4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
23 #include <sys/types.h>
27 #include "qemu-common.h"
32 #include "qemu/osdep.h"
33 #include "sysemu/kvm.h"
34 #include "sysemu/sysemu.h"
35 #include "hw/xen/xen.h"
36 #include "qemu/timer.h"
37 #include "qemu/config-file.h"
38 #include "exec/memory.h"
39 #include "sysemu/dma.h"
40 #include "exec/address-spaces.h"
41 #if defined(CONFIG_USER_ONLY)
43 #else /* !CONFIG_USER_ONLY */
44 #include "sysemu/xen-mapcache.h"
47 #include "exec/cpu-all.h"
49 #include "exec/cputlb.h"
50 #include "translate-all.h"
52 #include "exec/memory-internal.h"
54 //#define DEBUG_SUBPAGE
56 #if !defined(CONFIG_USER_ONLY)
57 static int in_migration
;
59 RAMList ram_list
= { .blocks
= QTAILQ_HEAD_INITIALIZER(ram_list
.blocks
) };
61 static MemoryRegion
*system_memory
;
62 static MemoryRegion
*system_io
;
64 AddressSpace address_space_io
;
65 AddressSpace address_space_memory
;
67 MemoryRegion io_mem_rom
, io_mem_notdirty
;
68 static MemoryRegion io_mem_unassigned
;
72 struct CPUTailQ cpus
= QTAILQ_HEAD_INITIALIZER(cpus
);
73 /* current CPU in the current thread. It is only valid inside
75 DEFINE_TLS(CPUState
*, current_cpu
);
76 /* 0 = Do not count executed instructions.
77 1 = Precise instruction counting.
78 2 = Adaptive rate instruction counting. */
81 #if !defined(CONFIG_USER_ONLY)
83 typedef struct PhysPageEntry PhysPageEntry
;
85 struct PhysPageEntry
{
87 /* index into phys_sections (is_leaf) or phys_map_nodes (!is_leaf) */
91 typedef PhysPageEntry Node
[L2_SIZE
];
93 struct AddressSpaceDispatch
{
94 /* This is a multi-level map on the physical address space.
95 * The bottom level has pointers to MemoryRegionSections.
97 PhysPageEntry phys_map
;
99 MemoryRegionSection
*sections
;
103 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
104 typedef struct subpage_t
{
108 uint16_t sub_section
[TARGET_PAGE_SIZE
];
111 #define PHYS_SECTION_UNASSIGNED 0
112 #define PHYS_SECTION_NOTDIRTY 1
113 #define PHYS_SECTION_ROM 2
114 #define PHYS_SECTION_WATCH 3
116 typedef struct PhysPageMap
{
117 unsigned sections_nb
;
118 unsigned sections_nb_alloc
;
120 unsigned nodes_nb_alloc
;
122 MemoryRegionSection
*sections
;
125 static PhysPageMap
*prev_map
;
126 static PhysPageMap next_map
;
128 #define PHYS_MAP_NODE_NIL (((uint16_t)~0) >> 1)
130 static void io_mem_init(void);
131 static void memory_map_init(void);
132 static void *qemu_safe_ram_ptr(ram_addr_t addr
);
134 static MemoryRegion io_mem_watch
;
137 #if !defined(CONFIG_USER_ONLY)
139 static void phys_map_node_reserve(unsigned nodes
)
141 if (next_map
.nodes_nb
+ nodes
> next_map
.nodes_nb_alloc
) {
142 next_map
.nodes_nb_alloc
= MAX(next_map
.nodes_nb_alloc
* 2,
144 next_map
.nodes_nb_alloc
= MAX(next_map
.nodes_nb_alloc
,
145 next_map
.nodes_nb
+ nodes
);
146 next_map
.nodes
= g_renew(Node
, next_map
.nodes
,
147 next_map
.nodes_nb_alloc
);
151 static uint16_t phys_map_node_alloc(void)
156 ret
= next_map
.nodes_nb
++;
157 assert(ret
!= PHYS_MAP_NODE_NIL
);
158 assert(ret
!= next_map
.nodes_nb_alloc
);
159 for (i
= 0; i
< L2_SIZE
; ++i
) {
160 next_map
.nodes
[ret
][i
].is_leaf
= 0;
161 next_map
.nodes
[ret
][i
].ptr
= PHYS_MAP_NODE_NIL
;
166 static void phys_page_set_level(PhysPageEntry
*lp
, hwaddr
*index
,
167 hwaddr
*nb
, uint16_t leaf
,
172 hwaddr step
= (hwaddr
)1 << (level
* L2_BITS
);
174 if (!lp
->is_leaf
&& lp
->ptr
== PHYS_MAP_NODE_NIL
) {
175 lp
->ptr
= phys_map_node_alloc();
176 p
= next_map
.nodes
[lp
->ptr
];
178 for (i
= 0; i
< L2_SIZE
; i
++) {
180 p
[i
].ptr
= PHYS_SECTION_UNASSIGNED
;
184 p
= next_map
.nodes
[lp
->ptr
];
186 lp
= &p
[(*index
>> (level
* L2_BITS
)) & (L2_SIZE
- 1)];
188 while (*nb
&& lp
< &p
[L2_SIZE
]) {
189 if ((*index
& (step
- 1)) == 0 && *nb
>= step
) {
195 phys_page_set_level(lp
, index
, nb
, leaf
, level
- 1);
201 static void phys_page_set(AddressSpaceDispatch
*d
,
202 hwaddr index
, hwaddr nb
,
205 /* Wildly overreserve - it doesn't matter much. */
206 phys_map_node_reserve(3 * P_L2_LEVELS
);
208 phys_page_set_level(&d
->phys_map
, &index
, &nb
, leaf
, P_L2_LEVELS
- 1);
211 static MemoryRegionSection
*phys_page_find(PhysPageEntry lp
, hwaddr index
,
212 Node
*nodes
, MemoryRegionSection
*sections
)
217 for (i
= P_L2_LEVELS
- 1; i
>= 0 && !lp
.is_leaf
; i
--) {
218 if (lp
.ptr
== PHYS_MAP_NODE_NIL
) {
219 return §ions
[PHYS_SECTION_UNASSIGNED
];
222 lp
= p
[(index
>> (i
* L2_BITS
)) & (L2_SIZE
- 1)];
224 return §ions
[lp
.ptr
];
227 bool memory_region_is_unassigned(MemoryRegion
*mr
)
229 return mr
!= &io_mem_rom
&& mr
!= &io_mem_notdirty
&& !mr
->rom_device
230 && mr
!= &io_mem_watch
;
233 static MemoryRegionSection
*address_space_lookup_region(AddressSpaceDispatch
*d
,
235 bool resolve_subpage
)
237 MemoryRegionSection
*section
;
240 section
= phys_page_find(d
->phys_map
, addr
>> TARGET_PAGE_BITS
,
241 d
->nodes
, d
->sections
);
242 if (resolve_subpage
&& section
->mr
->subpage
) {
243 subpage
= container_of(section
->mr
, subpage_t
, iomem
);
244 section
= &d
->sections
[subpage
->sub_section
[SUBPAGE_IDX(addr
)]];
249 static MemoryRegionSection
*
250 address_space_translate_internal(AddressSpaceDispatch
*d
, hwaddr addr
, hwaddr
*xlat
,
251 hwaddr
*plen
, bool resolve_subpage
)
253 MemoryRegionSection
*section
;
256 section
= address_space_lookup_region(d
, addr
, resolve_subpage
);
257 /* Compute offset within MemoryRegionSection */
258 addr
-= section
->offset_within_address_space
;
260 /* Compute offset within MemoryRegion */
261 *xlat
= addr
+ section
->offset_within_region
;
263 diff
= int128_sub(section
->mr
->size
, int128_make64(addr
));
264 *plen
= int128_get64(int128_min(diff
, int128_make64(*plen
)));
268 MemoryRegion
*address_space_translate(AddressSpace
*as
, hwaddr addr
,
269 hwaddr
*xlat
, hwaddr
*plen
,
273 MemoryRegionSection
*section
;
278 section
= address_space_translate_internal(as
->dispatch
, addr
, &addr
, plen
, true);
281 if (!mr
->iommu_ops
) {
285 iotlb
= mr
->iommu_ops
->translate(mr
, addr
);
286 addr
= ((iotlb
.translated_addr
& ~iotlb
.addr_mask
)
287 | (addr
& iotlb
.addr_mask
));
288 len
= MIN(len
, (addr
| iotlb
.addr_mask
) - addr
+ 1);
289 if (!(iotlb
.perm
& (1 << is_write
))) {
290 mr
= &io_mem_unassigned
;
294 as
= iotlb
.target_as
;
302 MemoryRegionSection
*
303 address_space_translate_for_iotlb(AddressSpace
*as
, hwaddr addr
, hwaddr
*xlat
,
306 MemoryRegionSection
*section
;
307 section
= address_space_translate_internal(as
->dispatch
, addr
, xlat
, plen
, false);
309 assert(!section
->mr
->iommu_ops
);
314 void cpu_exec_init_all(void)
316 #if !defined(CONFIG_USER_ONLY)
317 qemu_mutex_init(&ram_list
.mutex
);
323 #if !defined(CONFIG_USER_ONLY)
325 static int cpu_common_post_load(void *opaque
, int version_id
)
327 CPUState
*cpu
= opaque
;
329 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
330 version_id is increased. */
331 cpu
->interrupt_request
&= ~0x01;
332 tlb_flush(cpu
->env_ptr
, 1);
337 const VMStateDescription vmstate_cpu_common
= {
338 .name
= "cpu_common",
340 .minimum_version_id
= 1,
341 .minimum_version_id_old
= 1,
342 .post_load
= cpu_common_post_load
,
343 .fields
= (VMStateField
[]) {
344 VMSTATE_UINT32(halted
, CPUState
),
345 VMSTATE_UINT32(interrupt_request
, CPUState
),
346 VMSTATE_END_OF_LIST()
352 CPUState
*qemu_get_cpu(int index
)
357 if (cpu
->cpu_index
== index
) {
365 void cpu_exec_init(CPUArchState
*env
)
367 CPUState
*cpu
= ENV_GET_CPU(env
);
368 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
372 #if defined(CONFIG_USER_ONLY)
376 CPU_FOREACH(some_cpu
) {
379 cpu
->cpu_index
= cpu_index
;
381 QTAILQ_INIT(&env
->breakpoints
);
382 QTAILQ_INIT(&env
->watchpoints
);
383 #ifndef CONFIG_USER_ONLY
384 cpu
->thread_id
= qemu_get_thread_id();
386 QTAILQ_INSERT_TAIL(&cpus
, cpu
, node
);
387 #if defined(CONFIG_USER_ONLY)
390 if (qdev_get_vmsd(DEVICE(cpu
)) == NULL
) {
391 vmstate_register(NULL
, cpu_index
, &vmstate_cpu_common
, cpu
);
393 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
394 register_savevm(NULL
, "cpu", cpu_index
, CPU_SAVE_VERSION
,
395 cpu_save
, cpu_load
, env
);
396 assert(cc
->vmsd
== NULL
);
397 assert(qdev_get_vmsd(DEVICE(cpu
)) == NULL
);
399 if (cc
->vmsd
!= NULL
) {
400 vmstate_register(NULL
, cpu_index
, cc
->vmsd
, cpu
);
404 #if defined(TARGET_HAS_ICE)
405 #if defined(CONFIG_USER_ONLY)
406 static void breakpoint_invalidate(CPUState
*cpu
, target_ulong pc
)
408 tb_invalidate_phys_page_range(pc
, pc
+ 1, 0);
411 static void breakpoint_invalidate(CPUState
*cpu
, target_ulong pc
)
413 tb_invalidate_phys_addr(cpu_get_phys_page_debug(cpu
, pc
) |
414 (pc
& ~TARGET_PAGE_MASK
));
417 #endif /* TARGET_HAS_ICE */
419 #if defined(CONFIG_USER_ONLY)
420 void cpu_watchpoint_remove_all(CPUArchState
*env
, int mask
)
425 int cpu_watchpoint_insert(CPUArchState
*env
, target_ulong addr
, target_ulong len
,
426 int flags
, CPUWatchpoint
**watchpoint
)
431 /* Add a watchpoint. */
432 int cpu_watchpoint_insert(CPUArchState
*env
, target_ulong addr
, target_ulong len
,
433 int flags
, CPUWatchpoint
**watchpoint
)
435 target_ulong len_mask
= ~(len
- 1);
438 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
439 if ((len
& (len
- 1)) || (addr
& ~len_mask
) ||
440 len
== 0 || len
> TARGET_PAGE_SIZE
) {
441 fprintf(stderr
, "qemu: tried to set invalid watchpoint at "
442 TARGET_FMT_lx
", len=" TARGET_FMT_lu
"\n", addr
, len
);
445 wp
= g_malloc(sizeof(*wp
));
448 wp
->len_mask
= len_mask
;
451 /* keep all GDB-injected watchpoints in front */
453 QTAILQ_INSERT_HEAD(&env
->watchpoints
, wp
, entry
);
455 QTAILQ_INSERT_TAIL(&env
->watchpoints
, wp
, entry
);
457 tlb_flush_page(env
, addr
);
464 /* Remove a specific watchpoint. */
465 int cpu_watchpoint_remove(CPUArchState
*env
, target_ulong addr
, target_ulong len
,
468 target_ulong len_mask
= ~(len
- 1);
471 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
472 if (addr
== wp
->vaddr
&& len_mask
== wp
->len_mask
473 && flags
== (wp
->flags
& ~BP_WATCHPOINT_HIT
)) {
474 cpu_watchpoint_remove_by_ref(env
, wp
);
481 /* Remove a specific watchpoint by reference. */
482 void cpu_watchpoint_remove_by_ref(CPUArchState
*env
, CPUWatchpoint
*watchpoint
)
484 QTAILQ_REMOVE(&env
->watchpoints
, watchpoint
, entry
);
486 tlb_flush_page(env
, watchpoint
->vaddr
);
491 /* Remove all matching watchpoints. */
492 void cpu_watchpoint_remove_all(CPUArchState
*env
, int mask
)
494 CPUWatchpoint
*wp
, *next
;
496 QTAILQ_FOREACH_SAFE(wp
, &env
->watchpoints
, entry
, next
) {
497 if (wp
->flags
& mask
)
498 cpu_watchpoint_remove_by_ref(env
, wp
);
503 /* Add a breakpoint. */
504 int cpu_breakpoint_insert(CPUArchState
*env
, target_ulong pc
, int flags
,
505 CPUBreakpoint
**breakpoint
)
507 #if defined(TARGET_HAS_ICE)
510 bp
= g_malloc(sizeof(*bp
));
515 /* keep all GDB-injected breakpoints in front */
516 if (flags
& BP_GDB
) {
517 QTAILQ_INSERT_HEAD(&env
->breakpoints
, bp
, entry
);
519 QTAILQ_INSERT_TAIL(&env
->breakpoints
, bp
, entry
);
522 breakpoint_invalidate(ENV_GET_CPU(env
), pc
);
533 /* Remove a specific breakpoint. */
534 int cpu_breakpoint_remove(CPUArchState
*env
, target_ulong pc
, int flags
)
536 #if defined(TARGET_HAS_ICE)
539 QTAILQ_FOREACH(bp
, &env
->breakpoints
, entry
) {
540 if (bp
->pc
== pc
&& bp
->flags
== flags
) {
541 cpu_breakpoint_remove_by_ref(env
, bp
);
551 /* Remove a specific breakpoint by reference. */
552 void cpu_breakpoint_remove_by_ref(CPUArchState
*env
, CPUBreakpoint
*breakpoint
)
554 #if defined(TARGET_HAS_ICE)
555 QTAILQ_REMOVE(&env
->breakpoints
, breakpoint
, entry
);
557 breakpoint_invalidate(ENV_GET_CPU(env
), breakpoint
->pc
);
563 /* Remove all matching breakpoints. */
564 void cpu_breakpoint_remove_all(CPUArchState
*env
, int mask
)
566 #if defined(TARGET_HAS_ICE)
567 CPUBreakpoint
*bp
, *next
;
569 QTAILQ_FOREACH_SAFE(bp
, &env
->breakpoints
, entry
, next
) {
570 if (bp
->flags
& mask
)
571 cpu_breakpoint_remove_by_ref(env
, bp
);
576 /* enable or disable single step mode. EXCP_DEBUG is returned by the
577 CPU loop after each instruction */
578 void cpu_single_step(CPUState
*cpu
, int enabled
)
580 #if defined(TARGET_HAS_ICE)
581 if (cpu
->singlestep_enabled
!= enabled
) {
582 cpu
->singlestep_enabled
= enabled
;
584 kvm_update_guest_debug(cpu
, 0);
586 /* must flush all the translated code to avoid inconsistencies */
587 /* XXX: only flush what is necessary */
588 CPUArchState
*env
= cpu
->env_ptr
;
595 void cpu_abort(CPUArchState
*env
, const char *fmt
, ...)
597 CPUState
*cpu
= ENV_GET_CPU(env
);
603 fprintf(stderr
, "qemu: fatal: ");
604 vfprintf(stderr
, fmt
, ap
);
605 fprintf(stderr
, "\n");
606 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
607 if (qemu_log_enabled()) {
608 qemu_log("qemu: fatal: ");
609 qemu_log_vprintf(fmt
, ap2
);
611 log_cpu_state(cpu
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
617 #if defined(CONFIG_USER_ONLY)
619 struct sigaction act
;
620 sigfillset(&act
.sa_mask
);
621 act
.sa_handler
= SIG_DFL
;
622 sigaction(SIGABRT
, &act
, NULL
);
628 CPUArchState
*cpu_copy(CPUArchState
*env
)
630 CPUArchState
*new_env
= cpu_init(env
->cpu_model_str
);
631 #if defined(TARGET_HAS_ICE)
636 /* Reset non arch specific state */
637 cpu_reset(ENV_GET_CPU(new_env
));
639 /* Copy arch specific state into the new CPU */
640 memcpy(new_env
, env
, sizeof(CPUArchState
));
642 /* Clone all break/watchpoints.
643 Note: Once we support ptrace with hw-debug register access, make sure
644 BP_CPU break/watchpoints are handled correctly on clone. */
645 QTAILQ_INIT(&env
->breakpoints
);
646 QTAILQ_INIT(&env
->watchpoints
);
647 #if defined(TARGET_HAS_ICE)
648 QTAILQ_FOREACH(bp
, &env
->breakpoints
, entry
) {
649 cpu_breakpoint_insert(new_env
, bp
->pc
, bp
->flags
, NULL
);
651 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
652 cpu_watchpoint_insert(new_env
, wp
->vaddr
, (~wp
->len_mask
) + 1,
660 #if !defined(CONFIG_USER_ONLY)
661 static void tlb_reset_dirty_range_all(ram_addr_t start
, ram_addr_t end
,
666 /* we modify the TLB cache so that the dirty bit will be set again
667 when accessing the range */
668 start1
= (uintptr_t)qemu_safe_ram_ptr(start
);
669 /* Check that we don't span multiple blocks - this breaks the
670 address comparisons below. */
671 if ((uintptr_t)qemu_safe_ram_ptr(end
- 1) - start1
672 != (end
- 1) - start
) {
675 cpu_tlb_reset_dirty_all(start1
, length
);
679 /* Note: start and end must be within the same ram block. */
680 void cpu_physical_memory_reset_dirty(ram_addr_t start
, ram_addr_t end
,
685 start
&= TARGET_PAGE_MASK
;
686 end
= TARGET_PAGE_ALIGN(end
);
688 length
= end
- start
;
691 cpu_physical_memory_mask_dirty_range(start
, length
, dirty_flags
);
694 tlb_reset_dirty_range_all(start
, end
, length
);
698 static int cpu_physical_memory_set_dirty_tracking(int enable
)
701 in_migration
= enable
;
705 hwaddr
memory_region_section_get_iotlb(CPUArchState
*env
,
706 MemoryRegionSection
*section
,
708 hwaddr paddr
, hwaddr xlat
,
710 target_ulong
*address
)
715 if (memory_region_is_ram(section
->mr
)) {
717 iotlb
= (memory_region_get_ram_addr(section
->mr
) & TARGET_PAGE_MASK
)
719 if (!section
->readonly
) {
720 iotlb
|= PHYS_SECTION_NOTDIRTY
;
722 iotlb
|= PHYS_SECTION_ROM
;
725 iotlb
= section
- address_space_memory
.dispatch
->sections
;
729 /* Make accesses to pages with watchpoints go via the
730 watchpoint trap routines. */
731 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
732 if (vaddr
== (wp
->vaddr
& TARGET_PAGE_MASK
)) {
733 /* Avoid trapping reads of pages with a write breakpoint. */
734 if ((prot
& PAGE_WRITE
) || (wp
->flags
& BP_MEM_READ
)) {
735 iotlb
= PHYS_SECTION_WATCH
+ paddr
;
736 *address
|= TLB_MMIO
;
744 #endif /* defined(CONFIG_USER_ONLY) */
746 #if !defined(CONFIG_USER_ONLY)
748 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
750 static subpage_t
*subpage_init(AddressSpace
*as
, hwaddr base
);
752 static uint16_t phys_section_add(MemoryRegionSection
*section
)
754 /* The physical section number is ORed with a page-aligned
755 * pointer to produce the iotlb entries. Thus it should
756 * never overflow into the page-aligned value.
758 assert(next_map
.sections_nb
< TARGET_PAGE_SIZE
);
760 if (next_map
.sections_nb
== next_map
.sections_nb_alloc
) {
761 next_map
.sections_nb_alloc
= MAX(next_map
.sections_nb_alloc
* 2,
763 next_map
.sections
= g_renew(MemoryRegionSection
, next_map
.sections
,
764 next_map
.sections_nb_alloc
);
766 next_map
.sections
[next_map
.sections_nb
] = *section
;
767 memory_region_ref(section
->mr
);
768 return next_map
.sections_nb
++;
771 static void phys_section_destroy(MemoryRegion
*mr
)
773 memory_region_unref(mr
);
776 subpage_t
*subpage
= container_of(mr
, subpage_t
, iomem
);
777 memory_region_destroy(&subpage
->iomem
);
782 static void phys_sections_free(PhysPageMap
*map
)
784 while (map
->sections_nb
> 0) {
785 MemoryRegionSection
*section
= &map
->sections
[--map
->sections_nb
];
786 phys_section_destroy(section
->mr
);
788 g_free(map
->sections
);
793 static void register_subpage(AddressSpaceDispatch
*d
, MemoryRegionSection
*section
)
796 hwaddr base
= section
->offset_within_address_space
798 MemoryRegionSection
*existing
= phys_page_find(d
->phys_map
, base
>> TARGET_PAGE_BITS
,
799 next_map
.nodes
, next_map
.sections
);
800 MemoryRegionSection subsection
= {
801 .offset_within_address_space
= base
,
802 .size
= int128_make64(TARGET_PAGE_SIZE
),
806 assert(existing
->mr
->subpage
|| existing
->mr
== &io_mem_unassigned
);
808 if (!(existing
->mr
->subpage
)) {
809 subpage
= subpage_init(d
->as
, base
);
810 subsection
.mr
= &subpage
->iomem
;
811 phys_page_set(d
, base
>> TARGET_PAGE_BITS
, 1,
812 phys_section_add(&subsection
));
814 subpage
= container_of(existing
->mr
, subpage_t
, iomem
);
816 start
= section
->offset_within_address_space
& ~TARGET_PAGE_MASK
;
817 end
= start
+ int128_get64(section
->size
) - 1;
818 subpage_register(subpage
, start
, end
, phys_section_add(section
));
822 static void register_multipage(AddressSpaceDispatch
*d
,
823 MemoryRegionSection
*section
)
825 hwaddr start_addr
= section
->offset_within_address_space
;
826 uint16_t section_index
= phys_section_add(section
);
827 uint64_t num_pages
= int128_get64(int128_rshift(section
->size
,
831 phys_page_set(d
, start_addr
>> TARGET_PAGE_BITS
, num_pages
, section_index
);
834 static void mem_add(MemoryListener
*listener
, MemoryRegionSection
*section
)
836 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
837 AddressSpaceDispatch
*d
= as
->next_dispatch
;
838 MemoryRegionSection now
= *section
, remain
= *section
;
839 Int128 page_size
= int128_make64(TARGET_PAGE_SIZE
);
841 if (now
.offset_within_address_space
& ~TARGET_PAGE_MASK
) {
842 uint64_t left
= TARGET_PAGE_ALIGN(now
.offset_within_address_space
)
843 - now
.offset_within_address_space
;
845 now
.size
= int128_min(int128_make64(left
), now
.size
);
846 register_subpage(d
, &now
);
848 now
.size
= int128_zero();
850 while (int128_ne(remain
.size
, now
.size
)) {
851 remain
.size
= int128_sub(remain
.size
, now
.size
);
852 remain
.offset_within_address_space
+= int128_get64(now
.size
);
853 remain
.offset_within_region
+= int128_get64(now
.size
);
855 if (int128_lt(remain
.size
, page_size
)) {
856 register_subpage(d
, &now
);
857 } else if (remain
.offset_within_address_space
& ~TARGET_PAGE_MASK
) {
858 now
.size
= page_size
;
859 register_subpage(d
, &now
);
861 now
.size
= int128_and(now
.size
, int128_neg(page_size
));
862 register_multipage(d
, &now
);
867 void qemu_flush_coalesced_mmio_buffer(void)
870 kvm_flush_coalesced_mmio_buffer();
873 void qemu_mutex_lock_ramlist(void)
875 qemu_mutex_lock(&ram_list
.mutex
);
878 void qemu_mutex_unlock_ramlist(void)
880 qemu_mutex_unlock(&ram_list
.mutex
);
883 #if defined(__linux__) && !defined(TARGET_S390X)
887 #define HUGETLBFS_MAGIC 0x958458f6
889 static long gethugepagesize(const char *path
)
895 ret
= statfs(path
, &fs
);
896 } while (ret
!= 0 && errno
== EINTR
);
903 if (fs
.f_type
!= HUGETLBFS_MAGIC
)
904 fprintf(stderr
, "Warning: path not on HugeTLBFS: %s\n", path
);
909 static void *file_ram_alloc(RAMBlock
*block
,
914 char *sanitized_name
;
921 unsigned long hpagesize
;
923 hpagesize
= gethugepagesize(path
);
928 if (memory
< hpagesize
) {
932 if (kvm_enabled() && !kvm_has_sync_mmu()) {
933 fprintf(stderr
, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
937 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
938 sanitized_name
= g_strdup(block
->mr
->name
);
939 for (c
= sanitized_name
; *c
!= '\0'; c
++) {
944 filename
= g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path
,
946 g_free(sanitized_name
);
948 fd
= mkstemp(filename
);
950 perror("unable to create backing store for hugepages");
957 memory
= (memory
+hpagesize
-1) & ~(hpagesize
-1);
960 * ftruncate is not supported by hugetlbfs in older
961 * hosts, so don't bother bailing out on errors.
962 * If anything goes wrong with it under other filesystems,
965 if (ftruncate(fd
, memory
))
969 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
970 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
971 * to sidestep this quirk.
973 flags
= mem_prealloc
? MAP_POPULATE
| MAP_SHARED
: MAP_PRIVATE
;
974 area
= mmap(0, memory
, PROT_READ
| PROT_WRITE
, flags
, fd
, 0);
976 area
= mmap(0, memory
, PROT_READ
| PROT_WRITE
, MAP_PRIVATE
, fd
, 0);
978 if (area
== MAP_FAILED
) {
979 perror("file_ram_alloc: can't mmap RAM pages");
988 static ram_addr_t
find_ram_offset(ram_addr_t size
)
990 RAMBlock
*block
, *next_block
;
991 ram_addr_t offset
= RAM_ADDR_MAX
, mingap
= RAM_ADDR_MAX
;
993 assert(size
!= 0); /* it would hand out same offset multiple times */
995 if (QTAILQ_EMPTY(&ram_list
.blocks
))
998 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
999 ram_addr_t end
, next
= RAM_ADDR_MAX
;
1001 end
= block
->offset
+ block
->length
;
1003 QTAILQ_FOREACH(next_block
, &ram_list
.blocks
, next
) {
1004 if (next_block
->offset
>= end
) {
1005 next
= MIN(next
, next_block
->offset
);
1008 if (next
- end
>= size
&& next
- end
< mingap
) {
1010 mingap
= next
- end
;
1014 if (offset
== RAM_ADDR_MAX
) {
1015 fprintf(stderr
, "Failed to find gap of requested size: %" PRIu64
"\n",
1023 ram_addr_t
last_ram_offset(void)
1026 ram_addr_t last
= 0;
1028 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
)
1029 last
= MAX(last
, block
->offset
+ block
->length
);
1034 static void qemu_ram_setup_dump(void *addr
, ram_addr_t size
)
1038 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1039 if (!qemu_opt_get_bool(qemu_get_machine_opts(),
1040 "dump-guest-core", true)) {
1041 ret
= qemu_madvise(addr
, size
, QEMU_MADV_DONTDUMP
);
1043 perror("qemu_madvise");
1044 fprintf(stderr
, "madvise doesn't support MADV_DONTDUMP, "
1045 "but dump_guest_core=off specified\n");
1050 void qemu_ram_set_idstr(ram_addr_t addr
, const char *name
, DeviceState
*dev
)
1052 RAMBlock
*new_block
, *block
;
1055 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1056 if (block
->offset
== addr
) {
1062 assert(!new_block
->idstr
[0]);
1065 char *id
= qdev_get_dev_path(dev
);
1067 snprintf(new_block
->idstr
, sizeof(new_block
->idstr
), "%s/", id
);
1071 pstrcat(new_block
->idstr
, sizeof(new_block
->idstr
), name
);
1073 /* This assumes the iothread lock is taken here too. */
1074 qemu_mutex_lock_ramlist();
1075 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1076 if (block
!= new_block
&& !strcmp(block
->idstr
, new_block
->idstr
)) {
1077 fprintf(stderr
, "RAMBlock \"%s\" already registered, abort!\n",
1082 qemu_mutex_unlock_ramlist();
1085 static int memory_try_enable_merging(void *addr
, size_t len
)
1087 if (!qemu_opt_get_bool(qemu_get_machine_opts(), "mem-merge", true)) {
1088 /* disabled by the user */
1092 return qemu_madvise(addr
, len
, QEMU_MADV_MERGEABLE
);
1095 ram_addr_t
qemu_ram_alloc_from_ptr(ram_addr_t size
, void *host
,
1098 RAMBlock
*block
, *new_block
;
1100 size
= TARGET_PAGE_ALIGN(size
);
1101 new_block
= g_malloc0(sizeof(*new_block
));
1103 /* This assumes the iothread lock is taken here too. */
1104 qemu_mutex_lock_ramlist();
1106 new_block
->offset
= find_ram_offset(size
);
1108 new_block
->host
= host
;
1109 new_block
->flags
|= RAM_PREALLOC_MASK
;
1112 #if defined (__linux__) && !defined(TARGET_S390X)
1113 new_block
->host
= file_ram_alloc(new_block
, size
, mem_path
);
1114 if (!new_block
->host
) {
1115 new_block
->host
= qemu_anon_ram_alloc(size
);
1116 memory_try_enable_merging(new_block
->host
, size
);
1119 fprintf(stderr
, "-mem-path option unsupported\n");
1123 if (xen_enabled()) {
1124 xen_ram_alloc(new_block
->offset
, size
, mr
);
1125 } else if (kvm_enabled()) {
1126 /* some s390/kvm configurations have special constraints */
1127 new_block
->host
= kvm_ram_alloc(size
);
1129 new_block
->host
= qemu_anon_ram_alloc(size
);
1131 memory_try_enable_merging(new_block
->host
, size
);
1134 new_block
->length
= size
;
1136 /* Keep the list sorted from biggest to smallest block. */
1137 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1138 if (block
->length
< new_block
->length
) {
1143 QTAILQ_INSERT_BEFORE(block
, new_block
, next
);
1145 QTAILQ_INSERT_TAIL(&ram_list
.blocks
, new_block
, next
);
1147 ram_list
.mru_block
= NULL
;
1150 qemu_mutex_unlock_ramlist();
1152 ram_list
.phys_dirty
= g_realloc(ram_list
.phys_dirty
,
1153 last_ram_offset() >> TARGET_PAGE_BITS
);
1154 memset(ram_list
.phys_dirty
+ (new_block
->offset
>> TARGET_PAGE_BITS
),
1155 0, size
>> TARGET_PAGE_BITS
);
1156 cpu_physical_memory_set_dirty_range(new_block
->offset
, size
, 0xff);
1158 qemu_ram_setup_dump(new_block
->host
, size
);
1159 qemu_madvise(new_block
->host
, size
, QEMU_MADV_HUGEPAGE
);
1160 qemu_madvise(new_block
->host
, size
, QEMU_MADV_DONTFORK
);
1163 kvm_setup_guest_memory(new_block
->host
, size
);
1165 return new_block
->offset
;
1168 ram_addr_t
qemu_ram_alloc(ram_addr_t size
, MemoryRegion
*mr
)
1170 return qemu_ram_alloc_from_ptr(size
, NULL
, mr
);
1173 void qemu_ram_free_from_ptr(ram_addr_t addr
)
1177 /* This assumes the iothread lock is taken here too. */
1178 qemu_mutex_lock_ramlist();
1179 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1180 if (addr
== block
->offset
) {
1181 QTAILQ_REMOVE(&ram_list
.blocks
, block
, next
);
1182 ram_list
.mru_block
= NULL
;
1188 qemu_mutex_unlock_ramlist();
1191 void qemu_ram_free(ram_addr_t addr
)
1195 /* This assumes the iothread lock is taken here too. */
1196 qemu_mutex_lock_ramlist();
1197 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1198 if (addr
== block
->offset
) {
1199 QTAILQ_REMOVE(&ram_list
.blocks
, block
, next
);
1200 ram_list
.mru_block
= NULL
;
1202 if (block
->flags
& RAM_PREALLOC_MASK
) {
1204 } else if (mem_path
) {
1205 #if defined (__linux__) && !defined(TARGET_S390X)
1207 munmap(block
->host
, block
->length
);
1210 qemu_anon_ram_free(block
->host
, block
->length
);
1216 if (xen_enabled()) {
1217 xen_invalidate_map_cache_entry(block
->host
);
1219 qemu_anon_ram_free(block
->host
, block
->length
);
1226 qemu_mutex_unlock_ramlist();
1231 void qemu_ram_remap(ram_addr_t addr
, ram_addr_t length
)
1238 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1239 offset
= addr
- block
->offset
;
1240 if (offset
< block
->length
) {
1241 vaddr
= block
->host
+ offset
;
1242 if (block
->flags
& RAM_PREALLOC_MASK
) {
1246 munmap(vaddr
, length
);
1248 #if defined(__linux__) && !defined(TARGET_S390X)
1251 flags
|= mem_prealloc
? MAP_POPULATE
| MAP_SHARED
:
1254 flags
|= MAP_PRIVATE
;
1256 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
1257 flags
, block
->fd
, offset
);
1259 flags
|= MAP_PRIVATE
| MAP_ANONYMOUS
;
1260 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
1267 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
1268 flags
|= MAP_SHARED
| MAP_ANONYMOUS
;
1269 area
= mmap(vaddr
, length
, PROT_EXEC
|PROT_READ
|PROT_WRITE
,
1272 flags
|= MAP_PRIVATE
| MAP_ANONYMOUS
;
1273 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
1277 if (area
!= vaddr
) {
1278 fprintf(stderr
, "Could not remap addr: "
1279 RAM_ADDR_FMT
"@" RAM_ADDR_FMT
"\n",
1283 memory_try_enable_merging(vaddr
, length
);
1284 qemu_ram_setup_dump(vaddr
, length
);
1290 #endif /* !_WIN32 */
1292 static RAMBlock
*qemu_get_ram_block(ram_addr_t addr
)
1296 /* The list is protected by the iothread lock here. */
1297 block
= ram_list
.mru_block
;
1298 if (block
&& addr
- block
->offset
< block
->length
) {
1301 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1302 if (addr
- block
->offset
< block
->length
) {
1307 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
1311 ram_list
.mru_block
= block
;
1315 /* Return a host pointer to ram allocated with qemu_ram_alloc.
1316 With the exception of the softmmu code in this file, this should
1317 only be used for local memory (e.g. video ram) that the device owns,
1318 and knows it isn't going to access beyond the end of the block.
1320 It should not be used for general purpose DMA.
1321 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
1323 void *qemu_get_ram_ptr(ram_addr_t addr
)
1325 RAMBlock
*block
= qemu_get_ram_block(addr
);
1327 if (xen_enabled()) {
1328 /* We need to check if the requested address is in the RAM
1329 * because we don't want to map the entire memory in QEMU.
1330 * In that case just map until the end of the page.
1332 if (block
->offset
== 0) {
1333 return xen_map_cache(addr
, 0, 0);
1334 } else if (block
->host
== NULL
) {
1336 xen_map_cache(block
->offset
, block
->length
, 1);
1339 return block
->host
+ (addr
- block
->offset
);
1342 /* Return a host pointer to ram allocated with qemu_ram_alloc. Same as
1343 * qemu_get_ram_ptr but do not touch ram_list.mru_block.
1345 * ??? Is this still necessary?
1347 static void *qemu_safe_ram_ptr(ram_addr_t addr
)
1351 /* The list is protected by the iothread lock here. */
1352 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1353 if (addr
- block
->offset
< block
->length
) {
1354 if (xen_enabled()) {
1355 /* We need to check if the requested address is in the RAM
1356 * because we don't want to map the entire memory in QEMU.
1357 * In that case just map until the end of the page.
1359 if (block
->offset
== 0) {
1360 return xen_map_cache(addr
, 0, 0);
1361 } else if (block
->host
== NULL
) {
1363 xen_map_cache(block
->offset
, block
->length
, 1);
1366 return block
->host
+ (addr
- block
->offset
);
1370 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
1376 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
1377 * but takes a size argument */
1378 static void *qemu_ram_ptr_length(ram_addr_t addr
, hwaddr
*size
)
1383 if (xen_enabled()) {
1384 return xen_map_cache(addr
, *size
, 1);
1388 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1389 if (addr
- block
->offset
< block
->length
) {
1390 if (addr
- block
->offset
+ *size
> block
->length
)
1391 *size
= block
->length
- addr
+ block
->offset
;
1392 return block
->host
+ (addr
- block
->offset
);
1396 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
1401 /* Some of the softmmu routines need to translate from a host pointer
1402 (typically a TLB entry) back to a ram offset. */
1403 MemoryRegion
*qemu_ram_addr_from_host(void *ptr
, ram_addr_t
*ram_addr
)
1406 uint8_t *host
= ptr
;
1408 if (xen_enabled()) {
1409 *ram_addr
= xen_ram_addr_from_mapcache(ptr
);
1410 return qemu_get_ram_block(*ram_addr
)->mr
;
1413 block
= ram_list
.mru_block
;
1414 if (block
&& block
->host
&& host
- block
->host
< block
->length
) {
1418 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1419 /* This case append when the block is not mapped. */
1420 if (block
->host
== NULL
) {
1423 if (host
- block
->host
< block
->length
) {
1431 *ram_addr
= block
->offset
+ (host
- block
->host
);
1435 static void notdirty_mem_write(void *opaque
, hwaddr ram_addr
,
1436 uint64_t val
, unsigned size
)
1439 dirty_flags
= cpu_physical_memory_get_dirty_flags(ram_addr
);
1440 if (!(dirty_flags
& CODE_DIRTY_FLAG
)) {
1441 tb_invalidate_phys_page_fast(ram_addr
, size
);
1442 dirty_flags
= cpu_physical_memory_get_dirty_flags(ram_addr
);
1446 stb_p(qemu_get_ram_ptr(ram_addr
), val
);
1449 stw_p(qemu_get_ram_ptr(ram_addr
), val
);
1452 stl_p(qemu_get_ram_ptr(ram_addr
), val
);
1457 dirty_flags
|= (0xff & ~CODE_DIRTY_FLAG
);
1458 cpu_physical_memory_set_dirty_flags(ram_addr
, dirty_flags
);
1459 /* we remove the notdirty callback only if the code has been
1461 if (dirty_flags
== 0xff) {
1462 CPUArchState
*env
= current_cpu
->env_ptr
;
1463 tlb_set_dirty(env
, env
->mem_io_vaddr
);
1467 static bool notdirty_mem_accepts(void *opaque
, hwaddr addr
,
1468 unsigned size
, bool is_write
)
1473 static const MemoryRegionOps notdirty_mem_ops
= {
1474 .write
= notdirty_mem_write
,
1475 .valid
.accepts
= notdirty_mem_accepts
,
1476 .endianness
= DEVICE_NATIVE_ENDIAN
,
1479 /* Generate a debug exception if a watchpoint has been hit. */
1480 static void check_watchpoint(int offset
, int len_mask
, int flags
)
1482 CPUArchState
*env
= current_cpu
->env_ptr
;
1483 target_ulong pc
, cs_base
;
1488 if (env
->watchpoint_hit
) {
1489 /* We re-entered the check after replacing the TB. Now raise
1490 * the debug interrupt so that is will trigger after the
1491 * current instruction. */
1492 cpu_interrupt(ENV_GET_CPU(env
), CPU_INTERRUPT_DEBUG
);
1495 vaddr
= (env
->mem_io_vaddr
& TARGET_PAGE_MASK
) + offset
;
1496 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
1497 if ((vaddr
== (wp
->vaddr
& len_mask
) ||
1498 (vaddr
& wp
->len_mask
) == wp
->vaddr
) && (wp
->flags
& flags
)) {
1499 wp
->flags
|= BP_WATCHPOINT_HIT
;
1500 if (!env
->watchpoint_hit
) {
1501 env
->watchpoint_hit
= wp
;
1502 tb_check_watchpoint(env
);
1503 if (wp
->flags
& BP_STOP_BEFORE_ACCESS
) {
1504 env
->exception_index
= EXCP_DEBUG
;
1507 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &cpu_flags
);
1508 tb_gen_code(env
, pc
, cs_base
, cpu_flags
, 1);
1509 cpu_resume_from_signal(env
, NULL
);
1513 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
1518 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
1519 so these check for a hit then pass through to the normal out-of-line
1521 static uint64_t watch_mem_read(void *opaque
, hwaddr addr
,
1524 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~(size
- 1), BP_MEM_READ
);
1526 case 1: return ldub_phys(addr
);
1527 case 2: return lduw_phys(addr
);
1528 case 4: return ldl_phys(addr
);
1533 static void watch_mem_write(void *opaque
, hwaddr addr
,
1534 uint64_t val
, unsigned size
)
1536 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~(size
- 1), BP_MEM_WRITE
);
1539 stb_phys(addr
, val
);
1542 stw_phys(addr
, val
);
1545 stl_phys(addr
, val
);
1551 static const MemoryRegionOps watch_mem_ops
= {
1552 .read
= watch_mem_read
,
1553 .write
= watch_mem_write
,
1554 .endianness
= DEVICE_NATIVE_ENDIAN
,
1557 static uint64_t subpage_read(void *opaque
, hwaddr addr
,
1560 subpage_t
*subpage
= opaque
;
1563 #if defined(DEBUG_SUBPAGE)
1564 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
"\n", __func__
,
1565 subpage
, len
, addr
);
1567 address_space_read(subpage
->as
, addr
+ subpage
->base
, buf
, len
);
1580 static void subpage_write(void *opaque
, hwaddr addr
,
1581 uint64_t value
, unsigned len
)
1583 subpage_t
*subpage
= opaque
;
1586 #if defined(DEBUG_SUBPAGE)
1587 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
1588 " value %"PRIx64
"\n",
1589 __func__
, subpage
, len
, addr
, value
);
1604 address_space_write(subpage
->as
, addr
+ subpage
->base
, buf
, len
);
1607 static bool subpage_accepts(void *opaque
, hwaddr addr
,
1608 unsigned size
, bool is_write
)
1610 subpage_t
*subpage
= opaque
;
1611 #if defined(DEBUG_SUBPAGE)
1612 printf("%s: subpage %p %c len %d addr " TARGET_FMT_plx
"\n",
1613 __func__
, subpage
, is_write
? 'w' : 'r', len
, addr
);
1616 return address_space_access_valid(subpage
->as
, addr
+ subpage
->base
,
1620 static const MemoryRegionOps subpage_ops
= {
1621 .read
= subpage_read
,
1622 .write
= subpage_write
,
1623 .valid
.accepts
= subpage_accepts
,
1624 .endianness
= DEVICE_NATIVE_ENDIAN
,
1627 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
1632 if (start
>= TARGET_PAGE_SIZE
|| end
>= TARGET_PAGE_SIZE
)
1634 idx
= SUBPAGE_IDX(start
);
1635 eidx
= SUBPAGE_IDX(end
);
1636 #if defined(DEBUG_SUBPAGE)
1637 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__
,
1638 mmio
, start
, end
, idx
, eidx
, memory
);
1640 for (; idx
<= eidx
; idx
++) {
1641 mmio
->sub_section
[idx
] = section
;
1647 static subpage_t
*subpage_init(AddressSpace
*as
, hwaddr base
)
1651 mmio
= g_malloc0(sizeof(subpage_t
));
1655 memory_region_init_io(&mmio
->iomem
, NULL
, &subpage_ops
, mmio
,
1656 "subpage", TARGET_PAGE_SIZE
);
1657 mmio
->iomem
.subpage
= true;
1658 #if defined(DEBUG_SUBPAGE)
1659 printf("%s: %p base " TARGET_FMT_plx
" len %08x %d\n", __func__
,
1660 mmio
, base
, TARGET_PAGE_SIZE
, subpage_memory
);
1662 subpage_register(mmio
, 0, TARGET_PAGE_SIZE
-1, PHYS_SECTION_UNASSIGNED
);
1667 static uint16_t dummy_section(MemoryRegion
*mr
)
1669 MemoryRegionSection section
= {
1671 .offset_within_address_space
= 0,
1672 .offset_within_region
= 0,
1673 .size
= int128_2_64(),
1676 return phys_section_add(§ion
);
1679 MemoryRegion
*iotlb_to_region(hwaddr index
)
1681 return address_space_memory
.dispatch
->sections
[index
& ~TARGET_PAGE_MASK
].mr
;
1684 static void io_mem_init(void)
1686 memory_region_init_io(&io_mem_rom
, NULL
, &unassigned_mem_ops
, NULL
, "rom", UINT64_MAX
);
1687 memory_region_init_io(&io_mem_unassigned
, NULL
, &unassigned_mem_ops
, NULL
,
1688 "unassigned", UINT64_MAX
);
1689 memory_region_init_io(&io_mem_notdirty
, NULL
, ¬dirty_mem_ops
, NULL
,
1690 "notdirty", UINT64_MAX
);
1691 memory_region_init_io(&io_mem_watch
, NULL
, &watch_mem_ops
, NULL
,
1692 "watch", UINT64_MAX
);
1695 static void mem_begin(MemoryListener
*listener
)
1697 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
1698 AddressSpaceDispatch
*d
= g_new(AddressSpaceDispatch
, 1);
1700 d
->phys_map
= (PhysPageEntry
) { .ptr
= PHYS_MAP_NODE_NIL
, .is_leaf
= 0 };
1702 as
->next_dispatch
= d
;
1705 static void mem_commit(MemoryListener
*listener
)
1707 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
1708 AddressSpaceDispatch
*cur
= as
->dispatch
;
1709 AddressSpaceDispatch
*next
= as
->next_dispatch
;
1711 next
->nodes
= next_map
.nodes
;
1712 next
->sections
= next_map
.sections
;
1714 as
->dispatch
= next
;
1718 static void core_begin(MemoryListener
*listener
)
1722 prev_map
= g_new(PhysPageMap
, 1);
1723 *prev_map
= next_map
;
1725 memset(&next_map
, 0, sizeof(next_map
));
1726 n
= dummy_section(&io_mem_unassigned
);
1727 assert(n
== PHYS_SECTION_UNASSIGNED
);
1728 n
= dummy_section(&io_mem_notdirty
);
1729 assert(n
== PHYS_SECTION_NOTDIRTY
);
1730 n
= dummy_section(&io_mem_rom
);
1731 assert(n
== PHYS_SECTION_ROM
);
1732 n
= dummy_section(&io_mem_watch
);
1733 assert(n
== PHYS_SECTION_WATCH
);
1736 /* This listener's commit run after the other AddressSpaceDispatch listeners'.
1737 * All AddressSpaceDispatch instances have switched to the next map.
1739 static void core_commit(MemoryListener
*listener
)
1741 phys_sections_free(prev_map
);
1744 static void tcg_commit(MemoryListener
*listener
)
1748 /* since each CPU stores ram addresses in its TLB cache, we must
1749 reset the modified entries */
1752 CPUArchState
*env
= cpu
->env_ptr
;
1758 static void core_log_global_start(MemoryListener
*listener
)
1760 cpu_physical_memory_set_dirty_tracking(1);
1763 static void core_log_global_stop(MemoryListener
*listener
)
1765 cpu_physical_memory_set_dirty_tracking(0);
1768 static MemoryListener core_memory_listener
= {
1769 .begin
= core_begin
,
1770 .commit
= core_commit
,
1771 .log_global_start
= core_log_global_start
,
1772 .log_global_stop
= core_log_global_stop
,
1776 static MemoryListener tcg_memory_listener
= {
1777 .commit
= tcg_commit
,
1780 void address_space_init_dispatch(AddressSpace
*as
)
1782 as
->dispatch
= NULL
;
1783 as
->dispatch_listener
= (MemoryListener
) {
1785 .commit
= mem_commit
,
1786 .region_add
= mem_add
,
1787 .region_nop
= mem_add
,
1790 memory_listener_register(&as
->dispatch_listener
, as
);
1793 void address_space_destroy_dispatch(AddressSpace
*as
)
1795 AddressSpaceDispatch
*d
= as
->dispatch
;
1797 memory_listener_unregister(&as
->dispatch_listener
);
1799 as
->dispatch
= NULL
;
1802 static void memory_map_init(void)
1804 system_memory
= g_malloc(sizeof(*system_memory
));
1805 memory_region_init(system_memory
, NULL
, "system", INT64_MAX
);
1806 address_space_init(&address_space_memory
, system_memory
, "memory");
1808 system_io
= g_malloc(sizeof(*system_io
));
1809 memory_region_init_io(system_io
, NULL
, &unassigned_io_ops
, NULL
, "io",
1811 address_space_init(&address_space_io
, system_io
, "I/O");
1813 memory_listener_register(&core_memory_listener
, &address_space_memory
);
1814 if (tcg_enabled()) {
1815 memory_listener_register(&tcg_memory_listener
, &address_space_memory
);
1819 MemoryRegion
*get_system_memory(void)
1821 return system_memory
;
1824 MemoryRegion
*get_system_io(void)
1829 #endif /* !defined(CONFIG_USER_ONLY) */
1831 /* physical memory access (slow version, mainly for debug) */
1832 #if defined(CONFIG_USER_ONLY)
1833 int cpu_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
1834 uint8_t *buf
, int len
, int is_write
)
1841 page
= addr
& TARGET_PAGE_MASK
;
1842 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
1845 flags
= page_get_flags(page
);
1846 if (!(flags
& PAGE_VALID
))
1849 if (!(flags
& PAGE_WRITE
))
1851 /* XXX: this code should not depend on lock_user */
1852 if (!(p
= lock_user(VERIFY_WRITE
, addr
, l
, 0)))
1855 unlock_user(p
, addr
, l
);
1857 if (!(flags
& PAGE_READ
))
1859 /* XXX: this code should not depend on lock_user */
1860 if (!(p
= lock_user(VERIFY_READ
, addr
, l
, 1)))
1863 unlock_user(p
, addr
, 0);
1874 static void invalidate_and_set_dirty(hwaddr addr
,
1877 if (!cpu_physical_memory_is_dirty(addr
)) {
1878 /* invalidate code */
1879 tb_invalidate_phys_page_range(addr
, addr
+ length
, 0);
1881 cpu_physical_memory_set_dirty_flags(addr
, (0xff & ~CODE_DIRTY_FLAG
));
1883 xen_modified_memory(addr
, length
);
1886 static inline bool memory_access_is_direct(MemoryRegion
*mr
, bool is_write
)
1888 if (memory_region_is_ram(mr
)) {
1889 return !(is_write
&& mr
->readonly
);
1891 if (memory_region_is_romd(mr
)) {
1898 static int memory_access_size(MemoryRegion
*mr
, unsigned l
, hwaddr addr
)
1900 unsigned access_size_max
= mr
->ops
->valid
.max_access_size
;
1902 /* Regions are assumed to support 1-4 byte accesses unless
1903 otherwise specified. */
1904 if (access_size_max
== 0) {
1905 access_size_max
= 4;
1908 /* Bound the maximum access by the alignment of the address. */
1909 if (!mr
->ops
->impl
.unaligned
) {
1910 unsigned align_size_max
= addr
& -addr
;
1911 if (align_size_max
!= 0 && align_size_max
< access_size_max
) {
1912 access_size_max
= align_size_max
;
1916 /* Don't attempt accesses larger than the maximum. */
1917 if (l
> access_size_max
) {
1918 l
= access_size_max
;
1921 l
= 1 << (qemu_fls(l
) - 1);
1927 bool address_space_rw(AddressSpace
*as
, hwaddr addr
, uint8_t *buf
,
1928 int len
, bool is_write
)
1939 mr
= address_space_translate(as
, addr
, &addr1
, &l
, is_write
);
1942 if (!memory_access_is_direct(mr
, is_write
)) {
1943 l
= memory_access_size(mr
, l
, addr1
);
1944 /* XXX: could force current_cpu to NULL to avoid
1948 /* 64 bit write access */
1950 error
|= io_mem_write(mr
, addr1
, val
, 8);
1953 /* 32 bit write access */
1955 error
|= io_mem_write(mr
, addr1
, val
, 4);
1958 /* 16 bit write access */
1960 error
|= io_mem_write(mr
, addr1
, val
, 2);
1963 /* 8 bit write access */
1965 error
|= io_mem_write(mr
, addr1
, val
, 1);
1971 addr1
+= memory_region_get_ram_addr(mr
);
1973 ptr
= qemu_get_ram_ptr(addr1
);
1974 memcpy(ptr
, buf
, l
);
1975 invalidate_and_set_dirty(addr1
, l
);
1978 if (!memory_access_is_direct(mr
, is_write
)) {
1980 l
= memory_access_size(mr
, l
, addr1
);
1983 /* 64 bit read access */
1984 error
|= io_mem_read(mr
, addr1
, &val
, 8);
1988 /* 32 bit read access */
1989 error
|= io_mem_read(mr
, addr1
, &val
, 4);
1993 /* 16 bit read access */
1994 error
|= io_mem_read(mr
, addr1
, &val
, 2);
1998 /* 8 bit read access */
1999 error
|= io_mem_read(mr
, addr1
, &val
, 1);
2007 ptr
= qemu_get_ram_ptr(mr
->ram_addr
+ addr1
);
2008 memcpy(buf
, ptr
, l
);
2019 bool address_space_write(AddressSpace
*as
, hwaddr addr
,
2020 const uint8_t *buf
, int len
)
2022 return address_space_rw(as
, addr
, (uint8_t *)buf
, len
, true);
2025 bool address_space_read(AddressSpace
*as
, hwaddr addr
, uint8_t *buf
, int len
)
2027 return address_space_rw(as
, addr
, buf
, len
, false);
2031 void cpu_physical_memory_rw(hwaddr addr
, uint8_t *buf
,
2032 int len
, int is_write
)
2034 address_space_rw(&address_space_memory
, addr
, buf
, len
, is_write
);
2037 /* used for ROM loading : can write in RAM and ROM */
2038 void cpu_physical_memory_write_rom(hwaddr addr
,
2039 const uint8_t *buf
, int len
)
2048 mr
= address_space_translate(&address_space_memory
,
2049 addr
, &addr1
, &l
, true);
2051 if (!(memory_region_is_ram(mr
) ||
2052 memory_region_is_romd(mr
))) {
2055 addr1
+= memory_region_get_ram_addr(mr
);
2057 ptr
= qemu_get_ram_ptr(addr1
);
2058 memcpy(ptr
, buf
, l
);
2059 invalidate_and_set_dirty(addr1
, l
);
2074 static BounceBuffer bounce
;
2076 typedef struct MapClient
{
2078 void (*callback
)(void *opaque
);
2079 QLIST_ENTRY(MapClient
) link
;
2082 static QLIST_HEAD(map_client_list
, MapClient
) map_client_list
2083 = QLIST_HEAD_INITIALIZER(map_client_list
);
2085 void *cpu_register_map_client(void *opaque
, void (*callback
)(void *opaque
))
2087 MapClient
*client
= g_malloc(sizeof(*client
));
2089 client
->opaque
= opaque
;
2090 client
->callback
= callback
;
2091 QLIST_INSERT_HEAD(&map_client_list
, client
, link
);
2095 static void cpu_unregister_map_client(void *_client
)
2097 MapClient
*client
= (MapClient
*)_client
;
2099 QLIST_REMOVE(client
, link
);
2103 static void cpu_notify_map_clients(void)
2107 while (!QLIST_EMPTY(&map_client_list
)) {
2108 client
= QLIST_FIRST(&map_client_list
);
2109 client
->callback(client
->opaque
);
2110 cpu_unregister_map_client(client
);
2114 bool address_space_access_valid(AddressSpace
*as
, hwaddr addr
, int len
, bool is_write
)
2121 mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
2122 if (!memory_access_is_direct(mr
, is_write
)) {
2123 l
= memory_access_size(mr
, l
, addr
);
2124 if (!memory_region_access_valid(mr
, xlat
, l
, is_write
)) {
2135 /* Map a physical memory region into a host virtual address.
2136 * May map a subset of the requested range, given by and returned in *plen.
2137 * May return NULL if resources needed to perform the mapping are exhausted.
2138 * Use only for reads OR writes - not for read-modify-write operations.
2139 * Use cpu_register_map_client() to know when retrying the map operation is
2140 * likely to succeed.
2142 void *address_space_map(AddressSpace
*as
,
2149 hwaddr l
, xlat
, base
;
2150 MemoryRegion
*mr
, *this_mr
;
2158 mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
2159 if (!memory_access_is_direct(mr
, is_write
)) {
2160 if (bounce
.buffer
) {
2163 bounce
.buffer
= qemu_memalign(TARGET_PAGE_SIZE
, TARGET_PAGE_SIZE
);
2167 memory_region_ref(mr
);
2170 address_space_read(as
, addr
, bounce
.buffer
, l
);
2174 return bounce
.buffer
;
2178 raddr
= memory_region_get_ram_addr(mr
);
2189 this_mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
2190 if (this_mr
!= mr
|| xlat
!= base
+ done
) {
2195 memory_region_ref(mr
);
2197 return qemu_ram_ptr_length(raddr
+ base
, plen
);
2200 /* Unmaps a memory region previously mapped by address_space_map().
2201 * Will also mark the memory as dirty if is_write == 1. access_len gives
2202 * the amount of memory that was actually read or written by the caller.
2204 void address_space_unmap(AddressSpace
*as
, void *buffer
, hwaddr len
,
2205 int is_write
, hwaddr access_len
)
2207 if (buffer
!= bounce
.buffer
) {
2211 mr
= qemu_ram_addr_from_host(buffer
, &addr1
);
2214 while (access_len
) {
2216 l
= TARGET_PAGE_SIZE
;
2219 invalidate_and_set_dirty(addr1
, l
);
2224 if (xen_enabled()) {
2225 xen_invalidate_map_cache_entry(buffer
);
2227 memory_region_unref(mr
);
2231 address_space_write(as
, bounce
.addr
, bounce
.buffer
, access_len
);
2233 qemu_vfree(bounce
.buffer
);
2234 bounce
.buffer
= NULL
;
2235 memory_region_unref(bounce
.mr
);
2236 cpu_notify_map_clients();
2239 void *cpu_physical_memory_map(hwaddr addr
,
2243 return address_space_map(&address_space_memory
, addr
, plen
, is_write
);
2246 void cpu_physical_memory_unmap(void *buffer
, hwaddr len
,
2247 int is_write
, hwaddr access_len
)
2249 return address_space_unmap(&address_space_memory
, buffer
, len
, is_write
, access_len
);
2252 /* warning: addr must be aligned */
2253 static inline uint32_t ldl_phys_internal(hwaddr addr
,
2254 enum device_endian endian
)
2262 mr
= address_space_translate(&address_space_memory
, addr
, &addr1
, &l
,
2264 if (l
< 4 || !memory_access_is_direct(mr
, false)) {
2266 io_mem_read(mr
, addr1
, &val
, 4);
2267 #if defined(TARGET_WORDS_BIGENDIAN)
2268 if (endian
== DEVICE_LITTLE_ENDIAN
) {
2272 if (endian
== DEVICE_BIG_ENDIAN
) {
2278 ptr
= qemu_get_ram_ptr((memory_region_get_ram_addr(mr
)
2282 case DEVICE_LITTLE_ENDIAN
:
2283 val
= ldl_le_p(ptr
);
2285 case DEVICE_BIG_ENDIAN
:
2286 val
= ldl_be_p(ptr
);
2296 uint32_t ldl_phys(hwaddr addr
)
2298 return ldl_phys_internal(addr
, DEVICE_NATIVE_ENDIAN
);
2301 uint32_t ldl_le_phys(hwaddr addr
)
2303 return ldl_phys_internal(addr
, DEVICE_LITTLE_ENDIAN
);
2306 uint32_t ldl_be_phys(hwaddr addr
)
2308 return ldl_phys_internal(addr
, DEVICE_BIG_ENDIAN
);
2311 /* warning: addr must be aligned */
2312 static inline uint64_t ldq_phys_internal(hwaddr addr
,
2313 enum device_endian endian
)
2321 mr
= address_space_translate(&address_space_memory
, addr
, &addr1
, &l
,
2323 if (l
< 8 || !memory_access_is_direct(mr
, false)) {
2325 io_mem_read(mr
, addr1
, &val
, 8);
2326 #if defined(TARGET_WORDS_BIGENDIAN)
2327 if (endian
== DEVICE_LITTLE_ENDIAN
) {
2331 if (endian
== DEVICE_BIG_ENDIAN
) {
2337 ptr
= qemu_get_ram_ptr((memory_region_get_ram_addr(mr
)
2341 case DEVICE_LITTLE_ENDIAN
:
2342 val
= ldq_le_p(ptr
);
2344 case DEVICE_BIG_ENDIAN
:
2345 val
= ldq_be_p(ptr
);
2355 uint64_t ldq_phys(hwaddr addr
)
2357 return ldq_phys_internal(addr
, DEVICE_NATIVE_ENDIAN
);
2360 uint64_t ldq_le_phys(hwaddr addr
)
2362 return ldq_phys_internal(addr
, DEVICE_LITTLE_ENDIAN
);
2365 uint64_t ldq_be_phys(hwaddr addr
)
2367 return ldq_phys_internal(addr
, DEVICE_BIG_ENDIAN
);
2371 uint32_t ldub_phys(hwaddr addr
)
2374 cpu_physical_memory_read(addr
, &val
, 1);
2378 /* warning: addr must be aligned */
2379 static inline uint32_t lduw_phys_internal(hwaddr addr
,
2380 enum device_endian endian
)
2388 mr
= address_space_translate(&address_space_memory
, addr
, &addr1
, &l
,
2390 if (l
< 2 || !memory_access_is_direct(mr
, false)) {
2392 io_mem_read(mr
, addr1
, &val
, 2);
2393 #if defined(TARGET_WORDS_BIGENDIAN)
2394 if (endian
== DEVICE_LITTLE_ENDIAN
) {
2398 if (endian
== DEVICE_BIG_ENDIAN
) {
2404 ptr
= qemu_get_ram_ptr((memory_region_get_ram_addr(mr
)
2408 case DEVICE_LITTLE_ENDIAN
:
2409 val
= lduw_le_p(ptr
);
2411 case DEVICE_BIG_ENDIAN
:
2412 val
= lduw_be_p(ptr
);
2422 uint32_t lduw_phys(hwaddr addr
)
2424 return lduw_phys_internal(addr
, DEVICE_NATIVE_ENDIAN
);
2427 uint32_t lduw_le_phys(hwaddr addr
)
2429 return lduw_phys_internal(addr
, DEVICE_LITTLE_ENDIAN
);
2432 uint32_t lduw_be_phys(hwaddr addr
)
2434 return lduw_phys_internal(addr
, DEVICE_BIG_ENDIAN
);
2437 /* warning: addr must be aligned. The ram page is not masked as dirty
2438 and the code inside is not invalidated. It is useful if the dirty
2439 bits are used to track modified PTEs */
2440 void stl_phys_notdirty(hwaddr addr
, uint32_t val
)
2447 mr
= address_space_translate(&address_space_memory
, addr
, &addr1
, &l
,
2449 if (l
< 4 || !memory_access_is_direct(mr
, true)) {
2450 io_mem_write(mr
, addr1
, val
, 4);
2452 addr1
+= memory_region_get_ram_addr(mr
) & TARGET_PAGE_MASK
;
2453 ptr
= qemu_get_ram_ptr(addr1
);
2456 if (unlikely(in_migration
)) {
2457 if (!cpu_physical_memory_is_dirty(addr1
)) {
2458 /* invalidate code */
2459 tb_invalidate_phys_page_range(addr1
, addr1
+ 4, 0);
2461 cpu_physical_memory_set_dirty_flags(
2462 addr1
, (0xff & ~CODE_DIRTY_FLAG
));
2468 /* warning: addr must be aligned */
2469 static inline void stl_phys_internal(hwaddr addr
, uint32_t val
,
2470 enum device_endian endian
)
2477 mr
= address_space_translate(&address_space_memory
, addr
, &addr1
, &l
,
2479 if (l
< 4 || !memory_access_is_direct(mr
, true)) {
2480 #if defined(TARGET_WORDS_BIGENDIAN)
2481 if (endian
== DEVICE_LITTLE_ENDIAN
) {
2485 if (endian
== DEVICE_BIG_ENDIAN
) {
2489 io_mem_write(mr
, addr1
, val
, 4);
2492 addr1
+= memory_region_get_ram_addr(mr
) & TARGET_PAGE_MASK
;
2493 ptr
= qemu_get_ram_ptr(addr1
);
2495 case DEVICE_LITTLE_ENDIAN
:
2498 case DEVICE_BIG_ENDIAN
:
2505 invalidate_and_set_dirty(addr1
, 4);
2509 void stl_phys(hwaddr addr
, uint32_t val
)
2511 stl_phys_internal(addr
, val
, DEVICE_NATIVE_ENDIAN
);
2514 void stl_le_phys(hwaddr addr
, uint32_t val
)
2516 stl_phys_internal(addr
, val
, DEVICE_LITTLE_ENDIAN
);
2519 void stl_be_phys(hwaddr addr
, uint32_t val
)
2521 stl_phys_internal(addr
, val
, DEVICE_BIG_ENDIAN
);
2525 void stb_phys(hwaddr addr
, uint32_t val
)
2528 cpu_physical_memory_write(addr
, &v
, 1);
2531 /* warning: addr must be aligned */
2532 static inline void stw_phys_internal(hwaddr addr
, uint32_t val
,
2533 enum device_endian endian
)
2540 mr
= address_space_translate(&address_space_memory
, addr
, &addr1
, &l
,
2542 if (l
< 2 || !memory_access_is_direct(mr
, true)) {
2543 #if defined(TARGET_WORDS_BIGENDIAN)
2544 if (endian
== DEVICE_LITTLE_ENDIAN
) {
2548 if (endian
== DEVICE_BIG_ENDIAN
) {
2552 io_mem_write(mr
, addr1
, val
, 2);
2555 addr1
+= memory_region_get_ram_addr(mr
) & TARGET_PAGE_MASK
;
2556 ptr
= qemu_get_ram_ptr(addr1
);
2558 case DEVICE_LITTLE_ENDIAN
:
2561 case DEVICE_BIG_ENDIAN
:
2568 invalidate_and_set_dirty(addr1
, 2);
2572 void stw_phys(hwaddr addr
, uint32_t val
)
2574 stw_phys_internal(addr
, val
, DEVICE_NATIVE_ENDIAN
);
2577 void stw_le_phys(hwaddr addr
, uint32_t val
)
2579 stw_phys_internal(addr
, val
, DEVICE_LITTLE_ENDIAN
);
2582 void stw_be_phys(hwaddr addr
, uint32_t val
)
2584 stw_phys_internal(addr
, val
, DEVICE_BIG_ENDIAN
);
2588 void stq_phys(hwaddr addr
, uint64_t val
)
2591 cpu_physical_memory_write(addr
, &val
, 8);
2594 void stq_le_phys(hwaddr addr
, uint64_t val
)
2596 val
= cpu_to_le64(val
);
2597 cpu_physical_memory_write(addr
, &val
, 8);
2600 void stq_be_phys(hwaddr addr
, uint64_t val
)
2602 val
= cpu_to_be64(val
);
2603 cpu_physical_memory_write(addr
, &val
, 8);
2606 /* virtual memory access for debug (includes writing to ROM) */
2607 int cpu_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
2608 uint8_t *buf
, int len
, int is_write
)
2615 page
= addr
& TARGET_PAGE_MASK
;
2616 phys_addr
= cpu_get_phys_page_debug(cpu
, page
);
2617 /* if no physical page mapped, return an error */
2618 if (phys_addr
== -1)
2620 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
2623 phys_addr
+= (addr
& ~TARGET_PAGE_MASK
);
2625 cpu_physical_memory_write_rom(phys_addr
, buf
, l
);
2627 cpu_physical_memory_rw(phys_addr
, buf
, l
, is_write
);
2636 #if !defined(CONFIG_USER_ONLY)
2639 * A helper function for the _utterly broken_ virtio device model to find out if
2640 * it's running on a big endian machine. Don't do this at home kids!
2642 bool virtio_is_big_endian(void);
2643 bool virtio_is_big_endian(void)
2645 #if defined(TARGET_WORDS_BIGENDIAN)
2654 #ifndef CONFIG_USER_ONLY
2655 bool cpu_physical_memory_is_io(hwaddr phys_addr
)
2660 mr
= address_space_translate(&address_space_memory
,
2661 phys_addr
, &phys_addr
, &l
, false);
2663 return !(memory_region_is_ram(mr
) ||
2664 memory_region_is_romd(mr
));
2667 void qemu_ram_foreach_block(RAMBlockIterFunc func
, void *opaque
)
2671 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
2672 func(block
->host
, block
->offset
, block
->length
, opaque
);