Merge commit '5e8861a0361d8d39ab69fe557294471c28c49c8b' into upstream-merge
[qemu-kvm.git] / kvm-all.c
blob45d00cd4bd6c11b54d3c1cc644cd561248d5fc4a
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu-barrier.h"
25 #include "sysemu.h"
26 #include "hw/hw.h"
27 #include "hw/msi.h"
28 #include "gdbstub.h"
29 #include "kvm.h"
30 #include "bswap.h"
31 #include "memory.h"
32 #include "exec-memory.h"
34 /* This check must be after config-host.h is included */
35 #ifdef CONFIG_EVENTFD
36 #include <sys/eventfd.h>
37 #endif
39 /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
40 #define PAGE_SIZE TARGET_PAGE_SIZE
42 //#define DEBUG_KVM
44 #ifdef DEBUG_KVM
45 #define DPRINTF(fmt, ...) \
46 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
47 #else
48 #define DPRINTF(fmt, ...) \
49 do { } while (0)
50 #endif
52 #define KVM_MSI_HASHTAB_SIZE 256
54 typedef struct KVMSlot
56 target_phys_addr_t start_addr;
57 ram_addr_t memory_size;
58 void *ram;
59 int slot;
60 int flags;
61 } KVMSlot;
63 typedef struct kvm_dirty_log KVMDirtyLog;
65 struct KVMState
67 KVMSlot slots[32];
68 int fd;
69 int vmfd;
70 int coalesced_mmio;
71 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
72 bool coalesced_flush_in_progress;
73 int broken_set_mem_region;
74 int migration_log;
75 int vcpu_events;
76 int robust_singlestep;
77 int debugregs;
78 #ifdef KVM_CAP_SET_GUEST_DEBUG
79 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
80 #endif
81 int pit_state2;
82 int xsave, xcrs;
83 int many_ioeventfds;
84 int intx_set_mask;
85 /* The man page (and posix) say ioctl numbers are signed int, but
86 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
87 * unsigned, and treating them as signed here can break things */
88 unsigned irqchip_inject_ioctl;
89 #ifdef KVM_CAP_IRQ_ROUTING
90 struct kvm_irq_routing *irq_routes;
91 int nr_allocated_irq_routes;
92 uint32_t *used_gsi_bitmap;
93 unsigned int gsi_count;
94 QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
95 bool direct_msi;
96 #endif
99 KVMState *kvm_state;
100 bool kvm_kernel_irqchip;
102 static const KVMCapabilityInfo kvm_required_capabilites[] = {
103 KVM_CAP_INFO(USER_MEMORY),
104 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
105 KVM_CAP_LAST_INFO
108 static KVMSlot *kvm_alloc_slot(KVMState *s)
110 int i;
112 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
113 if (s->slots[i].memory_size == 0) {
114 return &s->slots[i];
118 fprintf(stderr, "%s: no free slot available\n", __func__);
119 abort();
122 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
123 target_phys_addr_t start_addr,
124 target_phys_addr_t end_addr)
126 int i;
128 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
129 KVMSlot *mem = &s->slots[i];
131 if (start_addr == mem->start_addr &&
132 end_addr == mem->start_addr + mem->memory_size) {
133 return mem;
137 return NULL;
141 * Find overlapping slot with lowest start address
143 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
144 target_phys_addr_t start_addr,
145 target_phys_addr_t end_addr)
147 KVMSlot *found = NULL;
148 int i;
150 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
151 KVMSlot *mem = &s->slots[i];
153 if (mem->memory_size == 0 ||
154 (found && found->start_addr < mem->start_addr)) {
155 continue;
158 if (end_addr > mem->start_addr &&
159 start_addr < mem->start_addr + mem->memory_size) {
160 found = mem;
164 return found;
167 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
168 target_phys_addr_t *phys_addr)
170 int i;
172 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
173 KVMSlot *mem = &s->slots[i];
175 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
176 *phys_addr = mem->start_addr + (ram - mem->ram);
177 return 1;
181 return 0;
184 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
186 struct kvm_userspace_memory_region mem;
188 mem.slot = slot->slot;
189 mem.guest_phys_addr = slot->start_addr;
190 mem.memory_size = slot->memory_size;
191 mem.userspace_addr = (unsigned long)slot->ram;
192 mem.flags = slot->flags;
193 if (s->migration_log) {
194 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
196 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
199 static void kvm_reset_vcpu(void *opaque)
201 CPUArchState *env = opaque;
203 kvm_arch_reset_vcpu(env);
206 int kvm_init_vcpu(CPUArchState *env)
208 KVMState *s = kvm_state;
209 long mmap_size;
210 int ret;
212 DPRINTF("kvm_init_vcpu\n");
214 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
215 if (ret < 0) {
216 DPRINTF("kvm_create_vcpu failed\n");
217 goto err;
220 env->kvm_fd = ret;
221 env->kvm_state = s;
222 env->kvm_vcpu_dirty = 1;
224 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
225 if (mmap_size < 0) {
226 ret = mmap_size;
227 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
228 goto err;
231 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
232 env->kvm_fd, 0);
233 if (env->kvm_run == MAP_FAILED) {
234 ret = -errno;
235 DPRINTF("mmap'ing vcpu state failed\n");
236 goto err;
239 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
240 s->coalesced_mmio_ring =
241 (void *)env->kvm_run + s->coalesced_mmio * PAGE_SIZE;
244 ret = kvm_arch_init_vcpu(env);
245 if (ret == 0) {
246 qemu_register_reset(kvm_reset_vcpu, env);
247 kvm_arch_reset_vcpu(env);
249 err:
250 return ret;
254 * dirty pages logging control
257 static int kvm_mem_flags(KVMState *s, bool log_dirty)
259 return log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
262 static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
264 KVMState *s = kvm_state;
265 int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
266 int old_flags;
268 old_flags = mem->flags;
270 flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty);
271 mem->flags = flags;
273 /* If nothing changed effectively, no need to issue ioctl */
274 if (s->migration_log) {
275 flags |= KVM_MEM_LOG_DIRTY_PAGES;
278 if (flags == old_flags) {
279 return 0;
282 return kvm_set_user_memory_region(s, mem);
285 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
286 ram_addr_t size, bool log_dirty)
288 KVMState *s = kvm_state;
289 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
291 if (mem == NULL) {
292 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
293 TARGET_FMT_plx "\n", __func__, phys_addr,
294 (target_phys_addr_t)(phys_addr + size - 1));
295 return -EINVAL;
297 return kvm_slot_dirty_pages_log_change(mem, log_dirty);
300 static void kvm_log_start(MemoryListener *listener,
301 MemoryRegionSection *section)
303 int r;
305 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
306 section->size, true);
307 if (r < 0) {
308 abort();
312 static void kvm_log_stop(MemoryListener *listener,
313 MemoryRegionSection *section)
315 int r;
317 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
318 section->size, false);
319 if (r < 0) {
320 abort();
324 static int kvm_set_migration_log(int enable)
326 KVMState *s = kvm_state;
327 KVMSlot *mem;
328 int i, err;
330 s->migration_log = enable;
332 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
333 mem = &s->slots[i];
335 if (!mem->memory_size) {
336 continue;
338 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
339 continue;
341 err = kvm_set_user_memory_region(s, mem);
342 if (err) {
343 return err;
346 return 0;
349 /* get kvm's dirty pages bitmap and update qemu's */
350 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
351 unsigned long *bitmap)
353 unsigned int i, j;
354 unsigned long page_number, c;
355 target_phys_addr_t addr, addr1;
356 unsigned int len = ((section->size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
357 unsigned long hpratio = getpagesize() / TARGET_PAGE_SIZE;
360 * bitmap-traveling is faster than memory-traveling (for addr...)
361 * especially when most of the memory is not dirty.
363 for (i = 0; i < len; i++) {
364 if (bitmap[i] != 0) {
365 c = leul_to_cpu(bitmap[i]);
366 do {
367 j = ffsl(c) - 1;
368 c &= ~(1ul << j);
369 page_number = (i * HOST_LONG_BITS + j) * hpratio;
370 addr1 = page_number * TARGET_PAGE_SIZE;
371 addr = section->offset_within_region + addr1;
372 memory_region_set_dirty(section->mr, addr,
373 TARGET_PAGE_SIZE * hpratio);
374 } while (c != 0);
377 return 0;
380 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
383 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
384 * This function updates qemu's dirty bitmap using
385 * memory_region_set_dirty(). This means all bits are set
386 * to dirty.
388 * @start_add: start of logged region.
389 * @end_addr: end of logged region.
391 static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section)
393 KVMState *s = kvm_state;
394 unsigned long size, allocated_size = 0;
395 KVMDirtyLog d;
396 KVMSlot *mem;
397 int ret = 0;
398 target_phys_addr_t start_addr = section->offset_within_address_space;
399 target_phys_addr_t end_addr = start_addr + section->size;
401 d.dirty_bitmap = NULL;
402 while (start_addr < end_addr) {
403 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
404 if (mem == NULL) {
405 break;
408 /* XXX bad kernel interface alert
409 * For dirty bitmap, kernel allocates array of size aligned to
410 * bits-per-long. But for case when the kernel is 64bits and
411 * the userspace is 32bits, userspace can't align to the same
412 * bits-per-long, since sizeof(long) is different between kernel
413 * and user space. This way, userspace will provide buffer which
414 * may be 4 bytes less than the kernel will use, resulting in
415 * userspace memory corruption (which is not detectable by valgrind
416 * too, in most cases).
417 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
418 * a hope that sizeof(long) wont become >8 any time soon.
420 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
421 /*HOST_LONG_BITS*/ 64) / 8;
422 if (!d.dirty_bitmap) {
423 d.dirty_bitmap = g_malloc(size);
424 } else if (size > allocated_size) {
425 d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
427 allocated_size = size;
428 memset(d.dirty_bitmap, 0, allocated_size);
430 d.slot = mem->slot;
432 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
433 DPRINTF("ioctl failed %d\n", errno);
434 ret = -1;
435 break;
438 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
439 start_addr = mem->start_addr + mem->memory_size;
441 g_free(d.dirty_bitmap);
443 return ret;
446 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
448 int ret = -ENOSYS;
449 KVMState *s = kvm_state;
451 if (s->coalesced_mmio) {
452 struct kvm_coalesced_mmio_zone zone;
454 zone.addr = start;
455 zone.size = size;
456 zone.pad = 0;
458 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
461 return ret;
464 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
466 int ret = -ENOSYS;
467 KVMState *s = kvm_state;
469 if (s->coalesced_mmio) {
470 struct kvm_coalesced_mmio_zone zone;
472 zone.addr = start;
473 zone.size = size;
474 zone.pad = 0;
476 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
479 return ret;
482 int kvm_check_extension(KVMState *s, unsigned int extension)
484 int ret;
486 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
487 if (ret < 0) {
488 ret = 0;
491 return ret;
494 static int kvm_check_many_ioeventfds(void)
496 /* Userspace can use ioeventfd for io notification. This requires a host
497 * that supports eventfd(2) and an I/O thread; since eventfd does not
498 * support SIGIO it cannot interrupt the vcpu.
500 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
501 * can avoid creating too many ioeventfds.
503 #if defined(CONFIG_EVENTFD)
504 int ioeventfds[7];
505 int i, ret = 0;
506 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
507 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
508 if (ioeventfds[i] < 0) {
509 break;
511 ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true);
512 if (ret < 0) {
513 close(ioeventfds[i]);
514 break;
518 /* Decide whether many devices are supported or not */
519 ret = i == ARRAY_SIZE(ioeventfds);
521 while (i-- > 0) {
522 kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false);
523 close(ioeventfds[i]);
525 return ret;
526 #else
527 return 0;
528 #endif
531 static const KVMCapabilityInfo *
532 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
534 while (list->name) {
535 if (!kvm_check_extension(s, list->value)) {
536 return list;
538 list++;
540 return NULL;
543 static void kvm_set_phys_mem(MemoryRegionSection *section, bool add)
545 KVMState *s = kvm_state;
546 KVMSlot *mem, old;
547 int err;
548 MemoryRegion *mr = section->mr;
549 bool log_dirty = memory_region_is_logging(mr);
550 target_phys_addr_t start_addr = section->offset_within_address_space;
551 ram_addr_t size = section->size;
552 void *ram = NULL;
553 unsigned delta;
555 /* kvm works in page size chunks, but the function may be called
556 with sub-page size and unaligned start address. */
557 delta = TARGET_PAGE_ALIGN(size) - size;
558 if (delta > size) {
559 return;
561 start_addr += delta;
562 size -= delta;
563 size &= TARGET_PAGE_MASK;
564 if (!size || (start_addr & ~TARGET_PAGE_MASK)) {
565 return;
568 if (!memory_region_is_ram(mr)) {
569 return;
572 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
574 while (1) {
575 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
576 if (!mem) {
577 break;
580 if (add && start_addr >= mem->start_addr &&
581 (start_addr + size <= mem->start_addr + mem->memory_size) &&
582 (ram - start_addr == mem->ram - mem->start_addr)) {
583 /* The new slot fits into the existing one and comes with
584 * identical parameters - update flags and done. */
585 kvm_slot_dirty_pages_log_change(mem, log_dirty);
586 return;
589 old = *mem;
591 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
592 kvm_physical_sync_dirty_bitmap(section);
595 /* unregister the overlapping slot */
596 mem->memory_size = 0;
597 err = kvm_set_user_memory_region(s, mem);
598 if (err) {
599 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
600 __func__, strerror(-err));
601 abort();
604 /* Workaround for older KVM versions: we can't join slots, even not by
605 * unregistering the previous ones and then registering the larger
606 * slot. We have to maintain the existing fragmentation. Sigh.
608 * This workaround assumes that the new slot starts at the same
609 * address as the first existing one. If not or if some overlapping
610 * slot comes around later, we will fail (not seen in practice so far)
611 * - and actually require a recent KVM version. */
612 if (s->broken_set_mem_region &&
613 old.start_addr == start_addr && old.memory_size < size && add) {
614 mem = kvm_alloc_slot(s);
615 mem->memory_size = old.memory_size;
616 mem->start_addr = old.start_addr;
617 mem->ram = old.ram;
618 mem->flags = kvm_mem_flags(s, log_dirty);
620 err = kvm_set_user_memory_region(s, mem);
621 if (err) {
622 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
623 strerror(-err));
624 abort();
627 start_addr += old.memory_size;
628 ram += old.memory_size;
629 size -= old.memory_size;
630 continue;
633 /* register prefix slot */
634 if (old.start_addr < start_addr) {
635 mem = kvm_alloc_slot(s);
636 mem->memory_size = start_addr - old.start_addr;
637 mem->start_addr = old.start_addr;
638 mem->ram = old.ram;
639 mem->flags = kvm_mem_flags(s, log_dirty);
641 err = kvm_set_user_memory_region(s, mem);
642 if (err) {
643 fprintf(stderr, "%s: error registering prefix slot: %s\n",
644 __func__, strerror(-err));
645 #ifdef TARGET_PPC
646 fprintf(stderr, "%s: This is probably because your kernel's " \
647 "PAGE_SIZE is too big. Please try to use 4k " \
648 "PAGE_SIZE!\n", __func__);
649 #endif
650 abort();
654 /* register suffix slot */
655 if (old.start_addr + old.memory_size > start_addr + size) {
656 ram_addr_t size_delta;
658 mem = kvm_alloc_slot(s);
659 mem->start_addr = start_addr + size;
660 size_delta = mem->start_addr - old.start_addr;
661 mem->memory_size = old.memory_size - size_delta;
662 mem->ram = old.ram + size_delta;
663 mem->flags = kvm_mem_flags(s, log_dirty);
665 err = kvm_set_user_memory_region(s, mem);
666 if (err) {
667 fprintf(stderr, "%s: error registering suffix slot: %s\n",
668 __func__, strerror(-err));
669 abort();
674 /* in case the KVM bug workaround already "consumed" the new slot */
675 if (!size) {
676 return;
678 if (!add) {
679 return;
681 mem = kvm_alloc_slot(s);
682 mem->memory_size = size;
683 mem->start_addr = start_addr;
684 mem->ram = ram;
685 mem->flags = kvm_mem_flags(s, log_dirty);
687 err = kvm_set_user_memory_region(s, mem);
688 if (err) {
689 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
690 strerror(-err));
691 abort();
695 static void kvm_begin(MemoryListener *listener)
699 static void kvm_commit(MemoryListener *listener)
703 static void kvm_region_add(MemoryListener *listener,
704 MemoryRegionSection *section)
706 kvm_set_phys_mem(section, true);
709 static void kvm_region_del(MemoryListener *listener,
710 MemoryRegionSection *section)
712 kvm_set_phys_mem(section, false);
715 static void kvm_region_nop(MemoryListener *listener,
716 MemoryRegionSection *section)
720 static void kvm_log_sync(MemoryListener *listener,
721 MemoryRegionSection *section)
723 int r;
725 r = kvm_physical_sync_dirty_bitmap(section);
726 if (r < 0) {
727 abort();
731 static void kvm_log_global_start(struct MemoryListener *listener)
733 int r;
735 r = kvm_set_migration_log(1);
736 assert(r >= 0);
739 static void kvm_log_global_stop(struct MemoryListener *listener)
741 int r;
743 r = kvm_set_migration_log(0);
744 assert(r >= 0);
747 static void kvm_mem_ioeventfd_add(MemoryRegionSection *section,
748 bool match_data, uint64_t data, int fd)
750 int r;
752 assert(match_data && section->size <= 8);
754 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
755 data, true, section->size);
756 if (r < 0) {
757 abort();
761 static void kvm_mem_ioeventfd_del(MemoryRegionSection *section,
762 bool match_data, uint64_t data, int fd)
764 int r;
766 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
767 data, false, section->size);
768 if (r < 0) {
769 abort();
773 static void kvm_io_ioeventfd_add(MemoryRegionSection *section,
774 bool match_data, uint64_t data, int fd)
776 int r;
778 assert(match_data && section->size == 2);
780 r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space,
781 data, true);
782 if (r < 0) {
783 abort();
787 static void kvm_io_ioeventfd_del(MemoryRegionSection *section,
788 bool match_data, uint64_t data, int fd)
791 int r;
793 r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space,
794 data, false);
795 if (r < 0) {
796 abort();
800 static void kvm_eventfd_add(MemoryListener *listener,
801 MemoryRegionSection *section,
802 bool match_data, uint64_t data, int fd)
804 if (section->address_space == get_system_memory()) {
805 kvm_mem_ioeventfd_add(section, match_data, data, fd);
806 } else {
807 kvm_io_ioeventfd_add(section, match_data, data, fd);
811 static void kvm_eventfd_del(MemoryListener *listener,
812 MemoryRegionSection *section,
813 bool match_data, uint64_t data, int fd)
815 if (section->address_space == get_system_memory()) {
816 kvm_mem_ioeventfd_del(section, match_data, data, fd);
817 } else {
818 kvm_io_ioeventfd_del(section, match_data, data, fd);
822 static MemoryListener kvm_memory_listener = {
823 .begin = kvm_begin,
824 .commit = kvm_commit,
825 .region_add = kvm_region_add,
826 .region_del = kvm_region_del,
827 .region_nop = kvm_region_nop,
828 .log_start = kvm_log_start,
829 .log_stop = kvm_log_stop,
830 .log_sync = kvm_log_sync,
831 .log_global_start = kvm_log_global_start,
832 .log_global_stop = kvm_log_global_stop,
833 .eventfd_add = kvm_eventfd_add,
834 .eventfd_del = kvm_eventfd_del,
835 .priority = 10,
838 static void kvm_handle_interrupt(CPUArchState *env, int mask)
840 env->interrupt_request |= mask;
842 if (!qemu_cpu_is_self(env)) {
843 qemu_cpu_kick(env);
847 int kvm_irqchip_set_irq(KVMState *s, int irq, int level)
849 struct kvm_irq_level event;
850 int ret;
852 assert(kvm_irqchip_in_kernel());
854 event.level = level;
855 event.irq = irq;
856 ret = kvm_vm_ioctl(s, s->irqchip_inject_ioctl, &event);
857 if (ret < 0) {
858 perror("kvm_set_irqchip_line");
859 abort();
862 return (s->irqchip_inject_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
865 #ifdef KVM_CAP_IRQ_ROUTING
866 typedef struct KVMMSIRoute {
867 struct kvm_irq_routing_entry kroute;
868 QTAILQ_ENTRY(KVMMSIRoute) entry;
869 } KVMMSIRoute;
871 static void set_gsi(KVMState *s, unsigned int gsi)
873 s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
876 static void clear_gsi(KVMState *s, unsigned int gsi)
878 s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32));
881 static void kvm_init_irq_routing(KVMState *s)
883 int gsi_count, i;
885 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING);
886 if (gsi_count > 0) {
887 unsigned int gsi_bits, i;
889 /* Round up so we can search ints using ffs */
890 gsi_bits = ALIGN(gsi_count, 32);
891 s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
892 s->gsi_count = gsi_count;
894 /* Mark any over-allocated bits as already in use */
895 for (i = gsi_count; i < gsi_bits; i++) {
896 set_gsi(s, i);
900 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
901 s->nr_allocated_irq_routes = 0;
903 if (!s->direct_msi) {
904 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
905 QTAILQ_INIT(&s->msi_hashtab[i]);
909 kvm_arch_init_irq_routing(s);
912 void kvm_irqchip_commit_routes(KVMState *s)
914 int ret;
916 s->irq_routes->flags = 0;
917 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
918 assert(ret == 0);
921 void kvm_add_routing_entry(KVMState *s,
922 struct kvm_irq_routing_entry *entry)
924 struct kvm_irq_routing_entry *new;
925 int n, size;
927 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
928 n = s->nr_allocated_irq_routes * 2;
929 if (n < 64) {
930 n = 64;
932 size = sizeof(struct kvm_irq_routing);
933 size += n * sizeof(*new);
934 s->irq_routes = g_realloc(s->irq_routes, size);
935 s->nr_allocated_irq_routes = n;
937 n = s->irq_routes->nr++;
938 new = &s->irq_routes->entries[n];
939 memset(new, 0, sizeof(*new));
940 new->gsi = entry->gsi;
941 new->type = entry->type;
942 new->flags = entry->flags;
943 new->u = entry->u;
945 set_gsi(s, entry->gsi);
947 kvm_irqchip_commit_routes(s);
950 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
952 struct kvm_irq_routing_entry e;
954 assert(pin < s->gsi_count);
956 e.gsi = irq;
957 e.type = KVM_IRQ_ROUTING_IRQCHIP;
958 e.flags = 0;
959 e.u.irqchip.irqchip = irqchip;
960 e.u.irqchip.pin = pin;
961 kvm_add_routing_entry(s, &e);
964 void kvm_irqchip_release_virq(KVMState *s, int virq)
966 struct kvm_irq_routing_entry *e;
967 int i;
969 for (i = 0; i < s->irq_routes->nr; i++) {
970 e = &s->irq_routes->entries[i];
971 if (e->gsi == virq) {
972 s->irq_routes->nr--;
973 *e = s->irq_routes->entries[s->irq_routes->nr];
976 clear_gsi(s, virq);
978 kvm_irqchip_commit_routes(s);
981 static unsigned int kvm_hash_msi(uint32_t data)
983 /* This is optimized for IA32 MSI layout. However, no other arch shall
984 * repeat the mistake of not providing a direct MSI injection API. */
985 return data & 0xff;
988 static void kvm_flush_dynamic_msi_routes(KVMState *s)
990 KVMMSIRoute *route, *next;
991 unsigned int hash;
993 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
994 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
995 kvm_irqchip_release_virq(s, route->kroute.gsi);
996 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
997 g_free(route);
1002 static int kvm_irqchip_get_virq(KVMState *s)
1004 uint32_t *word = s->used_gsi_bitmap;
1005 int max_words = ALIGN(s->gsi_count, 32) / 32;
1006 int i, bit;
1007 bool retry = true;
1009 again:
1010 /* Return the lowest unused GSI in the bitmap */
1011 for (i = 0; i < max_words; i++) {
1012 bit = ffs(~word[i]);
1013 if (!bit) {
1014 continue;
1017 return bit - 1 + i * 32;
1019 if (!s->direct_msi && retry) {
1020 retry = false;
1021 kvm_flush_dynamic_msi_routes(s);
1022 goto again;
1024 return -ENOSPC;
1028 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1030 unsigned int hash = kvm_hash_msi(msg.data);
1031 KVMMSIRoute *route;
1033 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1034 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1035 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1036 route->kroute.u.msi.data == msg.data) {
1037 return route;
1040 return NULL;
1043 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1045 struct kvm_msi msi;
1046 KVMMSIRoute *route;
1048 if (s->direct_msi) {
1049 msi.address_lo = (uint32_t)msg.address;
1050 msi.address_hi = msg.address >> 32;
1051 msi.data = msg.data;
1052 msi.flags = 0;
1053 memset(msi.pad, 0, sizeof(msi.pad));
1055 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1058 route = kvm_lookup_msi_route(s, msg);
1059 if (!route) {
1060 int virq;
1062 virq = kvm_irqchip_get_virq(s);
1063 if (virq < 0) {
1064 return virq;
1067 route = g_malloc(sizeof(KVMMSIRoute));
1068 route->kroute.gsi = virq;
1069 route->kroute.type = KVM_IRQ_ROUTING_MSI;
1070 route->kroute.flags = 0;
1071 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1072 route->kroute.u.msi.address_hi = msg.address >> 32;
1073 route->kroute.u.msi.data = msg.data;
1075 kvm_add_routing_entry(s, &route->kroute);
1077 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1078 entry);
1081 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1083 return kvm_irqchip_set_irq(s, route->kroute.gsi, 1);
1086 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1088 struct kvm_irq_routing_entry kroute;
1089 int virq;
1091 if (!kvm_irqchip_in_kernel()) {
1092 return -ENOSYS;
1095 virq = kvm_irqchip_get_virq(s);
1096 if (virq < 0) {
1097 return virq;
1100 kroute.gsi = virq;
1101 kroute.type = KVM_IRQ_ROUTING_MSI;
1102 kroute.flags = 0;
1103 kroute.u.msi.address_lo = (uint32_t)msg.address;
1104 kroute.u.msi.address_hi = msg.address >> 32;
1105 kroute.u.msi.data = msg.data;
1107 kvm_add_routing_entry(s, &kroute);
1109 return virq;
1112 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1114 struct kvm_irqfd irqfd = {
1115 .fd = fd,
1116 .gsi = virq,
1117 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1120 if (!kvm_irqchip_in_kernel()) {
1121 return -ENOSYS;
1124 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1127 #else /* !KVM_CAP_IRQ_ROUTING */
1129 static void kvm_init_irq_routing(KVMState *s)
1133 int kvm_irqchip_commit_routes(KVMState *s)
1135 return -ENOSYS;
1138 void kvm_irqchip_release_virq(KVMState *s, int virq)
1142 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1144 abort();
1147 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1149 abort();
1152 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1154 abort();
1156 #endif /* !KVM_CAP_IRQ_ROUTING */
1158 int kvm_irqchip_add_irqfd(KVMState *s, int fd, int virq)
1160 return kvm_irqchip_assign_irqfd(s, fd, virq, true);
1163 int kvm_irqchip_remove_irqfd(KVMState *s, int fd, int virq)
1165 return kvm_irqchip_assign_irqfd(s, fd, virq, false);
1168 static int kvm_irqchip_create(KVMState *s)
1170 QemuOptsList *list = qemu_find_opts("machine");
1171 int ret;
1173 if (QTAILQ_EMPTY(&list->head) ||
1174 !qemu_opt_get_bool(QTAILQ_FIRST(&list->head),
1175 "kernel_irqchip", true) ||
1176 !kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1177 return 0;
1180 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1181 if (ret < 0) {
1182 fprintf(stderr, "Create kernel irqchip failed\n");
1183 return ret;
1186 s->irqchip_inject_ioctl = KVM_IRQ_LINE;
1187 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
1188 s->irqchip_inject_ioctl = KVM_IRQ_LINE_STATUS;
1190 kvm_kernel_irqchip = true;
1192 kvm_init_irq_routing(s);
1194 return 0;
1197 int kvm_init(void)
1199 static const char upgrade_note[] =
1200 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1201 "(see http://sourceforge.net/projects/kvm).\n";
1202 KVMState *s;
1203 const KVMCapabilityInfo *missing_cap;
1204 int ret;
1205 int i;
1207 s = g_malloc0(sizeof(KVMState));
1210 * On systems where the kernel can support different base page
1211 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1212 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1213 * page size for the system though.
1215 assert(TARGET_PAGE_SIZE <= getpagesize());
1217 #ifdef KVM_CAP_SET_GUEST_DEBUG
1218 QTAILQ_INIT(&s->kvm_sw_breakpoints);
1219 #endif
1220 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
1221 s->slots[i].slot = i;
1223 s->vmfd = -1;
1224 s->fd = qemu_open("/dev/kvm", O_RDWR);
1225 if (s->fd == -1) {
1226 fprintf(stderr, "Could not access KVM kernel module: %m\n");
1227 ret = -errno;
1228 goto err;
1231 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1232 if (ret < KVM_API_VERSION) {
1233 if (ret > 0) {
1234 ret = -EINVAL;
1236 fprintf(stderr, "kvm version too old\n");
1237 goto err;
1240 if (ret > KVM_API_VERSION) {
1241 ret = -EINVAL;
1242 fprintf(stderr, "kvm version not supported\n");
1243 goto err;
1246 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
1247 if (s->vmfd < 0) {
1248 #ifdef TARGET_S390X
1249 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
1250 "your host kernel command line\n");
1251 #endif
1252 ret = s->vmfd;
1253 goto err;
1256 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1257 if (!missing_cap) {
1258 missing_cap =
1259 kvm_check_extension_list(s, kvm_arch_required_capabilities);
1261 if (missing_cap) {
1262 ret = -EINVAL;
1263 fprintf(stderr, "kvm does not support %s\n%s",
1264 missing_cap->name, upgrade_note);
1265 goto err;
1268 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1270 s->broken_set_mem_region = 1;
1271 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
1272 if (ret > 0) {
1273 s->broken_set_mem_region = 0;
1276 #ifdef KVM_CAP_VCPU_EVENTS
1277 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1278 #endif
1280 s->robust_singlestep =
1281 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1283 #ifdef KVM_CAP_DEBUGREGS
1284 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1285 #endif
1287 #ifdef KVM_CAP_XSAVE
1288 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1289 #endif
1291 #ifdef KVM_CAP_XCRS
1292 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1293 #endif
1295 #ifdef KVM_CAP_PIT_STATE2
1296 s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
1297 #endif
1299 #ifdef KVM_CAP_IRQ_ROUTING
1300 s->direct_msi = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
1301 #endif
1303 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
1305 ret = kvm_arch_init(s);
1306 if (ret < 0) {
1307 goto err;
1310 ret = kvm_irqchip_create(s);
1311 if (ret < 0) {
1312 goto err;
1315 kvm_state = s;
1316 memory_listener_register(&kvm_memory_listener, NULL);
1318 s->many_ioeventfds = kvm_check_many_ioeventfds();
1320 cpu_interrupt_handler = kvm_handle_interrupt;
1322 return 0;
1324 err:
1325 if (s) {
1326 if (s->vmfd >= 0) {
1327 close(s->vmfd);
1329 if (s->fd != -1) {
1330 close(s->fd);
1333 g_free(s);
1335 return ret;
1338 static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
1339 uint32_t count)
1341 int i;
1342 uint8_t *ptr = data;
1344 for (i = 0; i < count; i++) {
1345 if (direction == KVM_EXIT_IO_IN) {
1346 switch (size) {
1347 case 1:
1348 stb_p(ptr, cpu_inb(port));
1349 break;
1350 case 2:
1351 stw_p(ptr, cpu_inw(port));
1352 break;
1353 case 4:
1354 stl_p(ptr, cpu_inl(port));
1355 break;
1357 } else {
1358 switch (size) {
1359 case 1:
1360 cpu_outb(port, ldub_p(ptr));
1361 break;
1362 case 2:
1363 cpu_outw(port, lduw_p(ptr));
1364 break;
1365 case 4:
1366 cpu_outl(port, ldl_p(ptr));
1367 break;
1371 ptr += size;
1375 static int kvm_handle_internal_error(CPUArchState *env, struct kvm_run *run)
1377 fprintf(stderr, "KVM internal error.");
1378 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1379 int i;
1381 fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
1382 for (i = 0; i < run->internal.ndata; ++i) {
1383 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1384 i, (uint64_t)run->internal.data[i]);
1386 } else {
1387 fprintf(stderr, "\n");
1389 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1390 fprintf(stderr, "emulation failure\n");
1391 if (!kvm_arch_stop_on_emulation_error(env)) {
1392 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1393 return EXCP_INTERRUPT;
1396 /* FIXME: Should trigger a qmp message to let management know
1397 * something went wrong.
1399 return -1;
1402 void kvm_flush_coalesced_mmio_buffer(void)
1404 KVMState *s = kvm_state;
1406 if (s->coalesced_flush_in_progress) {
1407 return;
1410 s->coalesced_flush_in_progress = true;
1412 if (s->coalesced_mmio_ring) {
1413 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1414 while (ring->first != ring->last) {
1415 struct kvm_coalesced_mmio *ent;
1417 ent = &ring->coalesced_mmio[ring->first];
1419 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1420 smp_wmb();
1421 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1425 s->coalesced_flush_in_progress = false;
1428 static void do_kvm_cpu_synchronize_state(void *_env)
1430 CPUArchState *env = _env;
1432 if (!env->kvm_vcpu_dirty) {
1433 kvm_arch_get_registers(env);
1434 env->kvm_vcpu_dirty = 1;
1438 void kvm_cpu_synchronize_state(CPUArchState *env)
1440 if (!env->kvm_vcpu_dirty) {
1441 run_on_cpu(env, do_kvm_cpu_synchronize_state, env);
1445 void kvm_cpu_synchronize_post_reset(CPUArchState *env)
1447 kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
1448 env->kvm_vcpu_dirty = 0;
1451 void kvm_cpu_synchronize_post_init(CPUArchState *env)
1453 kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
1454 env->kvm_vcpu_dirty = 0;
1457 int kvm_cpu_exec(CPUArchState *env)
1459 struct kvm_run *run = env->kvm_run;
1460 int ret, run_ret;
1462 DPRINTF("kvm_cpu_exec()\n");
1464 if (kvm_arch_process_async_events(env)) {
1465 env->exit_request = 0;
1466 return EXCP_HLT;
1469 do {
1470 if (env->kvm_vcpu_dirty) {
1471 kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
1472 env->kvm_vcpu_dirty = 0;
1475 kvm_arch_pre_run(env, run);
1476 if (env->exit_request) {
1477 DPRINTF("interrupt exit requested\n");
1479 * KVM requires us to reenter the kernel after IO exits to complete
1480 * instruction emulation. This self-signal will ensure that we
1481 * leave ASAP again.
1483 qemu_cpu_kick_self();
1485 qemu_mutex_unlock_iothread();
1487 run_ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
1489 qemu_mutex_lock_iothread();
1490 kvm_arch_post_run(env, run);
1492 kvm_flush_coalesced_mmio_buffer();
1494 if (run_ret < 0) {
1495 if (run_ret == -EINTR || run_ret == -EAGAIN) {
1496 DPRINTF("io window exit\n");
1497 ret = EXCP_INTERRUPT;
1498 break;
1500 fprintf(stderr, "error: kvm run failed %s\n",
1501 strerror(-run_ret));
1502 abort();
1505 switch (run->exit_reason) {
1506 case KVM_EXIT_IO:
1507 DPRINTF("handle_io\n");
1508 kvm_handle_io(run->io.port,
1509 (uint8_t *)run + run->io.data_offset,
1510 run->io.direction,
1511 run->io.size,
1512 run->io.count);
1513 ret = 0;
1514 break;
1515 case KVM_EXIT_MMIO:
1516 DPRINTF("handle_mmio\n");
1517 cpu_physical_memory_rw(run->mmio.phys_addr,
1518 run->mmio.data,
1519 run->mmio.len,
1520 run->mmio.is_write);
1521 ret = 0;
1522 break;
1523 case KVM_EXIT_IRQ_WINDOW_OPEN:
1524 DPRINTF("irq_window_open\n");
1525 ret = EXCP_INTERRUPT;
1526 break;
1527 case KVM_EXIT_SHUTDOWN:
1528 DPRINTF("shutdown\n");
1529 qemu_system_reset_request();
1530 ret = EXCP_INTERRUPT;
1531 break;
1532 case KVM_EXIT_UNKNOWN:
1533 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1534 (uint64_t)run->hw.hardware_exit_reason);
1535 ret = -1;
1536 break;
1537 case KVM_EXIT_INTERNAL_ERROR:
1538 ret = kvm_handle_internal_error(env, run);
1539 break;
1540 default:
1541 DPRINTF("kvm_arch_handle_exit\n");
1542 ret = kvm_arch_handle_exit(env, run);
1543 break;
1545 } while (ret == 0);
1547 if (ret < 0) {
1548 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1549 vm_stop(RUN_STATE_INTERNAL_ERROR);
1552 env->exit_request = 0;
1553 return ret;
1556 int kvm_ioctl(KVMState *s, int type, ...)
1558 int ret;
1559 void *arg;
1560 va_list ap;
1562 va_start(ap, type);
1563 arg = va_arg(ap, void *);
1564 va_end(ap);
1566 ret = ioctl(s->fd, type, arg);
1567 if (ret == -1) {
1568 ret = -errno;
1570 return ret;
1573 int kvm_vm_ioctl(KVMState *s, int type, ...)
1575 int ret;
1576 void *arg;
1577 va_list ap;
1579 va_start(ap, type);
1580 arg = va_arg(ap, void *);
1581 va_end(ap);
1583 ret = ioctl(s->vmfd, type, arg);
1584 if (ret == -1) {
1585 ret = -errno;
1587 return ret;
1590 int kvm_vcpu_ioctl(CPUArchState *env, int type, ...)
1592 int ret;
1593 void *arg;
1594 va_list ap;
1596 va_start(ap, type);
1597 arg = va_arg(ap, void *);
1598 va_end(ap);
1600 ret = ioctl(env->kvm_fd, type, arg);
1601 if (ret == -1) {
1602 ret = -errno;
1604 return ret;
1607 int kvm_has_sync_mmu(void)
1609 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1612 int kvm_has_vcpu_events(void)
1614 return kvm_state->vcpu_events;
1617 int kvm_has_robust_singlestep(void)
1619 return kvm_state->robust_singlestep;
1622 int kvm_has_debugregs(void)
1624 return kvm_state->debugregs;
1627 int kvm_has_xsave(void)
1629 return kvm_state->xsave;
1632 int kvm_has_xcrs(void)
1634 return kvm_state->xcrs;
1637 int kvm_has_pit_state2(void)
1639 return kvm_state->pit_state2;
1642 int kvm_has_many_ioeventfds(void)
1644 if (!kvm_enabled()) {
1645 return 0;
1647 return kvm_state->many_ioeventfds;
1650 int kvm_has_gsi_routing(void)
1652 #ifdef KVM_CAP_IRQ_ROUTING
1653 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
1654 #else
1655 return false;
1656 #endif
1659 int kvm_has_intx_set_mask(void)
1661 return kvm_state->intx_set_mask;
1664 int kvm_allows_irq0_override(void)
1666 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
1669 void kvm_setup_guest_memory(void *start, size_t size)
1671 if (!kvm_has_sync_mmu()) {
1672 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1674 if (ret) {
1675 perror("qemu_madvise");
1676 fprintf(stderr,
1677 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1678 exit(1);
1683 #ifdef KVM_CAP_SET_GUEST_DEBUG
1684 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUArchState *env,
1685 target_ulong pc)
1687 struct kvm_sw_breakpoint *bp;
1689 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
1690 if (bp->pc == pc) {
1691 return bp;
1694 return NULL;
1697 int kvm_sw_breakpoints_active(CPUArchState *env)
1699 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
1702 struct kvm_set_guest_debug_data {
1703 struct kvm_guest_debug dbg;
1704 CPUArchState *env;
1705 int err;
1708 static void kvm_invoke_set_guest_debug(void *data)
1710 struct kvm_set_guest_debug_data *dbg_data = data;
1711 CPUArchState *env = dbg_data->env;
1713 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
1716 int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap)
1718 struct kvm_set_guest_debug_data data;
1720 data.dbg.control = reinject_trap;
1722 if (env->singlestep_enabled) {
1723 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1725 kvm_arch_update_guest_debug(env, &data.dbg);
1726 data.env = env;
1728 run_on_cpu(env, kvm_invoke_set_guest_debug, &data);
1729 return data.err;
1732 int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr,
1733 target_ulong len, int type)
1735 struct kvm_sw_breakpoint *bp;
1736 CPUArchState *env;
1737 int err;
1739 if (type == GDB_BREAKPOINT_SW) {
1740 bp = kvm_find_sw_breakpoint(current_env, addr);
1741 if (bp) {
1742 bp->use_count++;
1743 return 0;
1746 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
1747 if (!bp) {
1748 return -ENOMEM;
1751 bp->pc = addr;
1752 bp->use_count = 1;
1753 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1754 if (err) {
1755 g_free(bp);
1756 return err;
1759 QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
1760 bp, entry);
1761 } else {
1762 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1763 if (err) {
1764 return err;
1768 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1769 err = kvm_update_guest_debug(env, 0);
1770 if (err) {
1771 return err;
1774 return 0;
1777 int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr,
1778 target_ulong len, int type)
1780 struct kvm_sw_breakpoint *bp;
1781 CPUArchState *env;
1782 int err;
1784 if (type == GDB_BREAKPOINT_SW) {
1785 bp = kvm_find_sw_breakpoint(current_env, addr);
1786 if (!bp) {
1787 return -ENOENT;
1790 if (bp->use_count > 1) {
1791 bp->use_count--;
1792 return 0;
1795 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1796 if (err) {
1797 return err;
1800 QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1801 g_free(bp);
1802 } else {
1803 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1804 if (err) {
1805 return err;
1809 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1810 err = kvm_update_guest_debug(env, 0);
1811 if (err) {
1812 return err;
1815 return 0;
1818 void kvm_remove_all_breakpoints(CPUArchState *current_env)
1820 struct kvm_sw_breakpoint *bp, *next;
1821 KVMState *s = current_env->kvm_state;
1822 CPUArchState *env;
1824 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1825 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1826 /* Try harder to find a CPU that currently sees the breakpoint. */
1827 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1828 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) {
1829 break;
1834 kvm_arch_remove_all_hw_breakpoints();
1836 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1837 kvm_update_guest_debug(env, 0);
1841 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1843 int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap)
1845 return -EINVAL;
1848 int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr,
1849 target_ulong len, int type)
1851 return -EINVAL;
1854 int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr,
1855 target_ulong len, int type)
1857 return -EINVAL;
1860 void kvm_remove_all_breakpoints(CPUArchState *current_env)
1863 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1865 int kvm_set_signal_mask(CPUArchState *env, const sigset_t *sigset)
1867 struct kvm_signal_mask *sigmask;
1868 int r;
1870 if (!sigset) {
1871 return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
1874 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
1876 sigmask->len = 8;
1877 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1878 r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1879 g_free(sigmask);
1881 return r;
1884 int kvm_set_ioeventfd_mmio(int fd, uint32_t addr, uint32_t val, bool assign,
1885 uint32_t size)
1887 int ret;
1888 struct kvm_ioeventfd iofd;
1890 iofd.datamatch = val;
1891 iofd.addr = addr;
1892 iofd.len = size;
1893 iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH;
1894 iofd.fd = fd;
1896 if (!kvm_enabled()) {
1897 return -ENOSYS;
1900 if (!assign) {
1901 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1904 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1906 if (ret < 0) {
1907 return -errno;
1910 return 0;
1913 int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
1915 struct kvm_ioeventfd kick = {
1916 .datamatch = val,
1917 .addr = addr,
1918 .len = 2,
1919 .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
1920 .fd = fd,
1922 int r;
1923 if (!kvm_enabled()) {
1924 return -ENOSYS;
1926 if (!assign) {
1927 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1929 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1930 if (r < 0) {
1931 return r;
1933 return 0;
1936 int kvm_on_sigbus_vcpu(CPUArchState *env, int code, void *addr)
1938 return kvm_arch_on_sigbus_vcpu(env, code, addr);
1941 int kvm_on_sigbus(int code, void *addr)
1943 return kvm_arch_on_sigbus(code, addr);
1946 #undef PAGE_SIZE
1947 #include "qemu-kvm.c"