2 * Win32 implementation for mutex/cond/thread functions
4 * Copyright Red Hat, Inc. 2010
7 * Paolo Bonzini <pbonzini@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
13 #include "qemu-common.h"
14 #include "qemu/thread.h"
19 static bool name_threads
;
21 void qemu_thread_naming(bool enable
)
23 /* But note we don't actually name them on Windows yet */
24 name_threads
= enable
;
27 static void error_exit(int err
, const char *msg
)
31 FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM
| FORMAT_MESSAGE_ALLOCATE_BUFFER
,
32 NULL
, err
, 0, (LPTSTR
)&pstr
, 2, NULL
);
33 fprintf(stderr
, "qemu: %s: %s\n", msg
, pstr
);
38 void qemu_mutex_init(QemuMutex
*mutex
)
41 InitializeCriticalSection(&mutex
->lock
);
44 void qemu_mutex_destroy(QemuMutex
*mutex
)
46 assert(mutex
->owner
== 0);
47 DeleteCriticalSection(&mutex
->lock
);
50 void qemu_mutex_lock(QemuMutex
*mutex
)
52 EnterCriticalSection(&mutex
->lock
);
54 /* Win32 CRITICAL_SECTIONs are recursive. Assert that we're not
57 assert(mutex
->owner
== 0);
58 mutex
->owner
= GetCurrentThreadId();
61 int qemu_mutex_trylock(QemuMutex
*mutex
)
65 owned
= TryEnterCriticalSection(&mutex
->lock
);
67 assert(mutex
->owner
== 0);
68 mutex
->owner
= GetCurrentThreadId();
73 void qemu_mutex_unlock(QemuMutex
*mutex
)
75 assert(mutex
->owner
== GetCurrentThreadId());
77 LeaveCriticalSection(&mutex
->lock
);
80 void qemu_cond_init(QemuCond
*cond
)
82 memset(cond
, 0, sizeof(*cond
));
84 cond
->sema
= CreateSemaphore(NULL
, 0, LONG_MAX
, NULL
);
86 error_exit(GetLastError(), __func__
);
88 cond
->continue_event
= CreateEvent(NULL
, /* security */
89 FALSE
, /* auto-reset */
90 FALSE
, /* not signaled */
92 if (!cond
->continue_event
) {
93 error_exit(GetLastError(), __func__
);
97 void qemu_cond_destroy(QemuCond
*cond
)
100 result
= CloseHandle(cond
->continue_event
);
102 error_exit(GetLastError(), __func__
);
104 cond
->continue_event
= 0;
105 result
= CloseHandle(cond
->sema
);
107 error_exit(GetLastError(), __func__
);
112 void qemu_cond_signal(QemuCond
*cond
)
117 * Signal only when there are waiters. cond->waiters is
118 * incremented by pthread_cond_wait under the external lock,
119 * so we are safe about that.
121 if (cond
->waiters
== 0) {
126 * Waiting threads decrement it outside the external lock, but
127 * only if another thread is executing pthread_cond_broadcast and
128 * has the mutex. So, it also cannot be decremented concurrently
129 * with this particular access.
131 cond
->target
= cond
->waiters
- 1;
132 result
= SignalObjectAndWait(cond
->sema
, cond
->continue_event
,
134 if (result
== WAIT_ABANDONED
|| result
== WAIT_FAILED
) {
135 error_exit(GetLastError(), __func__
);
139 void qemu_cond_broadcast(QemuCond
*cond
)
143 * As in pthread_cond_signal, access to cond->waiters and
144 * cond->target is locked via the external mutex.
146 if (cond
->waiters
== 0) {
151 result
= ReleaseSemaphore(cond
->sema
, cond
->waiters
, NULL
);
153 error_exit(GetLastError(), __func__
);
157 * At this point all waiters continue. Each one takes its
158 * slice of the semaphore. Now it's our turn to wait: Since
159 * the external mutex is held, no thread can leave cond_wait,
160 * yet. For this reason, we can be sure that no thread gets
161 * a chance to eat *more* than one slice. OTOH, it means
162 * that the last waiter must send us a wake-up.
164 WaitForSingleObject(cond
->continue_event
, INFINITE
);
167 void qemu_cond_wait(QemuCond
*cond
, QemuMutex
*mutex
)
170 * This access is protected under the mutex.
175 * Unlock external mutex and wait for signal.
176 * NOTE: we've held mutex locked long enough to increment
177 * waiters count above, so there's no problem with
178 * leaving mutex unlocked before we wait on semaphore.
180 qemu_mutex_unlock(mutex
);
181 WaitForSingleObject(cond
->sema
, INFINITE
);
183 /* Now waiters must rendez-vous with the signaling thread and
184 * let it continue. For cond_broadcast this has heavy contention
185 * and triggers thundering herd. So goes life.
187 * Decrease waiters count. The mutex is not taken, so we have
188 * to do this atomically.
190 * All waiters contend for the mutex at the end of this function
191 * until the signaling thread relinquishes it. To ensure
192 * each waiter consumes exactly one slice of the semaphore,
193 * the signaling thread stops until it is told by the last
194 * waiter that it can go on.
196 if (InterlockedDecrement(&cond
->waiters
) == cond
->target
) {
197 SetEvent(cond
->continue_event
);
200 qemu_mutex_lock(mutex
);
203 void qemu_sem_init(QemuSemaphore
*sem
, int init
)
206 sem
->sema
= CreateSemaphore(NULL
, init
, LONG_MAX
, NULL
);
209 void qemu_sem_destroy(QemuSemaphore
*sem
)
211 CloseHandle(sem
->sema
);
214 void qemu_sem_post(QemuSemaphore
*sem
)
216 ReleaseSemaphore(sem
->sema
, 1, NULL
);
219 int qemu_sem_timedwait(QemuSemaphore
*sem
, int ms
)
221 int rc
= WaitForSingleObject(sem
->sema
, ms
);
222 if (rc
== WAIT_OBJECT_0
) {
225 if (rc
!= WAIT_TIMEOUT
) {
226 error_exit(GetLastError(), __func__
);
231 void qemu_sem_wait(QemuSemaphore
*sem
)
233 if (WaitForSingleObject(sem
->sema
, INFINITE
) != WAIT_OBJECT_0
) {
234 error_exit(GetLastError(), __func__
);
238 void qemu_event_init(QemuEvent
*ev
, bool init
)
241 ev
->event
= CreateEvent(NULL
, TRUE
, init
, NULL
);
244 void qemu_event_destroy(QemuEvent
*ev
)
246 CloseHandle(ev
->event
);
249 void qemu_event_set(QemuEvent
*ev
)
254 void qemu_event_reset(QemuEvent
*ev
)
256 ResetEvent(ev
->event
);
259 void qemu_event_wait(QemuEvent
*ev
)
261 WaitForSingleObject(ev
->event
, INFINITE
);
264 struct QemuThreadData
{
265 /* Passed to win32_start_routine. */
266 void *(*start_routine
)(void *);
270 /* Only used for joinable threads. */
276 static __thread QemuThreadData
*qemu_thread_data
;
278 static unsigned __stdcall
win32_start_routine(void *arg
)
280 QemuThreadData
*data
= (QemuThreadData
*) arg
;
281 void *(*start_routine
)(void *) = data
->start_routine
;
282 void *thread_arg
= data
->arg
;
284 if (data
->mode
== QEMU_THREAD_DETACHED
) {
288 qemu_thread_data
= data
;
289 qemu_thread_exit(start_routine(thread_arg
));
293 void qemu_thread_exit(void *arg
)
295 QemuThreadData
*data
= qemu_thread_data
;
298 assert(data
->mode
!= QEMU_THREAD_DETACHED
);
300 EnterCriticalSection(&data
->cs
);
302 LeaveCriticalSection(&data
->cs
);
307 void *qemu_thread_join(QemuThread
*thread
)
309 QemuThreadData
*data
;
318 * Because multiple copies of the QemuThread can exist via
319 * qemu_thread_get_self, we need to store a value that cannot
320 * leak there. The simplest, non racy way is to store the TID,
321 * discard the handle that _beginthreadex gives back, and
322 * get another copy of the handle here.
324 handle
= qemu_thread_get_handle(thread
);
326 WaitForSingleObject(handle
, INFINITE
);
330 assert(data
->mode
!= QEMU_THREAD_DETACHED
);
331 DeleteCriticalSection(&data
->cs
);
336 void qemu_thread_create(QemuThread
*thread
, const char *name
,
337 void *(*start_routine
)(void *),
341 struct QemuThreadData
*data
;
343 data
= g_malloc(sizeof *data
);
344 data
->start_routine
= start_routine
;
347 data
->exited
= false;
349 if (data
->mode
!= QEMU_THREAD_DETACHED
) {
350 InitializeCriticalSection(&data
->cs
);
353 hThread
= (HANDLE
) _beginthreadex(NULL
, 0, win32_start_routine
,
354 data
, 0, &thread
->tid
);
356 error_exit(GetLastError(), __func__
);
358 CloseHandle(hThread
);
359 thread
->data
= (mode
== QEMU_THREAD_DETACHED
) ? NULL
: data
;
362 void qemu_thread_get_self(QemuThread
*thread
)
364 thread
->data
= qemu_thread_data
;
365 thread
->tid
= GetCurrentThreadId();
368 HANDLE
qemu_thread_get_handle(QemuThread
*thread
)
370 QemuThreadData
*data
;
378 assert(data
->mode
!= QEMU_THREAD_DETACHED
);
379 EnterCriticalSection(&data
->cs
);
381 handle
= OpenThread(SYNCHRONIZE
| THREAD_SUSPEND_RESUME
, FALSE
,
386 LeaveCriticalSection(&data
->cs
);
390 bool qemu_thread_is_self(QemuThread
*thread
)
392 return GetCurrentThreadId() == thread
->tid
;