Merged revisions 74356-74357 via svnmerge from
[python/dscho.git] / Include / object.h
blob772bbb398c66c716d27e1629b9b4358deca3175b
1 #ifndef Py_OBJECT_H
2 #define Py_OBJECT_H
3 #ifdef __cplusplus
4 extern "C" {
5 #endif
8 /* Object and type object interface */
11 Objects are structures allocated on the heap. Special rules apply to
12 the use of objects to ensure they are properly garbage-collected.
13 Objects are never allocated statically or on the stack; they must be
14 accessed through special macros and functions only. (Type objects are
15 exceptions to the first rule; the standard types are represented by
16 statically initialized type objects, although work on type/class unification
17 for Python 2.2 made it possible to have heap-allocated type objects too).
19 An object has a 'reference count' that is increased or decreased when a
20 pointer to the object is copied or deleted; when the reference count
21 reaches zero there are no references to the object left and it can be
22 removed from the heap.
24 An object has a 'type' that determines what it represents and what kind
25 of data it contains. An object's type is fixed when it is created.
26 Types themselves are represented as objects; an object contains a
27 pointer to the corresponding type object. The type itself has a type
28 pointer pointing to the object representing the type 'type', which
29 contains a pointer to itself!).
31 Objects do not float around in memory; once allocated an object keeps
32 the same size and address. Objects that must hold variable-size data
33 can contain pointers to variable-size parts of the object. Not all
34 objects of the same type have the same size; but the size cannot change
35 after allocation. (These restrictions are made so a reference to an
36 object can be simply a pointer -- moving an object would require
37 updating all the pointers, and changing an object's size would require
38 moving it if there was another object right next to it.)
40 Objects are always accessed through pointers of the type 'PyObject *'.
41 The type 'PyObject' is a structure that only contains the reference count
42 and the type pointer. The actual memory allocated for an object
43 contains other data that can only be accessed after casting the pointer
44 to a pointer to a longer structure type. This longer type must start
45 with the reference count and type fields; the macro PyObject_HEAD should be
46 used for this (to accommodate for future changes). The implementation
47 of a particular object type can cast the object pointer to the proper
48 type and back.
50 A standard interface exists for objects that contain an array of items
51 whose size is determined when the object is allocated.
54 /* Py_DEBUG implies Py_TRACE_REFS. */
55 #if defined(Py_DEBUG) && !defined(Py_TRACE_REFS)
56 #define Py_TRACE_REFS
57 #endif
59 /* Py_TRACE_REFS implies Py_REF_DEBUG. */
60 #if defined(Py_TRACE_REFS) && !defined(Py_REF_DEBUG)
61 #define Py_REF_DEBUG
62 #endif
64 #ifdef Py_TRACE_REFS
65 /* Define pointers to support a doubly-linked list of all live heap objects. */
66 #define _PyObject_HEAD_EXTRA \
67 struct _object *_ob_next; \
68 struct _object *_ob_prev;
70 #define _PyObject_EXTRA_INIT 0, 0,
72 #else
73 #define _PyObject_HEAD_EXTRA
74 #define _PyObject_EXTRA_INIT
75 #endif
77 /* PyObject_HEAD defines the initial segment of every PyObject. */
78 #define PyObject_HEAD PyObject ob_base;
80 #define PyObject_HEAD_INIT(type) \
81 { _PyObject_EXTRA_INIT \
82 1, type },
84 #define PyVarObject_HEAD_INIT(type, size) \
85 { PyObject_HEAD_INIT(type) size },
87 /* PyObject_VAR_HEAD defines the initial segment of all variable-size
88 * container objects. These end with a declaration of an array with 1
89 * element, but enough space is malloc'ed so that the array actually
90 * has room for ob_size elements. Note that ob_size is an element count,
91 * not necessarily a byte count.
93 #define PyObject_VAR_HEAD PyVarObject ob_base;
94 #define Py_INVALID_SIZE (Py_ssize_t)-1
96 /* Nothing is actually declared to be a PyObject, but every pointer to
97 * a Python object can be cast to a PyObject*. This is inheritance built
98 * by hand. Similarly every pointer to a variable-size Python object can,
99 * in addition, be cast to PyVarObject*.
101 typedef struct _object {
102 _PyObject_HEAD_EXTRA
103 Py_ssize_t ob_refcnt;
104 struct _typeobject *ob_type;
105 } PyObject;
107 typedef struct {
108 PyObject ob_base;
109 Py_ssize_t ob_size; /* Number of items in variable part */
110 } PyVarObject;
112 #define Py_REFCNT(ob) (((PyObject*)(ob))->ob_refcnt)
113 #define Py_TYPE(ob) (((PyObject*)(ob))->ob_type)
114 #define Py_SIZE(ob) (((PyVarObject*)(ob))->ob_size)
117 Type objects contain a string containing the type name (to help somewhat
118 in debugging), the allocation parameters (see PyObject_New() and
119 PyObject_NewVar()),
120 and methods for accessing objects of the type. Methods are optional, a
121 nil pointer meaning that particular kind of access is not available for
122 this type. The Py_DECREF() macro uses the tp_dealloc method without
123 checking for a nil pointer; it should always be implemented except if
124 the implementation can guarantee that the reference count will never
125 reach zero (e.g., for statically allocated type objects).
127 NB: the methods for certain type groups are now contained in separate
128 method blocks.
131 typedef PyObject * (*unaryfunc)(PyObject *);
132 typedef PyObject * (*binaryfunc)(PyObject *, PyObject *);
133 typedef PyObject * (*ternaryfunc)(PyObject *, PyObject *, PyObject *);
134 typedef int (*inquiry)(PyObject *);
135 typedef Py_ssize_t (*lenfunc)(PyObject *);
136 typedef PyObject *(*ssizeargfunc)(PyObject *, Py_ssize_t);
137 typedef PyObject *(*ssizessizeargfunc)(PyObject *, Py_ssize_t, Py_ssize_t);
138 typedef int(*ssizeobjargproc)(PyObject *, Py_ssize_t, PyObject *);
139 typedef int(*ssizessizeobjargproc)(PyObject *, Py_ssize_t, Py_ssize_t, PyObject *);
140 typedef int(*objobjargproc)(PyObject *, PyObject *, PyObject *);
143 /* buffer interface */
144 typedef struct bufferinfo {
145 void *buf;
146 PyObject *obj; /* owned reference */
147 Py_ssize_t len;
148 Py_ssize_t itemsize; /* This is Py_ssize_t so it can be
149 pointed to by strides in simple case.*/
150 int readonly;
151 int ndim;
152 char *format;
153 Py_ssize_t *shape;
154 Py_ssize_t *strides;
155 Py_ssize_t *suboffsets;
156 Py_ssize_t smalltable[2]; /* static store for shape and strides of
157 mono-dimensional buffers. */
158 void *internal;
159 } Py_buffer;
161 typedef int (*getbufferproc)(PyObject *, Py_buffer *, int);
162 typedef void (*releasebufferproc)(PyObject *, Py_buffer *);
164 /* Flags for getting buffers */
165 #define PyBUF_SIMPLE 0
166 #define PyBUF_WRITABLE 0x0001
167 /* we used to include an E, backwards compatible alias */
168 #define PyBUF_WRITEABLE PyBUF_WRITABLE
169 #define PyBUF_FORMAT 0x0004
170 #define PyBUF_ND 0x0008
171 #define PyBUF_STRIDES (0x0010 | PyBUF_ND)
172 #define PyBUF_C_CONTIGUOUS (0x0020 | PyBUF_STRIDES)
173 #define PyBUF_F_CONTIGUOUS (0x0040 | PyBUF_STRIDES)
174 #define PyBUF_ANY_CONTIGUOUS (0x0080 | PyBUF_STRIDES)
175 #define PyBUF_INDIRECT (0x0100 | PyBUF_STRIDES)
177 #define PyBUF_CONTIG (PyBUF_ND | PyBUF_WRITABLE)
178 #define PyBUF_CONTIG_RO (PyBUF_ND)
180 #define PyBUF_STRIDED (PyBUF_STRIDES | PyBUF_WRITABLE)
181 #define PyBUF_STRIDED_RO (PyBUF_STRIDES)
183 #define PyBUF_RECORDS (PyBUF_STRIDES | PyBUF_WRITABLE | PyBUF_FORMAT)
184 #define PyBUF_RECORDS_RO (PyBUF_STRIDES | PyBUF_FORMAT)
186 #define PyBUF_FULL (PyBUF_INDIRECT | PyBUF_WRITABLE | PyBUF_FORMAT)
187 #define PyBUF_FULL_RO (PyBUF_INDIRECT | PyBUF_FORMAT)
190 #define PyBUF_READ 0x100
191 #define PyBUF_WRITE 0x200
192 #define PyBUF_SHADOW 0x400
194 /* End buffer interface */
196 typedef int (*objobjproc)(PyObject *, PyObject *);
197 typedef int (*visitproc)(PyObject *, void *);
198 typedef int (*traverseproc)(PyObject *, visitproc, void *);
200 typedef struct {
201 /* Number implementations must check *both*
202 arguments for proper type and implement the necessary conversions
203 in the slot functions themselves. */
205 binaryfunc nb_add;
206 binaryfunc nb_subtract;
207 binaryfunc nb_multiply;
208 binaryfunc nb_remainder;
209 binaryfunc nb_divmod;
210 ternaryfunc nb_power;
211 unaryfunc nb_negative;
212 unaryfunc nb_positive;
213 unaryfunc nb_absolute;
214 inquiry nb_bool;
215 unaryfunc nb_invert;
216 binaryfunc nb_lshift;
217 binaryfunc nb_rshift;
218 binaryfunc nb_and;
219 binaryfunc nb_xor;
220 binaryfunc nb_or;
221 unaryfunc nb_int;
222 void *nb_reserved; /* the slot formerly known as nb_long */
223 unaryfunc nb_float;
225 binaryfunc nb_inplace_add;
226 binaryfunc nb_inplace_subtract;
227 binaryfunc nb_inplace_multiply;
228 binaryfunc nb_inplace_remainder;
229 ternaryfunc nb_inplace_power;
230 binaryfunc nb_inplace_lshift;
231 binaryfunc nb_inplace_rshift;
232 binaryfunc nb_inplace_and;
233 binaryfunc nb_inplace_xor;
234 binaryfunc nb_inplace_or;
236 binaryfunc nb_floor_divide;
237 binaryfunc nb_true_divide;
238 binaryfunc nb_inplace_floor_divide;
239 binaryfunc nb_inplace_true_divide;
241 unaryfunc nb_index;
242 } PyNumberMethods;
244 typedef struct {
245 lenfunc sq_length;
246 binaryfunc sq_concat;
247 ssizeargfunc sq_repeat;
248 ssizeargfunc sq_item;
249 void *was_sq_slice;
250 ssizeobjargproc sq_ass_item;
251 void *was_sq_ass_slice;
252 objobjproc sq_contains;
254 binaryfunc sq_inplace_concat;
255 ssizeargfunc sq_inplace_repeat;
256 } PySequenceMethods;
258 typedef struct {
259 lenfunc mp_length;
260 binaryfunc mp_subscript;
261 objobjargproc mp_ass_subscript;
262 } PyMappingMethods;
265 typedef struct {
266 getbufferproc bf_getbuffer;
267 releasebufferproc bf_releasebuffer;
268 } PyBufferProcs;
270 typedef void (*freefunc)(void *);
271 typedef void (*destructor)(PyObject *);
272 typedef int (*printfunc)(PyObject *, FILE *, int);
273 typedef PyObject *(*getattrfunc)(PyObject *, char *);
274 typedef PyObject *(*getattrofunc)(PyObject *, PyObject *);
275 typedef int (*setattrfunc)(PyObject *, char *, PyObject *);
276 typedef int (*setattrofunc)(PyObject *, PyObject *, PyObject *);
277 typedef PyObject *(*reprfunc)(PyObject *);
278 typedef long (*hashfunc)(PyObject *);
279 typedef PyObject *(*richcmpfunc) (PyObject *, PyObject *, int);
280 typedef PyObject *(*getiterfunc) (PyObject *);
281 typedef PyObject *(*iternextfunc) (PyObject *);
282 typedef PyObject *(*descrgetfunc) (PyObject *, PyObject *, PyObject *);
283 typedef int (*descrsetfunc) (PyObject *, PyObject *, PyObject *);
284 typedef int (*initproc)(PyObject *, PyObject *, PyObject *);
285 typedef PyObject *(*newfunc)(struct _typeobject *, PyObject *, PyObject *);
286 typedef PyObject *(*allocfunc)(struct _typeobject *, Py_ssize_t);
288 typedef struct _typeobject {
289 PyObject_VAR_HEAD
290 const char *tp_name; /* For printing, in format "<module>.<name>" */
291 Py_ssize_t tp_basicsize, tp_itemsize; /* For allocation */
293 /* Methods to implement standard operations */
295 destructor tp_dealloc;
296 printfunc tp_print;
297 getattrfunc tp_getattr;
298 setattrfunc tp_setattr;
299 void *tp_reserved; /* formerly known as tp_compare */
300 reprfunc tp_repr;
302 /* Method suites for standard classes */
304 PyNumberMethods *tp_as_number;
305 PySequenceMethods *tp_as_sequence;
306 PyMappingMethods *tp_as_mapping;
308 /* More standard operations (here for binary compatibility) */
310 hashfunc tp_hash;
311 ternaryfunc tp_call;
312 reprfunc tp_str;
313 getattrofunc tp_getattro;
314 setattrofunc tp_setattro;
316 /* Functions to access object as input/output buffer */
317 PyBufferProcs *tp_as_buffer;
319 /* Flags to define presence of optional/expanded features */
320 long tp_flags;
322 const char *tp_doc; /* Documentation string */
324 /* Assigned meaning in release 2.0 */
325 /* call function for all accessible objects */
326 traverseproc tp_traverse;
328 /* delete references to contained objects */
329 inquiry tp_clear;
331 /* Assigned meaning in release 2.1 */
332 /* rich comparisons */
333 richcmpfunc tp_richcompare;
335 /* weak reference enabler */
336 Py_ssize_t tp_weaklistoffset;
338 /* Iterators */
339 getiterfunc tp_iter;
340 iternextfunc tp_iternext;
342 /* Attribute descriptor and subclassing stuff */
343 struct PyMethodDef *tp_methods;
344 struct PyMemberDef *tp_members;
345 struct PyGetSetDef *tp_getset;
346 struct _typeobject *tp_base;
347 PyObject *tp_dict;
348 descrgetfunc tp_descr_get;
349 descrsetfunc tp_descr_set;
350 Py_ssize_t tp_dictoffset;
351 initproc tp_init;
352 allocfunc tp_alloc;
353 newfunc tp_new;
354 freefunc tp_free; /* Low-level free-memory routine */
355 inquiry tp_is_gc; /* For PyObject_IS_GC */
356 PyObject *tp_bases;
357 PyObject *tp_mro; /* method resolution order */
358 PyObject *tp_cache;
359 PyObject *tp_subclasses;
360 PyObject *tp_weaklist;
361 destructor tp_del;
363 /* Type attribute cache version tag. Added in version 2.6 */
364 unsigned int tp_version_tag;
366 #ifdef COUNT_ALLOCS
367 /* these must be last and never explicitly initialized */
368 Py_ssize_t tp_allocs;
369 Py_ssize_t tp_frees;
370 Py_ssize_t tp_maxalloc;
371 struct _typeobject *tp_prev;
372 struct _typeobject *tp_next;
373 #endif
374 } PyTypeObject;
377 /* The *real* layout of a type object when allocated on the heap */
378 typedef struct _heaptypeobject {
379 /* Note: there's a dependency on the order of these members
380 in slotptr() in typeobject.c . */
381 PyTypeObject ht_type;
382 PyNumberMethods as_number;
383 PyMappingMethods as_mapping;
384 PySequenceMethods as_sequence; /* as_sequence comes after as_mapping,
385 so that the mapping wins when both
386 the mapping and the sequence define
387 a given operator (e.g. __getitem__).
388 see add_operators() in typeobject.c . */
389 PyBufferProcs as_buffer;
390 PyObject *ht_name, *ht_slots;
391 /* here are optional user slots, followed by the members. */
392 } PyHeapTypeObject;
394 /* access macro to the members which are floating "behind" the object */
395 #define PyHeapType_GET_MEMBERS(etype) \
396 ((PyMemberDef *)(((char *)etype) + Py_TYPE(etype)->tp_basicsize))
399 /* Generic type check */
400 PyAPI_FUNC(int) PyType_IsSubtype(PyTypeObject *, PyTypeObject *);
401 #define PyObject_TypeCheck(ob, tp) \
402 (Py_TYPE(ob) == (tp) || PyType_IsSubtype(Py_TYPE(ob), (tp)))
404 PyAPI_DATA(PyTypeObject) PyType_Type; /* built-in 'type' */
405 PyAPI_DATA(PyTypeObject) PyBaseObject_Type; /* built-in 'object' */
406 PyAPI_DATA(PyTypeObject) PySuper_Type; /* built-in 'super' */
408 #define PyType_Check(op) \
409 PyType_FastSubclass(Py_TYPE(op), Py_TPFLAGS_TYPE_SUBCLASS)
410 #define PyType_CheckExact(op) (Py_TYPE(op) == &PyType_Type)
412 PyAPI_FUNC(int) PyType_Ready(PyTypeObject *);
413 PyAPI_FUNC(PyObject *) PyType_GenericAlloc(PyTypeObject *, Py_ssize_t);
414 PyAPI_FUNC(PyObject *) PyType_GenericNew(PyTypeObject *,
415 PyObject *, PyObject *);
416 PyAPI_FUNC(PyObject *) _PyType_Lookup(PyTypeObject *, PyObject *);
417 PyAPI_FUNC(PyObject *) _PyObject_LookupSpecial(PyObject *, char *, PyObject **);
418 PyAPI_FUNC(unsigned int) PyType_ClearCache(void);
419 PyAPI_FUNC(void) PyType_Modified(PyTypeObject *);
421 /* Generic operations on objects */
422 PyAPI_FUNC(int) PyObject_Print(PyObject *, FILE *, int);
423 PyAPI_FUNC(void) _Py_BreakPoint(void);
424 PyAPI_FUNC(void) _PyObject_Dump(PyObject *);
425 PyAPI_FUNC(PyObject *) PyObject_Repr(PyObject *);
426 PyAPI_FUNC(PyObject *) PyObject_Str(PyObject *);
427 PyAPI_FUNC(PyObject *) PyObject_ASCII(PyObject *);
428 PyAPI_FUNC(PyObject *) PyObject_Bytes(PyObject *);
429 PyAPI_FUNC(PyObject *) PyObject_RichCompare(PyObject *, PyObject *, int);
430 PyAPI_FUNC(int) PyObject_RichCompareBool(PyObject *, PyObject *, int);
431 PyAPI_FUNC(PyObject *) PyObject_GetAttrString(PyObject *, const char *);
432 PyAPI_FUNC(int) PyObject_SetAttrString(PyObject *, const char *, PyObject *);
433 PyAPI_FUNC(int) PyObject_HasAttrString(PyObject *, const char *);
434 PyAPI_FUNC(PyObject *) PyObject_GetAttr(PyObject *, PyObject *);
435 PyAPI_FUNC(int) PyObject_SetAttr(PyObject *, PyObject *, PyObject *);
436 PyAPI_FUNC(int) PyObject_HasAttr(PyObject *, PyObject *);
437 PyAPI_FUNC(PyObject **) _PyObject_GetDictPtr(PyObject *);
438 PyAPI_FUNC(PyObject *) PyObject_SelfIter(PyObject *);
439 PyAPI_FUNC(PyObject *) _PyObject_NextNotImplemented(PyObject *);
440 PyAPI_FUNC(PyObject *) PyObject_GenericGetAttr(PyObject *, PyObject *);
441 PyAPI_FUNC(int) PyObject_GenericSetAttr(PyObject *,
442 PyObject *, PyObject *);
443 PyAPI_FUNC(long) PyObject_Hash(PyObject *);
444 PyAPI_FUNC(long) PyObject_HashNotImplemented(PyObject *);
445 PyAPI_FUNC(int) PyObject_IsTrue(PyObject *);
446 PyAPI_FUNC(int) PyObject_Not(PyObject *);
447 PyAPI_FUNC(int) PyCallable_Check(PyObject *);
449 PyAPI_FUNC(void) PyObject_ClearWeakRefs(PyObject *);
452 /* PyObject_Dir(obj) acts like Python builtins.dir(obj), returning a
453 list of strings. PyObject_Dir(NULL) is like builtins.dir(),
454 returning the names of the current locals. In this case, if there are
455 no current locals, NULL is returned, and PyErr_Occurred() is false.
457 PyAPI_FUNC(PyObject *) PyObject_Dir(PyObject *);
460 /* Helpers for printing recursive container types */
461 PyAPI_FUNC(int) Py_ReprEnter(PyObject *);
462 PyAPI_FUNC(void) Py_ReprLeave(PyObject *);
464 /* Helpers for hash functions */
465 PyAPI_FUNC(long) _Py_HashDouble(double);
466 PyAPI_FUNC(long) _Py_HashPointer(void*);
468 /* Helper for passing objects to printf and the like */
469 #define PyObject_REPR(obj) _PyUnicode_AsString(PyObject_Repr(obj))
471 /* Flag bits for printing: */
472 #define Py_PRINT_RAW 1 /* No string quotes etc. */
475 `Type flags (tp_flags)
477 These flags are used to extend the type structure in a backwards-compatible
478 fashion. Extensions can use the flags to indicate (and test) when a given
479 type structure contains a new feature. The Python core will use these when
480 introducing new functionality between major revisions (to avoid mid-version
481 changes in the PYTHON_API_VERSION).
483 Arbitration of the flag bit positions will need to be coordinated among
484 all extension writers who publically release their extensions (this will
485 be fewer than you might expect!)..
487 Most flags were removed as of Python 3.0 to make room for new flags. (Some
488 flags are not for backwards compatibility but to indicate the presence of an
489 optional feature; these flags remain of course.)
491 Type definitions should use Py_TPFLAGS_DEFAULT for their tp_flags value.
493 Code can use PyType_HasFeature(type_ob, flag_value) to test whether the
494 given type object has a specified feature.
497 /* Set if the type object is dynamically allocated */
498 #define Py_TPFLAGS_HEAPTYPE (1L<<9)
500 /* Set if the type allows subclassing */
501 #define Py_TPFLAGS_BASETYPE (1L<<10)
503 /* Set if the type is 'ready' -- fully initialized */
504 #define Py_TPFLAGS_READY (1L<<12)
506 /* Set while the type is being 'readied', to prevent recursive ready calls */
507 #define Py_TPFLAGS_READYING (1L<<13)
509 /* Objects support garbage collection (see objimp.h) */
510 #define Py_TPFLAGS_HAVE_GC (1L<<14)
512 /* These two bits are preserved for Stackless Python, next after this is 17 */
513 #ifdef STACKLESS
514 #define Py_TPFLAGS_HAVE_STACKLESS_EXTENSION (3L<<15)
515 #else
516 #define Py_TPFLAGS_HAVE_STACKLESS_EXTENSION 0
517 #endif
519 /* Objects support type attribute cache */
520 #define Py_TPFLAGS_HAVE_VERSION_TAG (1L<<18)
521 #define Py_TPFLAGS_VALID_VERSION_TAG (1L<<19)
523 /* Type is abstract and cannot be instantiated */
524 #define Py_TPFLAGS_IS_ABSTRACT (1L<<20)
526 /* These flags are used to determine if a type is a subclass. */
527 #define Py_TPFLAGS_INT_SUBCLASS (1L<<23)
528 #define Py_TPFLAGS_LONG_SUBCLASS (1L<<24)
529 #define Py_TPFLAGS_LIST_SUBCLASS (1L<<25)
530 #define Py_TPFLAGS_TUPLE_SUBCLASS (1L<<26)
531 #define Py_TPFLAGS_BYTES_SUBCLASS (1L<<27)
532 #define Py_TPFLAGS_UNICODE_SUBCLASS (1L<<28)
533 #define Py_TPFLAGS_DICT_SUBCLASS (1L<<29)
534 #define Py_TPFLAGS_BASE_EXC_SUBCLASS (1L<<30)
535 #define Py_TPFLAGS_TYPE_SUBCLASS (1L<<31)
537 #define Py_TPFLAGS_DEFAULT ( \
538 Py_TPFLAGS_HAVE_STACKLESS_EXTENSION | \
539 Py_TPFLAGS_HAVE_VERSION_TAG | \
542 #define PyType_HasFeature(t,f) (((t)->tp_flags & (f)) != 0)
543 #define PyType_FastSubclass(t,f) PyType_HasFeature(t,f)
547 The macros Py_INCREF(op) and Py_DECREF(op) are used to increment or decrement
548 reference counts. Py_DECREF calls the object's deallocator function when
549 the refcount falls to 0; for
550 objects that don't contain references to other objects or heap memory
551 this can be the standard function free(). Both macros can be used
552 wherever a void expression is allowed. The argument must not be a
553 NULL pointer. If it may be NULL, use Py_XINCREF/Py_XDECREF instead.
554 The macro _Py_NewReference(op) initialize reference counts to 1, and
555 in special builds (Py_REF_DEBUG, Py_TRACE_REFS) performs additional
556 bookkeeping appropriate to the special build.
558 We assume that the reference count field can never overflow; this can
559 be proven when the size of the field is the same as the pointer size, so
560 we ignore the possibility. Provided a C int is at least 32 bits (which
561 is implicitly assumed in many parts of this code), that's enough for
562 about 2**31 references to an object.
564 XXX The following became out of date in Python 2.2, but I'm not sure
565 XXX what the full truth is now. Certainly, heap-allocated type objects
566 XXX can and should be deallocated.
567 Type objects should never be deallocated; the type pointer in an object
568 is not considered to be a reference to the type object, to save
569 complications in the deallocation function. (This is actually a
570 decision that's up to the implementer of each new type so if you want,
571 you can count such references to the type object.)
573 *** WARNING*** The Py_DECREF macro must have a side-effect-free argument
574 since it may evaluate its argument multiple times. (The alternative
575 would be to mace it a proper function or assign it to a global temporary
576 variable first, both of which are slower; and in a multi-threaded
577 environment the global variable trick is not safe.)
580 /* First define a pile of simple helper macros, one set per special
581 * build symbol. These either expand to the obvious things, or to
582 * nothing at all when the special mode isn't in effect. The main
583 * macros can later be defined just once then, yet expand to different
584 * things depending on which special build options are and aren't in effect.
585 * Trust me <wink>: while painful, this is 20x easier to understand than,
586 * e.g, defining _Py_NewReference five different times in a maze of nested
587 * #ifdefs (we used to do that -- it was impenetrable).
589 #ifdef Py_REF_DEBUG
590 PyAPI_DATA(Py_ssize_t) _Py_RefTotal;
591 PyAPI_FUNC(void) _Py_NegativeRefcount(const char *fname,
592 int lineno, PyObject *op);
593 PyAPI_FUNC(PyObject *) _PyDict_Dummy(void);
594 PyAPI_FUNC(PyObject *) _PySet_Dummy(void);
595 PyAPI_FUNC(Py_ssize_t) _Py_GetRefTotal(void);
596 #define _Py_INC_REFTOTAL _Py_RefTotal++
597 #define _Py_DEC_REFTOTAL _Py_RefTotal--
598 #define _Py_REF_DEBUG_COMMA ,
599 #define _Py_CHECK_REFCNT(OP) \
600 { if (((PyObject*)OP)->ob_refcnt < 0) \
601 _Py_NegativeRefcount(__FILE__, __LINE__, \
602 (PyObject *)(OP)); \
604 #else
605 #define _Py_INC_REFTOTAL
606 #define _Py_DEC_REFTOTAL
607 #define _Py_REF_DEBUG_COMMA
608 #define _Py_CHECK_REFCNT(OP) /* a semicolon */;
609 #endif /* Py_REF_DEBUG */
611 #ifdef COUNT_ALLOCS
612 PyAPI_FUNC(void) inc_count(PyTypeObject *);
613 PyAPI_FUNC(void) dec_count(PyTypeObject *);
614 #define _Py_INC_TPALLOCS(OP) inc_count(Py_TYPE(OP))
615 #define _Py_INC_TPFREES(OP) dec_count(Py_TYPE(OP))
616 #define _Py_DEC_TPFREES(OP) Py_TYPE(OP)->tp_frees--
617 #define _Py_COUNT_ALLOCS_COMMA ,
618 #else
619 #define _Py_INC_TPALLOCS(OP)
620 #define _Py_INC_TPFREES(OP)
621 #define _Py_DEC_TPFREES(OP)
622 #define _Py_COUNT_ALLOCS_COMMA
623 #endif /* COUNT_ALLOCS */
625 #ifdef Py_TRACE_REFS
626 /* Py_TRACE_REFS is such major surgery that we call external routines. */
627 PyAPI_FUNC(void) _Py_NewReference(PyObject *);
628 PyAPI_FUNC(void) _Py_ForgetReference(PyObject *);
629 PyAPI_FUNC(void) _Py_Dealloc(PyObject *);
630 PyAPI_FUNC(void) _Py_PrintReferences(FILE *);
631 PyAPI_FUNC(void) _Py_PrintReferenceAddresses(FILE *);
632 PyAPI_FUNC(void) _Py_AddToAllObjects(PyObject *, int force);
634 #else
635 /* Without Py_TRACE_REFS, there's little enough to do that we expand code
636 * inline.
638 #define _Py_NewReference(op) ( \
639 _Py_INC_TPALLOCS(op) _Py_COUNT_ALLOCS_COMMA \
640 _Py_INC_REFTOTAL _Py_REF_DEBUG_COMMA \
641 Py_REFCNT(op) = 1)
643 #define _Py_ForgetReference(op) _Py_INC_TPFREES(op)
645 #define _Py_Dealloc(op) ( \
646 _Py_INC_TPFREES(op) _Py_COUNT_ALLOCS_COMMA \
647 (*Py_TYPE(op)->tp_dealloc)((PyObject *)(op)))
648 #endif /* !Py_TRACE_REFS */
650 #define Py_INCREF(op) ( \
651 _Py_INC_REFTOTAL _Py_REF_DEBUG_COMMA \
652 ((PyObject*)(op))->ob_refcnt++)
654 #define Py_DECREF(op) \
655 do { \
656 if (_Py_DEC_REFTOTAL _Py_REF_DEBUG_COMMA \
657 --((PyObject*)(op))->ob_refcnt != 0) \
658 _Py_CHECK_REFCNT(op) \
659 else \
660 _Py_Dealloc((PyObject *)(op)); \
661 } while (0)
663 /* Safely decref `op` and set `op` to NULL, especially useful in tp_clear
664 * and tp_dealloc implementatons.
666 * Note that "the obvious" code can be deadly:
668 * Py_XDECREF(op);
669 * op = NULL;
671 * Typically, `op` is something like self->containee, and `self` is done
672 * using its `containee` member. In the code sequence above, suppose
673 * `containee` is non-NULL with a refcount of 1. Its refcount falls to
674 * 0 on the first line, which can trigger an arbitrary amount of code,
675 * possibly including finalizers (like __del__ methods or weakref callbacks)
676 * coded in Python, which in turn can release the GIL and allow other threads
677 * to run, etc. Such code may even invoke methods of `self` again, or cause
678 * cyclic gc to trigger, but-- oops! --self->containee still points to the
679 * object being torn down, and it may be in an insane state while being torn
680 * down. This has in fact been a rich historic source of miserable (rare &
681 * hard-to-diagnose) segfaulting (and other) bugs.
683 * The safe way is:
685 * Py_CLEAR(op);
687 * That arranges to set `op` to NULL _before_ decref'ing, so that any code
688 * triggered as a side-effect of `op` getting torn down no longer believes
689 * `op` points to a valid object.
691 * There are cases where it's safe to use the naive code, but they're brittle.
692 * For example, if `op` points to a Python integer, you know that destroying
693 * one of those can't cause problems -- but in part that relies on that
694 * Python integers aren't currently weakly referencable. Best practice is
695 * to use Py_CLEAR() even if you can't think of a reason for why you need to.
697 #define Py_CLEAR(op) \
698 do { \
699 if (op) { \
700 PyObject *_py_tmp = (PyObject *)(op); \
701 (op) = NULL; \
702 Py_DECREF(_py_tmp); \
704 } while (0)
706 /* Macros to use in case the object pointer may be NULL: */
707 #define Py_XINCREF(op) do { if ((op) == NULL) ; else Py_INCREF(op); } while (0)
708 #define Py_XDECREF(op) do { if ((op) == NULL) ; else Py_DECREF(op); } while (0)
711 These are provided as conveniences to Python runtime embedders, so that
712 they can have object code that is not dependent on Python compilation flags.
714 PyAPI_FUNC(void) Py_IncRef(PyObject *);
715 PyAPI_FUNC(void) Py_DecRef(PyObject *);
718 _Py_NoneStruct is an object of undefined type which can be used in contexts
719 where NULL (nil) is not suitable (since NULL often means 'error').
721 Don't forget to apply Py_INCREF() when returning this value!!!
723 PyAPI_DATA(PyObject) _Py_NoneStruct; /* Don't use this directly */
724 #define Py_None (&_Py_NoneStruct)
726 /* Macro for returning Py_None from a function */
727 #define Py_RETURN_NONE return Py_INCREF(Py_None), Py_None
730 Py_NotImplemented is a singleton used to signal that an operation is
731 not implemented for a given type combination.
733 PyAPI_DATA(PyObject) _Py_NotImplementedStruct; /* Don't use this directly */
734 #define Py_NotImplemented (&_Py_NotImplementedStruct)
736 /* Rich comparison opcodes */
737 #define Py_LT 0
738 #define Py_LE 1
739 #define Py_EQ 2
740 #define Py_NE 3
741 #define Py_GT 4
742 #define Py_GE 5
744 /* Maps Py_LT to Py_GT, ..., Py_GE to Py_LE.
745 * Defined in object.c.
747 PyAPI_DATA(int) _Py_SwappedOp[];
751 More conventions
752 ================
754 Argument Checking
755 -----------------
757 Functions that take objects as arguments normally don't check for nil
758 arguments, but they do check the type of the argument, and return an
759 error if the function doesn't apply to the type.
761 Failure Modes
762 -------------
764 Functions may fail for a variety of reasons, including running out of
765 memory. This is communicated to the caller in two ways: an error string
766 is set (see errors.h), and the function result differs: functions that
767 normally return a pointer return NULL for failure, functions returning
768 an integer return -1 (which could be a legal return value too!), and
769 other functions return 0 for success and -1 for failure.
770 Callers should always check for errors before using the result. If
771 an error was set, the caller must either explicitly clear it, or pass
772 the error on to its caller.
774 Reference Counts
775 ----------------
777 It takes a while to get used to the proper usage of reference counts.
779 Functions that create an object set the reference count to 1; such new
780 objects must be stored somewhere or destroyed again with Py_DECREF().
781 Some functions that 'store' objects, such as PyTuple_SetItem() and
782 PyList_SetItem(),
783 don't increment the reference count of the object, since the most
784 frequent use is to store a fresh object. Functions that 'retrieve'
785 objects, such as PyTuple_GetItem() and PyDict_GetItemString(), also
786 don't increment
787 the reference count, since most frequently the object is only looked at
788 quickly. Thus, to retrieve an object and store it again, the caller
789 must call Py_INCREF() explicitly.
791 NOTE: functions that 'consume' a reference count, like
792 PyList_SetItem(), consume the reference even if the object wasn't
793 successfully stored, to simplify error handling.
795 It seems attractive to make other functions that take an object as
796 argument consume a reference count; however, this may quickly get
797 confusing (even the current practice is already confusing). Consider
798 it carefully, it may save lots of calls to Py_INCREF() and Py_DECREF() at
799 times.
803 /* Trashcan mechanism, thanks to Christian Tismer.
805 When deallocating a container object, it's possible to trigger an unbounded
806 chain of deallocations, as each Py_DECREF in turn drops the refcount on "the
807 next" object in the chain to 0. This can easily lead to stack faults, and
808 especially in threads (which typically have less stack space to work with).
810 A container object that participates in cyclic gc can avoid this by
811 bracketing the body of its tp_dealloc function with a pair of macros:
813 static void
814 mytype_dealloc(mytype *p)
816 ... declarations go here ...
818 PyObject_GC_UnTrack(p); // must untrack first
819 Py_TRASHCAN_SAFE_BEGIN(p)
820 ... The body of the deallocator goes here, including all calls ...
821 ... to Py_DECREF on contained objects. ...
822 Py_TRASHCAN_SAFE_END(p)
825 CAUTION: Never return from the middle of the body! If the body needs to
826 "get out early", put a label immediately before the Py_TRASHCAN_SAFE_END
827 call, and goto it. Else the call-depth counter (see below) will stay
828 above 0 forever, and the trashcan will never get emptied.
830 How it works: The BEGIN macro increments a call-depth counter. So long
831 as this counter is small, the body of the deallocator is run directly without
832 further ado. But if the counter gets large, it instead adds p to a list of
833 objects to be deallocated later, skips the body of the deallocator, and
834 resumes execution after the END macro. The tp_dealloc routine then returns
835 without deallocating anything (and so unbounded call-stack depth is avoided).
837 When the call stack finishes unwinding again, code generated by the END macro
838 notices this, and calls another routine to deallocate all the objects that
839 may have been added to the list of deferred deallocations. In effect, a
840 chain of N deallocations is broken into N / PyTrash_UNWIND_LEVEL pieces,
841 with the call stack never exceeding a depth of PyTrash_UNWIND_LEVEL.
844 PyAPI_FUNC(void) _PyTrash_deposit_object(PyObject*);
845 PyAPI_FUNC(void) _PyTrash_destroy_chain(void);
846 PyAPI_DATA(int) _PyTrash_delete_nesting;
847 PyAPI_DATA(PyObject *) _PyTrash_delete_later;
849 #define PyTrash_UNWIND_LEVEL 50
851 #define Py_TRASHCAN_SAFE_BEGIN(op) \
852 if (_PyTrash_delete_nesting < PyTrash_UNWIND_LEVEL) { \
853 ++_PyTrash_delete_nesting;
854 /* The body of the deallocator is here. */
855 #define Py_TRASHCAN_SAFE_END(op) \
856 --_PyTrash_delete_nesting; \
857 if (_PyTrash_delete_later && _PyTrash_delete_nesting <= 0) \
858 _PyTrash_destroy_chain(); \
860 else \
861 _PyTrash_deposit_object((PyObject*)op);
863 #ifdef __cplusplus
865 #endif
866 #endif /* !Py_OBJECT_H */