raven: Set a correct PCI I/O memory region
[qemu-kvm.git] / util / qemu-thread-win32.c
blobb9c957b6a040e94a1df43bb296de3fbea907142a
1 /*
2 * Win32 implementation for mutex/cond/thread functions
4 * Copyright Red Hat, Inc. 2010
6 * Author:
7 * Paolo Bonzini <pbonzini@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
13 #include "qemu-common.h"
14 #include "qemu/thread.h"
15 #include <process.h>
16 #include <assert.h>
17 #include <limits.h>
19 static bool name_threads;
21 void qemu_thread_naming(bool enable)
23 /* But note we don't actually name them on Windows yet */
24 name_threads = enable;
27 static void error_exit(int err, const char *msg)
29 char *pstr;
31 FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_ALLOCATE_BUFFER,
32 NULL, err, 0, (LPTSTR)&pstr, 2, NULL);
33 fprintf(stderr, "qemu: %s: %s\n", msg, pstr);
34 LocalFree(pstr);
35 abort();
38 void qemu_mutex_init(QemuMutex *mutex)
40 mutex->owner = 0;
41 InitializeCriticalSection(&mutex->lock);
44 void qemu_mutex_destroy(QemuMutex *mutex)
46 assert(mutex->owner == 0);
47 DeleteCriticalSection(&mutex->lock);
50 void qemu_mutex_lock(QemuMutex *mutex)
52 EnterCriticalSection(&mutex->lock);
54 /* Win32 CRITICAL_SECTIONs are recursive. Assert that we're not
55 * using them as such.
57 assert(mutex->owner == 0);
58 mutex->owner = GetCurrentThreadId();
61 int qemu_mutex_trylock(QemuMutex *mutex)
63 int owned;
65 owned = TryEnterCriticalSection(&mutex->lock);
66 if (owned) {
67 assert(mutex->owner == 0);
68 mutex->owner = GetCurrentThreadId();
70 return !owned;
73 void qemu_mutex_unlock(QemuMutex *mutex)
75 assert(mutex->owner == GetCurrentThreadId());
76 mutex->owner = 0;
77 LeaveCriticalSection(&mutex->lock);
80 void qemu_cond_init(QemuCond *cond)
82 memset(cond, 0, sizeof(*cond));
84 cond->sema = CreateSemaphore(NULL, 0, LONG_MAX, NULL);
85 if (!cond->sema) {
86 error_exit(GetLastError(), __func__);
88 cond->continue_event = CreateEvent(NULL, /* security */
89 FALSE, /* auto-reset */
90 FALSE, /* not signaled */
91 NULL); /* name */
92 if (!cond->continue_event) {
93 error_exit(GetLastError(), __func__);
97 void qemu_cond_destroy(QemuCond *cond)
99 BOOL result;
100 result = CloseHandle(cond->continue_event);
101 if (!result) {
102 error_exit(GetLastError(), __func__);
104 cond->continue_event = 0;
105 result = CloseHandle(cond->sema);
106 if (!result) {
107 error_exit(GetLastError(), __func__);
109 cond->sema = 0;
112 void qemu_cond_signal(QemuCond *cond)
114 DWORD result;
117 * Signal only when there are waiters. cond->waiters is
118 * incremented by pthread_cond_wait under the external lock,
119 * so we are safe about that.
121 if (cond->waiters == 0) {
122 return;
126 * Waiting threads decrement it outside the external lock, but
127 * only if another thread is executing pthread_cond_broadcast and
128 * has the mutex. So, it also cannot be decremented concurrently
129 * with this particular access.
131 cond->target = cond->waiters - 1;
132 result = SignalObjectAndWait(cond->sema, cond->continue_event,
133 INFINITE, FALSE);
134 if (result == WAIT_ABANDONED || result == WAIT_FAILED) {
135 error_exit(GetLastError(), __func__);
139 void qemu_cond_broadcast(QemuCond *cond)
141 BOOLEAN result;
143 * As in pthread_cond_signal, access to cond->waiters and
144 * cond->target is locked via the external mutex.
146 if (cond->waiters == 0) {
147 return;
150 cond->target = 0;
151 result = ReleaseSemaphore(cond->sema, cond->waiters, NULL);
152 if (!result) {
153 error_exit(GetLastError(), __func__);
157 * At this point all waiters continue. Each one takes its
158 * slice of the semaphore. Now it's our turn to wait: Since
159 * the external mutex is held, no thread can leave cond_wait,
160 * yet. For this reason, we can be sure that no thread gets
161 * a chance to eat *more* than one slice. OTOH, it means
162 * that the last waiter must send us a wake-up.
164 WaitForSingleObject(cond->continue_event, INFINITE);
167 void qemu_cond_wait(QemuCond *cond, QemuMutex *mutex)
170 * This access is protected under the mutex.
172 cond->waiters++;
175 * Unlock external mutex and wait for signal.
176 * NOTE: we've held mutex locked long enough to increment
177 * waiters count above, so there's no problem with
178 * leaving mutex unlocked before we wait on semaphore.
180 qemu_mutex_unlock(mutex);
181 WaitForSingleObject(cond->sema, INFINITE);
183 /* Now waiters must rendez-vous with the signaling thread and
184 * let it continue. For cond_broadcast this has heavy contention
185 * and triggers thundering herd. So goes life.
187 * Decrease waiters count. The mutex is not taken, so we have
188 * to do this atomically.
190 * All waiters contend for the mutex at the end of this function
191 * until the signaling thread relinquishes it. To ensure
192 * each waiter consumes exactly one slice of the semaphore,
193 * the signaling thread stops until it is told by the last
194 * waiter that it can go on.
196 if (InterlockedDecrement(&cond->waiters) == cond->target) {
197 SetEvent(cond->continue_event);
200 qemu_mutex_lock(mutex);
203 void qemu_sem_init(QemuSemaphore *sem, int init)
205 /* Manual reset. */
206 sem->sema = CreateSemaphore(NULL, init, LONG_MAX, NULL);
209 void qemu_sem_destroy(QemuSemaphore *sem)
211 CloseHandle(sem->sema);
214 void qemu_sem_post(QemuSemaphore *sem)
216 ReleaseSemaphore(sem->sema, 1, NULL);
219 int qemu_sem_timedwait(QemuSemaphore *sem, int ms)
221 int rc = WaitForSingleObject(sem->sema, ms);
222 if (rc == WAIT_OBJECT_0) {
223 return 0;
225 if (rc != WAIT_TIMEOUT) {
226 error_exit(GetLastError(), __func__);
228 return -1;
231 void qemu_sem_wait(QemuSemaphore *sem)
233 if (WaitForSingleObject(sem->sema, INFINITE) != WAIT_OBJECT_0) {
234 error_exit(GetLastError(), __func__);
238 void qemu_event_init(QemuEvent *ev, bool init)
240 /* Manual reset. */
241 ev->event = CreateEvent(NULL, TRUE, init, NULL);
244 void qemu_event_destroy(QemuEvent *ev)
246 CloseHandle(ev->event);
249 void qemu_event_set(QemuEvent *ev)
251 SetEvent(ev->event);
254 void qemu_event_reset(QemuEvent *ev)
256 ResetEvent(ev->event);
259 void qemu_event_wait(QemuEvent *ev)
261 WaitForSingleObject(ev->event, INFINITE);
264 struct QemuThreadData {
265 /* Passed to win32_start_routine. */
266 void *(*start_routine)(void *);
267 void *arg;
268 short mode;
270 /* Only used for joinable threads. */
271 bool exited;
272 void *ret;
273 CRITICAL_SECTION cs;
276 static __thread QemuThreadData *qemu_thread_data;
278 static unsigned __stdcall win32_start_routine(void *arg)
280 QemuThreadData *data = (QemuThreadData *) arg;
281 void *(*start_routine)(void *) = data->start_routine;
282 void *thread_arg = data->arg;
284 if (data->mode == QEMU_THREAD_DETACHED) {
285 g_free(data);
286 data = NULL;
288 qemu_thread_data = data;
289 qemu_thread_exit(start_routine(thread_arg));
290 abort();
293 void qemu_thread_exit(void *arg)
295 QemuThreadData *data = qemu_thread_data;
297 if (data) {
298 assert(data->mode != QEMU_THREAD_DETACHED);
299 data->ret = arg;
300 EnterCriticalSection(&data->cs);
301 data->exited = true;
302 LeaveCriticalSection(&data->cs);
304 _endthreadex(0);
307 void *qemu_thread_join(QemuThread *thread)
309 QemuThreadData *data;
310 void *ret;
311 HANDLE handle;
313 data = thread->data;
314 if (!data) {
315 return NULL;
318 * Because multiple copies of the QemuThread can exist via
319 * qemu_thread_get_self, we need to store a value that cannot
320 * leak there. The simplest, non racy way is to store the TID,
321 * discard the handle that _beginthreadex gives back, and
322 * get another copy of the handle here.
324 handle = qemu_thread_get_handle(thread);
325 if (handle) {
326 WaitForSingleObject(handle, INFINITE);
327 CloseHandle(handle);
329 ret = data->ret;
330 assert(data->mode != QEMU_THREAD_DETACHED);
331 DeleteCriticalSection(&data->cs);
332 g_free(data);
333 return ret;
336 void qemu_thread_create(QemuThread *thread, const char *name,
337 void *(*start_routine)(void *),
338 void *arg, int mode)
340 HANDLE hThread;
341 struct QemuThreadData *data;
343 data = g_malloc(sizeof *data);
344 data->start_routine = start_routine;
345 data->arg = arg;
346 data->mode = mode;
347 data->exited = false;
349 if (data->mode != QEMU_THREAD_DETACHED) {
350 InitializeCriticalSection(&data->cs);
353 hThread = (HANDLE) _beginthreadex(NULL, 0, win32_start_routine,
354 data, 0, &thread->tid);
355 if (!hThread) {
356 error_exit(GetLastError(), __func__);
358 CloseHandle(hThread);
359 thread->data = (mode == QEMU_THREAD_DETACHED) ? NULL : data;
362 void qemu_thread_get_self(QemuThread *thread)
364 thread->data = qemu_thread_data;
365 thread->tid = GetCurrentThreadId();
368 HANDLE qemu_thread_get_handle(QemuThread *thread)
370 QemuThreadData *data;
371 HANDLE handle;
373 data = thread->data;
374 if (!data) {
375 return NULL;
378 assert(data->mode != QEMU_THREAD_DETACHED);
379 EnterCriticalSection(&data->cs);
380 if (!data->exited) {
381 handle = OpenThread(SYNCHRONIZE | THREAD_SUSPEND_RESUME, FALSE,
382 thread->tid);
383 } else {
384 handle = NULL;
386 LeaveCriticalSection(&data->cs);
387 return handle;
390 bool qemu_thread_is_self(QemuThread *thread)
392 return GetCurrentThreadId() == thread->tid;