Add PAPR H_VIO_SIGNAL hypercall and infrastructure for VIO interrupts
[qemu-kvm.git] / gdbstub.c
blob1e9f9312dea51067242219b0493c2fa6614d2725
1 /*
2 * gdb server stub
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "config.h"
20 #include "qemu-common.h"
21 #ifdef CONFIG_USER_ONLY
22 #include <stdlib.h>
23 #include <stdio.h>
24 #include <stdarg.h>
25 #include <string.h>
26 #include <errno.h>
27 #include <unistd.h>
28 #include <fcntl.h>
30 #include "qemu.h"
31 #else
32 #include "monitor.h"
33 #include "qemu-char.h"
34 #include "sysemu.h"
35 #include "gdbstub.h"
36 #endif
38 #define MAX_PACKET_LENGTH 4096
40 #include "exec-all.h"
41 #include "qemu_socket.h"
42 #include "kvm.h"
45 enum {
46 GDB_SIGNAL_0 = 0,
47 GDB_SIGNAL_INT = 2,
48 GDB_SIGNAL_TRAP = 5,
49 GDB_SIGNAL_UNKNOWN = 143
52 #ifdef CONFIG_USER_ONLY
54 /* Map target signal numbers to GDB protocol signal numbers and vice
55 * versa. For user emulation's currently supported systems, we can
56 * assume most signals are defined.
59 static int gdb_signal_table[] = {
61 TARGET_SIGHUP,
62 TARGET_SIGINT,
63 TARGET_SIGQUIT,
64 TARGET_SIGILL,
65 TARGET_SIGTRAP,
66 TARGET_SIGABRT,
67 -1, /* SIGEMT */
68 TARGET_SIGFPE,
69 TARGET_SIGKILL,
70 TARGET_SIGBUS,
71 TARGET_SIGSEGV,
72 TARGET_SIGSYS,
73 TARGET_SIGPIPE,
74 TARGET_SIGALRM,
75 TARGET_SIGTERM,
76 TARGET_SIGURG,
77 TARGET_SIGSTOP,
78 TARGET_SIGTSTP,
79 TARGET_SIGCONT,
80 TARGET_SIGCHLD,
81 TARGET_SIGTTIN,
82 TARGET_SIGTTOU,
83 TARGET_SIGIO,
84 TARGET_SIGXCPU,
85 TARGET_SIGXFSZ,
86 TARGET_SIGVTALRM,
87 TARGET_SIGPROF,
88 TARGET_SIGWINCH,
89 -1, /* SIGLOST */
90 TARGET_SIGUSR1,
91 TARGET_SIGUSR2,
92 #ifdef TARGET_SIGPWR
93 TARGET_SIGPWR,
94 #else
95 -1,
96 #endif
97 -1, /* SIGPOLL */
98 -1,
99 -1,
109 #ifdef __SIGRTMIN
110 __SIGRTMIN + 1,
111 __SIGRTMIN + 2,
112 __SIGRTMIN + 3,
113 __SIGRTMIN + 4,
114 __SIGRTMIN + 5,
115 __SIGRTMIN + 6,
116 __SIGRTMIN + 7,
117 __SIGRTMIN + 8,
118 __SIGRTMIN + 9,
119 __SIGRTMIN + 10,
120 __SIGRTMIN + 11,
121 __SIGRTMIN + 12,
122 __SIGRTMIN + 13,
123 __SIGRTMIN + 14,
124 __SIGRTMIN + 15,
125 __SIGRTMIN + 16,
126 __SIGRTMIN + 17,
127 __SIGRTMIN + 18,
128 __SIGRTMIN + 19,
129 __SIGRTMIN + 20,
130 __SIGRTMIN + 21,
131 __SIGRTMIN + 22,
132 __SIGRTMIN + 23,
133 __SIGRTMIN + 24,
134 __SIGRTMIN + 25,
135 __SIGRTMIN + 26,
136 __SIGRTMIN + 27,
137 __SIGRTMIN + 28,
138 __SIGRTMIN + 29,
139 __SIGRTMIN + 30,
140 __SIGRTMIN + 31,
141 -1, /* SIGCANCEL */
142 __SIGRTMIN,
143 __SIGRTMIN + 32,
144 __SIGRTMIN + 33,
145 __SIGRTMIN + 34,
146 __SIGRTMIN + 35,
147 __SIGRTMIN + 36,
148 __SIGRTMIN + 37,
149 __SIGRTMIN + 38,
150 __SIGRTMIN + 39,
151 __SIGRTMIN + 40,
152 __SIGRTMIN + 41,
153 __SIGRTMIN + 42,
154 __SIGRTMIN + 43,
155 __SIGRTMIN + 44,
156 __SIGRTMIN + 45,
157 __SIGRTMIN + 46,
158 __SIGRTMIN + 47,
159 __SIGRTMIN + 48,
160 __SIGRTMIN + 49,
161 __SIGRTMIN + 50,
162 __SIGRTMIN + 51,
163 __SIGRTMIN + 52,
164 __SIGRTMIN + 53,
165 __SIGRTMIN + 54,
166 __SIGRTMIN + 55,
167 __SIGRTMIN + 56,
168 __SIGRTMIN + 57,
169 __SIGRTMIN + 58,
170 __SIGRTMIN + 59,
171 __SIGRTMIN + 60,
172 __SIGRTMIN + 61,
173 __SIGRTMIN + 62,
174 __SIGRTMIN + 63,
175 __SIGRTMIN + 64,
176 __SIGRTMIN + 65,
177 __SIGRTMIN + 66,
178 __SIGRTMIN + 67,
179 __SIGRTMIN + 68,
180 __SIGRTMIN + 69,
181 __SIGRTMIN + 70,
182 __SIGRTMIN + 71,
183 __SIGRTMIN + 72,
184 __SIGRTMIN + 73,
185 __SIGRTMIN + 74,
186 __SIGRTMIN + 75,
187 __SIGRTMIN + 76,
188 __SIGRTMIN + 77,
189 __SIGRTMIN + 78,
190 __SIGRTMIN + 79,
191 __SIGRTMIN + 80,
192 __SIGRTMIN + 81,
193 __SIGRTMIN + 82,
194 __SIGRTMIN + 83,
195 __SIGRTMIN + 84,
196 __SIGRTMIN + 85,
197 __SIGRTMIN + 86,
198 __SIGRTMIN + 87,
199 __SIGRTMIN + 88,
200 __SIGRTMIN + 89,
201 __SIGRTMIN + 90,
202 __SIGRTMIN + 91,
203 __SIGRTMIN + 92,
204 __SIGRTMIN + 93,
205 __SIGRTMIN + 94,
206 __SIGRTMIN + 95,
207 -1, /* SIGINFO */
208 -1, /* UNKNOWN */
209 -1, /* DEFAULT */
216 #endif
218 #else
219 /* In system mode we only need SIGINT and SIGTRAP; other signals
220 are not yet supported. */
222 enum {
223 TARGET_SIGINT = 2,
224 TARGET_SIGTRAP = 5
227 static int gdb_signal_table[] = {
230 TARGET_SIGINT,
233 TARGET_SIGTRAP
235 #endif
237 #ifdef CONFIG_USER_ONLY
238 static int target_signal_to_gdb (int sig)
240 int i;
241 for (i = 0; i < ARRAY_SIZE (gdb_signal_table); i++)
242 if (gdb_signal_table[i] == sig)
243 return i;
244 return GDB_SIGNAL_UNKNOWN;
246 #endif
248 static int gdb_signal_to_target (int sig)
250 if (sig < ARRAY_SIZE (gdb_signal_table))
251 return gdb_signal_table[sig];
252 else
253 return -1;
256 //#define DEBUG_GDB
258 typedef struct GDBRegisterState {
259 int base_reg;
260 int num_regs;
261 gdb_reg_cb get_reg;
262 gdb_reg_cb set_reg;
263 const char *xml;
264 struct GDBRegisterState *next;
265 } GDBRegisterState;
267 enum RSState {
268 RS_INACTIVE,
269 RS_IDLE,
270 RS_GETLINE,
271 RS_CHKSUM1,
272 RS_CHKSUM2,
273 RS_SYSCALL,
275 typedef struct GDBState {
276 CPUState *c_cpu; /* current CPU for step/continue ops */
277 CPUState *g_cpu; /* current CPU for other ops */
278 CPUState *query_cpu; /* for q{f|s}ThreadInfo */
279 enum RSState state; /* parsing state */
280 char line_buf[MAX_PACKET_LENGTH];
281 int line_buf_index;
282 int line_csum;
283 uint8_t last_packet[MAX_PACKET_LENGTH + 4];
284 int last_packet_len;
285 int signal;
286 #ifdef CONFIG_USER_ONLY
287 int fd;
288 int running_state;
289 #else
290 CharDriverState *chr;
291 CharDriverState *mon_chr;
292 #endif
293 } GDBState;
295 /* By default use no IRQs and no timers while single stepping so as to
296 * make single stepping like an ICE HW step.
298 static int sstep_flags = SSTEP_ENABLE|SSTEP_NOIRQ|SSTEP_NOTIMER;
300 static GDBState *gdbserver_state;
302 /* This is an ugly hack to cope with both new and old gdb.
303 If gdb sends qXfer:features:read then assume we're talking to a newish
304 gdb that understands target descriptions. */
305 static int gdb_has_xml;
307 #ifdef CONFIG_USER_ONLY
308 /* XXX: This is not thread safe. Do we care? */
309 static int gdbserver_fd = -1;
311 static int get_char(GDBState *s)
313 uint8_t ch;
314 int ret;
316 for(;;) {
317 ret = recv(s->fd, &ch, 1, 0);
318 if (ret < 0) {
319 if (errno == ECONNRESET)
320 s->fd = -1;
321 if (errno != EINTR && errno != EAGAIN)
322 return -1;
323 } else if (ret == 0) {
324 close(s->fd);
325 s->fd = -1;
326 return -1;
327 } else {
328 break;
331 return ch;
333 #endif
335 static gdb_syscall_complete_cb gdb_current_syscall_cb;
337 static enum {
338 GDB_SYS_UNKNOWN,
339 GDB_SYS_ENABLED,
340 GDB_SYS_DISABLED,
341 } gdb_syscall_mode;
343 /* If gdb is connected when the first semihosting syscall occurs then use
344 remote gdb syscalls. Otherwise use native file IO. */
345 int use_gdb_syscalls(void)
347 if (gdb_syscall_mode == GDB_SYS_UNKNOWN) {
348 gdb_syscall_mode = (gdbserver_state ? GDB_SYS_ENABLED
349 : GDB_SYS_DISABLED);
351 return gdb_syscall_mode == GDB_SYS_ENABLED;
354 /* Resume execution. */
355 static inline void gdb_continue(GDBState *s)
357 #ifdef CONFIG_USER_ONLY
358 s->running_state = 1;
359 #else
360 vm_start();
361 #endif
364 static void put_buffer(GDBState *s, const uint8_t *buf, int len)
366 #ifdef CONFIG_USER_ONLY
367 int ret;
369 while (len > 0) {
370 ret = send(s->fd, buf, len, 0);
371 if (ret < 0) {
372 if (errno != EINTR && errno != EAGAIN)
373 return;
374 } else {
375 buf += ret;
376 len -= ret;
379 #else
380 qemu_chr_write(s->chr, buf, len);
381 #endif
384 static inline int fromhex(int v)
386 if (v >= '0' && v <= '9')
387 return v - '0';
388 else if (v >= 'A' && v <= 'F')
389 return v - 'A' + 10;
390 else if (v >= 'a' && v <= 'f')
391 return v - 'a' + 10;
392 else
393 return 0;
396 static inline int tohex(int v)
398 if (v < 10)
399 return v + '0';
400 else
401 return v - 10 + 'a';
404 static void memtohex(char *buf, const uint8_t *mem, int len)
406 int i, c;
407 char *q;
408 q = buf;
409 for(i = 0; i < len; i++) {
410 c = mem[i];
411 *q++ = tohex(c >> 4);
412 *q++ = tohex(c & 0xf);
414 *q = '\0';
417 static void hextomem(uint8_t *mem, const char *buf, int len)
419 int i;
421 for(i = 0; i < len; i++) {
422 mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]);
423 buf += 2;
427 /* return -1 if error, 0 if OK */
428 static int put_packet_binary(GDBState *s, const char *buf, int len)
430 int csum, i;
431 uint8_t *p;
433 for(;;) {
434 p = s->last_packet;
435 *(p++) = '$';
436 memcpy(p, buf, len);
437 p += len;
438 csum = 0;
439 for(i = 0; i < len; i++) {
440 csum += buf[i];
442 *(p++) = '#';
443 *(p++) = tohex((csum >> 4) & 0xf);
444 *(p++) = tohex((csum) & 0xf);
446 s->last_packet_len = p - s->last_packet;
447 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
449 #ifdef CONFIG_USER_ONLY
450 i = get_char(s);
451 if (i < 0)
452 return -1;
453 if (i == '+')
454 break;
455 #else
456 break;
457 #endif
459 return 0;
462 /* return -1 if error, 0 if OK */
463 static int put_packet(GDBState *s, const char *buf)
465 #ifdef DEBUG_GDB
466 printf("reply='%s'\n", buf);
467 #endif
469 return put_packet_binary(s, buf, strlen(buf));
472 /* The GDB remote protocol transfers values in target byte order. This means
473 we can use the raw memory access routines to access the value buffer.
474 Conveniently, these also handle the case where the buffer is mis-aligned.
476 #define GET_REG8(val) do { \
477 stb_p(mem_buf, val); \
478 return 1; \
479 } while(0)
480 #define GET_REG16(val) do { \
481 stw_p(mem_buf, val); \
482 return 2; \
483 } while(0)
484 #define GET_REG32(val) do { \
485 stl_p(mem_buf, val); \
486 return 4; \
487 } while(0)
488 #define GET_REG64(val) do { \
489 stq_p(mem_buf, val); \
490 return 8; \
491 } while(0)
493 #if TARGET_LONG_BITS == 64
494 #define GET_REGL(val) GET_REG64(val)
495 #define ldtul_p(addr) ldq_p(addr)
496 #else
497 #define GET_REGL(val) GET_REG32(val)
498 #define ldtul_p(addr) ldl_p(addr)
499 #endif
501 #if defined(TARGET_I386)
503 #ifdef TARGET_X86_64
504 static const int gpr_map[16] = {
505 R_EAX, R_EBX, R_ECX, R_EDX, R_ESI, R_EDI, R_EBP, R_ESP,
506 8, 9, 10, 11, 12, 13, 14, 15
508 #else
509 #define gpr_map gpr_map32
510 #endif
511 static const int gpr_map32[8] = { 0, 1, 2, 3, 4, 5, 6, 7 };
513 #define NUM_CORE_REGS (CPU_NB_REGS * 2 + 25)
515 #define IDX_IP_REG CPU_NB_REGS
516 #define IDX_FLAGS_REG (IDX_IP_REG + 1)
517 #define IDX_SEG_REGS (IDX_FLAGS_REG + 1)
518 #define IDX_FP_REGS (IDX_SEG_REGS + 6)
519 #define IDX_XMM_REGS (IDX_FP_REGS + 16)
520 #define IDX_MXCSR_REG (IDX_XMM_REGS + CPU_NB_REGS)
522 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
524 if (n < CPU_NB_REGS) {
525 if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
526 GET_REG64(env->regs[gpr_map[n]]);
527 } else if (n < CPU_NB_REGS32) {
528 GET_REG32(env->regs[gpr_map32[n]]);
530 } else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) {
531 #ifdef USE_X86LDOUBLE
532 /* FIXME: byteswap float values - after fixing fpregs layout. */
533 memcpy(mem_buf, &env->fpregs[n - IDX_FP_REGS], 10);
534 #else
535 memset(mem_buf, 0, 10);
536 #endif
537 return 10;
538 } else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) {
539 n -= IDX_XMM_REGS;
540 if (n < CPU_NB_REGS32 ||
541 (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK)) {
542 stq_p(mem_buf, env->xmm_regs[n].XMM_Q(0));
543 stq_p(mem_buf + 8, env->xmm_regs[n].XMM_Q(1));
544 return 16;
546 } else {
547 switch (n) {
548 case IDX_IP_REG:
549 if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
550 GET_REG64(env->eip);
551 } else {
552 GET_REG32(env->eip);
554 case IDX_FLAGS_REG: GET_REG32(env->eflags);
556 case IDX_SEG_REGS: GET_REG32(env->segs[R_CS].selector);
557 case IDX_SEG_REGS + 1: GET_REG32(env->segs[R_SS].selector);
558 case IDX_SEG_REGS + 2: GET_REG32(env->segs[R_DS].selector);
559 case IDX_SEG_REGS + 3: GET_REG32(env->segs[R_ES].selector);
560 case IDX_SEG_REGS + 4: GET_REG32(env->segs[R_FS].selector);
561 case IDX_SEG_REGS + 5: GET_REG32(env->segs[R_GS].selector);
563 case IDX_FP_REGS + 8: GET_REG32(env->fpuc);
564 case IDX_FP_REGS + 9: GET_REG32((env->fpus & ~0x3800) |
565 (env->fpstt & 0x7) << 11);
566 case IDX_FP_REGS + 10: GET_REG32(0); /* ftag */
567 case IDX_FP_REGS + 11: GET_REG32(0); /* fiseg */
568 case IDX_FP_REGS + 12: GET_REG32(0); /* fioff */
569 case IDX_FP_REGS + 13: GET_REG32(0); /* foseg */
570 case IDX_FP_REGS + 14: GET_REG32(0); /* fooff */
571 case IDX_FP_REGS + 15: GET_REG32(0); /* fop */
573 case IDX_MXCSR_REG: GET_REG32(env->mxcsr);
576 return 0;
579 static int cpu_x86_gdb_load_seg(CPUState *env, int sreg, uint8_t *mem_buf)
581 uint16_t selector = ldl_p(mem_buf);
583 if (selector != env->segs[sreg].selector) {
584 #if defined(CONFIG_USER_ONLY)
585 cpu_x86_load_seg(env, sreg, selector);
586 #else
587 unsigned int limit, flags;
588 target_ulong base;
590 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
591 base = selector << 4;
592 limit = 0xffff;
593 flags = 0;
594 } else {
595 if (!cpu_x86_get_descr_debug(env, selector, &base, &limit, &flags))
596 return 4;
598 cpu_x86_load_seg_cache(env, sreg, selector, base, limit, flags);
599 #endif
601 return 4;
604 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
606 uint32_t tmp;
608 if (n < CPU_NB_REGS) {
609 if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
610 env->regs[gpr_map[n]] = ldtul_p(mem_buf);
611 return sizeof(target_ulong);
612 } else if (n < CPU_NB_REGS32) {
613 n = gpr_map32[n];
614 env->regs[n] &= ~0xffffffffUL;
615 env->regs[n] |= (uint32_t)ldl_p(mem_buf);
616 return 4;
618 } else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) {
619 #ifdef USE_X86LDOUBLE
620 /* FIXME: byteswap float values - after fixing fpregs layout. */
621 memcpy(&env->fpregs[n - IDX_FP_REGS], mem_buf, 10);
622 #endif
623 return 10;
624 } else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) {
625 n -= IDX_XMM_REGS;
626 if (n < CPU_NB_REGS32 ||
627 (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK)) {
628 env->xmm_regs[n].XMM_Q(0) = ldq_p(mem_buf);
629 env->xmm_regs[n].XMM_Q(1) = ldq_p(mem_buf + 8);
630 return 16;
632 } else {
633 switch (n) {
634 case IDX_IP_REG:
635 if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
636 env->eip = ldq_p(mem_buf);
637 return 8;
638 } else {
639 env->eip &= ~0xffffffffUL;
640 env->eip |= (uint32_t)ldl_p(mem_buf);
641 return 4;
643 case IDX_FLAGS_REG:
644 env->eflags = ldl_p(mem_buf);
645 return 4;
647 case IDX_SEG_REGS: return cpu_x86_gdb_load_seg(env, R_CS, mem_buf);
648 case IDX_SEG_REGS + 1: return cpu_x86_gdb_load_seg(env, R_SS, mem_buf);
649 case IDX_SEG_REGS + 2: return cpu_x86_gdb_load_seg(env, R_DS, mem_buf);
650 case IDX_SEG_REGS + 3: return cpu_x86_gdb_load_seg(env, R_ES, mem_buf);
651 case IDX_SEG_REGS + 4: return cpu_x86_gdb_load_seg(env, R_FS, mem_buf);
652 case IDX_SEG_REGS + 5: return cpu_x86_gdb_load_seg(env, R_GS, mem_buf);
654 case IDX_FP_REGS + 8:
655 env->fpuc = ldl_p(mem_buf);
656 return 4;
657 case IDX_FP_REGS + 9:
658 tmp = ldl_p(mem_buf);
659 env->fpstt = (tmp >> 11) & 7;
660 env->fpus = tmp & ~0x3800;
661 return 4;
662 case IDX_FP_REGS + 10: /* ftag */ return 4;
663 case IDX_FP_REGS + 11: /* fiseg */ return 4;
664 case IDX_FP_REGS + 12: /* fioff */ return 4;
665 case IDX_FP_REGS + 13: /* foseg */ return 4;
666 case IDX_FP_REGS + 14: /* fooff */ return 4;
667 case IDX_FP_REGS + 15: /* fop */ return 4;
669 case IDX_MXCSR_REG:
670 env->mxcsr = ldl_p(mem_buf);
671 return 4;
674 /* Unrecognised register. */
675 return 0;
678 #elif defined (TARGET_PPC)
680 /* Old gdb always expects FP registers. Newer (xml-aware) gdb only
681 expects whatever the target description contains. Due to a
682 historical mishap the FP registers appear in between core integer
683 regs and PC, MSR, CR, and so forth. We hack round this by giving the
684 FP regs zero size when talking to a newer gdb. */
685 #define NUM_CORE_REGS 71
686 #if defined (TARGET_PPC64)
687 #define GDB_CORE_XML "power64-core.xml"
688 #else
689 #define GDB_CORE_XML "power-core.xml"
690 #endif
692 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
694 if (n < 32) {
695 /* gprs */
696 GET_REGL(env->gpr[n]);
697 } else if (n < 64) {
698 /* fprs */
699 if (gdb_has_xml)
700 return 0;
701 stfq_p(mem_buf, env->fpr[n-32]);
702 return 8;
703 } else {
704 switch (n) {
705 case 64: GET_REGL(env->nip);
706 case 65: GET_REGL(env->msr);
707 case 66:
709 uint32_t cr = 0;
710 int i;
711 for (i = 0; i < 8; i++)
712 cr |= env->crf[i] << (32 - ((i + 1) * 4));
713 GET_REG32(cr);
715 case 67: GET_REGL(env->lr);
716 case 68: GET_REGL(env->ctr);
717 case 69: GET_REGL(env->xer);
718 case 70:
720 if (gdb_has_xml)
721 return 0;
722 GET_REG32(0); /* fpscr */
726 return 0;
729 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
731 if (n < 32) {
732 /* gprs */
733 env->gpr[n] = ldtul_p(mem_buf);
734 return sizeof(target_ulong);
735 } else if (n < 64) {
736 /* fprs */
737 if (gdb_has_xml)
738 return 0;
739 env->fpr[n-32] = ldfq_p(mem_buf);
740 return 8;
741 } else {
742 switch (n) {
743 case 64:
744 env->nip = ldtul_p(mem_buf);
745 return sizeof(target_ulong);
746 case 65:
747 ppc_store_msr(env, ldtul_p(mem_buf));
748 return sizeof(target_ulong);
749 case 66:
751 uint32_t cr = ldl_p(mem_buf);
752 int i;
753 for (i = 0; i < 8; i++)
754 env->crf[i] = (cr >> (32 - ((i + 1) * 4))) & 0xF;
755 return 4;
757 case 67:
758 env->lr = ldtul_p(mem_buf);
759 return sizeof(target_ulong);
760 case 68:
761 env->ctr = ldtul_p(mem_buf);
762 return sizeof(target_ulong);
763 case 69:
764 env->xer = ldtul_p(mem_buf);
765 return sizeof(target_ulong);
766 case 70:
767 /* fpscr */
768 if (gdb_has_xml)
769 return 0;
770 return 4;
773 return 0;
776 #elif defined (TARGET_SPARC)
778 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
779 #define NUM_CORE_REGS 86
780 #else
781 #define NUM_CORE_REGS 72
782 #endif
784 #ifdef TARGET_ABI32
785 #define GET_REGA(val) GET_REG32(val)
786 #else
787 #define GET_REGA(val) GET_REGL(val)
788 #endif
790 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
792 if (n < 8) {
793 /* g0..g7 */
794 GET_REGA(env->gregs[n]);
796 if (n < 32) {
797 /* register window */
798 GET_REGA(env->regwptr[n - 8]);
800 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
801 if (n < 64) {
802 /* fprs */
803 GET_REG32(*((uint32_t *)&env->fpr[n - 32]));
805 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
806 switch (n) {
807 case 64: GET_REGA(env->y);
808 case 65: GET_REGA(cpu_get_psr(env));
809 case 66: GET_REGA(env->wim);
810 case 67: GET_REGA(env->tbr);
811 case 68: GET_REGA(env->pc);
812 case 69: GET_REGA(env->npc);
813 case 70: GET_REGA(env->fsr);
814 case 71: GET_REGA(0); /* csr */
815 default: GET_REGA(0);
817 #else
818 if (n < 64) {
819 /* f0-f31 */
820 GET_REG32(*((uint32_t *)&env->fpr[n - 32]));
822 if (n < 80) {
823 /* f32-f62 (double width, even numbers only) */
824 uint64_t val;
826 val = (uint64_t)*((uint32_t *)&env->fpr[(n - 64) * 2 + 32]) << 32;
827 val |= *((uint32_t *)&env->fpr[(n - 64) * 2 + 33]);
828 GET_REG64(val);
830 switch (n) {
831 case 80: GET_REGL(env->pc);
832 case 81: GET_REGL(env->npc);
833 case 82: GET_REGL((cpu_get_ccr(env) << 32) |
834 ((env->asi & 0xff) << 24) |
835 ((env->pstate & 0xfff) << 8) |
836 cpu_get_cwp64(env));
837 case 83: GET_REGL(env->fsr);
838 case 84: GET_REGL(env->fprs);
839 case 85: GET_REGL(env->y);
841 #endif
842 return 0;
845 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
847 #if defined(TARGET_ABI32)
848 abi_ulong tmp;
850 tmp = ldl_p(mem_buf);
851 #else
852 target_ulong tmp;
854 tmp = ldtul_p(mem_buf);
855 #endif
857 if (n < 8) {
858 /* g0..g7 */
859 env->gregs[n] = tmp;
860 } else if (n < 32) {
861 /* register window */
862 env->regwptr[n - 8] = tmp;
864 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
865 else if (n < 64) {
866 /* fprs */
867 *((uint32_t *)&env->fpr[n - 32]) = tmp;
868 } else {
869 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
870 switch (n) {
871 case 64: env->y = tmp; break;
872 case 65: cpu_put_psr(env, tmp); break;
873 case 66: env->wim = tmp; break;
874 case 67: env->tbr = tmp; break;
875 case 68: env->pc = tmp; break;
876 case 69: env->npc = tmp; break;
877 case 70: env->fsr = tmp; break;
878 default: return 0;
881 return 4;
882 #else
883 else if (n < 64) {
884 /* f0-f31 */
885 env->fpr[n] = ldfl_p(mem_buf);
886 return 4;
887 } else if (n < 80) {
888 /* f32-f62 (double width, even numbers only) */
889 *((uint32_t *)&env->fpr[(n - 64) * 2 + 32]) = tmp >> 32;
890 *((uint32_t *)&env->fpr[(n - 64) * 2 + 33]) = tmp;
891 } else {
892 switch (n) {
893 case 80: env->pc = tmp; break;
894 case 81: env->npc = tmp; break;
895 case 82:
896 cpu_put_ccr(env, tmp >> 32);
897 env->asi = (tmp >> 24) & 0xff;
898 env->pstate = (tmp >> 8) & 0xfff;
899 cpu_put_cwp64(env, tmp & 0xff);
900 break;
901 case 83: env->fsr = tmp; break;
902 case 84: env->fprs = tmp; break;
903 case 85: env->y = tmp; break;
904 default: return 0;
907 return 8;
908 #endif
910 #elif defined (TARGET_ARM)
912 /* Old gdb always expect FPA registers. Newer (xml-aware) gdb only expect
913 whatever the target description contains. Due to a historical mishap
914 the FPA registers appear in between core integer regs and the CPSR.
915 We hack round this by giving the FPA regs zero size when talking to a
916 newer gdb. */
917 #define NUM_CORE_REGS 26
918 #define GDB_CORE_XML "arm-core.xml"
920 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
922 if (n < 16) {
923 /* Core integer register. */
924 GET_REG32(env->regs[n]);
926 if (n < 24) {
927 /* FPA registers. */
928 if (gdb_has_xml)
929 return 0;
930 memset(mem_buf, 0, 12);
931 return 12;
933 switch (n) {
934 case 24:
935 /* FPA status register. */
936 if (gdb_has_xml)
937 return 0;
938 GET_REG32(0);
939 case 25:
940 /* CPSR */
941 GET_REG32(cpsr_read(env));
943 /* Unknown register. */
944 return 0;
947 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
949 uint32_t tmp;
951 tmp = ldl_p(mem_buf);
953 /* Mask out low bit of PC to workaround gdb bugs. This will probably
954 cause problems if we ever implement the Jazelle DBX extensions. */
955 if (n == 15)
956 tmp &= ~1;
958 if (n < 16) {
959 /* Core integer register. */
960 env->regs[n] = tmp;
961 return 4;
963 if (n < 24) { /* 16-23 */
964 /* FPA registers (ignored). */
965 if (gdb_has_xml)
966 return 0;
967 return 12;
969 switch (n) {
970 case 24:
971 /* FPA status register (ignored). */
972 if (gdb_has_xml)
973 return 0;
974 return 4;
975 case 25:
976 /* CPSR */
977 cpsr_write (env, tmp, 0xffffffff);
978 return 4;
980 /* Unknown register. */
981 return 0;
984 #elif defined (TARGET_M68K)
986 #define NUM_CORE_REGS 18
988 #define GDB_CORE_XML "cf-core.xml"
990 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
992 if (n < 8) {
993 /* D0-D7 */
994 GET_REG32(env->dregs[n]);
995 } else if (n < 16) {
996 /* A0-A7 */
997 GET_REG32(env->aregs[n - 8]);
998 } else {
999 switch (n) {
1000 case 16: GET_REG32(env->sr);
1001 case 17: GET_REG32(env->pc);
1004 /* FP registers not included here because they vary between
1005 ColdFire and m68k. Use XML bits for these. */
1006 return 0;
1009 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1011 uint32_t tmp;
1013 tmp = ldl_p(mem_buf);
1015 if (n < 8) {
1016 /* D0-D7 */
1017 env->dregs[n] = tmp;
1018 } else if (n < 16) {
1019 /* A0-A7 */
1020 env->aregs[n - 8] = tmp;
1021 } else {
1022 switch (n) {
1023 case 16: env->sr = tmp; break;
1024 case 17: env->pc = tmp; break;
1025 default: return 0;
1028 return 4;
1030 #elif defined (TARGET_MIPS)
1032 #define NUM_CORE_REGS 73
1034 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1036 if (n < 32) {
1037 GET_REGL(env->active_tc.gpr[n]);
1039 if (env->CP0_Config1 & (1 << CP0C1_FP)) {
1040 if (n >= 38 && n < 70) {
1041 if (env->CP0_Status & (1 << CP0St_FR))
1042 GET_REGL(env->active_fpu.fpr[n - 38].d);
1043 else
1044 GET_REGL(env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX]);
1046 switch (n) {
1047 case 70: GET_REGL((int32_t)env->active_fpu.fcr31);
1048 case 71: GET_REGL((int32_t)env->active_fpu.fcr0);
1051 switch (n) {
1052 case 32: GET_REGL((int32_t)env->CP0_Status);
1053 case 33: GET_REGL(env->active_tc.LO[0]);
1054 case 34: GET_REGL(env->active_tc.HI[0]);
1055 case 35: GET_REGL(env->CP0_BadVAddr);
1056 case 36: GET_REGL((int32_t)env->CP0_Cause);
1057 case 37: GET_REGL(env->active_tc.PC | !!(env->hflags & MIPS_HFLAG_M16));
1058 case 72: GET_REGL(0); /* fp */
1059 case 89: GET_REGL((int32_t)env->CP0_PRid);
1061 if (n >= 73 && n <= 88) {
1062 /* 16 embedded regs. */
1063 GET_REGL(0);
1066 return 0;
1069 /* convert MIPS rounding mode in FCR31 to IEEE library */
1070 static unsigned int ieee_rm[] =
1072 float_round_nearest_even,
1073 float_round_to_zero,
1074 float_round_up,
1075 float_round_down
1077 #define RESTORE_ROUNDING_MODE \
1078 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
1080 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1082 target_ulong tmp;
1084 tmp = ldtul_p(mem_buf);
1086 if (n < 32) {
1087 env->active_tc.gpr[n] = tmp;
1088 return sizeof(target_ulong);
1090 if (env->CP0_Config1 & (1 << CP0C1_FP)
1091 && n >= 38 && n < 73) {
1092 if (n < 70) {
1093 if (env->CP0_Status & (1 << CP0St_FR))
1094 env->active_fpu.fpr[n - 38].d = tmp;
1095 else
1096 env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX] = tmp;
1098 switch (n) {
1099 case 70:
1100 env->active_fpu.fcr31 = tmp & 0xFF83FFFF;
1101 /* set rounding mode */
1102 RESTORE_ROUNDING_MODE;
1103 #ifndef CONFIG_SOFTFLOAT
1104 /* no floating point exception for native float */
1105 SET_FP_ENABLE(env->active_fpu.fcr31, 0);
1106 #endif
1107 break;
1108 case 71: env->active_fpu.fcr0 = tmp; break;
1110 return sizeof(target_ulong);
1112 switch (n) {
1113 case 32: env->CP0_Status = tmp; break;
1114 case 33: env->active_tc.LO[0] = tmp; break;
1115 case 34: env->active_tc.HI[0] = tmp; break;
1116 case 35: env->CP0_BadVAddr = tmp; break;
1117 case 36: env->CP0_Cause = tmp; break;
1118 case 37:
1119 env->active_tc.PC = tmp & ~(target_ulong)1;
1120 if (tmp & 1) {
1121 env->hflags |= MIPS_HFLAG_M16;
1122 } else {
1123 env->hflags &= ~(MIPS_HFLAG_M16);
1125 break;
1126 case 72: /* fp, ignored */ break;
1127 default:
1128 if (n > 89)
1129 return 0;
1130 /* Other registers are readonly. Ignore writes. */
1131 break;
1134 return sizeof(target_ulong);
1136 #elif defined (TARGET_SH4)
1138 /* Hint: Use "set architecture sh4" in GDB to see fpu registers */
1139 /* FIXME: We should use XML for this. */
1141 #define NUM_CORE_REGS 59
1143 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1145 if (n < 8) {
1146 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
1147 GET_REGL(env->gregs[n + 16]);
1148 } else {
1149 GET_REGL(env->gregs[n]);
1151 } else if (n < 16) {
1152 GET_REGL(env->gregs[n]);
1153 } else if (n >= 25 && n < 41) {
1154 GET_REGL(env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)]);
1155 } else if (n >= 43 && n < 51) {
1156 GET_REGL(env->gregs[n - 43]);
1157 } else if (n >= 51 && n < 59) {
1158 GET_REGL(env->gregs[n - (51 - 16)]);
1160 switch (n) {
1161 case 16: GET_REGL(env->pc);
1162 case 17: GET_REGL(env->pr);
1163 case 18: GET_REGL(env->gbr);
1164 case 19: GET_REGL(env->vbr);
1165 case 20: GET_REGL(env->mach);
1166 case 21: GET_REGL(env->macl);
1167 case 22: GET_REGL(env->sr);
1168 case 23: GET_REGL(env->fpul);
1169 case 24: GET_REGL(env->fpscr);
1170 case 41: GET_REGL(env->ssr);
1171 case 42: GET_REGL(env->spc);
1174 return 0;
1177 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1179 uint32_t tmp;
1181 tmp = ldl_p(mem_buf);
1183 if (n < 8) {
1184 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
1185 env->gregs[n + 16] = tmp;
1186 } else {
1187 env->gregs[n] = tmp;
1189 return 4;
1190 } else if (n < 16) {
1191 env->gregs[n] = tmp;
1192 return 4;
1193 } else if (n >= 25 && n < 41) {
1194 env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)] = tmp;
1195 return 4;
1196 } else if (n >= 43 && n < 51) {
1197 env->gregs[n - 43] = tmp;
1198 return 4;
1199 } else if (n >= 51 && n < 59) {
1200 env->gregs[n - (51 - 16)] = tmp;
1201 return 4;
1203 switch (n) {
1204 case 16: env->pc = tmp; break;
1205 case 17: env->pr = tmp; break;
1206 case 18: env->gbr = tmp; break;
1207 case 19: env->vbr = tmp; break;
1208 case 20: env->mach = tmp; break;
1209 case 21: env->macl = tmp; break;
1210 case 22: env->sr = tmp; break;
1211 case 23: env->fpul = tmp; break;
1212 case 24: env->fpscr = tmp; break;
1213 case 41: env->ssr = tmp; break;
1214 case 42: env->spc = tmp; break;
1215 default: return 0;
1218 return 4;
1220 #elif defined (TARGET_MICROBLAZE)
1222 #define NUM_CORE_REGS (32 + 5)
1224 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1226 if (n < 32) {
1227 GET_REG32(env->regs[n]);
1228 } else {
1229 GET_REG32(env->sregs[n - 32]);
1231 return 0;
1234 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1236 uint32_t tmp;
1238 if (n > NUM_CORE_REGS)
1239 return 0;
1241 tmp = ldl_p(mem_buf);
1243 if (n < 32) {
1244 env->regs[n] = tmp;
1245 } else {
1246 env->sregs[n - 32] = tmp;
1248 return 4;
1250 #elif defined (TARGET_CRIS)
1252 #define NUM_CORE_REGS 49
1254 static int
1255 read_register_crisv10(CPUState *env, uint8_t *mem_buf, int n)
1257 if (n < 15) {
1258 GET_REG32(env->regs[n]);
1261 if (n == 15) {
1262 GET_REG32(env->pc);
1265 if (n < 32) {
1266 switch (n) {
1267 case 16:
1268 GET_REG8(env->pregs[n - 16]);
1269 break;
1270 case 17:
1271 GET_REG8(env->pregs[n - 16]);
1272 break;
1273 case 20:
1274 case 21:
1275 GET_REG16(env->pregs[n - 16]);
1276 break;
1277 default:
1278 if (n >= 23) {
1279 GET_REG32(env->pregs[n - 16]);
1281 break;
1284 return 0;
1287 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1289 uint8_t srs;
1291 if (env->pregs[PR_VR] < 32)
1292 return read_register_crisv10(env, mem_buf, n);
1294 srs = env->pregs[PR_SRS];
1295 if (n < 16) {
1296 GET_REG32(env->regs[n]);
1299 if (n >= 21 && n < 32) {
1300 GET_REG32(env->pregs[n - 16]);
1302 if (n >= 33 && n < 49) {
1303 GET_REG32(env->sregs[srs][n - 33]);
1305 switch (n) {
1306 case 16: GET_REG8(env->pregs[0]);
1307 case 17: GET_REG8(env->pregs[1]);
1308 case 18: GET_REG32(env->pregs[2]);
1309 case 19: GET_REG8(srs);
1310 case 20: GET_REG16(env->pregs[4]);
1311 case 32: GET_REG32(env->pc);
1314 return 0;
1317 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1319 uint32_t tmp;
1321 if (n > 49)
1322 return 0;
1324 tmp = ldl_p(mem_buf);
1326 if (n < 16) {
1327 env->regs[n] = tmp;
1330 if (n >= 21 && n < 32) {
1331 env->pregs[n - 16] = tmp;
1334 /* FIXME: Should support function regs be writable? */
1335 switch (n) {
1336 case 16: return 1;
1337 case 17: return 1;
1338 case 18: env->pregs[PR_PID] = tmp; break;
1339 case 19: return 1;
1340 case 20: return 2;
1341 case 32: env->pc = tmp; break;
1344 return 4;
1346 #elif defined (TARGET_ALPHA)
1348 #define NUM_CORE_REGS 67
1350 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1352 uint64_t val;
1353 CPU_DoubleU d;
1355 switch (n) {
1356 case 0 ... 30:
1357 val = env->ir[n];
1358 break;
1359 case 32 ... 62:
1360 d.d = env->fir[n - 32];
1361 val = d.ll;
1362 break;
1363 case 63:
1364 val = cpu_alpha_load_fpcr(env);
1365 break;
1366 case 64:
1367 val = env->pc;
1368 break;
1369 case 66:
1370 val = env->unique;
1371 break;
1372 case 31:
1373 case 65:
1374 /* 31 really is the zero register; 65 is unassigned in the
1375 gdb protocol, but is still required to occupy 8 bytes. */
1376 val = 0;
1377 break;
1378 default:
1379 return 0;
1381 GET_REGL(val);
1384 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1386 target_ulong tmp = ldtul_p(mem_buf);
1387 CPU_DoubleU d;
1389 switch (n) {
1390 case 0 ... 30:
1391 env->ir[n] = tmp;
1392 break;
1393 case 32 ... 62:
1394 d.ll = tmp;
1395 env->fir[n - 32] = d.d;
1396 break;
1397 case 63:
1398 cpu_alpha_store_fpcr(env, tmp);
1399 break;
1400 case 64:
1401 env->pc = tmp;
1402 break;
1403 case 66:
1404 env->unique = tmp;
1405 break;
1406 case 31:
1407 case 65:
1408 /* 31 really is the zero register; 65 is unassigned in the
1409 gdb protocol, but is still required to occupy 8 bytes. */
1410 break;
1411 default:
1412 return 0;
1414 return 8;
1416 #elif defined (TARGET_S390X)
1418 #define NUM_CORE_REGS S390_NUM_TOTAL_REGS
1420 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1422 switch (n) {
1423 case S390_PSWM_REGNUM: GET_REGL(env->psw.mask); break;
1424 case S390_PSWA_REGNUM: GET_REGL(env->psw.addr); break;
1425 case S390_R0_REGNUM ... S390_R15_REGNUM:
1426 GET_REGL(env->regs[n-S390_R0_REGNUM]); break;
1427 case S390_A0_REGNUM ... S390_A15_REGNUM:
1428 GET_REG32(env->aregs[n-S390_A0_REGNUM]); break;
1429 case S390_FPC_REGNUM: GET_REG32(env->fpc); break;
1430 case S390_F0_REGNUM ... S390_F15_REGNUM:
1431 /* XXX */
1432 break;
1433 case S390_PC_REGNUM: GET_REGL(env->psw.addr); break;
1434 case S390_CC_REGNUM: GET_REG32(env->cc); break;
1437 return 0;
1440 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1442 target_ulong tmpl;
1443 uint32_t tmp32;
1444 int r = 8;
1445 tmpl = ldtul_p(mem_buf);
1446 tmp32 = ldl_p(mem_buf);
1448 switch (n) {
1449 case S390_PSWM_REGNUM: env->psw.mask = tmpl; break;
1450 case S390_PSWA_REGNUM: env->psw.addr = tmpl; break;
1451 case S390_R0_REGNUM ... S390_R15_REGNUM:
1452 env->regs[n-S390_R0_REGNUM] = tmpl; break;
1453 case S390_A0_REGNUM ... S390_A15_REGNUM:
1454 env->aregs[n-S390_A0_REGNUM] = tmp32; r=4; break;
1455 case S390_FPC_REGNUM: env->fpc = tmp32; r=4; break;
1456 case S390_F0_REGNUM ... S390_F15_REGNUM:
1457 /* XXX */
1458 break;
1459 case S390_PC_REGNUM: env->psw.addr = tmpl; break;
1460 case S390_CC_REGNUM: env->cc = tmp32; r=4; break;
1463 return r;
1465 #elif defined (TARGET_LM32)
1467 #include "hw/lm32_pic.h"
1468 #define NUM_CORE_REGS (32 + 7)
1470 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1472 if (n < 32) {
1473 GET_REG32(env->regs[n]);
1474 } else {
1475 switch (n) {
1476 case 32:
1477 GET_REG32(env->pc);
1478 break;
1479 /* FIXME: put in right exception ID */
1480 case 33:
1481 GET_REG32(0);
1482 break;
1483 case 34:
1484 GET_REG32(env->eba);
1485 break;
1486 case 35:
1487 GET_REG32(env->deba);
1488 break;
1489 case 36:
1490 GET_REG32(env->ie);
1491 break;
1492 case 37:
1493 GET_REG32(lm32_pic_get_im(env->pic_state));
1494 break;
1495 case 38:
1496 GET_REG32(lm32_pic_get_ip(env->pic_state));
1497 break;
1500 return 0;
1503 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1505 uint32_t tmp;
1507 if (n > NUM_CORE_REGS) {
1508 return 0;
1511 tmp = ldl_p(mem_buf);
1513 if (n < 32) {
1514 env->regs[n] = tmp;
1515 } else {
1516 switch (n) {
1517 case 32:
1518 env->pc = tmp;
1519 break;
1520 case 34:
1521 env->eba = tmp;
1522 break;
1523 case 35:
1524 env->deba = tmp;
1525 break;
1526 case 36:
1527 env->ie = tmp;
1528 break;
1529 case 37:
1530 lm32_pic_set_im(env->pic_state, tmp);
1531 break;
1532 case 38:
1533 lm32_pic_set_ip(env->pic_state, tmp);
1534 break;
1537 return 4;
1539 #else
1541 #define NUM_CORE_REGS 0
1543 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1545 return 0;
1548 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1550 return 0;
1553 #endif
1555 static int num_g_regs = NUM_CORE_REGS;
1557 #ifdef GDB_CORE_XML
1558 /* Encode data using the encoding for 'x' packets. */
1559 static int memtox(char *buf, const char *mem, int len)
1561 char *p = buf;
1562 char c;
1564 while (len--) {
1565 c = *(mem++);
1566 switch (c) {
1567 case '#': case '$': case '*': case '}':
1568 *(p++) = '}';
1569 *(p++) = c ^ 0x20;
1570 break;
1571 default:
1572 *(p++) = c;
1573 break;
1576 return p - buf;
1579 static const char *get_feature_xml(const char *p, const char **newp)
1581 size_t len;
1582 int i;
1583 const char *name;
1584 static char target_xml[1024];
1586 len = 0;
1587 while (p[len] && p[len] != ':')
1588 len++;
1589 *newp = p + len;
1591 name = NULL;
1592 if (strncmp(p, "target.xml", len) == 0) {
1593 /* Generate the XML description for this CPU. */
1594 if (!target_xml[0]) {
1595 GDBRegisterState *r;
1597 snprintf(target_xml, sizeof(target_xml),
1598 "<?xml version=\"1.0\"?>"
1599 "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
1600 "<target>"
1601 "<xi:include href=\"%s\"/>",
1602 GDB_CORE_XML);
1604 for (r = first_cpu->gdb_regs; r; r = r->next) {
1605 pstrcat(target_xml, sizeof(target_xml), "<xi:include href=\"");
1606 pstrcat(target_xml, sizeof(target_xml), r->xml);
1607 pstrcat(target_xml, sizeof(target_xml), "\"/>");
1609 pstrcat(target_xml, sizeof(target_xml), "</target>");
1611 return target_xml;
1613 for (i = 0; ; i++) {
1614 name = xml_builtin[i][0];
1615 if (!name || (strncmp(name, p, len) == 0 && strlen(name) == len))
1616 break;
1618 return name ? xml_builtin[i][1] : NULL;
1620 #endif
1622 static int gdb_read_register(CPUState *env, uint8_t *mem_buf, int reg)
1624 GDBRegisterState *r;
1626 if (reg < NUM_CORE_REGS)
1627 return cpu_gdb_read_register(env, mem_buf, reg);
1629 for (r = env->gdb_regs; r; r = r->next) {
1630 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
1631 return r->get_reg(env, mem_buf, reg - r->base_reg);
1634 return 0;
1637 static int gdb_write_register(CPUState *env, uint8_t *mem_buf, int reg)
1639 GDBRegisterState *r;
1641 if (reg < NUM_CORE_REGS)
1642 return cpu_gdb_write_register(env, mem_buf, reg);
1644 for (r = env->gdb_regs; r; r = r->next) {
1645 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
1646 return r->set_reg(env, mem_buf, reg - r->base_reg);
1649 return 0;
1652 /* Register a supplemental set of CPU registers. If g_pos is nonzero it
1653 specifies the first register number and these registers are included in
1654 a standard "g" packet. Direction is relative to gdb, i.e. get_reg is
1655 gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
1658 void gdb_register_coprocessor(CPUState * env,
1659 gdb_reg_cb get_reg, gdb_reg_cb set_reg,
1660 int num_regs, const char *xml, int g_pos)
1662 GDBRegisterState *s;
1663 GDBRegisterState **p;
1664 static int last_reg = NUM_CORE_REGS;
1666 s = (GDBRegisterState *)qemu_mallocz(sizeof(GDBRegisterState));
1667 s->base_reg = last_reg;
1668 s->num_regs = num_regs;
1669 s->get_reg = get_reg;
1670 s->set_reg = set_reg;
1671 s->xml = xml;
1672 p = &env->gdb_regs;
1673 while (*p) {
1674 /* Check for duplicates. */
1675 if (strcmp((*p)->xml, xml) == 0)
1676 return;
1677 p = &(*p)->next;
1679 /* Add to end of list. */
1680 last_reg += num_regs;
1681 *p = s;
1682 if (g_pos) {
1683 if (g_pos != s->base_reg) {
1684 fprintf(stderr, "Error: Bad gdb register numbering for '%s'\n"
1685 "Expected %d got %d\n", xml, g_pos, s->base_reg);
1686 } else {
1687 num_g_regs = last_reg;
1692 #ifndef CONFIG_USER_ONLY
1693 static const int xlat_gdb_type[] = {
1694 [GDB_WATCHPOINT_WRITE] = BP_GDB | BP_MEM_WRITE,
1695 [GDB_WATCHPOINT_READ] = BP_GDB | BP_MEM_READ,
1696 [GDB_WATCHPOINT_ACCESS] = BP_GDB | BP_MEM_ACCESS,
1698 #endif
1700 static int gdb_breakpoint_insert(target_ulong addr, target_ulong len, int type)
1702 CPUState *env;
1703 int err = 0;
1705 if (kvm_enabled())
1706 return kvm_insert_breakpoint(gdbserver_state->c_cpu, addr, len, type);
1708 switch (type) {
1709 case GDB_BREAKPOINT_SW:
1710 case GDB_BREAKPOINT_HW:
1711 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1712 err = cpu_breakpoint_insert(env, addr, BP_GDB, NULL);
1713 if (err)
1714 break;
1716 return err;
1717 #ifndef CONFIG_USER_ONLY
1718 case GDB_WATCHPOINT_WRITE:
1719 case GDB_WATCHPOINT_READ:
1720 case GDB_WATCHPOINT_ACCESS:
1721 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1722 err = cpu_watchpoint_insert(env, addr, len, xlat_gdb_type[type],
1723 NULL);
1724 if (err)
1725 break;
1727 return err;
1728 #endif
1729 default:
1730 return -ENOSYS;
1734 static int gdb_breakpoint_remove(target_ulong addr, target_ulong len, int type)
1736 CPUState *env;
1737 int err = 0;
1739 if (kvm_enabled())
1740 return kvm_remove_breakpoint(gdbserver_state->c_cpu, addr, len, type);
1742 switch (type) {
1743 case GDB_BREAKPOINT_SW:
1744 case GDB_BREAKPOINT_HW:
1745 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1746 err = cpu_breakpoint_remove(env, addr, BP_GDB);
1747 if (err)
1748 break;
1750 return err;
1751 #ifndef CONFIG_USER_ONLY
1752 case GDB_WATCHPOINT_WRITE:
1753 case GDB_WATCHPOINT_READ:
1754 case GDB_WATCHPOINT_ACCESS:
1755 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1756 err = cpu_watchpoint_remove(env, addr, len, xlat_gdb_type[type]);
1757 if (err)
1758 break;
1760 return err;
1761 #endif
1762 default:
1763 return -ENOSYS;
1767 static void gdb_breakpoint_remove_all(void)
1769 CPUState *env;
1771 if (kvm_enabled()) {
1772 kvm_remove_all_breakpoints(gdbserver_state->c_cpu);
1773 return;
1776 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1777 cpu_breakpoint_remove_all(env, BP_GDB);
1778 #ifndef CONFIG_USER_ONLY
1779 cpu_watchpoint_remove_all(env, BP_GDB);
1780 #endif
1784 static void gdb_set_cpu_pc(GDBState *s, target_ulong pc)
1786 #if defined(TARGET_I386)
1787 cpu_synchronize_state(s->c_cpu);
1788 s->c_cpu->eip = pc;
1789 #elif defined (TARGET_PPC)
1790 s->c_cpu->nip = pc;
1791 #elif defined (TARGET_SPARC)
1792 s->c_cpu->pc = pc;
1793 s->c_cpu->npc = pc + 4;
1794 #elif defined (TARGET_ARM)
1795 s->c_cpu->regs[15] = pc;
1796 #elif defined (TARGET_SH4)
1797 s->c_cpu->pc = pc;
1798 #elif defined (TARGET_MIPS)
1799 s->c_cpu->active_tc.PC = pc & ~(target_ulong)1;
1800 if (pc & 1) {
1801 s->c_cpu->hflags |= MIPS_HFLAG_M16;
1802 } else {
1803 s->c_cpu->hflags &= ~(MIPS_HFLAG_M16);
1805 #elif defined (TARGET_MICROBLAZE)
1806 s->c_cpu->sregs[SR_PC] = pc;
1807 #elif defined (TARGET_CRIS)
1808 s->c_cpu->pc = pc;
1809 #elif defined (TARGET_ALPHA)
1810 s->c_cpu->pc = pc;
1811 #elif defined (TARGET_S390X)
1812 cpu_synchronize_state(s->c_cpu);
1813 s->c_cpu->psw.addr = pc;
1814 #elif defined (TARGET_LM32)
1815 s->c_cpu->pc = pc;
1816 #endif
1819 static inline int gdb_id(CPUState *env)
1821 #if defined(CONFIG_USER_ONLY) && defined(CONFIG_USE_NPTL)
1822 return env->host_tid;
1823 #else
1824 return env->cpu_index + 1;
1825 #endif
1828 static CPUState *find_cpu(uint32_t thread_id)
1830 CPUState *env;
1832 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1833 if (gdb_id(env) == thread_id) {
1834 return env;
1838 return NULL;
1841 static int gdb_handle_packet(GDBState *s, const char *line_buf)
1843 CPUState *env;
1844 const char *p;
1845 uint32_t thread;
1846 int ch, reg_size, type, res;
1847 char buf[MAX_PACKET_LENGTH];
1848 uint8_t mem_buf[MAX_PACKET_LENGTH];
1849 uint8_t *registers;
1850 target_ulong addr, len;
1852 #ifdef DEBUG_GDB
1853 printf("command='%s'\n", line_buf);
1854 #endif
1855 p = line_buf;
1856 ch = *p++;
1857 switch(ch) {
1858 case '?':
1859 /* TODO: Make this return the correct value for user-mode. */
1860 snprintf(buf, sizeof(buf), "T%02xthread:%02x;", GDB_SIGNAL_TRAP,
1861 gdb_id(s->c_cpu));
1862 put_packet(s, buf);
1863 /* Remove all the breakpoints when this query is issued,
1864 * because gdb is doing and initial connect and the state
1865 * should be cleaned up.
1867 gdb_breakpoint_remove_all();
1868 break;
1869 case 'c':
1870 if (*p != '\0') {
1871 addr = strtoull(p, (char **)&p, 16);
1872 gdb_set_cpu_pc(s, addr);
1874 s->signal = 0;
1875 gdb_continue(s);
1876 return RS_IDLE;
1877 case 'C':
1878 s->signal = gdb_signal_to_target (strtoul(p, (char **)&p, 16));
1879 if (s->signal == -1)
1880 s->signal = 0;
1881 gdb_continue(s);
1882 return RS_IDLE;
1883 case 'v':
1884 if (strncmp(p, "Cont", 4) == 0) {
1885 int res_signal, res_thread;
1887 p += 4;
1888 if (*p == '?') {
1889 put_packet(s, "vCont;c;C;s;S");
1890 break;
1892 res = 0;
1893 res_signal = 0;
1894 res_thread = 0;
1895 while (*p) {
1896 int action, signal;
1898 if (*p++ != ';') {
1899 res = 0;
1900 break;
1902 action = *p++;
1903 signal = 0;
1904 if (action == 'C' || action == 'S') {
1905 signal = strtoul(p, (char **)&p, 16);
1906 } else if (action != 'c' && action != 's') {
1907 res = 0;
1908 break;
1910 thread = 0;
1911 if (*p == ':') {
1912 thread = strtoull(p+1, (char **)&p, 16);
1914 action = tolower(action);
1915 if (res == 0 || (res == 'c' && action == 's')) {
1916 res = action;
1917 res_signal = signal;
1918 res_thread = thread;
1921 if (res) {
1922 if (res_thread != -1 && res_thread != 0) {
1923 env = find_cpu(res_thread);
1924 if (env == NULL) {
1925 put_packet(s, "E22");
1926 break;
1928 s->c_cpu = env;
1930 if (res == 's') {
1931 cpu_single_step(s->c_cpu, sstep_flags);
1933 s->signal = res_signal;
1934 gdb_continue(s);
1935 return RS_IDLE;
1937 break;
1938 } else {
1939 goto unknown_command;
1941 case 'k':
1942 /* Kill the target */
1943 fprintf(stderr, "\nQEMU: Terminated via GDBstub\n");
1944 exit(0);
1945 case 'D':
1946 /* Detach packet */
1947 gdb_breakpoint_remove_all();
1948 gdb_syscall_mode = GDB_SYS_DISABLED;
1949 gdb_continue(s);
1950 put_packet(s, "OK");
1951 break;
1952 case 's':
1953 if (*p != '\0') {
1954 addr = strtoull(p, (char **)&p, 16);
1955 gdb_set_cpu_pc(s, addr);
1957 cpu_single_step(s->c_cpu, sstep_flags);
1958 gdb_continue(s);
1959 return RS_IDLE;
1960 case 'F':
1962 target_ulong ret;
1963 target_ulong err;
1965 ret = strtoull(p, (char **)&p, 16);
1966 if (*p == ',') {
1967 p++;
1968 err = strtoull(p, (char **)&p, 16);
1969 } else {
1970 err = 0;
1972 if (*p == ',')
1973 p++;
1974 type = *p;
1975 if (gdb_current_syscall_cb)
1976 gdb_current_syscall_cb(s->c_cpu, ret, err);
1977 if (type == 'C') {
1978 put_packet(s, "T02");
1979 } else {
1980 gdb_continue(s);
1983 break;
1984 case 'g':
1985 cpu_synchronize_state(s->g_cpu);
1986 len = 0;
1987 for (addr = 0; addr < num_g_regs; addr++) {
1988 reg_size = gdb_read_register(s->g_cpu, mem_buf + len, addr);
1989 len += reg_size;
1991 memtohex(buf, mem_buf, len);
1992 put_packet(s, buf);
1993 break;
1994 case 'G':
1995 cpu_synchronize_state(s->g_cpu);
1996 registers = mem_buf;
1997 len = strlen(p) / 2;
1998 hextomem((uint8_t *)registers, p, len);
1999 for (addr = 0; addr < num_g_regs && len > 0; addr++) {
2000 reg_size = gdb_write_register(s->g_cpu, registers, addr);
2001 len -= reg_size;
2002 registers += reg_size;
2004 put_packet(s, "OK");
2005 break;
2006 case 'm':
2007 addr = strtoull(p, (char **)&p, 16);
2008 if (*p == ',')
2009 p++;
2010 len = strtoull(p, NULL, 16);
2011 if (cpu_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 0) != 0) {
2012 put_packet (s, "E14");
2013 } else {
2014 memtohex(buf, mem_buf, len);
2015 put_packet(s, buf);
2017 break;
2018 case 'M':
2019 addr = strtoull(p, (char **)&p, 16);
2020 if (*p == ',')
2021 p++;
2022 len = strtoull(p, (char **)&p, 16);
2023 if (*p == ':')
2024 p++;
2025 hextomem(mem_buf, p, len);
2026 if (cpu_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 1) != 0)
2027 put_packet(s, "E14");
2028 else
2029 put_packet(s, "OK");
2030 break;
2031 case 'p':
2032 /* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable.
2033 This works, but can be very slow. Anything new enough to
2034 understand XML also knows how to use this properly. */
2035 if (!gdb_has_xml)
2036 goto unknown_command;
2037 addr = strtoull(p, (char **)&p, 16);
2038 reg_size = gdb_read_register(s->g_cpu, mem_buf, addr);
2039 if (reg_size) {
2040 memtohex(buf, mem_buf, reg_size);
2041 put_packet(s, buf);
2042 } else {
2043 put_packet(s, "E14");
2045 break;
2046 case 'P':
2047 if (!gdb_has_xml)
2048 goto unknown_command;
2049 addr = strtoull(p, (char **)&p, 16);
2050 if (*p == '=')
2051 p++;
2052 reg_size = strlen(p) / 2;
2053 hextomem(mem_buf, p, reg_size);
2054 gdb_write_register(s->g_cpu, mem_buf, addr);
2055 put_packet(s, "OK");
2056 break;
2057 case 'Z':
2058 case 'z':
2059 type = strtoul(p, (char **)&p, 16);
2060 if (*p == ',')
2061 p++;
2062 addr = strtoull(p, (char **)&p, 16);
2063 if (*p == ',')
2064 p++;
2065 len = strtoull(p, (char **)&p, 16);
2066 if (ch == 'Z')
2067 res = gdb_breakpoint_insert(addr, len, type);
2068 else
2069 res = gdb_breakpoint_remove(addr, len, type);
2070 if (res >= 0)
2071 put_packet(s, "OK");
2072 else if (res == -ENOSYS)
2073 put_packet(s, "");
2074 else
2075 put_packet(s, "E22");
2076 break;
2077 case 'H':
2078 type = *p++;
2079 thread = strtoull(p, (char **)&p, 16);
2080 if (thread == -1 || thread == 0) {
2081 put_packet(s, "OK");
2082 break;
2084 env = find_cpu(thread);
2085 if (env == NULL) {
2086 put_packet(s, "E22");
2087 break;
2089 switch (type) {
2090 case 'c':
2091 s->c_cpu = env;
2092 put_packet(s, "OK");
2093 break;
2094 case 'g':
2095 s->g_cpu = env;
2096 put_packet(s, "OK");
2097 break;
2098 default:
2099 put_packet(s, "E22");
2100 break;
2102 break;
2103 case 'T':
2104 thread = strtoull(p, (char **)&p, 16);
2105 env = find_cpu(thread);
2107 if (env != NULL) {
2108 put_packet(s, "OK");
2109 } else {
2110 put_packet(s, "E22");
2112 break;
2113 case 'q':
2114 case 'Q':
2115 /* parse any 'q' packets here */
2116 if (!strcmp(p,"qemu.sstepbits")) {
2117 /* Query Breakpoint bit definitions */
2118 snprintf(buf, sizeof(buf), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
2119 SSTEP_ENABLE,
2120 SSTEP_NOIRQ,
2121 SSTEP_NOTIMER);
2122 put_packet(s, buf);
2123 break;
2124 } else if (strncmp(p,"qemu.sstep",10) == 0) {
2125 /* Display or change the sstep_flags */
2126 p += 10;
2127 if (*p != '=') {
2128 /* Display current setting */
2129 snprintf(buf, sizeof(buf), "0x%x", sstep_flags);
2130 put_packet(s, buf);
2131 break;
2133 p++;
2134 type = strtoul(p, (char **)&p, 16);
2135 sstep_flags = type;
2136 put_packet(s, "OK");
2137 break;
2138 } else if (strcmp(p,"C") == 0) {
2139 /* "Current thread" remains vague in the spec, so always return
2140 * the first CPU (gdb returns the first thread). */
2141 put_packet(s, "QC1");
2142 break;
2143 } else if (strcmp(p,"fThreadInfo") == 0) {
2144 s->query_cpu = first_cpu;
2145 goto report_cpuinfo;
2146 } else if (strcmp(p,"sThreadInfo") == 0) {
2147 report_cpuinfo:
2148 if (s->query_cpu) {
2149 snprintf(buf, sizeof(buf), "m%x", gdb_id(s->query_cpu));
2150 put_packet(s, buf);
2151 s->query_cpu = s->query_cpu->next_cpu;
2152 } else
2153 put_packet(s, "l");
2154 break;
2155 } else if (strncmp(p,"ThreadExtraInfo,", 16) == 0) {
2156 thread = strtoull(p+16, (char **)&p, 16);
2157 env = find_cpu(thread);
2158 if (env != NULL) {
2159 cpu_synchronize_state(env);
2160 len = snprintf((char *)mem_buf, sizeof(mem_buf),
2161 "CPU#%d [%s]", env->cpu_index,
2162 env->halted ? "halted " : "running");
2163 memtohex(buf, mem_buf, len);
2164 put_packet(s, buf);
2166 break;
2168 #ifdef CONFIG_USER_ONLY
2169 else if (strncmp(p, "Offsets", 7) == 0) {
2170 TaskState *ts = s->c_cpu->opaque;
2172 snprintf(buf, sizeof(buf),
2173 "Text=" TARGET_ABI_FMT_lx ";Data=" TARGET_ABI_FMT_lx
2174 ";Bss=" TARGET_ABI_FMT_lx,
2175 ts->info->code_offset,
2176 ts->info->data_offset,
2177 ts->info->data_offset);
2178 put_packet(s, buf);
2179 break;
2181 #else /* !CONFIG_USER_ONLY */
2182 else if (strncmp(p, "Rcmd,", 5) == 0) {
2183 int len = strlen(p + 5);
2185 if ((len % 2) != 0) {
2186 put_packet(s, "E01");
2187 break;
2189 hextomem(mem_buf, p + 5, len);
2190 len = len / 2;
2191 mem_buf[len++] = 0;
2192 qemu_chr_read(s->mon_chr, mem_buf, len);
2193 put_packet(s, "OK");
2194 break;
2196 #endif /* !CONFIG_USER_ONLY */
2197 if (strncmp(p, "Supported", 9) == 0) {
2198 snprintf(buf, sizeof(buf), "PacketSize=%x", MAX_PACKET_LENGTH);
2199 #ifdef GDB_CORE_XML
2200 pstrcat(buf, sizeof(buf), ";qXfer:features:read+");
2201 #endif
2202 put_packet(s, buf);
2203 break;
2205 #ifdef GDB_CORE_XML
2206 if (strncmp(p, "Xfer:features:read:", 19) == 0) {
2207 const char *xml;
2208 target_ulong total_len;
2210 gdb_has_xml = 1;
2211 p += 19;
2212 xml = get_feature_xml(p, &p);
2213 if (!xml) {
2214 snprintf(buf, sizeof(buf), "E00");
2215 put_packet(s, buf);
2216 break;
2219 if (*p == ':')
2220 p++;
2221 addr = strtoul(p, (char **)&p, 16);
2222 if (*p == ',')
2223 p++;
2224 len = strtoul(p, (char **)&p, 16);
2226 total_len = strlen(xml);
2227 if (addr > total_len) {
2228 snprintf(buf, sizeof(buf), "E00");
2229 put_packet(s, buf);
2230 break;
2232 if (len > (MAX_PACKET_LENGTH - 5) / 2)
2233 len = (MAX_PACKET_LENGTH - 5) / 2;
2234 if (len < total_len - addr) {
2235 buf[0] = 'm';
2236 len = memtox(buf + 1, xml + addr, len);
2237 } else {
2238 buf[0] = 'l';
2239 len = memtox(buf + 1, xml + addr, total_len - addr);
2241 put_packet_binary(s, buf, len + 1);
2242 break;
2244 #endif
2245 /* Unrecognised 'q' command. */
2246 goto unknown_command;
2248 default:
2249 unknown_command:
2250 /* put empty packet */
2251 buf[0] = '\0';
2252 put_packet(s, buf);
2253 break;
2255 return RS_IDLE;
2258 void gdb_set_stop_cpu(CPUState *env)
2260 gdbserver_state->c_cpu = env;
2261 gdbserver_state->g_cpu = env;
2264 #ifndef CONFIG_USER_ONLY
2265 static void gdb_vm_state_change(void *opaque, int running, int reason)
2267 GDBState *s = gdbserver_state;
2268 CPUState *env = s->c_cpu;
2269 char buf[256];
2270 const char *type;
2271 int ret;
2273 if (running || (reason != VMSTOP_DEBUG && reason != VMSTOP_USER) ||
2274 s->state == RS_INACTIVE || s->state == RS_SYSCALL) {
2275 return;
2277 /* disable single step if it was enable */
2278 cpu_single_step(env, 0);
2280 if (reason == VMSTOP_DEBUG) {
2281 if (env->watchpoint_hit) {
2282 switch (env->watchpoint_hit->flags & BP_MEM_ACCESS) {
2283 case BP_MEM_READ:
2284 type = "r";
2285 break;
2286 case BP_MEM_ACCESS:
2287 type = "a";
2288 break;
2289 default:
2290 type = "";
2291 break;
2293 snprintf(buf, sizeof(buf),
2294 "T%02xthread:%02x;%swatch:" TARGET_FMT_lx ";",
2295 GDB_SIGNAL_TRAP, gdb_id(env), type,
2296 env->watchpoint_hit->vaddr);
2297 put_packet(s, buf);
2298 env->watchpoint_hit = NULL;
2299 return;
2301 tb_flush(env);
2302 ret = GDB_SIGNAL_TRAP;
2303 } else {
2304 ret = GDB_SIGNAL_INT;
2306 snprintf(buf, sizeof(buf), "T%02xthread:%02x;", ret, gdb_id(env));
2307 put_packet(s, buf);
2309 #endif
2311 /* Send a gdb syscall request.
2312 This accepts limited printf-style format specifiers, specifically:
2313 %x - target_ulong argument printed in hex.
2314 %lx - 64-bit argument printed in hex.
2315 %s - string pointer (target_ulong) and length (int) pair. */
2316 void gdb_do_syscall(gdb_syscall_complete_cb cb, const char *fmt, ...)
2318 va_list va;
2319 char buf[256];
2320 char *p;
2321 target_ulong addr;
2322 uint64_t i64;
2323 GDBState *s;
2325 s = gdbserver_state;
2326 if (!s)
2327 return;
2328 gdb_current_syscall_cb = cb;
2329 s->state = RS_SYSCALL;
2330 #ifndef CONFIG_USER_ONLY
2331 vm_stop(VMSTOP_DEBUG);
2332 #endif
2333 s->state = RS_IDLE;
2334 va_start(va, fmt);
2335 p = buf;
2336 *(p++) = 'F';
2337 while (*fmt) {
2338 if (*fmt == '%') {
2339 fmt++;
2340 switch (*fmt++) {
2341 case 'x':
2342 addr = va_arg(va, target_ulong);
2343 p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx, addr);
2344 break;
2345 case 'l':
2346 if (*(fmt++) != 'x')
2347 goto bad_format;
2348 i64 = va_arg(va, uint64_t);
2349 p += snprintf(p, &buf[sizeof(buf)] - p, "%" PRIx64, i64);
2350 break;
2351 case 's':
2352 addr = va_arg(va, target_ulong);
2353 p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx "/%x",
2354 addr, va_arg(va, int));
2355 break;
2356 default:
2357 bad_format:
2358 fprintf(stderr, "gdbstub: Bad syscall format string '%s'\n",
2359 fmt - 1);
2360 break;
2362 } else {
2363 *(p++) = *(fmt++);
2366 *p = 0;
2367 va_end(va);
2368 put_packet(s, buf);
2369 #ifdef CONFIG_USER_ONLY
2370 gdb_handlesig(s->c_cpu, 0);
2371 #else
2372 cpu_exit(s->c_cpu);
2373 #endif
2376 static void gdb_read_byte(GDBState *s, int ch)
2378 int i, csum;
2379 uint8_t reply;
2381 #ifndef CONFIG_USER_ONLY
2382 if (s->last_packet_len) {
2383 /* Waiting for a response to the last packet. If we see the start
2384 of a new command then abandon the previous response. */
2385 if (ch == '-') {
2386 #ifdef DEBUG_GDB
2387 printf("Got NACK, retransmitting\n");
2388 #endif
2389 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
2391 #ifdef DEBUG_GDB
2392 else if (ch == '+')
2393 printf("Got ACK\n");
2394 else
2395 printf("Got '%c' when expecting ACK/NACK\n", ch);
2396 #endif
2397 if (ch == '+' || ch == '$')
2398 s->last_packet_len = 0;
2399 if (ch != '$')
2400 return;
2402 if (vm_running) {
2403 /* when the CPU is running, we cannot do anything except stop
2404 it when receiving a char */
2405 vm_stop(VMSTOP_USER);
2406 } else
2407 #endif
2409 switch(s->state) {
2410 case RS_IDLE:
2411 if (ch == '$') {
2412 s->line_buf_index = 0;
2413 s->state = RS_GETLINE;
2415 break;
2416 case RS_GETLINE:
2417 if (ch == '#') {
2418 s->state = RS_CHKSUM1;
2419 } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
2420 s->state = RS_IDLE;
2421 } else {
2422 s->line_buf[s->line_buf_index++] = ch;
2424 break;
2425 case RS_CHKSUM1:
2426 s->line_buf[s->line_buf_index] = '\0';
2427 s->line_csum = fromhex(ch) << 4;
2428 s->state = RS_CHKSUM2;
2429 break;
2430 case RS_CHKSUM2:
2431 s->line_csum |= fromhex(ch);
2432 csum = 0;
2433 for(i = 0; i < s->line_buf_index; i++) {
2434 csum += s->line_buf[i];
2436 if (s->line_csum != (csum & 0xff)) {
2437 reply = '-';
2438 put_buffer(s, &reply, 1);
2439 s->state = RS_IDLE;
2440 } else {
2441 reply = '+';
2442 put_buffer(s, &reply, 1);
2443 s->state = gdb_handle_packet(s, s->line_buf);
2445 break;
2446 default:
2447 abort();
2452 /* Tell the remote gdb that the process has exited. */
2453 void gdb_exit(CPUState *env, int code)
2455 GDBState *s;
2456 char buf[4];
2458 s = gdbserver_state;
2459 if (!s) {
2460 return;
2462 #ifdef CONFIG_USER_ONLY
2463 if (gdbserver_fd < 0 || s->fd < 0) {
2464 return;
2466 #endif
2468 snprintf(buf, sizeof(buf), "W%02x", (uint8_t)code);
2469 put_packet(s, buf);
2471 #ifndef CONFIG_USER_ONLY
2472 if (s->chr) {
2473 qemu_chr_close(s->chr);
2475 #endif
2478 #ifdef CONFIG_USER_ONLY
2480 gdb_queuesig (void)
2482 GDBState *s;
2484 s = gdbserver_state;
2486 if (gdbserver_fd < 0 || s->fd < 0)
2487 return 0;
2488 else
2489 return 1;
2493 gdb_handlesig (CPUState *env, int sig)
2495 GDBState *s;
2496 char buf[256];
2497 int n;
2499 s = gdbserver_state;
2500 if (gdbserver_fd < 0 || s->fd < 0)
2501 return sig;
2503 /* disable single step if it was enabled */
2504 cpu_single_step(env, 0);
2505 tb_flush(env);
2507 if (sig != 0)
2509 snprintf(buf, sizeof(buf), "S%02x", target_signal_to_gdb (sig));
2510 put_packet(s, buf);
2512 /* put_packet() might have detected that the peer terminated the
2513 connection. */
2514 if (s->fd < 0)
2515 return sig;
2517 sig = 0;
2518 s->state = RS_IDLE;
2519 s->running_state = 0;
2520 while (s->running_state == 0) {
2521 n = read (s->fd, buf, 256);
2522 if (n > 0)
2524 int i;
2526 for (i = 0; i < n; i++)
2527 gdb_read_byte (s, buf[i]);
2529 else if (n == 0 || errno != EAGAIN)
2531 /* XXX: Connection closed. Should probably wait for annother
2532 connection before continuing. */
2533 return sig;
2536 sig = s->signal;
2537 s->signal = 0;
2538 return sig;
2541 /* Tell the remote gdb that the process has exited due to SIG. */
2542 void gdb_signalled(CPUState *env, int sig)
2544 GDBState *s;
2545 char buf[4];
2547 s = gdbserver_state;
2548 if (gdbserver_fd < 0 || s->fd < 0)
2549 return;
2551 snprintf(buf, sizeof(buf), "X%02x", target_signal_to_gdb (sig));
2552 put_packet(s, buf);
2555 static void gdb_accept(void)
2557 GDBState *s;
2558 struct sockaddr_in sockaddr;
2559 socklen_t len;
2560 int val, fd;
2562 for(;;) {
2563 len = sizeof(sockaddr);
2564 fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len);
2565 if (fd < 0 && errno != EINTR) {
2566 perror("accept");
2567 return;
2568 } else if (fd >= 0) {
2569 #ifndef _WIN32
2570 fcntl(fd, F_SETFD, FD_CLOEXEC);
2571 #endif
2572 break;
2576 /* set short latency */
2577 val = 1;
2578 setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
2580 s = qemu_mallocz(sizeof(GDBState));
2581 s->c_cpu = first_cpu;
2582 s->g_cpu = first_cpu;
2583 s->fd = fd;
2584 gdb_has_xml = 0;
2586 gdbserver_state = s;
2588 fcntl(fd, F_SETFL, O_NONBLOCK);
2591 static int gdbserver_open(int port)
2593 struct sockaddr_in sockaddr;
2594 int fd, val, ret;
2596 fd = socket(PF_INET, SOCK_STREAM, 0);
2597 if (fd < 0) {
2598 perror("socket");
2599 return -1;
2601 #ifndef _WIN32
2602 fcntl(fd, F_SETFD, FD_CLOEXEC);
2603 #endif
2605 /* allow fast reuse */
2606 val = 1;
2607 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *)&val, sizeof(val));
2609 sockaddr.sin_family = AF_INET;
2610 sockaddr.sin_port = htons(port);
2611 sockaddr.sin_addr.s_addr = 0;
2612 ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
2613 if (ret < 0) {
2614 perror("bind");
2615 return -1;
2617 ret = listen(fd, 0);
2618 if (ret < 0) {
2619 perror("listen");
2620 return -1;
2622 return fd;
2625 int gdbserver_start(int port)
2627 gdbserver_fd = gdbserver_open(port);
2628 if (gdbserver_fd < 0)
2629 return -1;
2630 /* accept connections */
2631 gdb_accept();
2632 return 0;
2635 /* Disable gdb stub for child processes. */
2636 void gdbserver_fork(CPUState *env)
2638 GDBState *s = gdbserver_state;
2639 if (gdbserver_fd < 0 || s->fd < 0)
2640 return;
2641 close(s->fd);
2642 s->fd = -1;
2643 cpu_breakpoint_remove_all(env, BP_GDB);
2644 cpu_watchpoint_remove_all(env, BP_GDB);
2646 #else
2647 static int gdb_chr_can_receive(void *opaque)
2649 /* We can handle an arbitrarily large amount of data.
2650 Pick the maximum packet size, which is as good as anything. */
2651 return MAX_PACKET_LENGTH;
2654 static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size)
2656 int i;
2658 for (i = 0; i < size; i++) {
2659 gdb_read_byte(gdbserver_state, buf[i]);
2663 static void gdb_chr_event(void *opaque, int event)
2665 switch (event) {
2666 case CHR_EVENT_OPENED:
2667 vm_stop(VMSTOP_USER);
2668 gdb_has_xml = 0;
2669 break;
2670 default:
2671 break;
2675 static void gdb_monitor_output(GDBState *s, const char *msg, int len)
2677 char buf[MAX_PACKET_LENGTH];
2679 buf[0] = 'O';
2680 if (len > (MAX_PACKET_LENGTH/2) - 1)
2681 len = (MAX_PACKET_LENGTH/2) - 1;
2682 memtohex(buf + 1, (uint8_t *)msg, len);
2683 put_packet(s, buf);
2686 static int gdb_monitor_write(CharDriverState *chr, const uint8_t *buf, int len)
2688 const char *p = (const char *)buf;
2689 int max_sz;
2691 max_sz = (sizeof(gdbserver_state->last_packet) - 2) / 2;
2692 for (;;) {
2693 if (len <= max_sz) {
2694 gdb_monitor_output(gdbserver_state, p, len);
2695 break;
2697 gdb_monitor_output(gdbserver_state, p, max_sz);
2698 p += max_sz;
2699 len -= max_sz;
2701 return len;
2704 #ifndef _WIN32
2705 static void gdb_sigterm_handler(int signal)
2707 if (vm_running) {
2708 vm_stop(VMSTOP_USER);
2711 #endif
2713 int gdbserver_start(const char *device)
2715 GDBState *s;
2716 char gdbstub_device_name[128];
2717 CharDriverState *chr = NULL;
2718 CharDriverState *mon_chr;
2720 if (!device)
2721 return -1;
2722 if (strcmp(device, "none") != 0) {
2723 if (strstart(device, "tcp:", NULL)) {
2724 /* enforce required TCP attributes */
2725 snprintf(gdbstub_device_name, sizeof(gdbstub_device_name),
2726 "%s,nowait,nodelay,server", device);
2727 device = gdbstub_device_name;
2729 #ifndef _WIN32
2730 else if (strcmp(device, "stdio") == 0) {
2731 struct sigaction act;
2733 memset(&act, 0, sizeof(act));
2734 act.sa_handler = gdb_sigterm_handler;
2735 sigaction(SIGINT, &act, NULL);
2737 #endif
2738 chr = qemu_chr_open("gdb", device, NULL);
2739 if (!chr)
2740 return -1;
2742 qemu_chr_add_handlers(chr, gdb_chr_can_receive, gdb_chr_receive,
2743 gdb_chr_event, NULL);
2746 s = gdbserver_state;
2747 if (!s) {
2748 s = qemu_mallocz(sizeof(GDBState));
2749 gdbserver_state = s;
2751 qemu_add_vm_change_state_handler(gdb_vm_state_change, NULL);
2753 /* Initialize a monitor terminal for gdb */
2754 mon_chr = qemu_mallocz(sizeof(*mon_chr));
2755 mon_chr->chr_write = gdb_monitor_write;
2756 monitor_init(mon_chr, 0);
2757 } else {
2758 if (s->chr)
2759 qemu_chr_close(s->chr);
2760 mon_chr = s->mon_chr;
2761 memset(s, 0, sizeof(GDBState));
2763 s->c_cpu = first_cpu;
2764 s->g_cpu = first_cpu;
2765 s->chr = chr;
2766 s->state = chr ? RS_IDLE : RS_INACTIVE;
2767 s->mon_chr = mon_chr;
2769 return 0;
2771 #endif