scripts: qapi-commands.py: qmp-commands.h: include qdict.h
[qemu-kvm.git] / hw / onenand.c
blobdb6af682c42243e74f755ee5f70e8b4c8d0beb99
1 /*
2 * OneNAND flash memories emulation.
4 * Copyright (C) 2008 Nokia Corporation
5 * Written by Andrzej Zaborowski <andrew@openedhand.com>
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as
9 * published by the Free Software Foundation; either version 2 or
10 * (at your option) version 3 of the License.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, see <http://www.gnu.org/licenses/>.
21 #include "qemu-common.h"
22 #include "hw.h"
23 #include "flash.h"
24 #include "irq.h"
25 #include "blockdev.h"
26 #include "memory.h"
27 #include "exec-memory.h"
28 #include "sysbus.h"
29 #include "qemu-error.h"
31 /* 11 for 2kB-page OneNAND ("2nd generation") and 10 for 1kB-page chips */
32 #define PAGE_SHIFT 11
34 /* Fixed */
35 #define BLOCK_SHIFT (PAGE_SHIFT + 6)
37 typedef struct {
38 SysBusDevice busdev;
39 struct {
40 uint16_t man;
41 uint16_t dev;
42 uint16_t ver;
43 } id;
44 int shift;
45 target_phys_addr_t base;
46 qemu_irq intr;
47 qemu_irq rdy;
48 BlockDriverState *bdrv;
49 BlockDriverState *bdrv_cur;
50 uint8_t *image;
51 uint8_t *otp;
52 uint8_t *current;
53 MemoryRegion ram;
54 MemoryRegion mapped_ram;
55 uint8_t current_direction;
56 uint8_t *boot[2];
57 uint8_t *data[2][2];
58 MemoryRegion iomem;
59 MemoryRegion container;
60 int cycle;
61 int otpmode;
63 uint16_t addr[8];
64 uint16_t unladdr[8];
65 int bufaddr;
66 int count;
67 uint16_t command;
68 uint16_t config[2];
69 uint16_t status;
70 uint16_t intstatus;
71 uint16_t wpstatus;
73 ECCState ecc;
75 int density_mask;
76 int secs;
77 int secs_cur;
78 int blocks;
79 uint8_t *blockwp;
80 } OneNANDState;
82 enum {
83 ONEN_BUF_BLOCK = 0,
84 ONEN_BUF_BLOCK2 = 1,
85 ONEN_BUF_DEST_BLOCK = 2,
86 ONEN_BUF_DEST_PAGE = 3,
87 ONEN_BUF_PAGE = 7,
90 enum {
91 ONEN_ERR_CMD = 1 << 10,
92 ONEN_ERR_ERASE = 1 << 11,
93 ONEN_ERR_PROG = 1 << 12,
94 ONEN_ERR_LOAD = 1 << 13,
97 enum {
98 ONEN_INT_RESET = 1 << 4,
99 ONEN_INT_ERASE = 1 << 5,
100 ONEN_INT_PROG = 1 << 6,
101 ONEN_INT_LOAD = 1 << 7,
102 ONEN_INT = 1 << 15,
105 enum {
106 ONEN_LOCK_LOCKTIGHTEN = 1 << 0,
107 ONEN_LOCK_LOCKED = 1 << 1,
108 ONEN_LOCK_UNLOCKED = 1 << 2,
111 static void onenand_mem_setup(OneNANDState *s)
113 /* XXX: We should use IO_MEM_ROMD but we broke it earlier...
114 * Both 0x0000 ... 0x01ff and 0x8000 ... 0x800f can be used to
115 * write boot commands. Also take note of the BWPS bit. */
116 memory_region_init(&s->container, "onenand", 0x10000 << s->shift);
117 memory_region_add_subregion(&s->container, 0, &s->iomem);
118 memory_region_init_alias(&s->mapped_ram, "onenand-mapped-ram",
119 &s->ram, 0x0200 << s->shift,
120 0xbe00 << s->shift);
121 memory_region_add_subregion_overlap(&s->container,
122 0x0200 << s->shift,
123 &s->mapped_ram,
127 static void onenand_intr_update(OneNANDState *s)
129 qemu_set_irq(s->intr, ((s->intstatus >> 15) ^ (~s->config[0] >> 6)) & 1);
132 static void onenand_pre_save(void *opaque)
134 OneNANDState *s = opaque;
135 if (s->current == s->otp) {
136 s->current_direction = 1;
137 } else if (s->current == s->image) {
138 s->current_direction = 2;
139 } else {
140 s->current_direction = 0;
144 static int onenand_post_load(void *opaque, int version_id)
146 OneNANDState *s = opaque;
147 switch (s->current_direction) {
148 case 0:
149 break;
150 case 1:
151 s->current = s->otp;
152 break;
153 case 2:
154 s->current = s->image;
155 break;
156 default:
157 return -1;
159 onenand_intr_update(s);
160 return 0;
163 static const VMStateDescription vmstate_onenand = {
164 .name = "onenand",
165 .version_id = 1,
166 .minimum_version_id = 1,
167 .minimum_version_id_old = 1,
168 .pre_save = onenand_pre_save,
169 .post_load = onenand_post_load,
170 .fields = (VMStateField[]) {
171 VMSTATE_UINT8(current_direction, OneNANDState),
172 VMSTATE_INT32(cycle, OneNANDState),
173 VMSTATE_INT32(otpmode, OneNANDState),
174 VMSTATE_UINT16_ARRAY(addr, OneNANDState, 8),
175 VMSTATE_UINT16_ARRAY(unladdr, OneNANDState, 8),
176 VMSTATE_INT32(bufaddr, OneNANDState),
177 VMSTATE_INT32(count, OneNANDState),
178 VMSTATE_UINT16(command, OneNANDState),
179 VMSTATE_UINT16_ARRAY(config, OneNANDState, 2),
180 VMSTATE_UINT16(status, OneNANDState),
181 VMSTATE_UINT16(intstatus, OneNANDState),
182 VMSTATE_UINT16(wpstatus, OneNANDState),
183 VMSTATE_INT32(secs_cur, OneNANDState),
184 VMSTATE_PARTIAL_VBUFFER(blockwp, OneNANDState, blocks),
185 VMSTATE_UINT8(ecc.cp, OneNANDState),
186 VMSTATE_UINT16_ARRAY(ecc.lp, OneNANDState, 2),
187 VMSTATE_UINT16(ecc.count, OneNANDState),
188 VMSTATE_BUFFER_UNSAFE(otp, OneNANDState, 0, ((64 + 2) << PAGE_SHIFT)),
189 VMSTATE_END_OF_LIST()
193 /* Hot reset (Reset OneNAND command) or warm reset (RP pin low) */
194 static void onenand_reset(OneNANDState *s, int cold)
196 memset(&s->addr, 0, sizeof(s->addr));
197 s->command = 0;
198 s->count = 1;
199 s->bufaddr = 0;
200 s->config[0] = 0x40c0;
201 s->config[1] = 0x0000;
202 onenand_intr_update(s);
203 qemu_irq_raise(s->rdy);
204 s->status = 0x0000;
205 s->intstatus = cold ? 0x8080 : 0x8010;
206 s->unladdr[0] = 0;
207 s->unladdr[1] = 0;
208 s->wpstatus = 0x0002;
209 s->cycle = 0;
210 s->otpmode = 0;
211 s->bdrv_cur = s->bdrv;
212 s->current = s->image;
213 s->secs_cur = s->secs;
215 if (cold) {
216 /* Lock the whole flash */
217 memset(s->blockwp, ONEN_LOCK_LOCKED, s->blocks);
219 if (s->bdrv_cur && bdrv_read(s->bdrv_cur, 0, s->boot[0], 8) < 0) {
220 hw_error("%s: Loading the BootRAM failed.\n", __func__);
225 static void onenand_system_reset(DeviceState *dev)
227 onenand_reset(FROM_SYSBUS(OneNANDState, sysbus_from_qdev(dev)), 1);
230 static inline int onenand_load_main(OneNANDState *s, int sec, int secn,
231 void *dest)
233 if (s->bdrv_cur)
234 return bdrv_read(s->bdrv_cur, sec, dest, secn) < 0;
235 else if (sec + secn > s->secs_cur)
236 return 1;
238 memcpy(dest, s->current + (sec << 9), secn << 9);
240 return 0;
243 static inline int onenand_prog_main(OneNANDState *s, int sec, int secn,
244 void *src)
246 int result = 0;
248 if (secn > 0) {
249 uint32_t size = (uint32_t)secn * 512;
250 const uint8_t *sp = (const uint8_t *)src;
251 uint8_t *dp = 0;
252 if (s->bdrv_cur) {
253 dp = g_malloc(size);
254 if (!dp || bdrv_read(s->bdrv_cur, sec, dp, secn) < 0) {
255 result = 1;
257 } else {
258 if (sec + secn > s->secs_cur) {
259 result = 1;
260 } else {
261 dp = (uint8_t *)s->current + (sec << 9);
264 if (!result) {
265 uint32_t i;
266 for (i = 0; i < size; i++) {
267 dp[i] &= sp[i];
269 if (s->bdrv_cur) {
270 result = bdrv_write(s->bdrv_cur, sec, dp, secn) < 0;
273 if (dp && s->bdrv_cur) {
274 g_free(dp);
278 return result;
281 static inline int onenand_load_spare(OneNANDState *s, int sec, int secn,
282 void *dest)
284 uint8_t buf[512];
286 if (s->bdrv_cur) {
287 if (bdrv_read(s->bdrv_cur, s->secs_cur + (sec >> 5), buf, 1) < 0)
288 return 1;
289 memcpy(dest, buf + ((sec & 31) << 4), secn << 4);
290 } else if (sec + secn > s->secs_cur)
291 return 1;
292 else
293 memcpy(dest, s->current + (s->secs_cur << 9) + (sec << 4), secn << 4);
295 return 0;
298 static inline int onenand_prog_spare(OneNANDState *s, int sec, int secn,
299 void *src)
301 int result = 0;
302 if (secn > 0) {
303 const uint8_t *sp = (const uint8_t *)src;
304 uint8_t *dp = 0, *dpp = 0;
305 if (s->bdrv_cur) {
306 dp = g_malloc(512);
307 if (!dp || bdrv_read(s->bdrv_cur,
308 s->secs_cur + (sec >> 5),
309 dp, 1) < 0) {
310 result = 1;
311 } else {
312 dpp = dp + ((sec & 31) << 4);
314 } else {
315 if (sec + secn > s->secs_cur) {
316 result = 1;
317 } else {
318 dpp = s->current + (s->secs_cur << 9) + (sec << 4);
321 if (!result) {
322 uint32_t i;
323 for (i = 0; i < (secn << 4); i++) {
324 dpp[i] &= sp[i];
326 if (s->bdrv_cur) {
327 result = bdrv_write(s->bdrv_cur, s->secs_cur + (sec >> 5),
328 dp, 1) < 0;
331 if (dp) {
332 g_free(dp);
335 return result;
338 static inline int onenand_erase(OneNANDState *s, int sec, int num)
340 uint8_t *blankbuf, *tmpbuf;
341 blankbuf = g_malloc(512);
342 if (!blankbuf) {
343 return 1;
345 tmpbuf = g_malloc(512);
346 if (!tmpbuf) {
347 g_free(blankbuf);
348 return 1;
350 memset(blankbuf, 0xff, 512);
351 for (; num > 0; num--, sec++) {
352 if (s->bdrv_cur) {
353 int erasesec = s->secs_cur + (sec >> 5);
354 if (bdrv_write(s->bdrv_cur, sec, blankbuf, 1)) {
355 goto fail;
357 if (bdrv_read(s->bdrv_cur, erasesec, tmpbuf, 1) < 0) {
358 goto fail;
360 memcpy(tmpbuf + ((sec & 31) << 4), blankbuf, 1 << 4);
361 if (bdrv_write(s->bdrv_cur, erasesec, tmpbuf, 1) < 0) {
362 goto fail;
364 } else {
365 if (sec + 1 > s->secs_cur) {
366 goto fail;
368 memcpy(s->current + (sec << 9), blankbuf, 512);
369 memcpy(s->current + (s->secs_cur << 9) + (sec << 4),
370 blankbuf, 1 << 4);
374 g_free(tmpbuf);
375 g_free(blankbuf);
376 return 0;
378 fail:
379 g_free(tmpbuf);
380 g_free(blankbuf);
381 return 1;
384 static void onenand_command(OneNANDState *s)
386 int b;
387 int sec;
388 void *buf;
389 #define SETADDR(block, page) \
390 sec = (s->addr[page] & 3) + \
391 ((((s->addr[page] >> 2) & 0x3f) + \
392 (((s->addr[block] & 0xfff) | \
393 (s->addr[block] >> 15 ? \
394 s->density_mask : 0)) << 6)) << (PAGE_SHIFT - 9));
395 #define SETBUF_M() \
396 buf = (s->bufaddr & 8) ? \
397 s->data[(s->bufaddr >> 2) & 1][0] : s->boot[0]; \
398 buf += (s->bufaddr & 3) << 9;
399 #define SETBUF_S() \
400 buf = (s->bufaddr & 8) ? \
401 s->data[(s->bufaddr >> 2) & 1][1] : s->boot[1]; \
402 buf += (s->bufaddr & 3) << 4;
404 switch (s->command) {
405 case 0x00: /* Load single/multiple sector data unit into buffer */
406 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
408 SETBUF_M()
409 if (onenand_load_main(s, sec, s->count, buf))
410 s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
412 #if 0
413 SETBUF_S()
414 if (onenand_load_spare(s, sec, s->count, buf))
415 s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
416 #endif
418 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
419 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
420 * then we need two split the read/write into two chunks.
422 s->intstatus |= ONEN_INT | ONEN_INT_LOAD;
423 break;
424 case 0x13: /* Load single/multiple spare sector into buffer */
425 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
427 SETBUF_S()
428 if (onenand_load_spare(s, sec, s->count, buf))
429 s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
431 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
432 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
433 * then we need two split the read/write into two chunks.
435 s->intstatus |= ONEN_INT | ONEN_INT_LOAD;
436 break;
437 case 0x80: /* Program single/multiple sector data unit from buffer */
438 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
440 SETBUF_M()
441 if (onenand_prog_main(s, sec, s->count, buf))
442 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
444 #if 0
445 SETBUF_S()
446 if (onenand_prog_spare(s, sec, s->count, buf))
447 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
448 #endif
450 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
451 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
452 * then we need two split the read/write into two chunks.
454 s->intstatus |= ONEN_INT | ONEN_INT_PROG;
455 break;
456 case 0x1a: /* Program single/multiple spare area sector from buffer */
457 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
459 SETBUF_S()
460 if (onenand_prog_spare(s, sec, s->count, buf))
461 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
463 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
464 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
465 * then we need two split the read/write into two chunks.
467 s->intstatus |= ONEN_INT | ONEN_INT_PROG;
468 break;
469 case 0x1b: /* Copy-back program */
470 SETBUF_S()
472 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
473 if (onenand_load_main(s, sec, s->count, buf))
474 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
476 SETADDR(ONEN_BUF_DEST_BLOCK, ONEN_BUF_DEST_PAGE)
477 if (onenand_prog_main(s, sec, s->count, buf))
478 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
480 /* TODO: spare areas */
482 s->intstatus |= ONEN_INT | ONEN_INT_PROG;
483 break;
485 case 0x23: /* Unlock NAND array block(s) */
486 s->intstatus |= ONEN_INT;
488 /* XXX the previous (?) area should be locked automatically */
489 for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
490 if (b >= s->blocks) {
491 s->status |= ONEN_ERR_CMD;
492 break;
494 if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
495 break;
497 s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED;
499 break;
500 case 0x27: /* Unlock All NAND array blocks */
501 s->intstatus |= ONEN_INT;
503 for (b = 0; b < s->blocks; b ++) {
504 if (b >= s->blocks) {
505 s->status |= ONEN_ERR_CMD;
506 break;
508 if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
509 break;
511 s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED;
513 break;
515 case 0x2a: /* Lock NAND array block(s) */
516 s->intstatus |= ONEN_INT;
518 for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
519 if (b >= s->blocks) {
520 s->status |= ONEN_ERR_CMD;
521 break;
523 if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
524 break;
526 s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKED;
528 break;
529 case 0x2c: /* Lock-tight NAND array block(s) */
530 s->intstatus |= ONEN_INT;
532 for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
533 if (b >= s->blocks) {
534 s->status |= ONEN_ERR_CMD;
535 break;
537 if (s->blockwp[b] == ONEN_LOCK_UNLOCKED)
538 continue;
540 s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKTIGHTEN;
542 break;
544 case 0x71: /* Erase-Verify-Read */
545 s->intstatus |= ONEN_INT;
546 break;
547 case 0x95: /* Multi-block erase */
548 qemu_irq_pulse(s->intr);
549 /* Fall through. */
550 case 0x94: /* Block erase */
551 sec = ((s->addr[ONEN_BUF_BLOCK] & 0xfff) |
552 (s->addr[ONEN_BUF_BLOCK] >> 15 ? s->density_mask : 0))
553 << (BLOCK_SHIFT - 9);
554 if (onenand_erase(s, sec, 1 << (BLOCK_SHIFT - 9)))
555 s->status |= ONEN_ERR_CMD | ONEN_ERR_ERASE;
557 s->intstatus |= ONEN_INT | ONEN_INT_ERASE;
558 break;
559 case 0xb0: /* Erase suspend */
560 break;
561 case 0x30: /* Erase resume */
562 s->intstatus |= ONEN_INT | ONEN_INT_ERASE;
563 break;
565 case 0xf0: /* Reset NAND Flash core */
566 onenand_reset(s, 0);
567 break;
568 case 0xf3: /* Reset OneNAND */
569 onenand_reset(s, 0);
570 break;
572 case 0x65: /* OTP Access */
573 s->intstatus |= ONEN_INT;
574 s->bdrv_cur = NULL;
575 s->current = s->otp;
576 s->secs_cur = 1 << (BLOCK_SHIFT - 9);
577 s->addr[ONEN_BUF_BLOCK] = 0;
578 s->otpmode = 1;
579 break;
581 default:
582 s->status |= ONEN_ERR_CMD;
583 s->intstatus |= ONEN_INT;
584 fprintf(stderr, "%s: unknown OneNAND command %x\n",
585 __func__, s->command);
588 onenand_intr_update(s);
591 static uint64_t onenand_read(void *opaque, target_phys_addr_t addr,
592 unsigned size)
594 OneNANDState *s = (OneNANDState *) opaque;
595 int offset = addr >> s->shift;
597 switch (offset) {
598 case 0x0000 ... 0xc000:
599 return lduw_le_p(s->boot[0] + addr);
601 case 0xf000: /* Manufacturer ID */
602 return s->id.man;
603 case 0xf001: /* Device ID */
604 return s->id.dev;
605 case 0xf002: /* Version ID */
606 return s->id.ver;
607 /* TODO: get the following values from a real chip! */
608 case 0xf003: /* Data Buffer size */
609 return 1 << PAGE_SHIFT;
610 case 0xf004: /* Boot Buffer size */
611 return 0x200;
612 case 0xf005: /* Amount of buffers */
613 return 1 | (2 << 8);
614 case 0xf006: /* Technology */
615 return 0;
617 case 0xf100 ... 0xf107: /* Start addresses */
618 return s->addr[offset - 0xf100];
620 case 0xf200: /* Start buffer */
621 return (s->bufaddr << 8) | ((s->count - 1) & (1 << (PAGE_SHIFT - 10)));
623 case 0xf220: /* Command */
624 return s->command;
625 case 0xf221: /* System Configuration 1 */
626 return s->config[0] & 0xffe0;
627 case 0xf222: /* System Configuration 2 */
628 return s->config[1];
630 case 0xf240: /* Controller Status */
631 return s->status;
632 case 0xf241: /* Interrupt */
633 return s->intstatus;
634 case 0xf24c: /* Unlock Start Block Address */
635 return s->unladdr[0];
636 case 0xf24d: /* Unlock End Block Address */
637 return s->unladdr[1];
638 case 0xf24e: /* Write Protection Status */
639 return s->wpstatus;
641 case 0xff00: /* ECC Status */
642 return 0x00;
643 case 0xff01: /* ECC Result of main area data */
644 case 0xff02: /* ECC Result of spare area data */
645 case 0xff03: /* ECC Result of main area data */
646 case 0xff04: /* ECC Result of spare area data */
647 hw_error("%s: imeplement ECC\n", __FUNCTION__);
648 return 0x0000;
651 fprintf(stderr, "%s: unknown OneNAND register %x\n",
652 __FUNCTION__, offset);
653 return 0;
656 static void onenand_write(void *opaque, target_phys_addr_t addr,
657 uint64_t value, unsigned size)
659 OneNANDState *s = (OneNANDState *) opaque;
660 int offset = addr >> s->shift;
661 int sec;
663 switch (offset) {
664 case 0x0000 ... 0x01ff:
665 case 0x8000 ... 0x800f:
666 if (s->cycle) {
667 s->cycle = 0;
669 if (value == 0x0000) {
670 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
671 onenand_load_main(s, sec,
672 1 << (PAGE_SHIFT - 9), s->data[0][0]);
673 s->addr[ONEN_BUF_PAGE] += 4;
674 s->addr[ONEN_BUF_PAGE] &= 0xff;
676 break;
679 switch (value) {
680 case 0x00f0: /* Reset OneNAND */
681 onenand_reset(s, 0);
682 break;
684 case 0x00e0: /* Load Data into Buffer */
685 s->cycle = 1;
686 break;
688 case 0x0090: /* Read Identification Data */
689 memset(s->boot[0], 0, 3 << s->shift);
690 s->boot[0][0 << s->shift] = s->id.man & 0xff;
691 s->boot[0][1 << s->shift] = s->id.dev & 0xff;
692 s->boot[0][2 << s->shift] = s->wpstatus & 0xff;
693 break;
695 default:
696 fprintf(stderr, "%s: unknown OneNAND boot command %"PRIx64"\n",
697 __FUNCTION__, value);
699 break;
701 case 0xf100 ... 0xf107: /* Start addresses */
702 s->addr[offset - 0xf100] = value;
703 break;
705 case 0xf200: /* Start buffer */
706 s->bufaddr = (value >> 8) & 0xf;
707 if (PAGE_SHIFT == 11)
708 s->count = (value & 3) ?: 4;
709 else if (PAGE_SHIFT == 10)
710 s->count = (value & 1) ?: 2;
711 break;
713 case 0xf220: /* Command */
714 if (s->intstatus & (1 << 15))
715 break;
716 s->command = value;
717 onenand_command(s);
718 break;
719 case 0xf221: /* System Configuration 1 */
720 s->config[0] = value;
721 onenand_intr_update(s);
722 qemu_set_irq(s->rdy, (s->config[0] >> 7) & 1);
723 break;
724 case 0xf222: /* System Configuration 2 */
725 s->config[1] = value;
726 break;
728 case 0xf241: /* Interrupt */
729 s->intstatus &= value;
730 if ((1 << 15) & ~s->intstatus)
731 s->status &= ~(ONEN_ERR_CMD | ONEN_ERR_ERASE |
732 ONEN_ERR_PROG | ONEN_ERR_LOAD);
733 onenand_intr_update(s);
734 break;
735 case 0xf24c: /* Unlock Start Block Address */
736 s->unladdr[0] = value & (s->blocks - 1);
737 /* For some reason we have to set the end address to by default
738 * be same as start because the software forgets to write anything
739 * in there. */
740 s->unladdr[1] = value & (s->blocks - 1);
741 break;
742 case 0xf24d: /* Unlock End Block Address */
743 s->unladdr[1] = value & (s->blocks - 1);
744 break;
746 default:
747 fprintf(stderr, "%s: unknown OneNAND register %x\n",
748 __FUNCTION__, offset);
752 static const MemoryRegionOps onenand_ops = {
753 .read = onenand_read,
754 .write = onenand_write,
755 .endianness = DEVICE_NATIVE_ENDIAN,
758 static int onenand_initfn(SysBusDevice *dev)
760 OneNANDState *s = (OneNANDState *)dev;
761 uint32_t size = 1 << (24 + ((s->id.dev >> 4) & 7));
762 void *ram;
763 s->base = (target_phys_addr_t)-1;
764 s->rdy = NULL;
765 s->blocks = size >> BLOCK_SHIFT;
766 s->secs = size >> 9;
767 s->blockwp = g_malloc(s->blocks);
768 s->density_mask = (s->id.dev & 0x08)
769 ? (1 << (6 + ((s->id.dev >> 4) & 7))) : 0;
770 memory_region_init_io(&s->iomem, &onenand_ops, s, "onenand",
771 0x10000 << s->shift);
772 if (!s->bdrv) {
773 s->image = memset(g_malloc(size + (size >> 5)),
774 0xff, size + (size >> 5));
775 } else {
776 if (bdrv_is_read_only(s->bdrv)) {
777 error_report("Can't use a read-only drive");
778 return -1;
780 s->bdrv_cur = s->bdrv;
782 s->otp = memset(g_malloc((64 + 2) << PAGE_SHIFT),
783 0xff, (64 + 2) << PAGE_SHIFT);
784 memory_region_init_ram(&s->ram, "onenand.ram", 0xc000 << s->shift);
785 vmstate_register_ram_global(&s->ram);
786 ram = memory_region_get_ram_ptr(&s->ram);
787 s->boot[0] = ram + (0x0000 << s->shift);
788 s->boot[1] = ram + (0x8000 << s->shift);
789 s->data[0][0] = ram + ((0x0200 + (0 << (PAGE_SHIFT - 1))) << s->shift);
790 s->data[0][1] = ram + ((0x8010 + (0 << (PAGE_SHIFT - 6))) << s->shift);
791 s->data[1][0] = ram + ((0x0200 + (1 << (PAGE_SHIFT - 1))) << s->shift);
792 s->data[1][1] = ram + ((0x8010 + (1 << (PAGE_SHIFT - 6))) << s->shift);
793 onenand_mem_setup(s);
794 sysbus_init_irq(dev, &s->intr);
795 sysbus_init_mmio(dev, &s->container);
796 vmstate_register(&dev->qdev,
797 ((s->shift & 0x7f) << 24)
798 | ((s->id.man & 0xff) << 16)
799 | ((s->id.dev & 0xff) << 8)
800 | (s->id.ver & 0xff),
801 &vmstate_onenand, s);
802 return 0;
805 static Property onenand_properties[] = {
806 DEFINE_PROP_UINT16("manufacturer_id", OneNANDState, id.man, 0),
807 DEFINE_PROP_UINT16("device_id", OneNANDState, id.dev, 0),
808 DEFINE_PROP_UINT16("version_id", OneNANDState, id.ver, 0),
809 DEFINE_PROP_INT32("shift", OneNANDState, shift, 0),
810 DEFINE_PROP_DRIVE("drive", OneNANDState, bdrv),
811 DEFINE_PROP_END_OF_LIST(),
814 static void onenand_class_init(ObjectClass *klass, void *data)
816 DeviceClass *dc = DEVICE_CLASS(klass);
817 SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
819 k->init = onenand_initfn;
820 dc->reset = onenand_system_reset;
821 dc->props = onenand_properties;
824 static TypeInfo onenand_info = {
825 .name = "onenand",
826 .parent = TYPE_SYS_BUS_DEVICE,
827 .instance_size = sizeof(OneNANDState),
828 .class_init = onenand_class_init,
831 static void onenand_register_types(void)
833 type_register_static(&onenand_info);
836 void *onenand_raw_otp(DeviceState *onenand_device)
838 return FROM_SYSBUS(OneNANDState, sysbus_from_qdev(onenand_device))->otp;
841 type_init(onenand_register_types)