
1021 run->io.direction,
1022 run->io.size,
1023 run->io.count);
1024 ret = 0;
1025 break;
1026 case KVM_EXIT_MMIO:
1027 DPRINTF("handle_mmio\n");
1028 cpu_physical_memory_rw(run->mmio.phys_addr,
1029 run->mmio.data,
1030 run->mmio.len,
1031 run->mmio.is_write);
1032 ret = 0;
1033 break;
1034 case KVM_EXIT_IRQ_WINDOW_OPEN:
1035 DPRINTF("irq_window_open\n");
1036 ret = EXCP_INTERRUPT;
1037 break;
1038 case KVM_EXIT_SHUTDOWN:
1039 DPRINTF("shutdown\n");
1040 qemu_system_reset_request();
1041 ret = EXCP_INTERRUPT;
1042 break;
1043 case KVM_EXIT_UNKNOWN:
1044 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1045 (uint64_t)run->hw.hardware_exit_reason);
1046 ret = -1;
1047 break;
1048 case KVM_EXIT_INTERNAL_ERROR:
1049 ret = kvm_handle_internal_error(env, run);
1050 break;
1051 default:
1052 DPRINTF("kvm_arch_handle_exit\n");
1053 ret = kvm_arch_handle_exit(env, run);
1054 break;
1056 } while (ret == 0);
1058 if (ret < 0) {
1059 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1060 vm_stop(RUN_STATE_INTERNAL_ERROR);
1063 env->exit_request = 0;
1064 cpu_single_env = NULL;
1065 return ret;
1068 int kvm_ioctl(KVMState *s, int type, ...)
1070 int ret;
1071 void *arg;
1072 va_list ap;
1074 va_start(ap, type);
1075 arg = va_arg(ap, void *);
1076 va_end(ap);
1078 ret = ioctl(s->fd, type, arg);
1079 if (ret == -1) {
1080 ret = -errno;
1082 return ret;
1085 int kvm_vm_ioctl(KVMState *s, int type, ...)
1087 int ret;
1088 void *arg;
1089 va_list ap;
1091 va_start(ap, type);
1092 arg = va_arg(ap, void *);
1093 va_end(ap);
1095 ret = ioctl(s->vmfd, type, arg);
1096 if (ret == -1) {
1097 ret = -errno;
1099 return ret;
1102 int kvm_vcpu_ioctl(CPUState *env, int type, ...)
1104 int ret;
1105 void *arg;
1106 va_list ap;
1108 va_start(ap, type);
1109 arg = va_arg(ap, void *);
1110 va_end(ap);
1112 ret = ioctl(env->kvm_fd, type, arg);
1113 if (ret == -1) {
1114 ret = -errno;
1116 return ret;
1119 int kvm_has_sync_mmu(void)
1121 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1124 int kvm_has_vcpu_events(void)
1126 return kvm_state->vcpu_events;
1129 int kvm_has_robust_singlestep(void)
1131 return kvm_state->robust_singlestep;
1134 int kvm_has_debugregs(void)
1136 return kvm_state->debugregs;
1139 int kvm_has_xsave(void)
1141 return kvm_state->xsave;
1144 int kvm_has_xcrs(void)
1146 return kvm_state->xcrs;
1149 int kvm_has_many_ioeventfds(void)
1151 if (!kvm_enabled()) {
1152 return 0;
1154 return kvm_state->many_ioeventfds;
1157 void kvm_setup_guest_memory(void *start, size_t size)
1159 if (!kvm_has_sync_mmu()) {
1160 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1162 if (ret) {
1163 perror("qemu_madvise");
1164 fprintf(stderr,
1165 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1166 exit(1);
1171 #ifdef KVM_CAP_SET_GUEST_DEBUG
1172 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
1173 target_ulong pc)
1175 struct kvm_sw_breakpoint *bp;
1177 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
1178 if (bp->pc == pc) {
1179 return bp;
1182 return NULL;
1185 int kvm_sw_breakpoints_active(CPUState *env)
1187 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
1190 struct kvm_set_guest_debug_data {
1191 struct kvm_guest_debug dbg;
1192 CPUState *env;
1193 int err;
1196 static void kvm_invoke_set_guest_debug(void *data)
1198 struct kvm_set_guest_debug_data *dbg_data = data;
1199 CPUState *env = dbg_data->env;
1201 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
1204 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1206 struct kvm_set_guest_debug_data data;
1208 data.dbg.control = reinject_trap;
1210 if (env->singlestep_enabled) {
1211 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1213 kvm_arch_update_guest_debug(env, &data.dbg);
1214 data.env = env;
1216 run_on_cpu(env, kvm_invoke_set_guest_debug, &data);
1217 return data.err;
1220 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1221 target_ulong len, int type)
1223 struct kvm_sw_breakpoint *bp;
1224 CPUState *env;
1225 int err;
1227 if (type == GDB_BREAKPOINT_SW) {
1228 bp = kvm_find_sw_breakpoint(current_env, addr);
1229 if (bp) {
1230 bp->use_count++;
1231 return 0;
1234 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
1235 if (!bp) {
1236 return -ENOMEM;
1239 bp->pc = addr;
1240 bp->use_count = 1;
1241 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1242 if (err) {
1243 g_free(bp);
1244 return err;
1247 QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
1248 bp, entry);
1249 } else {
1250 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1251 if (err) {
1252 return err;
1256 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1257 err = kvm_update_guest_debug(env, 0);
1258 if (err) {
1259 return err;
1262 return 0;
1265 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1266 target_ulong len, int type)
1268 struct kvm_sw_breakpoint *bp;
1269 CPUState *env;
1270 int err;
1272 if (type == GDB_BREAKPOINT_SW) {
1273 bp = kvm_find_sw_breakpoint(current_env, addr);
1274 if (!bp) {
1275 return -ENOENT;
1278 if (bp->use_count > 1) {
1279 bp->use_count--;
1280 return 0;
1283 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1284 if (err) {
1285 return err;
1288 QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1289 g_free(bp);
1290 } else {
1291 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1292 if (err) {
1293 return err;
1297 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1298 err = kvm_update_guest_debug(env, 0);
1299 if (err) {
1300 return err;
1303 return 0;
1306 void kvm_remove_all_breakpoints(CPUState *current_env)
1308 struct kvm_sw_breakpoint *bp, *next;
1309 KVMState *s = current_env->kvm_state;
1310 CPUState *env;
1312 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1313 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1314 /* Try harder to find a CPU that currently sees the breakpoint. */
1315 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1316 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) {
1317 break;
1322 kvm_arch_remove_all_hw_breakpoints();
1324 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1325 kvm_update_guest_debug(env, 0);
1329 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1331 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1333 return -EINVAL;
1336 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1337 target_ulong len, int type)
1339 return -EINVAL;
1342 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1343 target_ulong len, int type)
1345 return -EINVAL;
1348 void kvm_remove_all_breakpoints(CPUState *current_env)
1351 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1353 int kvm_set_signal_mask(CPUState *env, const sigset_t *sigset)
1355 struct kvm_signal_mask *sigmask;
1356 int r;
1358 if (!sigset) {
1359 return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
1362 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
1364 sigmask->len = 8;
1365 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1366 r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1367 g_free(sigmask);
1369 return r;
1372 int kvm_set_ioeventfd_mmio_long(int fd, uint32_t addr, uint32_t val, bool assign)
1374 int ret;
1375 struct kvm_ioeventfd iofd;
1377 iofd.datamatch = val;
1378 iofd.addr = addr;
1379 iofd.len = 4;
1380 iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH;
1381 iofd.fd = fd;
1383 if (!kvm_enabled()) {
1384 return -ENOSYS;
1387 if (!assign) {
1388 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1391 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1393 if (ret < 0) {
1394 return -errno;
1397 return 0;
1400 int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
1402 struct kvm_ioeventfd kick = {
1403 .datamatch = val,
1404 .addr = addr,
1405 .len = 2,
1406 .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
1407 .fd = fd,
1409 int r;
1410 if (!kvm_enabled()) {
1411 return -ENOSYS;
1413 if (!assign) {
1414 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1416 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1417 if (r < 0) {
1418 return r;
1420 return 0;
1423 int kvm_on_sigbus_vcpu(CPUState *env, int code, void *addr)
1425 return kvm_arch_on_sigbus_vcpu(env, code, addr);
1428 int kvm_on_sigbus(int code, void *addr)
1430 return kvm_arch_on_sigbus(code, addr);