disable guest-provided stats on "info balloon" command
[qemu-kvm.git] / kvm-all.c
blob1cc696f3c536eff11b3799888fa79f9988e113b4
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu-barrier.h"
25 #include "sysemu.h"
26 #include "hw/hw.h"
27 #include "gdbstub.h"
28 #include "kvm.h"
29 #include "bswap.h"
31 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
32 #define PAGE_SIZE TARGET_PAGE_SIZE
34 //#define DEBUG_KVM
36 #ifdef DEBUG_KVM
37 #define DPRINTF(fmt, ...) \
38 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
39 #else
40 #define DPRINTF(fmt, ...) \
41 do { } while (0)
42 #endif
44 typedef struct KVMSlot
46 target_phys_addr_t start_addr;
47 ram_addr_t memory_size;
48 ram_addr_t phys_offset;
49 int slot;
50 int flags;
51 } KVMSlot;
53 typedef struct kvm_dirty_log KVMDirtyLog;
55 struct KVMState
57 KVMSlot slots[32];
58 int fd;
59 int vmfd;
60 int coalesced_mmio;
61 #ifdef KVM_CAP_COALESCED_MMIO
62 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
63 #endif
64 int broken_set_mem_region;
65 int migration_log;
66 int vcpu_events;
67 int robust_singlestep;
68 int debugregs;
69 #ifdef KVM_CAP_SET_GUEST_DEBUG
70 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
71 #endif
72 int irqchip_in_kernel;
73 int pit_in_kernel;
74 int xsave, xcrs;
77 static KVMState *kvm_state;
79 static KVMSlot *kvm_alloc_slot(KVMState *s)
81 int i;
83 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
84 /* KVM private memory slots */
85 if (i >= 8 && i < 12)
86 continue;
87 if (s->slots[i].memory_size == 0)
88 return &s->slots[i];
91 fprintf(stderr, "%s: no free slot available\n", __func__);
92 abort();
95 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
96 target_phys_addr_t start_addr,
97 target_phys_addr_t end_addr)
99 int i;
101 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
102 KVMSlot *mem = &s->slots[i];
104 if (start_addr == mem->start_addr &&
105 end_addr == mem->start_addr + mem->memory_size) {
106 return mem;
110 return NULL;
114 * Find overlapping slot with lowest start address
116 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
117 target_phys_addr_t start_addr,
118 target_phys_addr_t end_addr)
120 KVMSlot *found = NULL;
121 int i;
123 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
124 KVMSlot *mem = &s->slots[i];
126 if (mem->memory_size == 0 ||
127 (found && found->start_addr < mem->start_addr)) {
128 continue;
131 if (end_addr > mem->start_addr &&
132 start_addr < mem->start_addr + mem->memory_size) {
133 found = mem;
137 return found;
140 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
142 struct kvm_userspace_memory_region mem;
144 mem.slot = slot->slot;
145 mem.guest_phys_addr = slot->start_addr;
146 mem.memory_size = slot->memory_size;
147 mem.userspace_addr = (unsigned long)qemu_get_ram_ptr(slot->phys_offset);
148 mem.flags = slot->flags;
149 if (s->migration_log) {
150 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
152 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
155 static void kvm_reset_vcpu(void *opaque)
157 CPUState *env = opaque;
159 kvm_arch_reset_vcpu(env);
162 int kvm_irqchip_in_kernel(void)
164 return kvm_state->irqchip_in_kernel;
167 int kvm_pit_in_kernel(void)
169 return kvm_state->pit_in_kernel;
173 int kvm_init_vcpu(CPUState *env)
175 KVMState *s = kvm_state;
176 long mmap_size;
177 int ret;
179 DPRINTF("kvm_init_vcpu\n");
181 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
182 if (ret < 0) {
183 DPRINTF("kvm_create_vcpu failed\n");
184 goto err;
187 env->kvm_fd = ret;
188 env->kvm_state = s;
190 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
191 if (mmap_size < 0) {
192 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
193 goto err;
196 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
197 env->kvm_fd, 0);
198 if (env->kvm_run == MAP_FAILED) {
199 ret = -errno;
200 DPRINTF("mmap'ing vcpu state failed\n");
201 goto err;
204 #ifdef KVM_CAP_COALESCED_MMIO
205 if (s->coalesced_mmio && !s->coalesced_mmio_ring)
206 s->coalesced_mmio_ring = (void *) env->kvm_run +
207 s->coalesced_mmio * PAGE_SIZE;
208 #endif
210 ret = kvm_arch_init_vcpu(env);
211 if (ret == 0) {
212 qemu_register_reset(kvm_reset_vcpu, env);
213 kvm_arch_reset_vcpu(env);
215 err:
216 return ret;
220 * dirty pages logging control
222 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
223 ram_addr_t size, int flags, int mask)
225 KVMState *s = kvm_state;
226 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
227 int old_flags;
229 if (mem == NULL) {
230 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
231 TARGET_FMT_plx "\n", __func__, phys_addr,
232 (target_phys_addr_t)(phys_addr + size - 1));
233 return -EINVAL;
236 old_flags = mem->flags;
238 flags = (mem->flags & ~mask) | flags;
239 mem->flags = flags;
241 /* If nothing changed effectively, no need to issue ioctl */
242 if (s->migration_log) {
243 flags |= KVM_MEM_LOG_DIRTY_PAGES;
245 if (flags == old_flags) {
246 return 0;
249 return kvm_set_user_memory_region(s, mem);
252 int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size)
254 return kvm_dirty_pages_log_change(phys_addr, size,
255 KVM_MEM_LOG_DIRTY_PAGES,
256 KVM_MEM_LOG_DIRTY_PAGES);
259 int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size)
261 return kvm_dirty_pages_log_change(phys_addr, size,
263 KVM_MEM_LOG_DIRTY_PAGES);
266 static int kvm_set_migration_log(int enable)
268 KVMState *s = kvm_state;
269 KVMSlot *mem;
270 int i, err;
272 s->migration_log = enable;
274 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
275 mem = &s->slots[i];
277 if (!mem->memory_size) {
278 continue;
280 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
281 continue;
283 err = kvm_set_user_memory_region(s, mem);
284 if (err) {
285 return err;
288 return 0;
291 /* get kvm's dirty pages bitmap and update qemu's */
292 static int kvm_get_dirty_pages_log_range(unsigned long start_addr,
293 unsigned long *bitmap,
294 unsigned long offset,
295 unsigned long mem_size)
297 unsigned int i, j;
298 unsigned long page_number, addr, addr1, c;
299 ram_addr_t ram_addr;
300 unsigned int len = ((mem_size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) /
301 HOST_LONG_BITS;
304 * bitmap-traveling is faster than memory-traveling (for addr...)
305 * especially when most of the memory is not dirty.
307 for (i = 0; i < len; i++) {
308 if (bitmap[i] != 0) {
309 c = leul_to_cpu(bitmap[i]);
310 do {
311 j = ffsl(c) - 1;
312 c &= ~(1ul << j);
313 page_number = i * HOST_LONG_BITS + j;
314 addr1 = page_number * TARGET_PAGE_SIZE;
315 addr = offset + addr1;
316 ram_addr = cpu_get_physical_page_desc(addr);
317 cpu_physical_memory_set_dirty(ram_addr);
318 } while (c != 0);
321 return 0;
324 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
327 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
328 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
329 * This means all bits are set to dirty.
331 * @start_add: start of logged region.
332 * @end_addr: end of logged region.
334 static int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
335 target_phys_addr_t end_addr)
337 KVMState *s = kvm_state;
338 unsigned long size, allocated_size = 0;
339 KVMDirtyLog d;
340 KVMSlot *mem;
341 int ret = 0;
343 d.dirty_bitmap = NULL;
344 while (start_addr < end_addr) {
345 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
346 if (mem == NULL) {
347 break;
350 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), HOST_LONG_BITS) / 8;
351 if (!d.dirty_bitmap) {
352 d.dirty_bitmap = qemu_malloc(size);
353 } else if (size > allocated_size) {
354 d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
356 allocated_size = size;
357 memset(d.dirty_bitmap, 0, allocated_size);
359 d.slot = mem->slot;
361 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
362 DPRINTF("ioctl failed %d\n", errno);
363 ret = -1;
364 break;
367 kvm_get_dirty_pages_log_range(mem->start_addr, d.dirty_bitmap,
368 mem->start_addr, mem->memory_size);
369 start_addr = mem->start_addr + mem->memory_size;
371 qemu_free(d.dirty_bitmap);
373 return ret;
376 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
378 int ret = -ENOSYS;
379 #ifdef KVM_CAP_COALESCED_MMIO
380 KVMState *s = kvm_state;
382 if (s->coalesced_mmio) {
383 struct kvm_coalesced_mmio_zone zone;
385 zone.addr = start;
386 zone.size = size;
388 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
390 #endif
392 return ret;
395 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
397 int ret = -ENOSYS;
398 #ifdef KVM_CAP_COALESCED_MMIO
399 KVMState *s = kvm_state;
401 if (s->coalesced_mmio) {
402 struct kvm_coalesced_mmio_zone zone;
404 zone.addr = start;
405 zone.size = size;
407 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
409 #endif
411 return ret;
414 int kvm_check_extension(KVMState *s, unsigned int extension)
416 int ret;
418 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
419 if (ret < 0) {
420 ret = 0;
423 return ret;
426 static void kvm_set_phys_mem(target_phys_addr_t start_addr,
427 ram_addr_t size,
428 ram_addr_t phys_offset)
430 KVMState *s = kvm_state;
431 ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
432 KVMSlot *mem, old;
433 int err;
435 /* kvm works in page size chunks, but the function may be called
436 with sub-page size and unaligned start address. */
437 size = TARGET_PAGE_ALIGN(size);
438 start_addr = TARGET_PAGE_ALIGN(start_addr);
440 /* KVM does not support read-only slots */
441 phys_offset &= ~IO_MEM_ROM;
443 while (1) {
444 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
445 if (!mem) {
446 break;
449 if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
450 (start_addr + size <= mem->start_addr + mem->memory_size) &&
451 (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
452 /* The new slot fits into the existing one and comes with
453 * identical parameters - nothing to be done. */
454 return;
457 old = *mem;
459 /* unregister the overlapping slot */
460 mem->memory_size = 0;
461 err = kvm_set_user_memory_region(s, mem);
462 if (err) {
463 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
464 __func__, strerror(-err));
465 abort();
468 /* Workaround for older KVM versions: we can't join slots, even not by
469 * unregistering the previous ones and then registering the larger
470 * slot. We have to maintain the existing fragmentation. Sigh.
472 * This workaround assumes that the new slot starts at the same
473 * address as the first existing one. If not or if some overlapping
474 * slot comes around later, we will fail (not seen in practice so far)
475 * - and actually require a recent KVM version. */
476 if (s->broken_set_mem_region &&
477 old.start_addr == start_addr && old.memory_size < size &&
478 flags < IO_MEM_UNASSIGNED) {
479 mem = kvm_alloc_slot(s);
480 mem->memory_size = old.memory_size;
481 mem->start_addr = old.start_addr;
482 mem->phys_offset = old.phys_offset;
483 mem->flags = 0;
485 err = kvm_set_user_memory_region(s, mem);
486 if (err) {
487 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
488 strerror(-err));
489 abort();
492 start_addr += old.memory_size;
493 phys_offset += old.memory_size;
494 size -= old.memory_size;
495 continue;
498 /* register prefix slot */
499 if (old.start_addr < start_addr) {
500 mem = kvm_alloc_slot(s);
501 mem->memory_size = start_addr - old.start_addr;
502 mem->start_addr = old.start_addr;
503 mem->phys_offset = old.phys_offset;
504 mem->flags = 0;
506 err = kvm_set_user_memory_region(s, mem);
507 if (err) {
508 fprintf(stderr, "%s: error registering prefix slot: %s\n",
509 __func__, strerror(-err));
510 abort();
514 /* register suffix slot */
515 if (old.start_addr + old.memory_size > start_addr + size) {
516 ram_addr_t size_delta;
518 mem = kvm_alloc_slot(s);
519 mem->start_addr = start_addr + size;
520 size_delta = mem->start_addr - old.start_addr;
521 mem->memory_size = old.memory_size - size_delta;
522 mem->phys_offset = old.phys_offset + size_delta;
523 mem->flags = 0;
525 err = kvm_set_user_memory_region(s, mem);
526 if (err) {
527 fprintf(stderr, "%s: error registering suffix slot: %s\n",
528 __func__, strerror(-err));
529 abort();
534 /* in case the KVM bug workaround already "consumed" the new slot */
535 if (!size)
536 return;
538 /* KVM does not need to know about this memory */
539 if (flags >= IO_MEM_UNASSIGNED)
540 return;
542 mem = kvm_alloc_slot(s);
543 mem->memory_size = size;
544 mem->start_addr = start_addr;
545 mem->phys_offset = phys_offset;
546 mem->flags = 0;
548 err = kvm_set_user_memory_region(s, mem);
549 if (err) {
550 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
551 strerror(-err));
552 abort();
556 static void kvm_client_set_memory(struct CPUPhysMemoryClient *client,
557 target_phys_addr_t start_addr,
558 ram_addr_t size,
559 ram_addr_t phys_offset)
561 kvm_set_phys_mem(start_addr, size, phys_offset);
564 static int kvm_client_sync_dirty_bitmap(struct CPUPhysMemoryClient *client,
565 target_phys_addr_t start_addr,
566 target_phys_addr_t end_addr)
568 return kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
571 static int kvm_client_migration_log(struct CPUPhysMemoryClient *client,
572 int enable)
574 return kvm_set_migration_log(enable);
577 static CPUPhysMemoryClient kvm_cpu_phys_memory_client = {
578 .set_memory = kvm_client_set_memory,
579 .sync_dirty_bitmap = kvm_client_sync_dirty_bitmap,
580 .migration_log = kvm_client_migration_log,
583 int kvm_init(int smp_cpus)
585 static const char upgrade_note[] =
586 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
587 "(see http://sourceforge.net/projects/kvm).\n";
588 KVMState *s;
589 int ret;
590 int i;
592 s = qemu_mallocz(sizeof(KVMState));
594 #ifdef KVM_CAP_SET_GUEST_DEBUG
595 QTAILQ_INIT(&s->kvm_sw_breakpoints);
596 #endif
597 for (i = 0; i < ARRAY_SIZE(s->slots); i++)
598 s->slots[i].slot = i;
600 s->vmfd = -1;
601 s->fd = qemu_open("/dev/kvm", O_RDWR);
602 if (s->fd == -1) {
603 fprintf(stderr, "Could not access KVM kernel module: %m\n");
604 ret = -errno;
605 goto err;
608 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
609 if (ret < KVM_API_VERSION) {
610 if (ret > 0)
611 ret = -EINVAL;
612 fprintf(stderr, "kvm version too old\n");
613 goto err;
616 if (ret > KVM_API_VERSION) {
617 ret = -EINVAL;
618 fprintf(stderr, "kvm version not supported\n");
619 goto err;
622 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
623 if (s->vmfd < 0) {
624 #ifdef TARGET_S390X
625 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
626 "your host kernel command line\n");
627 #endif
628 goto err;
631 /* initially, KVM allocated its own memory and we had to jump through
632 * hooks to make phys_ram_base point to this. Modern versions of KVM
633 * just use a user allocated buffer so we can use regular pages
634 * unmodified. Make sure we have a sufficiently modern version of KVM.
636 if (!kvm_check_extension(s, KVM_CAP_USER_MEMORY)) {
637 ret = -EINVAL;
638 fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n%s",
639 upgrade_note);
640 goto err;
643 /* There was a nasty bug in < kvm-80 that prevents memory slots from being
644 * destroyed properly. Since we rely on this capability, refuse to work
645 * with any kernel without this capability. */
646 if (!kvm_check_extension(s, KVM_CAP_DESTROY_MEMORY_REGION_WORKS)) {
647 ret = -EINVAL;
649 fprintf(stderr,
650 "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s",
651 upgrade_note);
652 goto err;
655 s->coalesced_mmio = 0;
656 #ifdef KVM_CAP_COALESCED_MMIO
657 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
658 s->coalesced_mmio_ring = NULL;
659 #endif
661 s->broken_set_mem_region = 1;
662 #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
663 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
664 if (ret > 0) {
665 s->broken_set_mem_region = 0;
667 #endif
669 s->vcpu_events = 0;
670 #ifdef KVM_CAP_VCPU_EVENTS
671 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
672 #endif
674 s->robust_singlestep = 0;
675 #ifdef KVM_CAP_X86_ROBUST_SINGLESTEP
676 s->robust_singlestep =
677 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
678 #endif
680 s->debugregs = 0;
681 #ifdef KVM_CAP_DEBUGREGS
682 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
683 #endif
685 s->xsave = 0;
686 #ifdef KVM_CAP_XSAVE
687 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
688 #endif
690 s->xcrs = 0;
691 #ifdef KVM_CAP_XCRS
692 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
693 #endif
695 ret = kvm_arch_init(s, smp_cpus);
696 if (ret < 0)
697 goto err;
699 kvm_state = s;
700 cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client);
702 return 0;
704 err:
705 if (s) {
706 if (s->vmfd != -1)
707 close(s->vmfd);
708 if (s->fd != -1)
709 close(s->fd);
711 qemu_free(s);
713 return ret;
716 static int kvm_handle_io(uint16_t port, void *data, int direction, int size,
717 uint32_t count)
719 int i;
720 uint8_t *ptr = data;
722 for (i = 0; i < count; i++) {
723 if (direction == KVM_EXIT_IO_IN) {
724 switch (size) {
725 case 1:
726 stb_p(ptr, cpu_inb(port));
727 break;
728 case 2:
729 stw_p(ptr, cpu_inw(port));
730 break;
731 case 4:
732 stl_p(ptr, cpu_inl(port));
733 break;
735 } else {
736 switch (size) {
737 case 1:
738 cpu_outb(port, ldub_p(ptr));
739 break;
740 case 2:
741 cpu_outw(port, lduw_p(ptr));
742 break;
743 case 4:
744 cpu_outl(port, ldl_p(ptr));
745 break;
749 ptr += size;
752 return 1;
755 #ifdef KVM_CAP_INTERNAL_ERROR_DATA
756 static void kvm_handle_internal_error(CPUState *env, struct kvm_run *run)
759 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
760 int i;
762 fprintf(stderr, "KVM internal error. Suberror: %d\n",
763 run->internal.suberror);
765 for (i = 0; i < run->internal.ndata; ++i) {
766 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
767 i, (uint64_t)run->internal.data[i]);
770 cpu_dump_state(env, stderr, fprintf, 0);
771 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
772 fprintf(stderr, "emulation failure\n");
773 if (!kvm_arch_stop_on_emulation_error(env))
774 return;
776 /* FIXME: Should trigger a qmp message to let management know
777 * something went wrong.
779 vm_stop(0);
781 #endif
783 void kvm_flush_coalesced_mmio_buffer(void)
785 #ifdef KVM_CAP_COALESCED_MMIO
786 KVMState *s = kvm_state;
787 if (s->coalesced_mmio_ring) {
788 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
789 while (ring->first != ring->last) {
790 struct kvm_coalesced_mmio *ent;
792 ent = &ring->coalesced_mmio[ring->first];
794 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
795 smp_wmb();
796 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
799 #endif
802 static void do_kvm_cpu_synchronize_state(void *_env)
804 CPUState *env = _env;
806 if (!env->kvm_vcpu_dirty) {
807 kvm_arch_get_registers(env);
808 env->kvm_vcpu_dirty = 1;
812 void kvm_cpu_synchronize_state(CPUState *env)
814 if (!env->kvm_vcpu_dirty)
815 run_on_cpu(env, do_kvm_cpu_synchronize_state, env);
818 void kvm_cpu_synchronize_post_reset(CPUState *env)
820 kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
821 env->kvm_vcpu_dirty = 0;
824 void kvm_cpu_synchronize_post_init(CPUState *env)
826 kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
827 env->kvm_vcpu_dirty = 0;
830 int kvm_cpu_exec(CPUState *env)
832 struct kvm_run *run = env->kvm_run;
833 int ret;
835 DPRINTF("kvm_cpu_exec()\n");
837 do {
838 #ifndef CONFIG_IOTHREAD
839 if (env->exit_request) {
840 DPRINTF("interrupt exit requested\n");
841 ret = 0;
842 break;
844 #endif
846 if (kvm_arch_process_irqchip_events(env)) {
847 ret = 0;
848 break;
851 if (env->kvm_vcpu_dirty) {
852 kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
853 env->kvm_vcpu_dirty = 0;
856 kvm_arch_pre_run(env, run);
857 cpu_single_env = NULL;
858 qemu_mutex_unlock_iothread();
859 ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
860 qemu_mutex_lock_iothread();
861 cpu_single_env = env;
862 kvm_arch_post_run(env, run);
864 if (ret == -EINTR || ret == -EAGAIN) {
865 cpu_exit(env);
866 DPRINTF("io window exit\n");
867 ret = 0;
868 break;
871 if (ret < 0) {
872 DPRINTF("kvm run failed %s\n", strerror(-ret));
873 abort();
876 kvm_flush_coalesced_mmio_buffer();
878 ret = 0; /* exit loop */
879 switch (run->exit_reason) {
880 case KVM_EXIT_IO:
881 DPRINTF("handle_io\n");
882 ret = kvm_handle_io(run->io.port,
883 (uint8_t *)run + run->io.data_offset,
884 run->io.direction,
885 run->io.size,
886 run->io.count);
887 break;
888 case KVM_EXIT_MMIO:
889 DPRINTF("handle_mmio\n");
890 cpu_physical_memory_rw(run->mmio.phys_addr,
891 run->mmio.data,
892 run->mmio.len,
893 run->mmio.is_write);
894 ret = 1;
895 break;
896 case KVM_EXIT_IRQ_WINDOW_OPEN:
897 DPRINTF("irq_window_open\n");
898 break;
899 case KVM_EXIT_SHUTDOWN:
900 DPRINTF("shutdown\n");
901 qemu_system_reset_request();
902 ret = 1;
903 break;
904 case KVM_EXIT_UNKNOWN:
905 DPRINTF("kvm_exit_unknown\n");
906 break;
907 case KVM_EXIT_FAIL_ENTRY:
908 DPRINTF("kvm_exit_fail_entry\n");
909 break;
910 case KVM_EXIT_EXCEPTION:
911 DPRINTF("kvm_exit_exception\n");
912 break;
913 #ifdef KVM_CAP_INTERNAL_ERROR_DATA
914 case KVM_EXIT_INTERNAL_ERROR:
915 kvm_handle_internal_error(env, run);
916 break;
917 #endif
918 case KVM_EXIT_DEBUG:
919 DPRINTF("kvm_exit_debug\n");
920 #ifdef KVM_CAP_SET_GUEST_DEBUG
921 if (kvm_arch_debug(&run->debug.arch)) {
922 env->exception_index = EXCP_DEBUG;
923 return 0;
925 /* re-enter, this exception was guest-internal */
926 ret = 1;
927 #endif /* KVM_CAP_SET_GUEST_DEBUG */
928 break;
929 default:
930 DPRINTF("kvm_arch_handle_exit\n");
931 ret = kvm_arch_handle_exit(env, run);
932 break;
934 } while (ret > 0);
936 if (env->exit_request) {
937 env->exit_request = 0;
938 env->exception_index = EXCP_INTERRUPT;
941 return ret;
944 int kvm_ioctl(KVMState *s, int type, ...)
946 int ret;
947 void *arg;
948 va_list ap;
950 va_start(ap, type);
951 arg = va_arg(ap, void *);
952 va_end(ap);
954 ret = ioctl(s->fd, type, arg);
955 if (ret == -1)
956 ret = -errno;
958 return ret;
961 int kvm_vm_ioctl(KVMState *s, int type, ...)
963 int ret;
964 void *arg;
965 va_list ap;
967 va_start(ap, type);
968 arg = va_arg(ap, void *);
969 va_end(ap);
971 ret = ioctl(s->vmfd, type, arg);
972 if (ret == -1)
973 ret = -errno;
975 return ret;
978 int kvm_vcpu_ioctl(CPUState *env, int type, ...)
980 int ret;
981 void *arg;
982 va_list ap;
984 va_start(ap, type);
985 arg = va_arg(ap, void *);
986 va_end(ap);
988 ret = ioctl(env->kvm_fd, type, arg);
989 if (ret == -1)
990 ret = -errno;
992 return ret;
995 int kvm_has_sync_mmu(void)
997 #ifdef KVM_CAP_SYNC_MMU
998 KVMState *s = kvm_state;
1000 return kvm_check_extension(s, KVM_CAP_SYNC_MMU);
1001 #else
1002 return 0;
1003 #endif
1006 int kvm_has_vcpu_events(void)
1008 return kvm_state->vcpu_events;
1011 int kvm_has_robust_singlestep(void)
1013 return kvm_state->robust_singlestep;
1016 int kvm_has_debugregs(void)
1018 return kvm_state->debugregs;
1021 int kvm_has_xsave(void)
1023 return kvm_state->xsave;
1026 int kvm_has_xcrs(void)
1028 return kvm_state->xcrs;
1031 void kvm_setup_guest_memory(void *start, size_t size)
1033 if (!kvm_has_sync_mmu()) {
1034 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1036 if (ret) {
1037 perror("qemu_madvise");
1038 fprintf(stderr,
1039 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1040 exit(1);
1045 #ifdef KVM_CAP_SET_GUEST_DEBUG
1046 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
1047 target_ulong pc)
1049 struct kvm_sw_breakpoint *bp;
1051 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
1052 if (bp->pc == pc)
1053 return bp;
1055 return NULL;
1058 int kvm_sw_breakpoints_active(CPUState *env)
1060 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
1063 struct kvm_set_guest_debug_data {
1064 struct kvm_guest_debug dbg;
1065 CPUState *env;
1066 int err;
1069 static void kvm_invoke_set_guest_debug(void *data)
1071 struct kvm_set_guest_debug_data *dbg_data = data;
1072 CPUState *env = dbg_data->env;
1074 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
1077 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1079 struct kvm_set_guest_debug_data data;
1081 data.dbg.control = reinject_trap;
1083 if (env->singlestep_enabled) {
1084 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1086 kvm_arch_update_guest_debug(env, &data.dbg);
1087 data.env = env;
1089 run_on_cpu(env, kvm_invoke_set_guest_debug, &data);
1090 return data.err;
1093 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1094 target_ulong len, int type)
1096 struct kvm_sw_breakpoint *bp;
1097 CPUState *env;
1098 int err;
1100 if (type == GDB_BREAKPOINT_SW) {
1101 bp = kvm_find_sw_breakpoint(current_env, addr);
1102 if (bp) {
1103 bp->use_count++;
1104 return 0;
1107 bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
1108 if (!bp)
1109 return -ENOMEM;
1111 bp->pc = addr;
1112 bp->use_count = 1;
1113 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1114 if (err) {
1115 free(bp);
1116 return err;
1119 QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
1120 bp, entry);
1121 } else {
1122 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1123 if (err)
1124 return err;
1127 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1128 err = kvm_update_guest_debug(env, 0);
1129 if (err)
1130 return err;
1132 return 0;
1135 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1136 target_ulong len, int type)
1138 struct kvm_sw_breakpoint *bp;
1139 CPUState *env;
1140 int err;
1142 if (type == GDB_BREAKPOINT_SW) {
1143 bp = kvm_find_sw_breakpoint(current_env, addr);
1144 if (!bp)
1145 return -ENOENT;
1147 if (bp->use_count > 1) {
1148 bp->use_count--;
1149 return 0;
1152 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1153 if (err)
1154 return err;
1156 QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1157 qemu_free(bp);
1158 } else {
1159 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1160 if (err)
1161 return err;
1164 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1165 err = kvm_update_guest_debug(env, 0);
1166 if (err)
1167 return err;
1169 return 0;
1172 void kvm_remove_all_breakpoints(CPUState *current_env)
1174 struct kvm_sw_breakpoint *bp, *next;
1175 KVMState *s = current_env->kvm_state;
1176 CPUState *env;
1178 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1179 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1180 /* Try harder to find a CPU that currently sees the breakpoint. */
1181 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1182 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0)
1183 break;
1187 kvm_arch_remove_all_hw_breakpoints();
1189 for (env = first_cpu; env != NULL; env = env->next_cpu)
1190 kvm_update_guest_debug(env, 0);
1193 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1195 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1197 return -EINVAL;
1200 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1201 target_ulong len, int type)
1203 return -EINVAL;
1206 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1207 target_ulong len, int type)
1209 return -EINVAL;
1212 void kvm_remove_all_breakpoints(CPUState *current_env)
1215 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1217 int kvm_set_signal_mask(CPUState *env, const sigset_t *sigset)
1219 struct kvm_signal_mask *sigmask;
1220 int r;
1222 if (!sigset)
1223 return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
1225 sigmask = qemu_malloc(sizeof(*sigmask) + sizeof(*sigset));
1227 sigmask->len = 8;
1228 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1229 r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1230 free(sigmask);
1232 return r;
1235 int kvm_set_ioeventfd_mmio_long(int fd, uint32_t addr, uint32_t val, bool assign)
1237 #ifdef KVM_IOEVENTFD
1238 int ret;
1239 struct kvm_ioeventfd iofd;
1241 iofd.datamatch = val;
1242 iofd.addr = addr;
1243 iofd.len = 4;
1244 iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH;
1245 iofd.fd = fd;
1247 if (!kvm_enabled()) {
1248 return -ENOSYS;
1251 if (!assign) {
1252 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1255 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1257 if (ret < 0) {
1258 return -errno;
1261 return 0;
1262 #else
1263 return -ENOSYS;
1264 #endif
1267 int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
1269 #ifdef KVM_IOEVENTFD
1270 struct kvm_ioeventfd kick = {
1271 .datamatch = val,
1272 .addr = addr,
1273 .len = 2,
1274 .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
1275 .fd = fd,
1277 int r;
1278 if (!kvm_enabled())
1279 return -ENOSYS;
1280 if (!assign)
1281 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1282 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1283 if (r < 0)
1284 return r;
1285 return 0;
1286 #else
1287 return -ENOSYS;
1288 #endif