2 * Microblaze helper routines.
4 * Copyright (c) 2009 Edgar E. Iglesias <edgar.iglesias@gmail.com>.
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
22 #include "dyngen-exec.h"
24 #include "host-utils.h"
28 #if !defined(CONFIG_USER_ONLY)
29 #include "softmmu_exec.h"
31 #define MMUSUFFIX _mmu
33 #include "softmmu_template.h"
35 #include "softmmu_template.h"
37 #include "softmmu_template.h"
39 #include "softmmu_template.h"
41 /* Try to fill the TLB and return an exception if error. If retaddr is
42 NULL, it means that the function was called in C code (i.e. not
43 from generated code or from helper.c) */
44 /* XXX: fix it to restore all registers */
45 void tlb_fill(CPUState
*env1
, target_ulong addr
, int is_write
, int mmu_idx
,
56 ret
= cpu_mb_handle_mmu_fault(env
, addr
, is_write
, mmu_idx
);
59 /* now we have a real cpu fault */
60 pc
= (unsigned long)retaddr
;
63 /* the PC is inside the translated code. It means that we have
64 a virtual CPU fault */
65 cpu_restore_state(tb
, env
, pc
);
74 void helper_put(uint32_t id
, uint32_t ctrl
, uint32_t data
)
76 int test
= ctrl
& STREAM_TEST
;
77 int atomic
= ctrl
& STREAM_ATOMIC
;
78 int control
= ctrl
& STREAM_CONTROL
;
79 int nonblock
= ctrl
& STREAM_NONBLOCK
;
80 int exception
= ctrl
& STREAM_EXCEPTION
;
82 qemu_log("Unhandled stream put to stream-id=%d data=%x %s%s%s%s%s\n",
91 uint32_t helper_get(uint32_t id
, uint32_t ctrl
)
93 int test
= ctrl
& STREAM_TEST
;
94 int atomic
= ctrl
& STREAM_ATOMIC
;
95 int control
= ctrl
& STREAM_CONTROL
;
96 int nonblock
= ctrl
& STREAM_NONBLOCK
;
97 int exception
= ctrl
& STREAM_EXCEPTION
;
99 qemu_log("Unhandled stream get from stream-id=%d %s%s%s%s%s\n",
103 exception
? "e" : "",
106 return 0xdead0000 | id
;
109 void helper_raise_exception(uint32_t index
)
111 env
->exception_index
= index
;
115 void helper_debug(void)
119 qemu_log("PC=%8.8x\n", env
->sregs
[SR_PC
]);
120 qemu_log("rmsr=%x resr=%x rear=%x debug[%x] imm=%x iflags=%x\n",
121 env
->sregs
[SR_MSR
], env
->sregs
[SR_ESR
], env
->sregs
[SR_EAR
],
122 env
->debug
, env
->imm
, env
->iflags
);
123 qemu_log("btaken=%d btarget=%x mode=%s(saved=%s) eip=%d ie=%d\n",
124 env
->btaken
, env
->btarget
,
125 (env
->sregs
[SR_MSR
] & MSR_UM
) ? "user" : "kernel",
126 (env
->sregs
[SR_MSR
] & MSR_UMS
) ? "user" : "kernel",
127 (env
->sregs
[SR_MSR
] & MSR_EIP
),
128 (env
->sregs
[SR_MSR
] & MSR_IE
));
129 for (i
= 0; i
< 32; i
++) {
130 qemu_log("r%2.2d=%8.8x ", i
, env
->regs
[i
]);
131 if ((i
+ 1) % 4 == 0)
137 static inline uint32_t compute_carry(uint32_t a
, uint32_t b
, uint32_t cin
)
141 if ((b
== ~0) && cin
)
143 else if ((~0 - a
) < (b
+ cin
))
148 uint32_t helper_cmp(uint32_t a
, uint32_t b
)
153 if ((b
& 0x80000000) ^ (a
& 0x80000000))
154 t
= (t
& 0x7fffffff) | (b
& 0x80000000);
158 uint32_t helper_cmpu(uint32_t a
, uint32_t b
)
163 if ((b
& 0x80000000) ^ (a
& 0x80000000))
164 t
= (t
& 0x7fffffff) | (a
& 0x80000000);
168 uint32_t helper_clz(uint32_t t0
)
173 uint32_t helper_carry(uint32_t a
, uint32_t b
, uint32_t cf
)
176 ncf
= compute_carry(a
, b
, cf
);
180 static inline int div_prepare(uint32_t a
, uint32_t b
)
183 env
->sregs
[SR_MSR
] |= MSR_DZ
;
185 if ((env
->sregs
[SR_MSR
] & MSR_EE
)
186 && !(env
->pvr
.regs
[2] & PVR2_DIV_ZERO_EXC_MASK
)) {
187 env
->sregs
[SR_ESR
] = ESR_EC_DIVZERO
;
188 helper_raise_exception(EXCP_HW_EXCP
);
192 env
->sregs
[SR_MSR
] &= ~MSR_DZ
;
196 uint32_t helper_divs(uint32_t a
, uint32_t b
)
198 if (!div_prepare(a
, b
))
200 return (int32_t)a
/ (int32_t)b
;
203 uint32_t helper_divu(uint32_t a
, uint32_t b
)
205 if (!div_prepare(a
, b
))
210 /* raise FPU exception. */
211 static void raise_fpu_exception(void)
213 env
->sregs
[SR_ESR
] = ESR_EC_FPU
;
214 helper_raise_exception(EXCP_HW_EXCP
);
217 static void update_fpu_flags(int flags
)
221 if (flags
& float_flag_invalid
) {
222 env
->sregs
[SR_FSR
] |= FSR_IO
;
225 if (flags
& float_flag_divbyzero
) {
226 env
->sregs
[SR_FSR
] |= FSR_DZ
;
229 if (flags
& float_flag_overflow
) {
230 env
->sregs
[SR_FSR
] |= FSR_OF
;
233 if (flags
& float_flag_underflow
) {
234 env
->sregs
[SR_FSR
] |= FSR_UF
;
238 && (env
->pvr
.regs
[2] & PVR2_FPU_EXC_MASK
)
239 && (env
->sregs
[SR_MSR
] & MSR_EE
)) {
240 raise_fpu_exception();
244 uint32_t helper_fadd(uint32_t a
, uint32_t b
)
246 CPU_FloatU fd
, fa
, fb
;
249 set_float_exception_flags(0, &env
->fp_status
);
252 fd
.f
= float32_add(fa
.f
, fb
.f
, &env
->fp_status
);
254 flags
= get_float_exception_flags(&env
->fp_status
);
255 update_fpu_flags(flags
);
259 uint32_t helper_frsub(uint32_t a
, uint32_t b
)
261 CPU_FloatU fd
, fa
, fb
;
264 set_float_exception_flags(0, &env
->fp_status
);
267 fd
.f
= float32_sub(fb
.f
, fa
.f
, &env
->fp_status
);
268 flags
= get_float_exception_flags(&env
->fp_status
);
269 update_fpu_flags(flags
);
273 uint32_t helper_fmul(uint32_t a
, uint32_t b
)
275 CPU_FloatU fd
, fa
, fb
;
278 set_float_exception_flags(0, &env
->fp_status
);
281 fd
.f
= float32_mul(fa
.f
, fb
.f
, &env
->fp_status
);
282 flags
= get_float_exception_flags(&env
->fp_status
);
283 update_fpu_flags(flags
);
288 uint32_t helper_fdiv(uint32_t a
, uint32_t b
)
290 CPU_FloatU fd
, fa
, fb
;
293 set_float_exception_flags(0, &env
->fp_status
);
296 fd
.f
= float32_div(fb
.f
, fa
.f
, &env
->fp_status
);
297 flags
= get_float_exception_flags(&env
->fp_status
);
298 update_fpu_flags(flags
);
303 uint32_t helper_fcmp_un(uint32_t a
, uint32_t b
)
311 if (float32_is_signaling_nan(fa
.f
) || float32_is_signaling_nan(fb
.f
)) {
312 update_fpu_flags(float_flag_invalid
);
316 if (float32_is_quiet_nan(fa
.f
) || float32_is_quiet_nan(fb
.f
)) {
323 uint32_t helper_fcmp_lt(uint32_t a
, uint32_t b
)
329 set_float_exception_flags(0, &env
->fp_status
);
332 r
= float32_lt(fb
.f
, fa
.f
, &env
->fp_status
);
333 flags
= get_float_exception_flags(&env
->fp_status
);
334 update_fpu_flags(flags
& float_flag_invalid
);
339 uint32_t helper_fcmp_eq(uint32_t a
, uint32_t b
)
345 set_float_exception_flags(0, &env
->fp_status
);
348 r
= float32_eq_quiet(fa
.f
, fb
.f
, &env
->fp_status
);
349 flags
= get_float_exception_flags(&env
->fp_status
);
350 update_fpu_flags(flags
& float_flag_invalid
);
355 uint32_t helper_fcmp_le(uint32_t a
, uint32_t b
)
363 set_float_exception_flags(0, &env
->fp_status
);
364 r
= float32_le(fa
.f
, fb
.f
, &env
->fp_status
);
365 flags
= get_float_exception_flags(&env
->fp_status
);
366 update_fpu_flags(flags
& float_flag_invalid
);
372 uint32_t helper_fcmp_gt(uint32_t a
, uint32_t b
)
379 set_float_exception_flags(0, &env
->fp_status
);
380 r
= float32_lt(fa
.f
, fb
.f
, &env
->fp_status
);
381 flags
= get_float_exception_flags(&env
->fp_status
);
382 update_fpu_flags(flags
& float_flag_invalid
);
386 uint32_t helper_fcmp_ne(uint32_t a
, uint32_t b
)
393 set_float_exception_flags(0, &env
->fp_status
);
394 r
= !float32_eq_quiet(fa
.f
, fb
.f
, &env
->fp_status
);
395 flags
= get_float_exception_flags(&env
->fp_status
);
396 update_fpu_flags(flags
& float_flag_invalid
);
401 uint32_t helper_fcmp_ge(uint32_t a
, uint32_t b
)
408 set_float_exception_flags(0, &env
->fp_status
);
409 r
= !float32_lt(fa
.f
, fb
.f
, &env
->fp_status
);
410 flags
= get_float_exception_flags(&env
->fp_status
);
411 update_fpu_flags(flags
& float_flag_invalid
);
416 uint32_t helper_flt(uint32_t a
)
421 fd
.f
= int32_to_float32(fa
.l
, &env
->fp_status
);
425 uint32_t helper_fint(uint32_t a
)
431 set_float_exception_flags(0, &env
->fp_status
);
433 r
= float32_to_int32(fa
.f
, &env
->fp_status
);
434 flags
= get_float_exception_flags(&env
->fp_status
);
435 update_fpu_flags(flags
);
440 uint32_t helper_fsqrt(uint32_t a
)
445 set_float_exception_flags(0, &env
->fp_status
);
447 fd
.l
= float32_sqrt(fa
.f
, &env
->fp_status
);
448 flags
= get_float_exception_flags(&env
->fp_status
);
449 update_fpu_flags(flags
);
454 uint32_t helper_pcmpbf(uint32_t a
, uint32_t b
)
457 uint32_t mask
= 0xff000000;
459 for (i
= 0; i
< 4; i
++) {
460 if ((a
& mask
) == (b
& mask
))
467 void helper_memalign(uint32_t addr
, uint32_t dr
, uint32_t wr
, uint32_t mask
)
470 qemu_log_mask(CPU_LOG_INT
,
471 "unaligned access addr=%x mask=%x, wr=%d dr=r%d\n",
473 env
->sregs
[SR_EAR
] = addr
;
474 env
->sregs
[SR_ESR
] = ESR_EC_UNALIGNED_DATA
| (wr
<< 10) \
477 env
->sregs
[SR_ESR
] |= 1 << 11;
479 if (!(env
->sregs
[SR_MSR
] & MSR_EE
)) {
482 helper_raise_exception(EXCP_HW_EXCP
);
486 void helper_stackprot(uint32_t addr
)
488 if (addr
< env
->slr
|| addr
> env
->shr
) {
489 qemu_log("Stack protector violation at %x %x %x\n",
490 addr
, env
->slr
, env
->shr
);
491 env
->sregs
[SR_EAR
] = addr
;
492 env
->sregs
[SR_ESR
] = ESR_EC_STACKPROT
;
493 helper_raise_exception(EXCP_HW_EXCP
);
497 #if !defined(CONFIG_USER_ONLY)
498 /* Writes/reads to the MMU's special regs end up here. */
499 uint32_t helper_mmu_read(uint32_t rn
)
501 return mmu_read(env
, rn
);
504 void helper_mmu_write(uint32_t rn
, uint32_t v
)
506 mmu_write(env
, rn
, v
);
509 void cpu_unassigned_access(CPUState
*env1
, target_phys_addr_t addr
,
510 int is_write
, int is_exec
, int is_asi
, int size
)
517 qemu_log_mask(CPU_LOG_INT
, "Unassigned " TARGET_FMT_plx
" wr=%d exe=%d\n",
518 addr
, is_write
, is_exec
);
519 if (!(env
->sregs
[SR_MSR
] & MSR_EE
)) {
524 env
->sregs
[SR_EAR
] = addr
;
526 if ((env
->pvr
.regs
[2] & PVR2_IOPB_BUS_EXC_MASK
)) {
527 env
->sregs
[SR_ESR
] = ESR_EC_INSN_BUS
;
528 helper_raise_exception(EXCP_HW_EXCP
);
531 if ((env
->pvr
.regs
[2] & PVR2_DOPB_BUS_EXC_MASK
)) {
532 env
->sregs
[SR_ESR
] = ESR_EC_DATA_BUS
;
533 helper_raise_exception(EXCP_HW_EXCP
);