Merged revisions 78965 via svnmerge from
[python/dscho.git] / Python / pystrtod.c
blobc2ce71dbfdad0a01c6703e5392b5fa6c9e6fc1ac
1 /* -*- Mode: C; c-file-style: "python" -*- */
3 #include <Python.h>
4 #include <locale.h>
6 /* _Py_parse_inf_or_nan: Attempt to parse a string of the form "nan", "inf" or
7 "infinity", with an optional leading sign of "+" or "-". On success,
8 return the NaN or Infinity as a double and set *endptr to point just beyond
9 the successfully parsed portion of the string. On failure, return -1.0 and
10 set *endptr to point to the start of the string. */
12 static int
13 case_insensitive_match(const char *s, const char *t)
15 while(*t && Py_TOLOWER(*s) == *t) {
16 s++;
17 t++;
19 return *t ? 0 : 1;
22 double
23 _Py_parse_inf_or_nan(const char *p, char **endptr)
25 double retval;
26 const char *s;
27 int negate = 0;
29 s = p;
30 if (*s == '-') {
31 negate = 1;
32 s++;
34 else if (*s == '+') {
35 s++;
37 if (case_insensitive_match(s, "inf")) {
38 s += 3;
39 if (case_insensitive_match(s, "inity"))
40 s += 5;
41 retval = negate ? -Py_HUGE_VAL : Py_HUGE_VAL;
43 #ifdef Py_NAN
44 else if (case_insensitive_match(s, "nan")) {
45 s += 3;
46 retval = negate ? -Py_NAN : Py_NAN;
48 #endif
49 else {
50 s = p;
51 retval = -1.0;
53 *endptr = (char *)s;
54 return retval;
57 /**
58 * PyOS_ascii_strtod:
59 * @nptr: the string to convert to a numeric value.
60 * @endptr: if non-%NULL, it returns the character after
61 * the last character used in the conversion.
63 * Converts a string to a #gdouble value.
64 * This function behaves like the standard strtod() function
65 * does in the C locale. It does this without actually
66 * changing the current locale, since that would not be
67 * thread-safe.
69 * This function is typically used when reading configuration
70 * files or other non-user input that should be locale independent.
71 * To handle input from the user you should normally use the
72 * locale-sensitive system strtod() function.
74 * If the correct value would cause overflow, plus or minus %HUGE_VAL
75 * is returned (according to the sign of the value), and %ERANGE is
76 * stored in %errno. If the correct value would cause underflow,
77 * zero is returned and %ERANGE is stored in %errno.
78 * If memory allocation fails, %ENOMEM is stored in %errno.
80 * This function resets %errno before calling strtod() so that
81 * you can reliably detect overflow and underflow.
83 * Return value: the #gdouble value.
84 **/
86 #ifndef PY_NO_SHORT_FLOAT_REPR
88 double
89 _PyOS_ascii_strtod(const char *nptr, char **endptr)
91 double result;
92 _Py_SET_53BIT_PRECISION_HEADER;
94 assert(nptr != NULL);
95 /* Set errno to zero, so that we can distinguish zero results
96 and underflows */
97 errno = 0;
99 _Py_SET_53BIT_PRECISION_START;
100 result = _Py_dg_strtod(nptr, endptr);
101 _Py_SET_53BIT_PRECISION_END;
103 if (*endptr == nptr)
104 /* string might represent an inf or nan */
105 result = _Py_parse_inf_or_nan(nptr, endptr);
107 return result;
111 #else
114 Use system strtod; since strtod is locale aware, we may
115 have to first fix the decimal separator.
117 Note that unlike _Py_dg_strtod, the system strtod may not always give
118 correctly rounded results.
121 double
122 _PyOS_ascii_strtod(const char *nptr, char **endptr)
124 char *fail_pos;
125 double val = -1.0;
126 struct lconv *locale_data;
127 const char *decimal_point;
128 size_t decimal_point_len;
129 const char *p, *decimal_point_pos;
130 const char *end = NULL; /* Silence gcc */
131 const char *digits_pos = NULL;
132 int negate = 0;
134 assert(nptr != NULL);
136 fail_pos = NULL;
138 locale_data = localeconv();
139 decimal_point = locale_data->decimal_point;
140 decimal_point_len = strlen(decimal_point);
142 assert(decimal_point_len != 0);
144 decimal_point_pos = NULL;
146 /* Parse infinities and nans */
147 val = _Py_parse_inf_or_nan(nptr, endptr);
148 if (*endptr != nptr)
149 return val;
151 /* Set errno to zero, so that we can distinguish zero results
152 and underflows */
153 errno = 0;
155 /* We process the optional sign manually, then pass the remainder to
156 the system strtod. This ensures that the result of an underflow
157 has the correct sign. (bug #1725) */
158 p = nptr;
159 /* Process leading sign, if present */
160 if (*p == '-') {
161 negate = 1;
162 p++;
164 else if (*p == '+') {
165 p++;
168 /* Some platform strtods accept hex floats; Python shouldn't (at the
169 moment), so we check explicitly for strings starting with '0x'. */
170 if (*p == '0' && (*(p+1) == 'x' || *(p+1) == 'X'))
171 goto invalid_string;
173 /* Check that what's left begins with a digit or decimal point */
174 if (!Py_ISDIGIT(*p) && *p != '.')
175 goto invalid_string;
177 digits_pos = p;
178 if (decimal_point[0] != '.' ||
179 decimal_point[1] != 0)
181 /* Look for a '.' in the input; if present, it'll need to be
182 swapped for the current locale's decimal point before we
183 call strtod. On the other hand, if we find the current
184 locale's decimal point then the input is invalid. */
185 while (Py_ISDIGIT(*p))
186 p++;
188 if (*p == '.')
190 decimal_point_pos = p++;
192 /* locate end of number */
193 while (Py_ISDIGIT(*p))
194 p++;
196 if (*p == 'e' || *p == 'E')
197 p++;
198 if (*p == '+' || *p == '-')
199 p++;
200 while (Py_ISDIGIT(*p))
201 p++;
202 end = p;
204 else if (strncmp(p, decimal_point, decimal_point_len) == 0)
205 /* Python bug #1417699 */
206 goto invalid_string;
207 /* For the other cases, we need not convert the decimal
208 point */
211 if (decimal_point_pos) {
212 char *copy, *c;
213 /* Create a copy of the input, with the '.' converted to the
214 locale-specific decimal point */
215 copy = (char *)PyMem_MALLOC(end - digits_pos +
216 1 + decimal_point_len);
217 if (copy == NULL) {
218 *endptr = (char *)nptr;
219 errno = ENOMEM;
220 return val;
223 c = copy;
224 memcpy(c, digits_pos, decimal_point_pos - digits_pos);
225 c += decimal_point_pos - digits_pos;
226 memcpy(c, decimal_point, decimal_point_len);
227 c += decimal_point_len;
228 memcpy(c, decimal_point_pos + 1,
229 end - (decimal_point_pos + 1));
230 c += end - (decimal_point_pos + 1);
231 *c = 0;
233 val = strtod(copy, &fail_pos);
235 if (fail_pos)
237 if (fail_pos > decimal_point_pos)
238 fail_pos = (char *)digits_pos +
239 (fail_pos - copy) -
240 (decimal_point_len - 1);
241 else
242 fail_pos = (char *)digits_pos +
243 (fail_pos - copy);
246 PyMem_FREE(copy);
249 else {
250 val = strtod(digits_pos, &fail_pos);
253 if (fail_pos == digits_pos)
254 goto invalid_string;
256 if (negate && fail_pos != nptr)
257 val = -val;
258 *endptr = fail_pos;
260 return val;
262 invalid_string:
263 *endptr = (char*)nptr;
264 errno = EINVAL;
265 return -1.0;
268 #endif
270 /* PyOS_ascii_strtod is DEPRECATED in Python 3.1 */
272 double
273 PyOS_ascii_strtod(const char *nptr, char **endptr)
275 char *fail_pos;
276 const char *p;
277 double x;
279 if (PyErr_WarnEx(PyExc_DeprecationWarning,
280 "PyOS_ascii_strtod and PyOS_ascii_atof are "
281 "deprecated. Use PyOS_string_to_double "
282 "instead.", 1) < 0)
283 return -1.0;
285 /* _PyOS_ascii_strtod already does everything that we want,
286 except that it doesn't parse leading whitespace */
287 p = nptr;
288 while (Py_ISSPACE(*p))
289 p++;
290 x = _PyOS_ascii_strtod(p, &fail_pos);
291 if (fail_pos == p)
292 fail_pos = (char *)nptr;
293 if (endptr)
294 *endptr = (char *)fail_pos;
295 return x;
298 /* PyOS_ascii_strtod is DEPRECATED in Python 3.1 */
300 double
301 PyOS_ascii_atof(const char *nptr)
303 return PyOS_ascii_strtod(nptr, NULL);
306 /* PyOS_string_to_double is the recommended replacement for the deprecated
307 PyOS_ascii_strtod and PyOS_ascii_atof functions. It converts a
308 null-terminated byte string s (interpreted as a string of ASCII characters)
309 to a float. The string should not have leading or trailing whitespace (in
310 contrast, PyOS_ascii_strtod allows leading whitespace but not trailing
311 whitespace). The conversion is independent of the current locale.
313 If endptr is NULL, try to convert the whole string. Raise ValueError and
314 return -1.0 if the string is not a valid representation of a floating-point
315 number.
317 If endptr is non-NULL, try to convert as much of the string as possible.
318 If no initial segment of the string is the valid representation of a
319 floating-point number then *endptr is set to point to the beginning of the
320 string, -1.0 is returned and again ValueError is raised.
322 On overflow (e.g., when trying to convert '1e500' on an IEEE 754 machine),
323 if overflow_exception is NULL then +-Py_HUGE_VAL is returned, and no Python
324 exception is raised. Otherwise, overflow_exception should point to a
325 a Python exception, this exception will be raised, -1.0 will be returned,
326 and *endptr will point just past the end of the converted value.
328 If any other failure occurs (for example lack of memory), -1.0 is returned
329 and the appropriate Python exception will have been set.
332 double
333 PyOS_string_to_double(const char *s,
334 char **endptr,
335 PyObject *overflow_exception)
337 double x, result=-1.0;
338 char *fail_pos;
340 errno = 0;
341 PyFPE_START_PROTECT("PyOS_string_to_double", return -1.0)
342 x = _PyOS_ascii_strtod(s, &fail_pos);
343 PyFPE_END_PROTECT(x)
345 if (errno == ENOMEM) {
346 PyErr_NoMemory();
347 fail_pos = (char *)s;
349 else if (!endptr && (fail_pos == s || *fail_pos != '\0'))
350 PyErr_Format(PyExc_ValueError,
351 "could not convert string to float: "
352 "%.200s", s);
353 else if (fail_pos == s)
354 PyErr_Format(PyExc_ValueError,
355 "could not convert string to float: "
356 "%.200s", s);
357 else if (errno == ERANGE && fabs(x) >= 1.0 && overflow_exception)
358 PyErr_Format(overflow_exception,
359 "value too large to convert to float: "
360 "%.200s", s);
361 else
362 result = x;
364 if (endptr != NULL)
365 *endptr = fail_pos;
366 return result;
369 /* Given a string that may have a decimal point in the current
370 locale, change it back to a dot. Since the string cannot get
371 longer, no need for a maximum buffer size parameter. */
372 Py_LOCAL_INLINE(void)
373 change_decimal_from_locale_to_dot(char* buffer)
375 struct lconv *locale_data = localeconv();
376 const char *decimal_point = locale_data->decimal_point;
378 if (decimal_point[0] != '.' || decimal_point[1] != 0) {
379 size_t decimal_point_len = strlen(decimal_point);
381 if (*buffer == '+' || *buffer == '-')
382 buffer++;
383 while (Py_ISDIGIT(*buffer))
384 buffer++;
385 if (strncmp(buffer, decimal_point, decimal_point_len) == 0) {
386 *buffer = '.';
387 buffer++;
388 if (decimal_point_len > 1) {
389 /* buffer needs to get smaller */
390 size_t rest_len = strlen(buffer +
391 (decimal_point_len - 1));
392 memmove(buffer,
393 buffer + (decimal_point_len - 1),
394 rest_len);
395 buffer[rest_len] = 0;
402 /* From the C99 standard, section 7.19.6:
403 The exponent always contains at least two digits, and only as many more digits
404 as necessary to represent the exponent.
406 #define MIN_EXPONENT_DIGITS 2
408 /* Ensure that any exponent, if present, is at least MIN_EXPONENT_DIGITS
409 in length. */
410 Py_LOCAL_INLINE(void)
411 ensure_minimum_exponent_length(char* buffer, size_t buf_size)
413 char *p = strpbrk(buffer, "eE");
414 if (p && (*(p + 1) == '-' || *(p + 1) == '+')) {
415 char *start = p + 2;
416 int exponent_digit_cnt = 0;
417 int leading_zero_cnt = 0;
418 int in_leading_zeros = 1;
419 int significant_digit_cnt;
421 /* Skip over the exponent and the sign. */
422 p += 2;
424 /* Find the end of the exponent, keeping track of leading
425 zeros. */
426 while (*p && Py_ISDIGIT(*p)) {
427 if (in_leading_zeros && *p == '0')
428 ++leading_zero_cnt;
429 if (*p != '0')
430 in_leading_zeros = 0;
431 ++p;
432 ++exponent_digit_cnt;
435 significant_digit_cnt = exponent_digit_cnt - leading_zero_cnt;
436 if (exponent_digit_cnt == MIN_EXPONENT_DIGITS) {
437 /* If there are 2 exactly digits, we're done,
438 regardless of what they contain */
440 else if (exponent_digit_cnt > MIN_EXPONENT_DIGITS) {
441 int extra_zeros_cnt;
443 /* There are more than 2 digits in the exponent. See
444 if we can delete some of the leading zeros */
445 if (significant_digit_cnt < MIN_EXPONENT_DIGITS)
446 significant_digit_cnt = MIN_EXPONENT_DIGITS;
447 extra_zeros_cnt = exponent_digit_cnt -
448 significant_digit_cnt;
450 /* Delete extra_zeros_cnt worth of characters from the
451 front of the exponent */
452 assert(extra_zeros_cnt >= 0);
454 /* Add one to significant_digit_cnt to copy the
455 trailing 0 byte, thus setting the length */
456 memmove(start,
457 start + extra_zeros_cnt,
458 significant_digit_cnt + 1);
460 else {
461 /* If there are fewer than 2 digits, add zeros
462 until there are 2, if there's enough room */
463 int zeros = MIN_EXPONENT_DIGITS - exponent_digit_cnt;
464 if (start + zeros + exponent_digit_cnt + 1
465 < buffer + buf_size) {
466 memmove(start + zeros, start,
467 exponent_digit_cnt + 1);
468 memset(start, '0', zeros);
474 /* Remove trailing zeros after the decimal point from a numeric string; also
475 remove the decimal point if all digits following it are zero. The numeric
476 string must end in '\0', and should not have any leading or trailing
477 whitespace. Assumes that the decimal point is '.'. */
478 Py_LOCAL_INLINE(void)
479 remove_trailing_zeros(char *buffer)
481 char *old_fraction_end, *new_fraction_end, *end, *p;
483 p = buffer;
484 if (*p == '-' || *p == '+')
485 /* Skip leading sign, if present */
486 ++p;
487 while (Py_ISDIGIT(*p))
488 ++p;
490 /* if there's no decimal point there's nothing to do */
491 if (*p++ != '.')
492 return;
494 /* scan any digits after the point */
495 while (Py_ISDIGIT(*p))
496 ++p;
497 old_fraction_end = p;
499 /* scan up to ending '\0' */
500 while (*p != '\0')
501 p++;
502 /* +1 to make sure that we move the null byte as well */
503 end = p+1;
505 /* scan back from fraction_end, looking for removable zeros */
506 p = old_fraction_end;
507 while (*(p-1) == '0')
508 --p;
509 /* and remove point if we've got that far */
510 if (*(p-1) == '.')
511 --p;
512 new_fraction_end = p;
514 memmove(new_fraction_end, old_fraction_end, end-old_fraction_end);
517 /* Ensure that buffer has a decimal point in it. The decimal point will not
518 be in the current locale, it will always be '.'. Don't add a decimal point
519 if an exponent is present. Also, convert to exponential notation where
520 adding a '.0' would produce too many significant digits (see issue 5864).
522 Returns a pointer to the fixed buffer, or NULL on failure.
524 Py_LOCAL_INLINE(char *)
525 ensure_decimal_point(char* buffer, size_t buf_size, int precision)
527 int digit_count, insert_count = 0, convert_to_exp = 0;
528 char *chars_to_insert, *digits_start;
530 /* search for the first non-digit character */
531 char *p = buffer;
532 if (*p == '-' || *p == '+')
533 /* Skip leading sign, if present. I think this could only
534 ever be '-', but it can't hurt to check for both. */
535 ++p;
536 digits_start = p;
537 while (*p && Py_ISDIGIT(*p))
538 ++p;
539 digit_count = Py_SAFE_DOWNCAST(p - digits_start, Py_ssize_t, int);
541 if (*p == '.') {
542 if (Py_ISDIGIT(*(p+1))) {
543 /* Nothing to do, we already have a decimal
544 point and a digit after it */
546 else {
547 /* We have a decimal point, but no following
548 digit. Insert a zero after the decimal. */
549 /* can't ever get here via PyOS_double_to_string */
550 assert(precision == -1);
551 ++p;
552 chars_to_insert = "0";
553 insert_count = 1;
556 else if (!(*p == 'e' || *p == 'E')) {
557 /* Don't add ".0" if we have an exponent. */
558 if (digit_count == precision) {
559 /* issue 5864: don't add a trailing .0 in the case
560 where the '%g'-formatted result already has as many
561 significant digits as were requested. Switch to
562 exponential notation instead. */
563 convert_to_exp = 1;
564 /* no exponent, no point, and we shouldn't land here
565 for infs and nans, so we must be at the end of the
566 string. */
567 assert(*p == '\0');
569 else {
570 assert(precision == -1 || digit_count < precision);
571 chars_to_insert = ".0";
572 insert_count = 2;
575 if (insert_count) {
576 size_t buf_len = strlen(buffer);
577 if (buf_len + insert_count + 1 >= buf_size) {
578 /* If there is not enough room in the buffer
579 for the additional text, just skip it. It's
580 not worth generating an error over. */
582 else {
583 memmove(p + insert_count, p,
584 buffer + strlen(buffer) - p + 1);
585 memcpy(p, chars_to_insert, insert_count);
588 if (convert_to_exp) {
589 int written;
590 size_t buf_avail;
591 p = digits_start;
592 /* insert decimal point */
593 assert(digit_count >= 1);
594 memmove(p+2, p+1, digit_count); /* safe, but overwrites nul */
595 p[1] = '.';
596 p += digit_count+1;
597 assert(p <= buf_size+buffer);
598 buf_avail = buf_size+buffer-p;
599 if (buf_avail == 0)
600 return NULL;
601 /* Add exponent. It's okay to use lower case 'e': we only
602 arrive here as a result of using the empty format code or
603 repr/str builtins and those never want an upper case 'E' */
604 written = PyOS_snprintf(p, buf_avail, "e%+.02d", digit_count-1);
605 if (!(0 <= written &&
606 written < Py_SAFE_DOWNCAST(buf_avail, size_t, int)))
607 /* output truncated, or something else bad happened */
608 return NULL;
609 remove_trailing_zeros(buffer);
611 return buffer;
614 /* see FORMATBUFLEN in unicodeobject.c */
615 #define FLOAT_FORMATBUFLEN 120
618 * PyOS_ascii_formatd:
619 * @buffer: A buffer to place the resulting string in
620 * @buf_size: The length of the buffer.
621 * @format: The printf()-style format to use for the
622 * code to use for converting.
623 * @d: The #gdouble to convert
625 * Converts a #gdouble to a string, using the '.' as
626 * decimal point. To format the number you pass in
627 * a printf()-style format string. Allowed conversion
628 * specifiers are 'e', 'E', 'f', 'F', 'g', 'G', and 'Z'.
630 * 'Z' is the same as 'g', except it always has a decimal and
631 * at least one digit after the decimal.
633 * Return value: The pointer to the buffer with the converted string.
634 * On failure returns NULL but does not set any Python exception.
636 char *
637 _PyOS_ascii_formatd(char *buffer,
638 size_t buf_size,
639 const char *format,
640 double d,
641 int precision)
643 char format_char;
644 size_t format_len = strlen(format);
646 /* Issue 2264: code 'Z' requires copying the format. 'Z' is 'g', but
647 also with at least one character past the decimal. */
648 char tmp_format[FLOAT_FORMATBUFLEN];
650 /* The last character in the format string must be the format char */
651 format_char = format[format_len - 1];
653 if (format[0] != '%')
654 return NULL;
656 /* I'm not sure why this test is here. It's ensuring that the format
657 string after the first character doesn't have a single quote, a
658 lowercase l, or a percent. This is the reverse of the commented-out
659 test about 10 lines ago. */
660 if (strpbrk(format + 1, "'l%"))
661 return NULL;
663 /* Also curious about this function is that it accepts format strings
664 like "%xg", which are invalid for floats. In general, the
665 interface to this function is not very good, but changing it is
666 difficult because it's a public API. */
668 if (!(format_char == 'e' || format_char == 'E' ||
669 format_char == 'f' || format_char == 'F' ||
670 format_char == 'g' || format_char == 'G' ||
671 format_char == 'Z'))
672 return NULL;
674 /* Map 'Z' format_char to 'g', by copying the format string and
675 replacing the final char with a 'g' */
676 if (format_char == 'Z') {
677 if (format_len + 1 >= sizeof(tmp_format)) {
678 /* The format won't fit in our copy. Error out. In
679 practice, this will never happen and will be
680 detected by returning NULL */
681 return NULL;
683 strcpy(tmp_format, format);
684 tmp_format[format_len - 1] = 'g';
685 format = tmp_format;
689 /* Have PyOS_snprintf do the hard work */
690 PyOS_snprintf(buffer, buf_size, format, d);
692 /* Do various fixups on the return string */
694 /* Get the current locale, and find the decimal point string.
695 Convert that string back to a dot. */
696 change_decimal_from_locale_to_dot(buffer);
698 /* If an exponent exists, ensure that the exponent is at least
699 MIN_EXPONENT_DIGITS digits, providing the buffer is large enough
700 for the extra zeros. Also, if there are more than
701 MIN_EXPONENT_DIGITS, remove as many zeros as possible until we get
702 back to MIN_EXPONENT_DIGITS */
703 ensure_minimum_exponent_length(buffer, buf_size);
705 /* If format_char is 'Z', make sure we have at least one character
706 after the decimal point (and make sure we have a decimal point);
707 also switch to exponential notation in some edge cases where the
708 extra character would produce more significant digits that we
709 really want. */
710 if (format_char == 'Z')
711 buffer = ensure_decimal_point(buffer, buf_size, precision);
713 return buffer;
716 char *
717 PyOS_ascii_formatd(char *buffer,
718 size_t buf_size,
719 const char *format,
720 double d)
722 if (PyErr_WarnEx(PyExc_DeprecationWarning,
723 "PyOS_ascii_formatd is deprecated, "
724 "use PyOS_double_to_string instead", 1) < 0)
725 return NULL;
727 return _PyOS_ascii_formatd(buffer, buf_size, format, d, -1);
730 #ifdef PY_NO_SHORT_FLOAT_REPR
732 /* The fallback code to use if _Py_dg_dtoa is not available. */
734 PyAPI_FUNC(char *) PyOS_double_to_string(double val,
735 char format_code,
736 int precision,
737 int flags,
738 int *type)
740 char format[32];
741 Py_ssize_t bufsize;
742 char *buf;
743 int t, exp;
744 int upper = 0;
746 /* Validate format_code, and map upper and lower case */
747 switch (format_code) {
748 case 'e': /* exponent */
749 case 'f': /* fixed */
750 case 'g': /* general */
751 break;
752 case 'E':
753 upper = 1;
754 format_code = 'e';
755 break;
756 case 'F':
757 upper = 1;
758 format_code = 'f';
759 break;
760 case 'G':
761 upper = 1;
762 format_code = 'g';
763 break;
764 case 'r': /* repr format */
765 /* Supplied precision is unused, must be 0. */
766 if (precision != 0) {
767 PyErr_BadInternalCall();
768 return NULL;
770 /* The repr() precision (17 significant decimal digits) is the
771 minimal number that is guaranteed to have enough precision
772 so that if the number is read back in the exact same binary
773 value is recreated. This is true for IEEE floating point
774 by design, and also happens to work for all other modern
775 hardware. */
776 precision = 17;
777 format_code = 'g';
778 break;
779 default:
780 PyErr_BadInternalCall();
781 return NULL;
784 /* Here's a quick-and-dirty calculation to figure out how big a buffer
785 we need. In general, for a finite float we need:
787 1 byte for each digit of the decimal significand, and
789 1 for a possible sign
790 1 for a possible decimal point
791 2 for a possible [eE][+-]
792 1 for each digit of the exponent; if we allow 19 digits
793 total then we're safe up to exponents of 2**63.
794 1 for the trailing nul byte
796 This gives a total of 24 + the number of digits in the significand,
797 and the number of digits in the significand is:
799 for 'g' format: at most precision, except possibly
800 when precision == 0, when it's 1.
801 for 'e' format: precision+1
802 for 'f' format: precision digits after the point, at least 1
803 before. To figure out how many digits appear before the point
804 we have to examine the size of the number. If fabs(val) < 1.0
805 then there will be only one digit before the point. If
806 fabs(val) >= 1.0, then there are at most
808 1+floor(log10(ceiling(fabs(val))))
810 digits before the point (where the 'ceiling' allows for the
811 possibility that the rounding rounds the integer part of val
812 up). A safe upper bound for the above quantity is
813 1+floor(exp/3), where exp is the unique integer such that 0.5
814 <= fabs(val)/2**exp < 1.0. This exp can be obtained from
815 frexp.
817 So we allow room for precision+1 digits for all formats, plus an
818 extra floor(exp/3) digits for 'f' format.
822 if (Py_IS_NAN(val) || Py_IS_INFINITY(val))
823 /* 3 for 'inf'/'nan', 1 for sign, 1 for '\0' */
824 bufsize = 5;
825 else {
826 bufsize = 25 + precision;
827 if (format_code == 'f' && fabs(val) >= 1.0) {
828 frexp(val, &exp);
829 bufsize += exp/3;
833 buf = PyMem_Malloc(bufsize);
834 if (buf == NULL) {
835 PyErr_NoMemory();
836 return NULL;
839 /* Handle nan and inf. */
840 if (Py_IS_NAN(val)) {
841 strcpy(buf, "nan");
842 t = Py_DTST_NAN;
843 } else if (Py_IS_INFINITY(val)) {
844 if (copysign(1., val) == 1.)
845 strcpy(buf, "inf");
846 else
847 strcpy(buf, "-inf");
848 t = Py_DTST_INFINITE;
849 } else {
850 t = Py_DTST_FINITE;
851 if (flags & Py_DTSF_ADD_DOT_0)
852 format_code = 'Z';
854 PyOS_snprintf(format, sizeof(format), "%%%s.%i%c",
855 (flags & Py_DTSF_ALT ? "#" : ""), precision,
856 format_code);
857 _PyOS_ascii_formatd(buf, bufsize, format, val, precision);
860 /* Add sign when requested. It's convenient (esp. when formatting
861 complex numbers) to include a sign even for inf and nan. */
862 if (flags & Py_DTSF_SIGN && buf[0] != '-') {
863 size_t len = strlen(buf);
864 /* the bufsize calculations above should ensure that we've got
865 space to add a sign */
866 assert((size_t)bufsize >= len+2);
867 memmove(buf+1, buf, len+1);
868 buf[0] = '+';
870 if (upper) {
871 /* Convert to upper case. */
872 char *p1;
873 for (p1 = buf; *p1; p1++)
874 *p1 = Py_TOUPPER(*p1);
877 if (type)
878 *type = t;
879 return buf;
882 #else
884 /* _Py_dg_dtoa is available. */
886 /* I'm using a lookup table here so that I don't have to invent a non-locale
887 specific way to convert to uppercase */
888 #define OFS_INF 0
889 #define OFS_NAN 1
890 #define OFS_E 2
892 /* The lengths of these are known to the code below, so don't change them */
893 static char *lc_float_strings[] = {
894 "inf",
895 "nan",
896 "e",
898 static char *uc_float_strings[] = {
899 "INF",
900 "NAN",
901 "E",
905 /* Convert a double d to a string, and return a PyMem_Malloc'd block of
906 memory contain the resulting string.
908 Arguments:
909 d is the double to be converted
910 format_code is one of 'e', 'f', 'g', 'r'. 'e', 'f' and 'g'
911 correspond to '%e', '%f' and '%g'; 'r' corresponds to repr.
912 mode is one of '0', '2' or '3', and is completely determined by
913 format_code: 'e' and 'g' use mode 2; 'f' mode 3, 'r' mode 0.
914 precision is the desired precision
915 always_add_sign is nonzero if a '+' sign should be included for positive
916 numbers
917 add_dot_0_if_integer is nonzero if integers in non-exponential form
918 should have ".0" added. Only applies to format codes 'r' and 'g'.
919 use_alt_formatting is nonzero if alternative formatting should be
920 used. Only applies to format codes 'e', 'f' and 'g'. For code 'g',
921 at most one of use_alt_formatting and add_dot_0_if_integer should
922 be nonzero.
923 type, if non-NULL, will be set to one of these constants to identify
924 the type of the 'd' argument:
925 Py_DTST_FINITE
926 Py_DTST_INFINITE
927 Py_DTST_NAN
929 Returns a PyMem_Malloc'd block of memory containing the resulting string,
930 or NULL on error. If NULL is returned, the Python error has been set.
933 static char *
934 format_float_short(double d, char format_code,
935 int mode, Py_ssize_t precision,
936 int always_add_sign, int add_dot_0_if_integer,
937 int use_alt_formatting, char **float_strings, int *type)
939 char *buf = NULL;
940 char *p = NULL;
941 Py_ssize_t bufsize = 0;
942 char *digits, *digits_end;
943 int decpt_as_int, sign, exp_len, exp = 0, use_exp = 0;
944 Py_ssize_t decpt, digits_len, vdigits_start, vdigits_end;
945 _Py_SET_53BIT_PRECISION_HEADER;
947 /* _Py_dg_dtoa returns a digit string (no decimal point or exponent).
948 Must be matched by a call to _Py_dg_freedtoa. */
949 _Py_SET_53BIT_PRECISION_START;
950 digits = _Py_dg_dtoa(d, mode, precision, &decpt_as_int, &sign,
951 &digits_end);
952 _Py_SET_53BIT_PRECISION_END;
954 decpt = (Py_ssize_t)decpt_as_int;
955 if (digits == NULL) {
956 /* The only failure mode is no memory. */
957 PyErr_NoMemory();
958 goto exit;
960 assert(digits_end != NULL && digits_end >= digits);
961 digits_len = digits_end - digits;
963 if (digits_len && !Py_ISDIGIT(digits[0])) {
964 /* Infinities and nans here; adapt Gay's output,
965 so convert Infinity to inf and NaN to nan, and
966 ignore sign of nan. Then return. */
968 /* ignore the actual sign of a nan */
969 if (digits[0] == 'n' || digits[0] == 'N')
970 sign = 0;
972 /* We only need 5 bytes to hold the result "+inf\0" . */
973 bufsize = 5; /* Used later in an assert. */
974 buf = (char *)PyMem_Malloc(bufsize);
975 if (buf == NULL) {
976 PyErr_NoMemory();
977 goto exit;
979 p = buf;
981 if (sign == 1) {
982 *p++ = '-';
984 else if (always_add_sign) {
985 *p++ = '+';
987 if (digits[0] == 'i' || digits[0] == 'I') {
988 strncpy(p, float_strings[OFS_INF], 3);
989 p += 3;
991 if (type)
992 *type = Py_DTST_INFINITE;
994 else if (digits[0] == 'n' || digits[0] == 'N') {
995 strncpy(p, float_strings[OFS_NAN], 3);
996 p += 3;
998 if (type)
999 *type = Py_DTST_NAN;
1001 else {
1002 /* shouldn't get here: Gay's code should always return
1003 something starting with a digit, an 'I', or 'N' */
1004 strncpy(p, "ERR", 3);
1005 p += 3;
1006 assert(0);
1008 goto exit;
1011 /* The result must be finite (not inf or nan). */
1012 if (type)
1013 *type = Py_DTST_FINITE;
1016 /* We got digits back, format them. We may need to pad 'digits'
1017 either on the left or right (or both) with extra zeros, so in
1018 general the resulting string has the form
1020 [<sign>]<zeros><digits><zeros>[<exponent>]
1022 where either of the <zeros> pieces could be empty, and there's a
1023 decimal point that could appear either in <digits> or in the
1024 leading or trailing <zeros>.
1026 Imagine an infinite 'virtual' string vdigits, consisting of the
1027 string 'digits' (starting at index 0) padded on both the left and
1028 right with infinite strings of zeros. We want to output a slice
1030 vdigits[vdigits_start : vdigits_end]
1032 of this virtual string. Thus if vdigits_start < 0 then we'll end
1033 up producing some leading zeros; if vdigits_end > digits_len there
1034 will be trailing zeros in the output. The next section of code
1035 determines whether to use an exponent or not, figures out the
1036 position 'decpt' of the decimal point, and computes 'vdigits_start'
1037 and 'vdigits_end'. */
1038 vdigits_end = digits_len;
1039 switch (format_code) {
1040 case 'e':
1041 use_exp = 1;
1042 vdigits_end = precision;
1043 break;
1044 case 'f':
1045 vdigits_end = decpt + precision;
1046 break;
1047 case 'g':
1048 if (decpt <= -4 || decpt >
1049 (add_dot_0_if_integer ? precision-1 : precision))
1050 use_exp = 1;
1051 if (use_alt_formatting)
1052 vdigits_end = precision;
1053 break;
1054 case 'r':
1055 /* convert to exponential format at 1e16. We used to convert
1056 at 1e17, but that gives odd-looking results for some values
1057 when a 16-digit 'shortest' repr is padded with bogus zeros.
1058 For example, repr(2e16+8) would give 20000000000000010.0;
1059 the true value is 20000000000000008.0. */
1060 if (decpt <= -4 || decpt > 16)
1061 use_exp = 1;
1062 break;
1063 default:
1064 PyErr_BadInternalCall();
1065 goto exit;
1068 /* if using an exponent, reset decimal point position to 1 and adjust
1069 exponent accordingly.*/
1070 if (use_exp) {
1071 exp = decpt - 1;
1072 decpt = 1;
1074 /* ensure vdigits_start < decpt <= vdigits_end, or vdigits_start <
1075 decpt < vdigits_end if add_dot_0_if_integer and no exponent */
1076 vdigits_start = decpt <= 0 ? decpt-1 : 0;
1077 if (!use_exp && add_dot_0_if_integer)
1078 vdigits_end = vdigits_end > decpt ? vdigits_end : decpt + 1;
1079 else
1080 vdigits_end = vdigits_end > decpt ? vdigits_end : decpt;
1082 /* double check inequalities */
1083 assert(vdigits_start <= 0 &&
1084 0 <= digits_len &&
1085 digits_len <= vdigits_end);
1086 /* decimal point should be in (vdigits_start, vdigits_end] */
1087 assert(vdigits_start < decpt && decpt <= vdigits_end);
1089 /* Compute an upper bound how much memory we need. This might be a few
1090 chars too long, but no big deal. */
1091 bufsize =
1092 /* sign, decimal point and trailing 0 byte */
1095 /* total digit count (including zero padding on both sides) */
1096 (vdigits_end - vdigits_start) +
1098 /* exponent "e+100", max 3 numerical digits */
1099 (use_exp ? 5 : 0);
1101 /* Now allocate the memory and initialize p to point to the start of
1102 it. */
1103 buf = (char *)PyMem_Malloc(bufsize);
1104 if (buf == NULL) {
1105 PyErr_NoMemory();
1106 goto exit;
1108 p = buf;
1110 /* Add a negative sign if negative, and a plus sign if non-negative
1111 and always_add_sign is true. */
1112 if (sign == 1)
1113 *p++ = '-';
1114 else if (always_add_sign)
1115 *p++ = '+';
1117 /* note that exactly one of the three 'if' conditions is true,
1118 so we include exactly one decimal point */
1119 /* Zero padding on left of digit string */
1120 if (decpt <= 0) {
1121 memset(p, '0', decpt-vdigits_start);
1122 p += decpt - vdigits_start;
1123 *p++ = '.';
1124 memset(p, '0', 0-decpt);
1125 p += 0-decpt;
1127 else {
1128 memset(p, '0', 0-vdigits_start);
1129 p += 0 - vdigits_start;
1132 /* Digits, with included decimal point */
1133 if (0 < decpt && decpt <= digits_len) {
1134 strncpy(p, digits, decpt-0);
1135 p += decpt-0;
1136 *p++ = '.';
1137 strncpy(p, digits+decpt, digits_len-decpt);
1138 p += digits_len-decpt;
1140 else {
1141 strncpy(p, digits, digits_len);
1142 p += digits_len;
1145 /* And zeros on the right */
1146 if (digits_len < decpt) {
1147 memset(p, '0', decpt-digits_len);
1148 p += decpt-digits_len;
1149 *p++ = '.';
1150 memset(p, '0', vdigits_end-decpt);
1151 p += vdigits_end-decpt;
1153 else {
1154 memset(p, '0', vdigits_end-digits_len);
1155 p += vdigits_end-digits_len;
1158 /* Delete a trailing decimal pt unless using alternative formatting. */
1159 if (p[-1] == '.' && !use_alt_formatting)
1160 p--;
1162 /* Now that we've done zero padding, add an exponent if needed. */
1163 if (use_exp) {
1164 *p++ = float_strings[OFS_E][0];
1165 exp_len = sprintf(p, "%+.02d", exp);
1166 p += exp_len;
1168 exit:
1169 if (buf) {
1170 *p = '\0';
1171 /* It's too late if this fails, as we've already stepped on
1172 memory that isn't ours. But it's an okay debugging test. */
1173 assert(p-buf < bufsize);
1175 if (digits)
1176 _Py_dg_freedtoa(digits);
1178 return buf;
1182 PyAPI_FUNC(char *) PyOS_double_to_string(double val,
1183 char format_code,
1184 int precision,
1185 int flags,
1186 int *type)
1188 char **float_strings = lc_float_strings;
1189 int mode;
1191 /* Validate format_code, and map upper and lower case. Compute the
1192 mode and make any adjustments as needed. */
1193 switch (format_code) {
1194 /* exponent */
1195 case 'E':
1196 float_strings = uc_float_strings;
1197 format_code = 'e';
1198 /* Fall through. */
1199 case 'e':
1200 mode = 2;
1201 precision++;
1202 break;
1204 /* fixed */
1205 case 'F':
1206 float_strings = uc_float_strings;
1207 format_code = 'f';
1208 /* Fall through. */
1209 case 'f':
1210 mode = 3;
1211 break;
1213 /* general */
1214 case 'G':
1215 float_strings = uc_float_strings;
1216 format_code = 'g';
1217 /* Fall through. */
1218 case 'g':
1219 mode = 2;
1220 /* precision 0 makes no sense for 'g' format; interpret as 1 */
1221 if (precision == 0)
1222 precision = 1;
1223 break;
1225 /* repr format */
1226 case 'r':
1227 mode = 0;
1228 /* Supplied precision is unused, must be 0. */
1229 if (precision != 0) {
1230 PyErr_BadInternalCall();
1231 return NULL;
1233 break;
1235 default:
1236 PyErr_BadInternalCall();
1237 return NULL;
1240 return format_float_short(val, format_code, mode, precision,
1241 flags & Py_DTSF_SIGN,
1242 flags & Py_DTSF_ADD_DOT_0,
1243 flags & Py_DTSF_ALT,
1244 float_strings, type);
1246 #endif /* ifdef PY_NO_SHORT_FLOAT_REPR */