2 * ARM virtual CPU header
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
24 #include "kvm-consts.h"
26 #if defined(TARGET_AARCH64)
27 /* AArch64 definitions */
28 # define TARGET_LONG_BITS 64
29 # define ELF_MACHINE EM_AARCH64
31 # define TARGET_LONG_BITS 32
32 # define ELF_MACHINE EM_ARM
35 #define CPUArchState struct CPUARMState
37 #include "qemu-common.h"
38 #include "exec/cpu-defs.h"
40 #include "fpu/softfloat.h"
42 #define TARGET_HAS_ICE 1
44 #define EXCP_UDEF 1 /* undefined instruction */
45 #define EXCP_SWI 2 /* software interrupt */
46 #define EXCP_PREFETCH_ABORT 3
47 #define EXCP_DATA_ABORT 4
51 #define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
52 #define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
54 #define EXCP_HVC 11 /* HyperVisor Call */
55 #define EXCP_HYP_TRAP 12
56 #define EXCP_SMC 13 /* Secure Monitor Call */
60 #define ARMV7M_EXCP_RESET 1
61 #define ARMV7M_EXCP_NMI 2
62 #define ARMV7M_EXCP_HARD 3
63 #define ARMV7M_EXCP_MEM 4
64 #define ARMV7M_EXCP_BUS 5
65 #define ARMV7M_EXCP_USAGE 6
66 #define ARMV7M_EXCP_SVC 11
67 #define ARMV7M_EXCP_DEBUG 12
68 #define ARMV7M_EXCP_PENDSV 14
69 #define ARMV7M_EXCP_SYSTICK 15
71 /* ARM-specific interrupt pending bits. */
72 #define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
73 #define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
74 #define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
76 /* The usual mapping for an AArch64 system register to its AArch32
77 * counterpart is for the 32 bit world to have access to the lower
78 * half only (with writes leaving the upper half untouched). It's
79 * therefore useful to be able to pass TCG the offset of the least
80 * significant half of a uint64_t struct member.
82 #ifdef HOST_WORDS_BIGENDIAN
83 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
84 #define offsetofhigh32(S, M) offsetof(S, M)
86 #define offsetoflow32(S, M) offsetof(S, M)
87 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
90 /* Meanings of the ARMCPU object's four inbound GPIO lines */
93 #define ARM_CPU_VIRQ 2
94 #define ARM_CPU_VFIQ 3
96 typedef void ARMWriteCPFunc(void *opaque
, int cp_info
,
97 int srcreg
, int operand
, uint32_t value
);
98 typedef uint32_t ARMReadCPFunc(void *opaque
, int cp_info
,
99 int dstreg
, int operand
);
101 struct arm_boot_info
;
103 #define NB_MMU_MODES 2
105 /* We currently assume float and double are IEEE single and double
106 precision respectively.
107 Doing runtime conversions is tricky because VFP registers may contain
108 integer values (eg. as the result of a FTOSI instruction).
109 s<2n> maps to the least significant half of d<n>
110 s<2n+1> maps to the most significant half of d<n>
113 /* CPU state for each instance of a generic timer (in cp15 c14) */
114 typedef struct ARMGenericTimer
{
115 uint64_t cval
; /* Timer CompareValue register */
116 uint64_t ctl
; /* Timer Control register */
119 #define GTIMER_PHYS 0
120 #define GTIMER_VIRT 1
121 #define NUM_GTIMERS 2
123 typedef struct CPUARMState
{
124 /* Regs for current mode. */
127 /* 32/64 switch only happens when taking and returning from
128 * exceptions so the overlap semantics are taken care of then
129 * instead of having a complicated union.
131 /* Regs for A64 mode. */
134 /* PSTATE isn't an architectural register for ARMv8. However, it is
135 * convenient for us to assemble the underlying state into a 32 bit format
136 * identical to the architectural format used for the SPSR. (This is also
137 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
138 * 'pstate' register are.) Of the PSTATE bits:
139 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
140 * semantics as for AArch32, as described in the comments on each field)
141 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
142 * DAIF (exception masks) are kept in env->daif
143 * all other bits are stored in their correct places in env->pstate
146 uint32_t aarch64
; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
148 /* Frequently accessed CPSR bits are stored separately for efficiency.
149 This contains all the other bits. Use cpsr_{read,write} to access
151 uint32_t uncached_cpsr
;
154 /* Banked registers. */
155 uint64_t banked_spsr
[8];
156 uint32_t banked_r13
[8];
157 uint32_t banked_r14
[8];
159 /* These hold r8-r12. */
160 uint32_t usr_regs
[5];
161 uint32_t fiq_regs
[5];
163 /* cpsr flag cache for faster execution */
164 uint32_t CF
; /* 0 or 1 */
165 uint32_t VF
; /* V is the bit 31. All other bits are undefined */
166 uint32_t NF
; /* N is bit 31. All other bits are undefined. */
167 uint32_t ZF
; /* Z set if zero. */
168 uint32_t QF
; /* 0 or 1 */
169 uint32_t GE
; /* cpsr[19:16] */
170 uint32_t thumb
; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
171 uint32_t condexec_bits
; /* IT bits. cpsr[15:10,26:25]. */
172 uint64_t daif
; /* exception masks, in the bits they are in in PSTATE */
174 uint64_t elr_el
[4]; /* AArch64 exception link regs */
175 uint64_t sp_el
[4]; /* AArch64 banked stack pointers */
177 /* System control coprocessor (cp15) */
180 uint64_t c0_cssel
; /* Cache size selection. */
181 uint64_t c1_sys
; /* System control register. */
182 uint64_t c1_coproc
; /* Coprocessor access register. */
183 uint32_t c1_xscaleauxcr
; /* XScale auxiliary control register. */
184 uint64_t ttbr0_el1
; /* MMU translation table base 0. */
185 uint64_t ttbr1_el1
; /* MMU translation table base 1. */
186 uint64_t c2_control
; /* MMU translation table base control. */
187 uint32_t c2_mask
; /* MMU translation table base selection mask. */
188 uint32_t c2_base_mask
; /* MMU translation table base 0 mask. */
189 uint32_t c2_data
; /* MPU data cachable bits. */
190 uint32_t c2_insn
; /* MPU instruction cachable bits. */
191 uint32_t c3
; /* MMU domain access control register
192 MPU write buffer control. */
193 uint32_t pmsav5_data_ap
; /* PMSAv5 MPU data access permissions */
194 uint32_t pmsav5_insn_ap
; /* PMSAv5 MPU insn access permissions */
195 uint64_t hcr_el2
; /* Hypervisor configuration register */
196 uint64_t scr_el3
; /* Secure configuration register. */
197 uint32_t ifsr_el2
; /* Fault status registers. */
199 uint32_t c6_region
[8]; /* MPU base/size registers. */
200 uint64_t far_el
[4]; /* Fault address registers. */
201 uint64_t par_el1
; /* Translation result. */
202 uint32_t c9_insn
; /* Cache lockdown registers. */
204 uint64_t c9_pmcr
; /* performance monitor control register */
205 uint64_t c9_pmcnten
; /* perf monitor counter enables */
206 uint32_t c9_pmovsr
; /* perf monitor overflow status */
207 uint32_t c9_pmxevtyper
; /* perf monitor event type */
208 uint32_t c9_pmuserenr
; /* perf monitor user enable */
209 uint32_t c9_pminten
; /* perf monitor interrupt enables */
211 uint64_t vbar_el
[4]; /* vector base address register */
212 uint32_t c13_fcse
; /* FCSE PID. */
213 uint64_t contextidr_el1
; /* Context ID. */
214 uint64_t tpidr_el0
; /* User RW Thread register. */
215 uint64_t tpidrro_el0
; /* User RO Thread register. */
216 uint64_t tpidr_el1
; /* Privileged Thread register. */
217 uint64_t c14_cntfrq
; /* Counter Frequency register */
218 uint64_t c14_cntkctl
; /* Timer Control register */
219 ARMGenericTimer c14_timer
[NUM_GTIMERS
];
220 uint32_t c15_cpar
; /* XScale Coprocessor Access Register */
221 uint32_t c15_ticonfig
; /* TI925T configuration byte. */
222 uint32_t c15_i_max
; /* Maximum D-cache dirty line index. */
223 uint32_t c15_i_min
; /* Minimum D-cache dirty line index. */
224 uint32_t c15_threadid
; /* TI debugger thread-ID. */
225 uint32_t c15_config_base_address
; /* SCU base address. */
226 uint32_t c15_diagnostic
; /* diagnostic register */
227 uint32_t c15_power_diagnostic
;
228 uint32_t c15_power_control
; /* power control */
229 uint64_t dbgbvr
[16]; /* breakpoint value registers */
230 uint64_t dbgbcr
[16]; /* breakpoint control registers */
231 uint64_t dbgwvr
[16]; /* watchpoint value registers */
232 uint64_t dbgwcr
[16]; /* watchpoint control registers */
234 /* If the counter is enabled, this stores the last time the counter
235 * was reset. Otherwise it stores the counter value
238 uint64_t pmccfiltr_el0
; /* Performance Monitor Filter Register */
248 int pending_exception
;
251 /* Information associated with an exception about to be taken:
252 * code which raises an exception must set cs->exception_index and
253 * the relevant parts of this structure; the cpu_do_interrupt function
254 * will then set the guest-visible registers as part of the exception
258 uint32_t syndrome
; /* AArch64 format syndrome register */
259 uint32_t fsr
; /* AArch32 format fault status register info */
260 uint64_t vaddress
; /* virtual addr associated with exception, if any */
261 /* If we implement EL2 we will also need to store information
262 * about the intermediate physical address for stage 2 faults.
266 /* Thumb-2 EE state. */
270 /* VFP coprocessor state. */
272 /* VFP/Neon register state. Note that the mapping between S, D and Q
273 * views of the register bank differs between AArch64 and AArch32:
275 * Qn = regs[2n+1]:regs[2n]
277 * Sn = regs[n/2] bits 31..0 for even n, and bits 63..32 for odd n
278 * (and regs[32] to regs[63] are inaccessible)
280 * Qn = regs[2n+1]:regs[2n]
282 * Sn = regs[2n] bits 31..0
283 * This corresponds to the architecturally defined mapping between
284 * the two execution states, and means we do not need to explicitly
285 * map these registers when changing states.
290 /* We store these fpcsr fields separately for convenience. */
294 /* scratch space when Tn are not sufficient. */
297 /* fp_status is the "normal" fp status. standard_fp_status retains
298 * values corresponding to the ARM "Standard FPSCR Value", ie
299 * default-NaN, flush-to-zero, round-to-nearest and is used by
300 * any operations (generally Neon) which the architecture defines
301 * as controlled by the standard FPSCR value rather than the FPSCR.
303 * To avoid having to transfer exception bits around, we simply
304 * say that the FPSCR cumulative exception flags are the logical
305 * OR of the flags in the two fp statuses. This relies on the
306 * only thing which needs to read the exception flags being
307 * an explicit FPSCR read.
309 float_status fp_status
;
310 float_status standard_fp_status
;
312 uint64_t exclusive_addr
;
313 uint64_t exclusive_val
;
314 uint64_t exclusive_high
;
315 #if defined(CONFIG_USER_ONLY)
316 uint64_t exclusive_test
;
317 uint32_t exclusive_info
;
320 /* iwMMXt coprocessor state. */
328 /* For mixed endian mode. */
331 #if defined(CONFIG_USER_ONLY)
332 /* For usermode syscall translation. */
336 struct CPUBreakpoint
*cpu_breakpoint
[16];
337 struct CPUWatchpoint
*cpu_watchpoint
[16];
341 /* These fields after the common ones so they are preserved on reset. */
343 /* Internal CPU feature flags. */
347 const struct arm_boot_info
*boot_info
;
352 ARMCPU
*cpu_arm_init(const char *cpu_model
);
353 int cpu_arm_exec(CPUARMState
*s
);
354 uint32_t do_arm_semihosting(CPUARMState
*env
);
356 static inline bool is_a64(CPUARMState
*env
)
361 /* you can call this signal handler from your SIGBUS and SIGSEGV
362 signal handlers to inform the virtual CPU of exceptions. non zero
363 is returned if the signal was handled by the virtual CPU. */
364 int cpu_arm_signal_handler(int host_signum
, void *pinfo
,
366 int arm_cpu_handle_mmu_fault(CPUState
*cpu
, vaddr address
, int rw
,
373 * Synchronises the counter in the PMCCNTR. This must always be called twice,
374 * once before any action that might affect the timer and again afterwards.
375 * The function is used to swap the state of the register if required.
376 * This only happens when not in user mode (!CONFIG_USER_ONLY)
378 void pmccntr_sync(CPUARMState
*env
);
380 /* SCTLR bit meanings. Several bits have been reused in newer
381 * versions of the architecture; in that case we define constants
382 * for both old and new bit meanings. Code which tests against those
383 * bits should probably check or otherwise arrange that the CPU
384 * is the architectural version it expects.
386 #define SCTLR_M (1U << 0)
387 #define SCTLR_A (1U << 1)
388 #define SCTLR_C (1U << 2)
389 #define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
390 #define SCTLR_SA (1U << 3)
391 #define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
392 #define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
393 #define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
394 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
395 #define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
396 #define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
397 #define SCTLR_ITD (1U << 7) /* v8 onward */
398 #define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
399 #define SCTLR_SED (1U << 8) /* v8 onward */
400 #define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
401 #define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
402 #define SCTLR_F (1U << 10) /* up to v6 */
403 #define SCTLR_SW (1U << 10) /* v7 onward */
404 #define SCTLR_Z (1U << 11)
405 #define SCTLR_I (1U << 12)
406 #define SCTLR_V (1U << 13)
407 #define SCTLR_RR (1U << 14) /* up to v7 */
408 #define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
409 #define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
410 #define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
411 #define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
412 #define SCTLR_nTWI (1U << 16) /* v8 onward */
413 #define SCTLR_HA (1U << 17)
414 #define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
415 #define SCTLR_nTWE (1U << 18) /* v8 onward */
416 #define SCTLR_WXN (1U << 19)
417 #define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
418 #define SCTLR_UWXN (1U << 20) /* v7 onward */
419 #define SCTLR_FI (1U << 21)
420 #define SCTLR_U (1U << 22)
421 #define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
422 #define SCTLR_VE (1U << 24) /* up to v7 */
423 #define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
424 #define SCTLR_EE (1U << 25)
425 #define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
426 #define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
427 #define SCTLR_NMFI (1U << 27)
428 #define SCTLR_TRE (1U << 28)
429 #define SCTLR_AFE (1U << 29)
430 #define SCTLR_TE (1U << 30)
432 #define CPSR_M (0x1fU)
433 #define CPSR_T (1U << 5)
434 #define CPSR_F (1U << 6)
435 #define CPSR_I (1U << 7)
436 #define CPSR_A (1U << 8)
437 #define CPSR_E (1U << 9)
438 #define CPSR_IT_2_7 (0xfc00U)
439 #define CPSR_GE (0xfU << 16)
440 #define CPSR_IL (1U << 20)
441 /* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
442 * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
443 * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
444 * where it is live state but not accessible to the AArch32 code.
446 #define CPSR_RESERVED (0x7U << 21)
447 #define CPSR_J (1U << 24)
448 #define CPSR_IT_0_1 (3U << 25)
449 #define CPSR_Q (1U << 27)
450 #define CPSR_V (1U << 28)
451 #define CPSR_C (1U << 29)
452 #define CPSR_Z (1U << 30)
453 #define CPSR_N (1U << 31)
454 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
455 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
457 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
458 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
460 /* Bits writable in user mode. */
461 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
462 /* Execution state bits. MRS read as zero, MSR writes ignored. */
463 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
464 /* Mask of bits which may be set by exception return copying them from SPSR */
465 #define CPSR_ERET_MASK (~CPSR_RESERVED)
467 #define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
468 #define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
469 #define TTBCR_PD0 (1U << 4)
470 #define TTBCR_PD1 (1U << 5)
471 #define TTBCR_EPD0 (1U << 7)
472 #define TTBCR_IRGN0 (3U << 8)
473 #define TTBCR_ORGN0 (3U << 10)
474 #define TTBCR_SH0 (3U << 12)
475 #define TTBCR_T1SZ (3U << 16)
476 #define TTBCR_A1 (1U << 22)
477 #define TTBCR_EPD1 (1U << 23)
478 #define TTBCR_IRGN1 (3U << 24)
479 #define TTBCR_ORGN1 (3U << 26)
480 #define TTBCR_SH1 (1U << 28)
481 #define TTBCR_EAE (1U << 31)
483 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
484 * Only these are valid when in AArch64 mode; in
485 * AArch32 mode SPSRs are basically CPSR-format.
487 #define PSTATE_SP (1U)
488 #define PSTATE_M (0xFU)
489 #define PSTATE_nRW (1U << 4)
490 #define PSTATE_F (1U << 6)
491 #define PSTATE_I (1U << 7)
492 #define PSTATE_A (1U << 8)
493 #define PSTATE_D (1U << 9)
494 #define PSTATE_IL (1U << 20)
495 #define PSTATE_SS (1U << 21)
496 #define PSTATE_V (1U << 28)
497 #define PSTATE_C (1U << 29)
498 #define PSTATE_Z (1U << 30)
499 #define PSTATE_N (1U << 31)
500 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
501 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
502 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF)
503 /* Mode values for AArch64 */
504 #define PSTATE_MODE_EL3h 13
505 #define PSTATE_MODE_EL3t 12
506 #define PSTATE_MODE_EL2h 9
507 #define PSTATE_MODE_EL2t 8
508 #define PSTATE_MODE_EL1h 5
509 #define PSTATE_MODE_EL1t 4
510 #define PSTATE_MODE_EL0t 0
512 /* Map EL and handler into a PSTATE_MODE. */
513 static inline unsigned int aarch64_pstate_mode(unsigned int el
, bool handler
)
515 return (el
<< 2) | handler
;
518 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
519 * interprocessing, so we don't attempt to sync with the cpsr state used by
520 * the 32 bit decoder.
522 static inline uint32_t pstate_read(CPUARMState
*env
)
527 return (env
->NF
& 0x80000000) | (ZF
<< 30)
528 | (env
->CF
<< 29) | ((env
->VF
& 0x80000000) >> 3)
529 | env
->pstate
| env
->daif
;
532 static inline void pstate_write(CPUARMState
*env
, uint32_t val
)
534 env
->ZF
= (~val
) & PSTATE_Z
;
536 env
->CF
= (val
>> 29) & 1;
537 env
->VF
= (val
<< 3) & 0x80000000;
538 env
->daif
= val
& PSTATE_DAIF
;
539 env
->pstate
= val
& ~CACHED_PSTATE_BITS
;
542 /* Return the current CPSR value. */
543 uint32_t cpsr_read(CPUARMState
*env
);
544 /* Set the CPSR. Note that some bits of mask must be all-set or all-clear. */
545 void cpsr_write(CPUARMState
*env
, uint32_t val
, uint32_t mask
);
547 /* Return the current xPSR value. */
548 static inline uint32_t xpsr_read(CPUARMState
*env
)
552 return (env
->NF
& 0x80000000) | (ZF
<< 30)
553 | (env
->CF
<< 29) | ((env
->VF
& 0x80000000) >> 3) | (env
->QF
<< 27)
554 | (env
->thumb
<< 24) | ((env
->condexec_bits
& 3) << 25)
555 | ((env
->condexec_bits
& 0xfc) << 8)
556 | env
->v7m
.exception
;
559 /* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
560 static inline void xpsr_write(CPUARMState
*env
, uint32_t val
, uint32_t mask
)
562 if (mask
& CPSR_NZCV
) {
563 env
->ZF
= (~val
) & CPSR_Z
;
565 env
->CF
= (val
>> 29) & 1;
566 env
->VF
= (val
<< 3) & 0x80000000;
569 env
->QF
= ((val
& CPSR_Q
) != 0);
570 if (mask
& (1 << 24))
571 env
->thumb
= ((val
& (1 << 24)) != 0);
572 if (mask
& CPSR_IT_0_1
) {
573 env
->condexec_bits
&= ~3;
574 env
->condexec_bits
|= (val
>> 25) & 3;
576 if (mask
& CPSR_IT_2_7
) {
577 env
->condexec_bits
&= 3;
578 env
->condexec_bits
|= (val
>> 8) & 0xfc;
581 env
->v7m
.exception
= val
& 0x1ff;
585 #define HCR_VM (1ULL << 0)
586 #define HCR_SWIO (1ULL << 1)
587 #define HCR_PTW (1ULL << 2)
588 #define HCR_FMO (1ULL << 3)
589 #define HCR_IMO (1ULL << 4)
590 #define HCR_AMO (1ULL << 5)
591 #define HCR_VF (1ULL << 6)
592 #define HCR_VI (1ULL << 7)
593 #define HCR_VSE (1ULL << 8)
594 #define HCR_FB (1ULL << 9)
595 #define HCR_BSU_MASK (3ULL << 10)
596 #define HCR_DC (1ULL << 12)
597 #define HCR_TWI (1ULL << 13)
598 #define HCR_TWE (1ULL << 14)
599 #define HCR_TID0 (1ULL << 15)
600 #define HCR_TID1 (1ULL << 16)
601 #define HCR_TID2 (1ULL << 17)
602 #define HCR_TID3 (1ULL << 18)
603 #define HCR_TSC (1ULL << 19)
604 #define HCR_TIDCP (1ULL << 20)
605 #define HCR_TACR (1ULL << 21)
606 #define HCR_TSW (1ULL << 22)
607 #define HCR_TPC (1ULL << 23)
608 #define HCR_TPU (1ULL << 24)
609 #define HCR_TTLB (1ULL << 25)
610 #define HCR_TVM (1ULL << 26)
611 #define HCR_TGE (1ULL << 27)
612 #define HCR_TDZ (1ULL << 28)
613 #define HCR_HCD (1ULL << 29)
614 #define HCR_TRVM (1ULL << 30)
615 #define HCR_RW (1ULL << 31)
616 #define HCR_CD (1ULL << 32)
617 #define HCR_ID (1ULL << 33)
618 #define HCR_MASK ((1ULL << 34) - 1)
620 #define SCR_NS (1U << 0)
621 #define SCR_IRQ (1U << 1)
622 #define SCR_FIQ (1U << 2)
623 #define SCR_EA (1U << 3)
624 #define SCR_FW (1U << 4)
625 #define SCR_AW (1U << 5)
626 #define SCR_NET (1U << 6)
627 #define SCR_SMD (1U << 7)
628 #define SCR_HCE (1U << 8)
629 #define SCR_SIF (1U << 9)
630 #define SCR_RW (1U << 10)
631 #define SCR_ST (1U << 11)
632 #define SCR_TWI (1U << 12)
633 #define SCR_TWE (1U << 13)
634 #define SCR_AARCH32_MASK (0x3fff & ~(SCR_RW | SCR_ST))
635 #define SCR_AARCH64_MASK (0x3fff & ~SCR_NET)
637 /* Return the current FPSCR value. */
638 uint32_t vfp_get_fpscr(CPUARMState
*env
);
639 void vfp_set_fpscr(CPUARMState
*env
, uint32_t val
);
641 /* For A64 the FPSCR is split into two logically distinct registers,
642 * FPCR and FPSR. However since they still use non-overlapping bits
643 * we store the underlying state in fpscr and just mask on read/write.
645 #define FPSR_MASK 0xf800009f
646 #define FPCR_MASK 0x07f79f00
647 static inline uint32_t vfp_get_fpsr(CPUARMState
*env
)
649 return vfp_get_fpscr(env
) & FPSR_MASK
;
652 static inline void vfp_set_fpsr(CPUARMState
*env
, uint32_t val
)
654 uint32_t new_fpscr
= (vfp_get_fpscr(env
) & ~FPSR_MASK
) | (val
& FPSR_MASK
);
655 vfp_set_fpscr(env
, new_fpscr
);
658 static inline uint32_t vfp_get_fpcr(CPUARMState
*env
)
660 return vfp_get_fpscr(env
) & FPCR_MASK
;
663 static inline void vfp_set_fpcr(CPUARMState
*env
, uint32_t val
)
665 uint32_t new_fpscr
= (vfp_get_fpscr(env
) & ~FPCR_MASK
) | (val
& FPCR_MASK
);
666 vfp_set_fpscr(env
, new_fpscr
);
670 ARM_CPU_MODE_USR
= 0x10,
671 ARM_CPU_MODE_FIQ
= 0x11,
672 ARM_CPU_MODE_IRQ
= 0x12,
673 ARM_CPU_MODE_SVC
= 0x13,
674 ARM_CPU_MODE_MON
= 0x16,
675 ARM_CPU_MODE_ABT
= 0x17,
676 ARM_CPU_MODE_HYP
= 0x1a,
677 ARM_CPU_MODE_UND
= 0x1b,
678 ARM_CPU_MODE_SYS
= 0x1f
681 /* VFP system registers. */
682 #define ARM_VFP_FPSID 0
683 #define ARM_VFP_FPSCR 1
684 #define ARM_VFP_MVFR2 5
685 #define ARM_VFP_MVFR1 6
686 #define ARM_VFP_MVFR0 7
687 #define ARM_VFP_FPEXC 8
688 #define ARM_VFP_FPINST 9
689 #define ARM_VFP_FPINST2 10
691 /* iwMMXt coprocessor control registers. */
692 #define ARM_IWMMXT_wCID 0
693 #define ARM_IWMMXT_wCon 1
694 #define ARM_IWMMXT_wCSSF 2
695 #define ARM_IWMMXT_wCASF 3
696 #define ARM_IWMMXT_wCGR0 8
697 #define ARM_IWMMXT_wCGR1 9
698 #define ARM_IWMMXT_wCGR2 10
699 #define ARM_IWMMXT_wCGR3 11
701 /* If adding a feature bit which corresponds to a Linux ELF
702 * HWCAP bit, remember to update the feature-bit-to-hwcap
703 * mapping in linux-user/elfload.c:get_elf_hwcap().
707 ARM_FEATURE_AUXCR
, /* ARM1026 Auxiliary control register. */
708 ARM_FEATURE_XSCALE
, /* Intel XScale extensions. */
709 ARM_FEATURE_IWMMXT
, /* Intel iwMMXt extension. */
714 ARM_FEATURE_MPU
, /* Only has Memory Protection Unit, not full MMU. */
716 ARM_FEATURE_VFP_FP16
,
718 ARM_FEATURE_THUMB_DIV
, /* divide supported in Thumb encoding */
719 ARM_FEATURE_M
, /* Microcontroller profile. */
720 ARM_FEATURE_OMAPCP
, /* OMAP specific CP15 ops handling. */
721 ARM_FEATURE_THUMB2EE
,
722 ARM_FEATURE_V7MP
, /* v7 Multiprocessing Extensions */
725 ARM_FEATURE_STRONGARM
,
726 ARM_FEATURE_VAPA
, /* cp15 VA to PA lookups */
727 ARM_FEATURE_ARM_DIV
, /* divide supported in ARM encoding */
728 ARM_FEATURE_VFP4
, /* VFPv4 (implies that NEON is v2) */
729 ARM_FEATURE_GENERIC_TIMER
,
730 ARM_FEATURE_MVFR
, /* Media and VFP Feature Registers 0 and 1 */
731 ARM_FEATURE_DUMMY_C15_REGS
, /* RAZ/WI all of cp15 crn=15 */
732 ARM_FEATURE_CACHE_TEST_CLEAN
, /* 926/1026 style test-and-clean ops */
733 ARM_FEATURE_CACHE_DIRTY_REG
, /* 1136/1176 cache dirty status register */
734 ARM_FEATURE_CACHE_BLOCK_OPS
, /* v6 optional cache block operations */
735 ARM_FEATURE_MPIDR
, /* has cp15 MPIDR */
736 ARM_FEATURE_PXN
, /* has Privileged Execute Never bit */
737 ARM_FEATURE_LPAE
, /* has Large Physical Address Extension */
739 ARM_FEATURE_AARCH64
, /* supports 64 bit mode */
740 ARM_FEATURE_V8_AES
, /* implements AES part of v8 Crypto Extensions */
741 ARM_FEATURE_CBAR
, /* has cp15 CBAR */
742 ARM_FEATURE_CRC
, /* ARMv8 CRC instructions */
743 ARM_FEATURE_CBAR_RO
, /* has cp15 CBAR and it is read-only */
744 ARM_FEATURE_EL2
, /* has EL2 Virtualization support */
745 ARM_FEATURE_EL3
, /* has EL3 Secure monitor support */
746 ARM_FEATURE_V8_SHA1
, /* implements SHA1 part of v8 Crypto Extensions */
747 ARM_FEATURE_V8_SHA256
, /* implements SHA256 part of v8 Crypto Extensions */
748 ARM_FEATURE_V8_PMULL
, /* implements PMULL part of v8 Crypto Extensions */
751 static inline int arm_feature(CPUARMState
*env
, int feature
)
753 return (env
->features
& (1ULL << feature
)) != 0;
756 #if !defined(CONFIG_USER_ONLY)
757 /* Return true if exception levels below EL3 are in secure state,
758 * or would be following an exception return to that level.
759 * Unlike arm_is_secure() (which is always a question about the
760 * _current_ state of the CPU) this doesn't care about the current
763 static inline bool arm_is_secure_below_el3(CPUARMState
*env
)
765 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
766 return !(env
->cp15
.scr_el3
& SCR_NS
);
768 /* If EL2 is not supported then the secure state is implementation
769 * defined, in which case QEMU defaults to non-secure.
775 /* Return true if the processor is in secure state */
776 static inline bool arm_is_secure(CPUARMState
*env
)
778 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
779 if (is_a64(env
) && extract32(env
->pstate
, 2, 2) == 3) {
780 /* CPU currently in AArch64 state and EL3 */
782 } else if (!is_a64(env
) &&
783 (env
->uncached_cpsr
& CPSR_M
) == ARM_CPU_MODE_MON
) {
784 /* CPU currently in AArch32 state and monitor mode */
788 return arm_is_secure_below_el3(env
);
792 static inline bool arm_is_secure_below_el3(CPUARMState
*env
)
797 static inline bool arm_is_secure(CPUARMState
*env
)
803 /* Return true if the specified exception level is running in AArch64 state. */
804 static inline bool arm_el_is_aa64(CPUARMState
*env
, int el
)
806 /* We don't currently support EL2 or EL3, and this isn't valid for EL0
807 * (if we're in EL0, is_a64() is what you want, and if we're not in EL0
808 * then the state of EL0 isn't well defined.)
811 /* AArch64-capable CPUs always run with EL1 in AArch64 mode. This
812 * is a QEMU-imposed simplification which we may wish to change later.
813 * If we in future support EL2 and/or EL3, then the state of lower
814 * exception levels is controlled by the HCR.RW and SCR.RW bits.
816 return arm_feature(env
, ARM_FEATURE_AARCH64
);
819 void arm_cpu_list(FILE *f
, fprintf_function cpu_fprintf
);
820 unsigned int arm_excp_target_el(CPUState
*cs
, unsigned int excp_idx
);
822 /* Interface between CPU and Interrupt controller. */
823 void armv7m_nvic_set_pending(void *opaque
, int irq
);
824 int armv7m_nvic_acknowledge_irq(void *opaque
);
825 void armv7m_nvic_complete_irq(void *opaque
, int irq
);
827 /* Interface for defining coprocessor registers.
828 * Registers are defined in tables of arm_cp_reginfo structs
829 * which are passed to define_arm_cp_regs().
832 /* When looking up a coprocessor register we look for it
833 * via an integer which encodes all of:
835 * Crn, Crm, opc1, opc2 fields
836 * 32 or 64 bit register (ie is it accessed via MRC/MCR
838 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
839 * (In this case crn and opc2 should be zero.)
840 * For AArch64, there is no 32/64 bit size distinction;
841 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
842 * and 4 bit CRn and CRm. The encoding patterns are chosen
843 * to be easy to convert to and from the KVM encodings, and also
844 * so that the hashtable can contain both AArch32 and AArch64
845 * registers (to allow for interprocessing where we might run
846 * 32 bit code on a 64 bit core).
848 /* This bit is private to our hashtable cpreg; in KVM register
849 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
850 * in the upper bits of the 64 bit ID.
852 #define CP_REG_AA64_SHIFT 28
853 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
855 #define ENCODE_CP_REG(cp, is64, crn, crm, opc1, opc2) \
856 (((cp) << 16) | ((is64) << 15) | ((crn) << 11) | \
857 ((crm) << 7) | ((opc1) << 3) | (opc2))
859 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
860 (CP_REG_AA64_MASK | \
861 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
862 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
863 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
864 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
865 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
866 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
868 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
869 * version used as a key for the coprocessor register hashtable
871 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid
)
873 uint32_t cpregid
= kvmid
;
874 if ((kvmid
& CP_REG_ARCH_MASK
) == CP_REG_ARM64
) {
875 cpregid
|= CP_REG_AA64_MASK
;
876 } else if ((kvmid
& CP_REG_SIZE_MASK
) == CP_REG_SIZE_U64
) {
877 cpregid
|= (1 << 15);
882 /* Convert a truncated 32 bit hashtable key into the full
883 * 64 bit KVM register ID.
885 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid
)
889 if (cpregid
& CP_REG_AA64_MASK
) {
890 kvmid
= cpregid
& ~CP_REG_AA64_MASK
;
891 kvmid
|= CP_REG_SIZE_U64
| CP_REG_ARM64
;
893 kvmid
= cpregid
& ~(1 << 15);
894 if (cpregid
& (1 << 15)) {
895 kvmid
|= CP_REG_SIZE_U64
| CP_REG_ARM
;
897 kvmid
|= CP_REG_SIZE_U32
| CP_REG_ARM
;
903 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
904 * special-behaviour cp reg and bits [15..8] indicate what behaviour
905 * it has. Otherwise it is a simple cp reg, where CONST indicates that
906 * TCG can assume the value to be constant (ie load at translate time)
907 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
908 * indicates that the TB should not be ended after a write to this register
909 * (the default is that the TB ends after cp writes). OVERRIDE permits
910 * a register definition to override a previous definition for the
911 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
912 * old must have the OVERRIDE bit set.
913 * NO_MIGRATE indicates that this register should be ignored for migration;
914 * (eg because any state is accessed via some other coprocessor register).
915 * IO indicates that this register does I/O and therefore its accesses
916 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
917 * registers which implement clocks or timers require this.
919 #define ARM_CP_SPECIAL 1
920 #define ARM_CP_CONST 2
921 #define ARM_CP_64BIT 4
922 #define ARM_CP_SUPPRESS_TB_END 8
923 #define ARM_CP_OVERRIDE 16
924 #define ARM_CP_NO_MIGRATE 32
926 #define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
927 #define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
928 #define ARM_CP_NZCV (ARM_CP_SPECIAL | (3 << 8))
929 #define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | (4 << 8))
930 #define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | (5 << 8))
931 #define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
932 /* Used only as a terminator for ARMCPRegInfo lists */
933 #define ARM_CP_SENTINEL 0xffff
934 /* Mask of only the flag bits in a type field */
935 #define ARM_CP_FLAG_MASK 0x7f
937 /* Valid values for ARMCPRegInfo state field, indicating which of
938 * the AArch32 and AArch64 execution states this register is visible in.
939 * If the reginfo doesn't explicitly specify then it is AArch32 only.
940 * If the reginfo is declared to be visible in both states then a second
941 * reginfo is synthesised for the AArch32 view of the AArch64 register,
942 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
943 * Note that we rely on the values of these enums as we iterate through
944 * the various states in some places.
947 ARM_CP_STATE_AA32
= 0,
948 ARM_CP_STATE_AA64
= 1,
949 ARM_CP_STATE_BOTH
= 2,
952 /* Return true if cptype is a valid type field. This is used to try to
953 * catch errors where the sentinel has been accidentally left off the end
954 * of a list of registers.
956 static inline bool cptype_valid(int cptype
)
958 return ((cptype
& ~ARM_CP_FLAG_MASK
) == 0)
959 || ((cptype
& ARM_CP_SPECIAL
) &&
960 ((cptype
& ~ARM_CP_FLAG_MASK
) <= ARM_LAST_SPECIAL
));
964 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
965 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
966 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
967 * (ie any of the privileged modes in Secure state, or Monitor mode).
968 * If a register is accessible in one privilege level it's always accessible
969 * in higher privilege levels too. Since "Secure PL1" also follows this rule
970 * (ie anything visible in PL2 is visible in S-PL1, some things are only
971 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
972 * terminology a little and call this PL3.
973 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
974 * with the ELx exception levels.
976 * If access permissions for a register are more complex than can be
977 * described with these bits, then use a laxer set of restrictions, and
978 * do the more restrictive/complex check inside a helper function.
982 #define PL2_R (0x20 | PL3_R)
983 #define PL2_W (0x10 | PL3_W)
984 #define PL1_R (0x08 | PL2_R)
985 #define PL1_W (0x04 | PL2_W)
986 #define PL0_R (0x02 | PL1_R)
987 #define PL0_W (0x01 | PL1_W)
989 #define PL3_RW (PL3_R | PL3_W)
990 #define PL2_RW (PL2_R | PL2_W)
991 #define PL1_RW (PL1_R | PL1_W)
992 #define PL0_RW (PL0_R | PL0_W)
994 static inline int arm_current_pl(CPUARMState
*env
)
997 return extract32(env
->pstate
, 2, 2);
1000 if ((env
->uncached_cpsr
& 0x1f) == ARM_CPU_MODE_USR
) {
1003 /* We don't currently implement the Virtualization or TrustZone
1004 * extensions, so PL2 and PL3 don't exist for us.
1009 typedef struct ARMCPRegInfo ARMCPRegInfo
;
1011 typedef enum CPAccessResult
{
1012 /* Access is permitted */
1014 /* Access fails due to a configurable trap or enable which would
1015 * result in a categorized exception syndrome giving information about
1016 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
1020 /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
1021 * Note that this is not a catch-all case -- the set of cases which may
1022 * result in this failure is specifically defined by the architecture.
1024 CP_ACCESS_TRAP_UNCATEGORIZED
= 2,
1027 /* Access functions for coprocessor registers. These cannot fail and
1028 * may not raise exceptions.
1030 typedef uint64_t CPReadFn(CPUARMState
*env
, const ARMCPRegInfo
*opaque
);
1031 typedef void CPWriteFn(CPUARMState
*env
, const ARMCPRegInfo
*opaque
,
1033 /* Access permission check functions for coprocessor registers. */
1034 typedef CPAccessResult
CPAccessFn(CPUARMState
*env
, const ARMCPRegInfo
*opaque
);
1035 /* Hook function for register reset */
1036 typedef void CPResetFn(CPUARMState
*env
, const ARMCPRegInfo
*opaque
);
1040 /* Definition of an ARM coprocessor register */
1041 struct ARMCPRegInfo
{
1042 /* Name of register (useful mainly for debugging, need not be unique) */
1044 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
1045 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
1046 * 'wildcard' field -- any value of that field in the MRC/MCR insn
1047 * will be decoded to this register. The register read and write
1048 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
1049 * used by the program, so it is possible to register a wildcard and
1050 * then behave differently on read/write if necessary.
1051 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
1052 * must both be zero.
1053 * For AArch64-visible registers, opc0 is also used.
1054 * Since there are no "coprocessors" in AArch64, cp is purely used as a
1055 * way to distinguish (for KVM's benefit) guest-visible system registers
1056 * from demuxed ones provided to preserve the "no side effects on
1057 * KVM register read/write from QEMU" semantics. cp==0x13 is guest
1058 * visible (to match KVM's encoding); cp==0 will be converted to
1059 * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
1067 /* Execution state in which this register is visible: ARM_CP_STATE_* */
1069 /* Register type: ARM_CP_* bits/values */
1071 /* Access rights: PL*_[RW] */
1073 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
1074 * this register was defined: can be used to hand data through to the
1075 * register read/write functions, since they are passed the ARMCPRegInfo*.
1078 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
1079 * fieldoffset is non-zero, the reset value of the register.
1081 uint64_t resetvalue
;
1082 /* Offset of the field in CPUARMState for this register. This is not
1084 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
1085 * 2. both readfn and writefn are specified
1087 ptrdiff_t fieldoffset
; /* offsetof(CPUARMState, field) */
1088 /* Function for making any access checks for this register in addition to
1089 * those specified by the 'access' permissions bits. If NULL, no extra
1090 * checks required. The access check is performed at runtime, not at
1093 CPAccessFn
*accessfn
;
1094 /* Function for handling reads of this register. If NULL, then reads
1095 * will be done by loading from the offset into CPUARMState specified
1099 /* Function for handling writes of this register. If NULL, then writes
1100 * will be done by writing to the offset into CPUARMState specified
1104 /* Function for doing a "raw" read; used when we need to copy
1105 * coprocessor state to the kernel for KVM or out for
1106 * migration. This only needs to be provided if there is also a
1107 * readfn and it has side effects (for instance clear-on-read bits).
1109 CPReadFn
*raw_readfn
;
1110 /* Function for doing a "raw" write; used when we need to copy KVM
1111 * kernel coprocessor state into userspace, or for inbound
1112 * migration. This only needs to be provided if there is also a
1113 * writefn and it masks out "unwritable" bits or has write-one-to-clear
1114 * or similar behaviour.
1116 CPWriteFn
*raw_writefn
;
1117 /* Function for resetting the register. If NULL, then reset will be done
1118 * by writing resetvalue to the field specified in fieldoffset. If
1119 * fieldoffset is 0 then no reset will be done.
1124 /* Macros which are lvalues for the field in CPUARMState for the
1127 #define CPREG_FIELD32(env, ri) \
1128 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
1129 #define CPREG_FIELD64(env, ri) \
1130 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
1132 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
1134 void define_arm_cp_regs_with_opaque(ARMCPU
*cpu
,
1135 const ARMCPRegInfo
*regs
, void *opaque
);
1136 void define_one_arm_cp_reg_with_opaque(ARMCPU
*cpu
,
1137 const ARMCPRegInfo
*regs
, void *opaque
);
1138 static inline void define_arm_cp_regs(ARMCPU
*cpu
, const ARMCPRegInfo
*regs
)
1140 define_arm_cp_regs_with_opaque(cpu
, regs
, 0);
1142 static inline void define_one_arm_cp_reg(ARMCPU
*cpu
, const ARMCPRegInfo
*regs
)
1144 define_one_arm_cp_reg_with_opaque(cpu
, regs
, 0);
1146 const ARMCPRegInfo
*get_arm_cp_reginfo(GHashTable
*cpregs
, uint32_t encoded_cp
);
1148 /* CPWriteFn that can be used to implement writes-ignored behaviour */
1149 void arm_cp_write_ignore(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1151 /* CPReadFn that can be used for read-as-zero behaviour */
1152 uint64_t arm_cp_read_zero(CPUARMState
*env
, const ARMCPRegInfo
*ri
);
1154 /* CPResetFn that does nothing, for use if no reset is required even
1155 * if fieldoffset is non zero.
1157 void arm_cp_reset_ignore(CPUARMState
*env
, const ARMCPRegInfo
*opaque
);
1159 /* Return true if this reginfo struct's field in the cpu state struct
1162 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo
*ri
)
1164 return (ri
->state
== ARM_CP_STATE_AA64
) || (ri
->type
& ARM_CP_64BIT
);
1167 static inline bool cp_access_ok(int current_pl
,
1168 const ARMCPRegInfo
*ri
, int isread
)
1170 return (ri
->access
>> ((current_pl
* 2) + isread
)) & 1;
1174 * write_list_to_cpustate
1177 * For each register listed in the ARMCPU cpreg_indexes list, write
1178 * its value from the cpreg_values list into the ARMCPUState structure.
1179 * This updates TCG's working data structures from KVM data or
1180 * from incoming migration state.
1182 * Returns: true if all register values were updated correctly,
1183 * false if some register was unknown or could not be written.
1184 * Note that we do not stop early on failure -- we will attempt
1185 * writing all registers in the list.
1187 bool write_list_to_cpustate(ARMCPU
*cpu
);
1190 * write_cpustate_to_list:
1193 * For each register listed in the ARMCPU cpreg_indexes list, write
1194 * its value from the ARMCPUState structure into the cpreg_values list.
1195 * This is used to copy info from TCG's working data structures into
1196 * KVM or for outbound migration.
1198 * Returns: true if all register values were read correctly,
1199 * false if some register was unknown or could not be read.
1200 * Note that we do not stop early on failure -- we will attempt
1201 * reading all registers in the list.
1203 bool write_cpustate_to_list(ARMCPU
*cpu
);
1205 /* Does the core conform to the the "MicroController" profile. e.g. Cortex-M3.
1206 Note the M in older cores (eg. ARM7TDMI) stands for Multiply. These are
1207 conventional cores (ie. Application or Realtime profile). */
1209 #define IS_M(env) arm_feature(env, ARM_FEATURE_M)
1211 #define ARM_CPUID_TI915T 0x54029152
1212 #define ARM_CPUID_TI925T 0x54029252
1214 #if defined(CONFIG_USER_ONLY)
1215 #define TARGET_PAGE_BITS 12
1217 /* The ARM MMU allows 1k pages. */
1218 /* ??? Linux doesn't actually use these, and they're deprecated in recent
1219 architecture revisions. Maybe a configure option to disable them. */
1220 #define TARGET_PAGE_BITS 10
1223 #if defined(TARGET_AARCH64)
1224 # define TARGET_PHYS_ADDR_SPACE_BITS 48
1225 # define TARGET_VIRT_ADDR_SPACE_BITS 64
1227 # define TARGET_PHYS_ADDR_SPACE_BITS 40
1228 # define TARGET_VIRT_ADDR_SPACE_BITS 32
1231 static inline bool arm_excp_unmasked(CPUState
*cs
, unsigned int excp_idx
)
1233 CPUARMState
*env
= cs
->env_ptr
;
1234 unsigned int cur_el
= arm_current_pl(env
);
1235 unsigned int target_el
= arm_excp_target_el(cs
, excp_idx
);
1236 /* FIXME: Use actual secure state. */
1237 bool secure
= false;
1238 /* If in EL1/0, Physical IRQ routing to EL2 only happens from NS state. */
1239 bool irq_can_hyp
= !secure
&& cur_el
< 2 && target_el
== 2;
1240 /* ARMv7-M interrupt return works by loading a magic value
1241 * into the PC. On real hardware the load causes the
1242 * return to occur. The qemu implementation performs the
1243 * jump normally, then does the exception return when the
1244 * CPU tries to execute code at the magic address.
1245 * This will cause the magic PC value to be pushed to
1246 * the stack if an interrupt occurred at the wrong time.
1247 * We avoid this by disabling interrupts when
1248 * pc contains a magic address.
1250 bool irq_unmasked
= !(env
->daif
& PSTATE_I
)
1251 && (!IS_M(env
) || env
->regs
[15] < 0xfffffff0);
1253 /* Don't take exceptions if they target a lower EL. */
1254 if (cur_el
> target_el
) {
1260 if (irq_can_hyp
&& (env
->cp15
.hcr_el2
& HCR_FMO
)) {
1263 return !(env
->daif
& PSTATE_F
);
1265 if (irq_can_hyp
&& (env
->cp15
.hcr_el2
& HCR_IMO
)) {
1268 return irq_unmasked
;
1270 if (!secure
&& !(env
->cp15
.hcr_el2
& HCR_FMO
)) {
1271 /* VFIQs are only taken when hypervized and non-secure. */
1274 return !(env
->daif
& PSTATE_F
);
1276 if (!secure
&& !(env
->cp15
.hcr_el2
& HCR_IMO
)) {
1277 /* VIRQs are only taken when hypervized and non-secure. */
1280 return irq_unmasked
;
1282 g_assert_not_reached();
1286 static inline CPUARMState
*cpu_init(const char *cpu_model
)
1288 ARMCPU
*cpu
= cpu_arm_init(cpu_model
);
1295 #define cpu_exec cpu_arm_exec
1296 #define cpu_gen_code cpu_arm_gen_code
1297 #define cpu_signal_handler cpu_arm_signal_handler
1298 #define cpu_list arm_cpu_list
1300 /* MMU modes definitions */
1301 #define MMU_MODE0_SUFFIX _user
1302 #define MMU_MODE1_SUFFIX _kernel
1303 #define MMU_USER_IDX 0
1304 static inline int cpu_mmu_index (CPUARMState
*env
)
1306 return arm_current_pl(env
);
1309 /* Return the Exception Level targeted by debug exceptions;
1310 * currently always EL1 since we don't implement EL2 or EL3.
1312 static inline int arm_debug_target_el(CPUARMState
*env
)
1317 static inline bool aa64_generate_debug_exceptions(CPUARMState
*env
)
1319 if (arm_current_pl(env
) == arm_debug_target_el(env
)) {
1320 if ((extract32(env
->cp15
.mdscr_el1
, 13, 1) == 0)
1321 || (env
->daif
& PSTATE_D
)) {
1328 static inline bool aa32_generate_debug_exceptions(CPUARMState
*env
)
1330 if (arm_current_pl(env
) == 0 && arm_el_is_aa64(env
, 1)) {
1331 return aa64_generate_debug_exceptions(env
);
1333 return arm_current_pl(env
) != 2;
1336 /* Return true if debugging exceptions are currently enabled.
1337 * This corresponds to what in ARM ARM pseudocode would be
1338 * if UsingAArch32() then
1339 * return AArch32.GenerateDebugExceptions()
1341 * return AArch64.GenerateDebugExceptions()
1342 * We choose to push the if() down into this function for clarity,
1343 * since the pseudocode has it at all callsites except for the one in
1344 * CheckSoftwareStep(), where it is elided because both branches would
1345 * always return the same value.
1347 * Parts of the pseudocode relating to EL2 and EL3 are omitted because we
1348 * don't yet implement those exception levels or their associated trap bits.
1350 static inline bool arm_generate_debug_exceptions(CPUARMState
*env
)
1353 return aa64_generate_debug_exceptions(env
);
1355 return aa32_generate_debug_exceptions(env
);
1359 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
1360 * implicitly means this always returns false in pre-v8 CPUs.)
1362 static inline bool arm_singlestep_active(CPUARMState
*env
)
1364 return extract32(env
->cp15
.mdscr_el1
, 0, 1)
1365 && arm_el_is_aa64(env
, arm_debug_target_el(env
))
1366 && arm_generate_debug_exceptions(env
);
1369 #include "exec/cpu-all.h"
1371 /* Bit usage in the TB flags field: bit 31 indicates whether we are
1372 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
1374 #define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
1375 #define ARM_TBFLAG_AARCH64_STATE_MASK (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
1377 /* Bit usage when in AArch32 state: */
1378 #define ARM_TBFLAG_THUMB_SHIFT 0
1379 #define ARM_TBFLAG_THUMB_MASK (1 << ARM_TBFLAG_THUMB_SHIFT)
1380 #define ARM_TBFLAG_VECLEN_SHIFT 1
1381 #define ARM_TBFLAG_VECLEN_MASK (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
1382 #define ARM_TBFLAG_VECSTRIDE_SHIFT 4
1383 #define ARM_TBFLAG_VECSTRIDE_MASK (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
1384 #define ARM_TBFLAG_PRIV_SHIFT 6
1385 #define ARM_TBFLAG_PRIV_MASK (1 << ARM_TBFLAG_PRIV_SHIFT)
1386 #define ARM_TBFLAG_VFPEN_SHIFT 7
1387 #define ARM_TBFLAG_VFPEN_MASK (1 << ARM_TBFLAG_VFPEN_SHIFT)
1388 #define ARM_TBFLAG_CONDEXEC_SHIFT 8
1389 #define ARM_TBFLAG_CONDEXEC_MASK (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
1390 #define ARM_TBFLAG_BSWAP_CODE_SHIFT 16
1391 #define ARM_TBFLAG_BSWAP_CODE_MASK (1 << ARM_TBFLAG_BSWAP_CODE_SHIFT)
1392 #define ARM_TBFLAG_CPACR_FPEN_SHIFT 17
1393 #define ARM_TBFLAG_CPACR_FPEN_MASK (1 << ARM_TBFLAG_CPACR_FPEN_SHIFT)
1394 #define ARM_TBFLAG_SS_ACTIVE_SHIFT 18
1395 #define ARM_TBFLAG_SS_ACTIVE_MASK (1 << ARM_TBFLAG_SS_ACTIVE_SHIFT)
1396 #define ARM_TBFLAG_PSTATE_SS_SHIFT 19
1397 #define ARM_TBFLAG_PSTATE_SS_MASK (1 << ARM_TBFLAG_PSTATE_SS_SHIFT)
1398 /* We store the bottom two bits of the CPAR as TB flags and handle
1399 * checks on the other bits at runtime
1401 #define ARM_TBFLAG_XSCALE_CPAR_SHIFT 20
1402 #define ARM_TBFLAG_XSCALE_CPAR_MASK (3 << ARM_TBFLAG_XSCALE_CPAR_SHIFT)
1404 /* Bit usage when in AArch64 state */
1405 #define ARM_TBFLAG_AA64_EL_SHIFT 0
1406 #define ARM_TBFLAG_AA64_EL_MASK (0x3 << ARM_TBFLAG_AA64_EL_SHIFT)
1407 #define ARM_TBFLAG_AA64_FPEN_SHIFT 2
1408 #define ARM_TBFLAG_AA64_FPEN_MASK (1 << ARM_TBFLAG_AA64_FPEN_SHIFT)
1409 #define ARM_TBFLAG_AA64_SS_ACTIVE_SHIFT 3
1410 #define ARM_TBFLAG_AA64_SS_ACTIVE_MASK (1 << ARM_TBFLAG_AA64_SS_ACTIVE_SHIFT)
1411 #define ARM_TBFLAG_AA64_PSTATE_SS_SHIFT 4
1412 #define ARM_TBFLAG_AA64_PSTATE_SS_MASK (1 << ARM_TBFLAG_AA64_PSTATE_SS_SHIFT)
1414 /* some convenience accessor macros */
1415 #define ARM_TBFLAG_AARCH64_STATE(F) \
1416 (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
1417 #define ARM_TBFLAG_THUMB(F) \
1418 (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
1419 #define ARM_TBFLAG_VECLEN(F) \
1420 (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
1421 #define ARM_TBFLAG_VECSTRIDE(F) \
1422 (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
1423 #define ARM_TBFLAG_PRIV(F) \
1424 (((F) & ARM_TBFLAG_PRIV_MASK) >> ARM_TBFLAG_PRIV_SHIFT)
1425 #define ARM_TBFLAG_VFPEN(F) \
1426 (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
1427 #define ARM_TBFLAG_CONDEXEC(F) \
1428 (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
1429 #define ARM_TBFLAG_BSWAP_CODE(F) \
1430 (((F) & ARM_TBFLAG_BSWAP_CODE_MASK) >> ARM_TBFLAG_BSWAP_CODE_SHIFT)
1431 #define ARM_TBFLAG_CPACR_FPEN(F) \
1432 (((F) & ARM_TBFLAG_CPACR_FPEN_MASK) >> ARM_TBFLAG_CPACR_FPEN_SHIFT)
1433 #define ARM_TBFLAG_SS_ACTIVE(F) \
1434 (((F) & ARM_TBFLAG_SS_ACTIVE_MASK) >> ARM_TBFLAG_SS_ACTIVE_SHIFT)
1435 #define ARM_TBFLAG_PSTATE_SS(F) \
1436 (((F) & ARM_TBFLAG_PSTATE_SS_MASK) >> ARM_TBFLAG_PSTATE_SS_SHIFT)
1437 #define ARM_TBFLAG_XSCALE_CPAR(F) \
1438 (((F) & ARM_TBFLAG_XSCALE_CPAR_MASK) >> ARM_TBFLAG_XSCALE_CPAR_SHIFT)
1439 #define ARM_TBFLAG_AA64_EL(F) \
1440 (((F) & ARM_TBFLAG_AA64_EL_MASK) >> ARM_TBFLAG_AA64_EL_SHIFT)
1441 #define ARM_TBFLAG_AA64_FPEN(F) \
1442 (((F) & ARM_TBFLAG_AA64_FPEN_MASK) >> ARM_TBFLAG_AA64_FPEN_SHIFT)
1443 #define ARM_TBFLAG_AA64_SS_ACTIVE(F) \
1444 (((F) & ARM_TBFLAG_AA64_SS_ACTIVE_MASK) >> ARM_TBFLAG_AA64_SS_ACTIVE_SHIFT)
1445 #define ARM_TBFLAG_AA64_PSTATE_SS(F) \
1446 (((F) & ARM_TBFLAG_AA64_PSTATE_SS_MASK) >> ARM_TBFLAG_AA64_PSTATE_SS_SHIFT)
1448 static inline void cpu_get_tb_cpu_state(CPUARMState
*env
, target_ulong
*pc
,
1449 target_ulong
*cs_base
, int *flags
)
1453 if (arm_feature(env
, ARM_FEATURE_V6
)) {
1454 fpen
= extract32(env
->cp15
.c1_coproc
, 20, 2);
1456 /* CPACR doesn't exist before v6, so VFP is always accessible */
1462 *flags
= ARM_TBFLAG_AARCH64_STATE_MASK
1463 | (arm_current_pl(env
) << ARM_TBFLAG_AA64_EL_SHIFT
);
1464 if (fpen
== 3 || (fpen
== 1 && arm_current_pl(env
) != 0)) {
1465 *flags
|= ARM_TBFLAG_AA64_FPEN_MASK
;
1467 /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
1468 * states defined in the ARM ARM for software singlestep:
1469 * SS_ACTIVE PSTATE.SS State
1470 * 0 x Inactive (the TB flag for SS is always 0)
1471 * 1 0 Active-pending
1472 * 1 1 Active-not-pending
1474 if (arm_singlestep_active(env
)) {
1475 *flags
|= ARM_TBFLAG_AA64_SS_ACTIVE_MASK
;
1476 if (env
->pstate
& PSTATE_SS
) {
1477 *flags
|= ARM_TBFLAG_AA64_PSTATE_SS_MASK
;
1482 *pc
= env
->regs
[15];
1483 *flags
= (env
->thumb
<< ARM_TBFLAG_THUMB_SHIFT
)
1484 | (env
->vfp
.vec_len
<< ARM_TBFLAG_VECLEN_SHIFT
)
1485 | (env
->vfp
.vec_stride
<< ARM_TBFLAG_VECSTRIDE_SHIFT
)
1486 | (env
->condexec_bits
<< ARM_TBFLAG_CONDEXEC_SHIFT
)
1487 | (env
->bswap_code
<< ARM_TBFLAG_BSWAP_CODE_SHIFT
);
1488 if (arm_feature(env
, ARM_FEATURE_M
)) {
1489 privmode
= !((env
->v7m
.exception
== 0) && (env
->v7m
.control
& 1));
1491 privmode
= (env
->uncached_cpsr
& CPSR_M
) != ARM_CPU_MODE_USR
;
1494 *flags
|= ARM_TBFLAG_PRIV_MASK
;
1496 if (env
->vfp
.xregs
[ARM_VFP_FPEXC
] & (1 << 30)
1497 || arm_el_is_aa64(env
, 1)) {
1498 *flags
|= ARM_TBFLAG_VFPEN_MASK
;
1500 if (fpen
== 3 || (fpen
== 1 && arm_current_pl(env
) != 0)) {
1501 *flags
|= ARM_TBFLAG_CPACR_FPEN_MASK
;
1503 /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
1504 * states defined in the ARM ARM for software singlestep:
1505 * SS_ACTIVE PSTATE.SS State
1506 * 0 x Inactive (the TB flag for SS is always 0)
1507 * 1 0 Active-pending
1508 * 1 1 Active-not-pending
1510 if (arm_singlestep_active(env
)) {
1511 *flags
|= ARM_TBFLAG_SS_ACTIVE_MASK
;
1512 if (env
->uncached_cpsr
& PSTATE_SS
) {
1513 *flags
|= ARM_TBFLAG_PSTATE_SS_MASK
;
1516 *flags
|= (extract32(env
->cp15
.c15_cpar
, 0, 2)
1517 << ARM_TBFLAG_XSCALE_CPAR_SHIFT
);
1523 #include "exec/exec-all.h"
1525 static inline void cpu_pc_from_tb(CPUARMState
*env
, TranslationBlock
*tb
)
1527 if (ARM_TBFLAG_AARCH64_STATE(tb
->flags
)) {
1530 env
->regs
[15] = tb
->pc
;
1535 QEMU_PSCI_CONDUIT_DISABLED
= 0,
1536 QEMU_PSCI_CONDUIT_SMC
= 1,
1537 QEMU_PSCI_CONDUIT_HVC
= 2,