kvmvapic: Catch invalid ROM size
[qemu-kvm.git] / hw / i386 / kvmvapic.c
blobc66fbf2fdb332aa749763d7435a824c10e0bd57e
1 /*
2 * TPR optimization for 32-bit Windows guests (XP and Server 2003)
4 * Copyright (C) 2007-2008 Qumranet Technologies
5 * Copyright (C) 2012 Jan Kiszka, Siemens AG
7 * This work is licensed under the terms of the GNU GPL version 2, or
8 * (at your option) any later version. See the COPYING file in the
9 * top-level directory.
11 #include "sysemu/sysemu.h"
12 #include "sysemu/cpus.h"
13 #include "sysemu/kvm.h"
14 #include "hw/i386/apic_internal.h"
15 #include "hw/sysbus.h"
17 #define VAPIC_IO_PORT 0x7e
19 #define VAPIC_CPU_SHIFT 7
21 #define ROM_BLOCK_SIZE 512
22 #define ROM_BLOCK_MASK (~(ROM_BLOCK_SIZE - 1))
24 typedef enum VAPICMode {
25 VAPIC_INACTIVE = 0,
26 VAPIC_ACTIVE = 1,
27 VAPIC_STANDBY = 2,
28 } VAPICMode;
30 typedef struct VAPICHandlers {
31 uint32_t set_tpr;
32 uint32_t set_tpr_eax;
33 uint32_t get_tpr[8];
34 uint32_t get_tpr_stack;
35 } QEMU_PACKED VAPICHandlers;
37 typedef struct GuestROMState {
38 char signature[8];
39 uint32_t vaddr;
40 uint32_t fixup_start;
41 uint32_t fixup_end;
42 uint32_t vapic_vaddr;
43 uint32_t vapic_size;
44 uint32_t vcpu_shift;
45 uint32_t real_tpr_addr;
46 VAPICHandlers up;
47 VAPICHandlers mp;
48 } QEMU_PACKED GuestROMState;
50 typedef struct VAPICROMState {
51 SysBusDevice busdev;
52 MemoryRegion io;
53 MemoryRegion rom;
54 uint32_t state;
55 uint32_t rom_state_paddr;
56 uint32_t rom_state_vaddr;
57 uint32_t vapic_paddr;
58 uint32_t real_tpr_addr;
59 GuestROMState rom_state;
60 size_t rom_size;
61 bool rom_mapped_writable;
62 } VAPICROMState;
64 #define TYPE_VAPIC "kvmvapic"
65 #define VAPIC(obj) OBJECT_CHECK(VAPICROMState, (obj), TYPE_VAPIC)
67 #define TPR_INSTR_ABS_MODRM 0x1
68 #define TPR_INSTR_MATCH_MODRM_REG 0x2
70 typedef struct TPRInstruction {
71 uint8_t opcode;
72 uint8_t modrm_reg;
73 unsigned int flags;
74 TPRAccess access;
75 size_t length;
76 off_t addr_offset;
77 } TPRInstruction;
79 /* must be sorted by length, shortest first */
80 static const TPRInstruction tpr_instr[] = {
81 { /* mov abs to eax */
82 .opcode = 0xa1,
83 .access = TPR_ACCESS_READ,
84 .length = 5,
85 .addr_offset = 1,
87 { /* mov eax to abs */
88 .opcode = 0xa3,
89 .access = TPR_ACCESS_WRITE,
90 .length = 5,
91 .addr_offset = 1,
93 { /* mov r32 to r/m32 */
94 .opcode = 0x89,
95 .flags = TPR_INSTR_ABS_MODRM,
96 .access = TPR_ACCESS_WRITE,
97 .length = 6,
98 .addr_offset = 2,
100 { /* mov r/m32 to r32 */
101 .opcode = 0x8b,
102 .flags = TPR_INSTR_ABS_MODRM,
103 .access = TPR_ACCESS_READ,
104 .length = 6,
105 .addr_offset = 2,
107 { /* push r/m32 */
108 .opcode = 0xff,
109 .modrm_reg = 6,
110 .flags = TPR_INSTR_ABS_MODRM | TPR_INSTR_MATCH_MODRM_REG,
111 .access = TPR_ACCESS_READ,
112 .length = 6,
113 .addr_offset = 2,
115 { /* mov imm32, r/m32 (c7/0) */
116 .opcode = 0xc7,
117 .modrm_reg = 0,
118 .flags = TPR_INSTR_ABS_MODRM | TPR_INSTR_MATCH_MODRM_REG,
119 .access = TPR_ACCESS_WRITE,
120 .length = 10,
121 .addr_offset = 2,
125 static void read_guest_rom_state(VAPICROMState *s)
127 cpu_physical_memory_rw(s->rom_state_paddr, (void *)&s->rom_state,
128 sizeof(GuestROMState), 0);
131 static void write_guest_rom_state(VAPICROMState *s)
133 cpu_physical_memory_rw(s->rom_state_paddr, (void *)&s->rom_state,
134 sizeof(GuestROMState), 1);
137 static void update_guest_rom_state(VAPICROMState *s)
139 read_guest_rom_state(s);
141 s->rom_state.real_tpr_addr = cpu_to_le32(s->real_tpr_addr);
142 s->rom_state.vcpu_shift = cpu_to_le32(VAPIC_CPU_SHIFT);
144 write_guest_rom_state(s);
147 static int find_real_tpr_addr(VAPICROMState *s, CPUX86State *env)
149 CPUState *cs = CPU(x86_env_get_cpu(env));
150 hwaddr paddr;
151 target_ulong addr;
153 if (s->state == VAPIC_ACTIVE) {
154 return 0;
157 * If there is no prior TPR access instruction we could analyze (which is
158 * the case after resume from hibernation), we need to scan the possible
159 * virtual address space for the APIC mapping.
161 for (addr = 0xfffff000; addr >= 0x80000000; addr -= TARGET_PAGE_SIZE) {
162 paddr = cpu_get_phys_page_debug(cs, addr);
163 if (paddr != APIC_DEFAULT_ADDRESS) {
164 continue;
166 s->real_tpr_addr = addr + 0x80;
167 update_guest_rom_state(s);
168 return 0;
170 return -1;
173 static uint8_t modrm_reg(uint8_t modrm)
175 return (modrm >> 3) & 7;
178 static bool is_abs_modrm(uint8_t modrm)
180 return (modrm & 0xc7) == 0x05;
183 static bool opcode_matches(uint8_t *opcode, const TPRInstruction *instr)
185 return opcode[0] == instr->opcode &&
186 (!(instr->flags & TPR_INSTR_ABS_MODRM) || is_abs_modrm(opcode[1])) &&
187 (!(instr->flags & TPR_INSTR_MATCH_MODRM_REG) ||
188 modrm_reg(opcode[1]) == instr->modrm_reg);
191 static int evaluate_tpr_instruction(VAPICROMState *s, X86CPU *cpu,
192 target_ulong *pip, TPRAccess access)
194 CPUState *cs = CPU(cpu);
195 const TPRInstruction *instr;
196 target_ulong ip = *pip;
197 uint8_t opcode[2];
198 uint32_t real_tpr_addr;
199 int i;
201 if ((ip & 0xf0000000ULL) != 0x80000000ULL &&
202 (ip & 0xf0000000ULL) != 0xe0000000ULL) {
203 return -1;
207 * Early Windows 2003 SMP initialization contains a
209 * mov imm32, r/m32
211 * instruction that is patched by TPR optimization. The problem is that
212 * RSP, used by the patched instruction, is zero, so the guest gets a
213 * double fault and dies.
215 if (cpu->env.regs[R_ESP] == 0) {
216 return -1;
219 if (kvm_enabled() && !kvm_irqchip_in_kernel()) {
221 * KVM without kernel-based TPR access reporting will pass an IP that
222 * points after the accessing instruction. So we need to look backward
223 * to find the reason.
225 for (i = 0; i < ARRAY_SIZE(tpr_instr); i++) {
226 instr = &tpr_instr[i];
227 if (instr->access != access) {
228 continue;
230 if (cpu_memory_rw_debug(cs, ip - instr->length, opcode,
231 sizeof(opcode), 0) < 0) {
232 return -1;
234 if (opcode_matches(opcode, instr)) {
235 ip -= instr->length;
236 goto instruction_ok;
239 return -1;
240 } else {
241 if (cpu_memory_rw_debug(cs, ip, opcode, sizeof(opcode), 0) < 0) {
242 return -1;
244 for (i = 0; i < ARRAY_SIZE(tpr_instr); i++) {
245 instr = &tpr_instr[i];
246 if (opcode_matches(opcode, instr)) {
247 goto instruction_ok;
250 return -1;
253 instruction_ok:
255 * Grab the virtual TPR address from the instruction
256 * and update the cached values.
258 if (cpu_memory_rw_debug(cs, ip + instr->addr_offset,
259 (void *)&real_tpr_addr,
260 sizeof(real_tpr_addr), 0) < 0) {
261 return -1;
263 real_tpr_addr = le32_to_cpu(real_tpr_addr);
264 if ((real_tpr_addr & 0xfff) != 0x80) {
265 return -1;
267 s->real_tpr_addr = real_tpr_addr;
268 update_guest_rom_state(s);
270 *pip = ip;
271 return 0;
274 static int update_rom_mapping(VAPICROMState *s, CPUX86State *env, target_ulong ip)
276 CPUState *cs = CPU(x86_env_get_cpu(env));
277 hwaddr paddr;
278 uint32_t rom_state_vaddr;
279 uint32_t pos, patch, offset;
281 /* nothing to do if already activated */
282 if (s->state == VAPIC_ACTIVE) {
283 return 0;
286 /* bail out if ROM init code was not executed (missing ROM?) */
287 if (s->state == VAPIC_INACTIVE) {
288 return -1;
291 /* find out virtual address of the ROM */
292 rom_state_vaddr = s->rom_state_paddr + (ip & 0xf0000000);
293 paddr = cpu_get_phys_page_debug(cs, rom_state_vaddr);
294 if (paddr == -1) {
295 return -1;
297 paddr += rom_state_vaddr & ~TARGET_PAGE_MASK;
298 if (paddr != s->rom_state_paddr) {
299 return -1;
301 read_guest_rom_state(s);
302 if (memcmp(s->rom_state.signature, "kvm aPiC", 8) != 0) {
303 return -1;
305 s->rom_state_vaddr = rom_state_vaddr;
307 /* fixup addresses in ROM if needed */
308 if (rom_state_vaddr == le32_to_cpu(s->rom_state.vaddr)) {
309 return 0;
311 for (pos = le32_to_cpu(s->rom_state.fixup_start);
312 pos < le32_to_cpu(s->rom_state.fixup_end);
313 pos += 4) {
314 cpu_physical_memory_rw(paddr + pos - s->rom_state.vaddr,
315 (void *)&offset, sizeof(offset), 0);
316 offset = le32_to_cpu(offset);
317 cpu_physical_memory_rw(paddr + offset, (void *)&patch,
318 sizeof(patch), 0);
319 patch = le32_to_cpu(patch);
320 patch += rom_state_vaddr - le32_to_cpu(s->rom_state.vaddr);
321 patch = cpu_to_le32(patch);
322 cpu_physical_memory_rw(paddr + offset, (void *)&patch,
323 sizeof(patch), 1);
325 read_guest_rom_state(s);
326 s->vapic_paddr = paddr + le32_to_cpu(s->rom_state.vapic_vaddr) -
327 le32_to_cpu(s->rom_state.vaddr);
329 return 0;
333 * Tries to read the unique processor number from the Kernel Processor Control
334 * Region (KPCR) of 32-bit Windows XP and Server 2003. Returns -1 if the KPCR
335 * cannot be accessed or is considered invalid. This also ensures that we are
336 * not patching the wrong guest.
338 static int get_kpcr_number(X86CPU *cpu)
340 CPUX86State *env = &cpu->env;
341 struct kpcr {
342 uint8_t fill1[0x1c];
343 uint32_t self;
344 uint8_t fill2[0x31];
345 uint8_t number;
346 } QEMU_PACKED kpcr;
348 if (cpu_memory_rw_debug(CPU(cpu), env->segs[R_FS].base,
349 (void *)&kpcr, sizeof(kpcr), 0) < 0 ||
350 kpcr.self != env->segs[R_FS].base) {
351 return -1;
353 return kpcr.number;
356 static int vapic_enable(VAPICROMState *s, X86CPU *cpu)
358 int cpu_number = get_kpcr_number(cpu);
359 hwaddr vapic_paddr;
360 static const uint8_t enabled = 1;
362 if (cpu_number < 0) {
363 return -1;
365 vapic_paddr = s->vapic_paddr +
366 (((hwaddr)cpu_number) << VAPIC_CPU_SHIFT);
367 cpu_physical_memory_rw(vapic_paddr + offsetof(VAPICState, enabled),
368 (void *)&enabled, sizeof(enabled), 1);
369 apic_enable_vapic(cpu->env.apic_state, vapic_paddr);
371 s->state = VAPIC_ACTIVE;
373 return 0;
376 static void patch_byte(X86CPU *cpu, target_ulong addr, uint8_t byte)
378 cpu_memory_rw_debug(CPU(cpu), addr, &byte, 1, 1);
381 static void patch_call(VAPICROMState *s, X86CPU *cpu, target_ulong ip,
382 uint32_t target)
384 uint32_t offset;
386 offset = cpu_to_le32(target - ip - 5);
387 patch_byte(cpu, ip, 0xe8); /* call near */
388 cpu_memory_rw_debug(CPU(cpu), ip + 1, (void *)&offset, sizeof(offset), 1);
391 static void patch_instruction(VAPICROMState *s, X86CPU *cpu, target_ulong ip)
393 CPUState *cs = CPU(cpu);
394 CPUX86State *env = &cpu->env;
395 VAPICHandlers *handlers;
396 uint8_t opcode[2];
397 uint32_t imm32;
398 target_ulong current_pc = 0;
399 target_ulong current_cs_base = 0;
400 int current_flags = 0;
402 if (smp_cpus == 1) {
403 handlers = &s->rom_state.up;
404 } else {
405 handlers = &s->rom_state.mp;
408 if (!kvm_enabled()) {
409 cpu_restore_state(env, env->mem_io_pc);
410 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
411 &current_flags);
414 pause_all_vcpus();
416 cpu_memory_rw_debug(cs, ip, opcode, sizeof(opcode), 0);
418 switch (opcode[0]) {
419 case 0x89: /* mov r32 to r/m32 */
420 patch_byte(cpu, ip, 0x50 + modrm_reg(opcode[1])); /* push reg */
421 patch_call(s, cpu, ip + 1, handlers->set_tpr);
422 break;
423 case 0x8b: /* mov r/m32 to r32 */
424 patch_byte(cpu, ip, 0x90);
425 patch_call(s, cpu, ip + 1, handlers->get_tpr[modrm_reg(opcode[1])]);
426 break;
427 case 0xa1: /* mov abs to eax */
428 patch_call(s, cpu, ip, handlers->get_tpr[0]);
429 break;
430 case 0xa3: /* mov eax to abs */
431 patch_call(s, cpu, ip, handlers->set_tpr_eax);
432 break;
433 case 0xc7: /* mov imm32, r/m32 (c7/0) */
434 patch_byte(cpu, ip, 0x68); /* push imm32 */
435 cpu_memory_rw_debug(cs, ip + 6, (void *)&imm32, sizeof(imm32), 0);
436 cpu_memory_rw_debug(cs, ip + 1, (void *)&imm32, sizeof(imm32), 1);
437 patch_call(s, cpu, ip + 5, handlers->set_tpr);
438 break;
439 case 0xff: /* push r/m32 */
440 patch_byte(cpu, ip, 0x50); /* push eax */
441 patch_call(s, cpu, ip + 1, handlers->get_tpr_stack);
442 break;
443 default:
444 abort();
447 resume_all_vcpus();
449 if (!kvm_enabled()) {
450 cs->current_tb = NULL;
451 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
452 cpu_resume_from_signal(env, NULL);
456 void vapic_report_tpr_access(DeviceState *dev, CPUState *cs, target_ulong ip,
457 TPRAccess access)
459 VAPICROMState *s = VAPIC(dev);
460 X86CPU *cpu = X86_CPU(cs);
461 CPUX86State *env = &cpu->env;
463 cpu_synchronize_state(cs);
465 if (evaluate_tpr_instruction(s, cpu, &ip, access) < 0) {
466 if (s->state == VAPIC_ACTIVE) {
467 vapic_enable(s, cpu);
469 return;
471 if (update_rom_mapping(s, env, ip) < 0) {
472 return;
474 if (vapic_enable(s, cpu) < 0) {
475 return;
477 patch_instruction(s, cpu, ip);
480 typedef struct VAPICEnableTPRReporting {
481 DeviceState *apic;
482 bool enable;
483 } VAPICEnableTPRReporting;
485 static void vapic_do_enable_tpr_reporting(void *data)
487 VAPICEnableTPRReporting *info = data;
489 apic_enable_tpr_access_reporting(info->apic, info->enable);
492 static void vapic_enable_tpr_reporting(bool enable)
494 VAPICEnableTPRReporting info = {
495 .enable = enable,
497 CPUState *cs;
498 X86CPU *cpu;
499 CPUX86State *env;
501 CPU_FOREACH(cs) {
502 cpu = X86_CPU(cs);
503 env = &cpu->env;
504 info.apic = env->apic_state;
505 run_on_cpu(cs, vapic_do_enable_tpr_reporting, &info);
509 static void vapic_reset(DeviceState *dev)
511 VAPICROMState *s = VAPIC(dev);
513 if (s->state == VAPIC_ACTIVE) {
514 s->state = VAPIC_STANDBY;
516 vapic_enable_tpr_reporting(false);
520 * Set the IRQ polling hypercalls to the supported variant:
521 * - vmcall if using KVM in-kernel irqchip
522 * - 32-bit VAPIC port write otherwise
524 static int patch_hypercalls(VAPICROMState *s)
526 hwaddr rom_paddr = s->rom_state_paddr & ROM_BLOCK_MASK;
527 static const uint8_t vmcall_pattern[] = { /* vmcall */
528 0xb8, 0x1, 0, 0, 0, 0xf, 0x1, 0xc1
530 static const uint8_t outl_pattern[] = { /* nop; outl %eax,0x7e */
531 0xb8, 0x1, 0, 0, 0, 0x90, 0xe7, 0x7e
533 uint8_t alternates[2];
534 const uint8_t *pattern;
535 const uint8_t *patch;
536 int patches = 0;
537 off_t pos;
538 uint8_t *rom;
540 rom = g_malloc(s->rom_size);
541 cpu_physical_memory_rw(rom_paddr, rom, s->rom_size, 0);
543 for (pos = 0; pos < s->rom_size - sizeof(vmcall_pattern); pos++) {
544 if (kvm_irqchip_in_kernel()) {
545 pattern = outl_pattern;
546 alternates[0] = outl_pattern[7];
547 alternates[1] = outl_pattern[7];
548 patch = &vmcall_pattern[5];
549 } else {
550 pattern = vmcall_pattern;
551 alternates[0] = vmcall_pattern[7];
552 alternates[1] = 0xd9; /* AMD's VMMCALL */
553 patch = &outl_pattern[5];
555 if (memcmp(rom + pos, pattern, 7) == 0 &&
556 (rom[pos + 7] == alternates[0] || rom[pos + 7] == alternates[1])) {
557 cpu_physical_memory_rw(rom_paddr + pos + 5, (uint8_t *)patch,
558 3, 1);
560 * Don't flush the tb here. Under ordinary conditions, the patched
561 * calls are miles away from the current IP. Under malicious
562 * conditions, the guest could trick us to crash.
567 g_free(rom);
569 if (patches != 0 && patches != 2) {
570 return -1;
573 return 0;
577 * For TCG mode or the time KVM honors read-only memory regions, we need to
578 * enable write access to the option ROM so that variables can be updated by
579 * the guest.
581 static int vapic_map_rom_writable(VAPICROMState *s)
583 hwaddr rom_paddr = s->rom_state_paddr & ROM_BLOCK_MASK;
584 MemoryRegionSection section;
585 MemoryRegion *as;
586 size_t rom_size;
587 uint8_t *ram;
589 as = sysbus_address_space(&s->busdev);
591 if (s->rom_mapped_writable) {
592 memory_region_del_subregion(as, &s->rom);
593 memory_region_destroy(&s->rom);
596 /* grab RAM memory region (region @rom_paddr may still be pc.rom) */
597 section = memory_region_find(as, 0, 1);
599 /* read ROM size from RAM region */
600 ram = memory_region_get_ram_ptr(section.mr);
601 rom_size = ram[rom_paddr + 2] * ROM_BLOCK_SIZE;
602 if (rom_size == 0) {
603 return -1;
605 s->rom_size = rom_size;
607 /* We need to round to avoid creating subpages
608 * from which we cannot run code. */
609 rom_size += rom_paddr & ~TARGET_PAGE_MASK;
610 rom_paddr &= TARGET_PAGE_MASK;
611 rom_size = TARGET_PAGE_ALIGN(rom_size);
613 memory_region_init_alias(&s->rom, OBJECT(s), "kvmvapic-rom", section.mr,
614 rom_paddr, rom_size);
615 memory_region_add_subregion_overlap(as, rom_paddr, &s->rom, 1000);
616 s->rom_mapped_writable = true;
617 memory_region_unref(section.mr);
619 return 0;
622 static int vapic_prepare(VAPICROMState *s)
624 if (vapic_map_rom_writable(s) < 0) {
625 return -1;
628 if (patch_hypercalls(s) < 0) {
629 return -1;
632 vapic_enable_tpr_reporting(true);
634 return 0;
637 static void vapic_write(void *opaque, hwaddr addr, uint64_t data,
638 unsigned int size)
640 CPUState *cs = current_cpu;
641 X86CPU *cpu = X86_CPU(cs);
642 CPUX86State *env = &cpu->env;
643 hwaddr rom_paddr;
644 VAPICROMState *s = opaque;
646 cpu_synchronize_state(cs);
649 * The VAPIC supports two PIO-based hypercalls, both via port 0x7E.
650 * o 16-bit write access:
651 * Reports the option ROM initialization to the hypervisor. Written
652 * value is the offset of the state structure in the ROM.
653 * o 8-bit write access:
654 * Reactivates the VAPIC after a guest hibernation, i.e. after the
655 * option ROM content has been re-initialized by a guest power cycle.
656 * o 32-bit write access:
657 * Poll for pending IRQs, considering the current VAPIC state.
659 switch (size) {
660 case 2:
661 if (s->state == VAPIC_INACTIVE) {
662 rom_paddr = (env->segs[R_CS].base + env->eip) & ROM_BLOCK_MASK;
663 s->rom_state_paddr = rom_paddr + data;
665 s->state = VAPIC_STANDBY;
667 if (vapic_prepare(s) < 0) {
668 s->state = VAPIC_INACTIVE;
669 break;
671 break;
672 case 1:
673 if (kvm_enabled()) {
675 * Disable triggering instruction in ROM by writing a NOP.
677 * We cannot do this in TCG mode as the reported IP is not
678 * accurate.
680 pause_all_vcpus();
681 patch_byte(cpu, env->eip - 2, 0x66);
682 patch_byte(cpu, env->eip - 1, 0x90);
683 resume_all_vcpus();
686 if (s->state == VAPIC_ACTIVE) {
687 break;
689 if (update_rom_mapping(s, env, env->eip) < 0) {
690 break;
692 if (find_real_tpr_addr(s, env) < 0) {
693 break;
695 vapic_enable(s, cpu);
696 break;
697 default:
698 case 4:
699 if (!kvm_irqchip_in_kernel()) {
700 apic_poll_irq(env->apic_state);
702 break;
706 static uint64_t vapic_read(void *opaque, hwaddr addr, unsigned size)
708 return 0xffffffff;
711 static const MemoryRegionOps vapic_ops = {
712 .write = vapic_write,
713 .read = vapic_read,
714 .endianness = DEVICE_NATIVE_ENDIAN,
717 static void vapic_realize(DeviceState *dev, Error **errp)
719 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
720 VAPICROMState *s = VAPIC(dev);
722 memory_region_init_io(&s->io, OBJECT(s), &vapic_ops, s, "kvmvapic", 2);
723 sysbus_add_io(sbd, VAPIC_IO_PORT, &s->io);
724 sysbus_init_ioports(sbd, VAPIC_IO_PORT, 2);
726 option_rom[nb_option_roms].name = "kvmvapic.bin";
727 option_rom[nb_option_roms].bootindex = -1;
728 nb_option_roms++;
731 static void do_vapic_enable(void *data)
733 VAPICROMState *s = data;
734 X86CPU *cpu = X86_CPU(first_cpu);
736 vapic_enable(s, cpu);
739 static int vapic_post_load(void *opaque, int version_id)
741 VAPICROMState *s = opaque;
742 uint8_t *zero;
745 * The old implementation of qemu-kvm did not provide the state
746 * VAPIC_STANDBY. Reconstruct it.
748 if (s->state == VAPIC_INACTIVE && s->rom_state_paddr != 0) {
749 s->state = VAPIC_STANDBY;
752 if (s->state != VAPIC_INACTIVE) {
753 if (vapic_prepare(s) < 0) {
754 return -1;
757 if (s->state == VAPIC_ACTIVE) {
758 if (smp_cpus == 1) {
759 run_on_cpu(first_cpu, do_vapic_enable, s);
760 } else {
761 zero = g_malloc0(s->rom_state.vapic_size);
762 cpu_physical_memory_rw(s->vapic_paddr, zero,
763 s->rom_state.vapic_size, 1);
764 g_free(zero);
768 return 0;
771 static const VMStateDescription vmstate_handlers = {
772 .name = "kvmvapic-handlers",
773 .version_id = 1,
774 .minimum_version_id = 1,
775 .minimum_version_id_old = 1,
776 .fields = (VMStateField[]) {
777 VMSTATE_UINT32(set_tpr, VAPICHandlers),
778 VMSTATE_UINT32(set_tpr_eax, VAPICHandlers),
779 VMSTATE_UINT32_ARRAY(get_tpr, VAPICHandlers, 8),
780 VMSTATE_UINT32(get_tpr_stack, VAPICHandlers),
781 VMSTATE_END_OF_LIST()
785 static const VMStateDescription vmstate_guest_rom = {
786 .name = "kvmvapic-guest-rom",
787 .version_id = 1,
788 .minimum_version_id = 1,
789 .minimum_version_id_old = 1,
790 .fields = (VMStateField[]) {
791 VMSTATE_UNUSED(8), /* signature */
792 VMSTATE_UINT32(vaddr, GuestROMState),
793 VMSTATE_UINT32(fixup_start, GuestROMState),
794 VMSTATE_UINT32(fixup_end, GuestROMState),
795 VMSTATE_UINT32(vapic_vaddr, GuestROMState),
796 VMSTATE_UINT32(vapic_size, GuestROMState),
797 VMSTATE_UINT32(vcpu_shift, GuestROMState),
798 VMSTATE_UINT32(real_tpr_addr, GuestROMState),
799 VMSTATE_STRUCT(up, GuestROMState, 0, vmstate_handlers, VAPICHandlers),
800 VMSTATE_STRUCT(mp, GuestROMState, 0, vmstate_handlers, VAPICHandlers),
801 VMSTATE_END_OF_LIST()
805 static const VMStateDescription vmstate_vapic = {
806 .name = "kvm-tpr-opt", /* compatible with qemu-kvm VAPIC */
807 .version_id = 1,
808 .minimum_version_id = 1,
809 .minimum_version_id_old = 1,
810 .post_load = vapic_post_load,
811 .fields = (VMStateField[]) {
812 VMSTATE_STRUCT(rom_state, VAPICROMState, 0, vmstate_guest_rom,
813 GuestROMState),
814 VMSTATE_UINT32(state, VAPICROMState),
815 VMSTATE_UINT32(real_tpr_addr, VAPICROMState),
816 VMSTATE_UINT32(rom_state_vaddr, VAPICROMState),
817 VMSTATE_UINT32(vapic_paddr, VAPICROMState),
818 VMSTATE_UINT32(rom_state_paddr, VAPICROMState),
819 VMSTATE_END_OF_LIST()
823 static void vapic_class_init(ObjectClass *klass, void *data)
825 DeviceClass *dc = DEVICE_CLASS(klass);
827 dc->no_user = 1;
828 dc->reset = vapic_reset;
829 dc->vmsd = &vmstate_vapic;
830 dc->realize = vapic_realize;
833 static const TypeInfo vapic_type = {
834 .name = TYPE_VAPIC,
835 .parent = TYPE_SYS_BUS_DEVICE,
836 .instance_size = sizeof(VAPICROMState),
837 .class_init = vapic_class_init,
840 static void vapic_register(void)
842 type_register_static(&vapic_type);
845 type_init(vapic_register);