Merged revisions 82952,82954 via svnmerge from
[python/dscho.git] / Modules / datetimemodule.c
blob0ac51aaa7ff319c1c81ef3d4f67c42f4d749dc21
1 /* C implementation for the date/time type documented at
2 * http://www.zope.org/Members/fdrake/DateTimeWiki/FrontPage
3 */
5 #include "Python.h"
6 #include "modsupport.h"
7 #include "structmember.h"
9 #include <time.h>
11 #include "timefuncs.h"
13 /* Differentiate between building the core module and building extension
14 * modules.
16 #ifndef Py_BUILD_CORE
17 #define Py_BUILD_CORE
18 #endif
19 #include "datetime.h"
20 #undef Py_BUILD_CORE
22 /* We require that C int be at least 32 bits, and use int virtually
23 * everywhere. In just a few cases we use a temp long, where a Python
24 * API returns a C long. In such cases, we have to ensure that the
25 * final result fits in a C int (this can be an issue on 64-bit boxes).
27 #if SIZEOF_INT < 4
28 # error "datetime.c requires that C int have at least 32 bits"
29 #endif
31 #define MINYEAR 1
32 #define MAXYEAR 9999
33 #define MAXORDINAL 3652059 /* date(9999,12,31).toordinal() */
35 /* Nine decimal digits is easy to communicate, and leaves enough room
36 * so that two delta days can be added w/o fear of overflowing a signed
37 * 32-bit int, and with plenty of room left over to absorb any possible
38 * carries from adding seconds.
40 #define MAX_DELTA_DAYS 999999999
42 /* Rename the long macros in datetime.h to more reasonable short names. */
43 #define GET_YEAR PyDateTime_GET_YEAR
44 #define GET_MONTH PyDateTime_GET_MONTH
45 #define GET_DAY PyDateTime_GET_DAY
46 #define DATE_GET_HOUR PyDateTime_DATE_GET_HOUR
47 #define DATE_GET_MINUTE PyDateTime_DATE_GET_MINUTE
48 #define DATE_GET_SECOND PyDateTime_DATE_GET_SECOND
49 #define DATE_GET_MICROSECOND PyDateTime_DATE_GET_MICROSECOND
51 /* Date accessors for date and datetime. */
52 #define SET_YEAR(o, v) (((o)->data[0] = ((v) & 0xff00) >> 8), \
53 ((o)->data[1] = ((v) & 0x00ff)))
54 #define SET_MONTH(o, v) (PyDateTime_GET_MONTH(o) = (v))
55 #define SET_DAY(o, v) (PyDateTime_GET_DAY(o) = (v))
57 /* Date/Time accessors for datetime. */
58 #define DATE_SET_HOUR(o, v) (PyDateTime_DATE_GET_HOUR(o) = (v))
59 #define DATE_SET_MINUTE(o, v) (PyDateTime_DATE_GET_MINUTE(o) = (v))
60 #define DATE_SET_SECOND(o, v) (PyDateTime_DATE_GET_SECOND(o) = (v))
61 #define DATE_SET_MICROSECOND(o, v) \
62 (((o)->data[7] = ((v) & 0xff0000) >> 16), \
63 ((o)->data[8] = ((v) & 0x00ff00) >> 8), \
64 ((o)->data[9] = ((v) & 0x0000ff)))
66 /* Time accessors for time. */
67 #define TIME_GET_HOUR PyDateTime_TIME_GET_HOUR
68 #define TIME_GET_MINUTE PyDateTime_TIME_GET_MINUTE
69 #define TIME_GET_SECOND PyDateTime_TIME_GET_SECOND
70 #define TIME_GET_MICROSECOND PyDateTime_TIME_GET_MICROSECOND
71 #define TIME_SET_HOUR(o, v) (PyDateTime_TIME_GET_HOUR(o) = (v))
72 #define TIME_SET_MINUTE(o, v) (PyDateTime_TIME_GET_MINUTE(o) = (v))
73 #define TIME_SET_SECOND(o, v) (PyDateTime_TIME_GET_SECOND(o) = (v))
74 #define TIME_SET_MICROSECOND(o, v) \
75 (((o)->data[3] = ((v) & 0xff0000) >> 16), \
76 ((o)->data[4] = ((v) & 0x00ff00) >> 8), \
77 ((o)->data[5] = ((v) & 0x0000ff)))
79 /* Delta accessors for timedelta. */
80 #define GET_TD_DAYS(o) (((PyDateTime_Delta *)(o))->days)
81 #define GET_TD_SECONDS(o) (((PyDateTime_Delta *)(o))->seconds)
82 #define GET_TD_MICROSECONDS(o) (((PyDateTime_Delta *)(o))->microseconds)
84 #define SET_TD_DAYS(o, v) ((o)->days = (v))
85 #define SET_TD_SECONDS(o, v) ((o)->seconds = (v))
86 #define SET_TD_MICROSECONDS(o, v) ((o)->microseconds = (v))
88 /* p is a pointer to a time or a datetime object; HASTZINFO(p) returns
89 * p->hastzinfo.
91 #define HASTZINFO(p) (((_PyDateTime_BaseTZInfo *)(p))->hastzinfo)
93 /* M is a char or int claiming to be a valid month. The macro is equivalent
94 * to the two-sided Python test
95 * 1 <= M <= 12
97 #define MONTH_IS_SANE(M) ((unsigned int)(M) - 1 < 12)
99 /* Forward declarations. */
100 static PyTypeObject PyDateTime_DateType;
101 static PyTypeObject PyDateTime_DateTimeType;
102 static PyTypeObject PyDateTime_DeltaType;
103 static PyTypeObject PyDateTime_TimeType;
104 static PyTypeObject PyDateTime_TZInfoType;
106 /* ---------------------------------------------------------------------------
107 * Math utilities.
110 /* k = i+j overflows iff k differs in sign from both inputs,
111 * iff k^i has sign bit set and k^j has sign bit set,
112 * iff (k^i)&(k^j) has sign bit set.
114 #define SIGNED_ADD_OVERFLOWED(RESULT, I, J) \
115 ((((RESULT) ^ (I)) & ((RESULT) ^ (J))) < 0)
117 /* Compute Python divmod(x, y), returning the quotient and storing the
118 * remainder into *r. The quotient is the floor of x/y, and that's
119 * the real point of this. C will probably truncate instead (C99
120 * requires truncation; C89 left it implementation-defined).
121 * Simplification: we *require* that y > 0 here. That's appropriate
122 * for all the uses made of it. This simplifies the code and makes
123 * the overflow case impossible (divmod(LONG_MIN, -1) is the only
124 * overflow case).
126 static int
127 divmod(int x, int y, int *r)
129 int quo;
131 assert(y > 0);
132 quo = x / y;
133 *r = x - quo * y;
134 if (*r < 0) {
135 --quo;
136 *r += y;
138 assert(0 <= *r && *r < y);
139 return quo;
142 /* Round a double to the nearest long. |x| must be small enough to fit
143 * in a C long; this is not checked.
145 static long
146 round_to_long(double x)
148 if (x >= 0.0)
149 x = floor(x + 0.5);
150 else
151 x = ceil(x - 0.5);
152 return (long)x;
155 /* ---------------------------------------------------------------------------
156 * General calendrical helper functions
159 /* For each month ordinal in 1..12, the number of days in that month,
160 * and the number of days before that month in the same year. These
161 * are correct for non-leap years only.
163 static int _days_in_month[] = {
164 0, /* unused; this vector uses 1-based indexing */
165 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
168 static int _days_before_month[] = {
169 0, /* unused; this vector uses 1-based indexing */
170 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334
173 /* year -> 1 if leap year, else 0. */
174 static int
175 is_leap(int year)
177 /* Cast year to unsigned. The result is the same either way, but
178 * C can generate faster code for unsigned mod than for signed
179 * mod (especially for % 4 -- a good compiler should just grab
180 * the last 2 bits when the LHS is unsigned).
182 const unsigned int ayear = (unsigned int)year;
183 return ayear % 4 == 0 && (ayear % 100 != 0 || ayear % 400 == 0);
186 /* year, month -> number of days in that month in that year */
187 static int
188 days_in_month(int year, int month)
190 assert(month >= 1);
191 assert(month <= 12);
192 if (month == 2 && is_leap(year))
193 return 29;
194 else
195 return _days_in_month[month];
198 /* year, month -> number of days in year preceeding first day of month */
199 static int
200 days_before_month(int year, int month)
202 int days;
204 assert(month >= 1);
205 assert(month <= 12);
206 days = _days_before_month[month];
207 if (month > 2 && is_leap(year))
208 ++days;
209 return days;
212 /* year -> number of days before January 1st of year. Remember that we
213 * start with year 1, so days_before_year(1) == 0.
215 static int
216 days_before_year(int year)
218 int y = year - 1;
219 /* This is incorrect if year <= 0; we really want the floor
220 * here. But so long as MINYEAR is 1, the smallest year this
221 * can see is 0 (this can happen in some normalization endcases),
222 * so we'll just special-case that.
224 assert (year >= 0);
225 if (y >= 0)
226 return y*365 + y/4 - y/100 + y/400;
227 else {
228 assert(y == -1);
229 return -366;
233 /* Number of days in 4, 100, and 400 year cycles. That these have
234 * the correct values is asserted in the module init function.
236 #define DI4Y 1461 /* days_before_year(5); days in 4 years */
237 #define DI100Y 36524 /* days_before_year(101); days in 100 years */
238 #define DI400Y 146097 /* days_before_year(401); days in 400 years */
240 /* ordinal -> year, month, day, considering 01-Jan-0001 as day 1. */
241 static void
242 ord_to_ymd(int ordinal, int *year, int *month, int *day)
244 int n, n1, n4, n100, n400, leapyear, preceding;
246 /* ordinal is a 1-based index, starting at 1-Jan-1. The pattern of
247 * leap years repeats exactly every 400 years. The basic strategy is
248 * to find the closest 400-year boundary at or before ordinal, then
249 * work with the offset from that boundary to ordinal. Life is much
250 * clearer if we subtract 1 from ordinal first -- then the values
251 * of ordinal at 400-year boundaries are exactly those divisible
252 * by DI400Y:
254 * D M Y n n-1
255 * -- --- ---- ---------- ----------------
256 * 31 Dec -400 -DI400Y -DI400Y -1
257 * 1 Jan -399 -DI400Y +1 -DI400Y 400-year boundary
258 * ...
259 * 30 Dec 000 -1 -2
260 * 31 Dec 000 0 -1
261 * 1 Jan 001 1 0 400-year boundary
262 * 2 Jan 001 2 1
263 * 3 Jan 001 3 2
264 * ...
265 * 31 Dec 400 DI400Y DI400Y -1
266 * 1 Jan 401 DI400Y +1 DI400Y 400-year boundary
268 assert(ordinal >= 1);
269 --ordinal;
270 n400 = ordinal / DI400Y;
271 n = ordinal % DI400Y;
272 *year = n400 * 400 + 1;
274 /* Now n is the (non-negative) offset, in days, from January 1 of
275 * year, to the desired date. Now compute how many 100-year cycles
276 * precede n.
277 * Note that it's possible for n100 to equal 4! In that case 4 full
278 * 100-year cycles precede the desired day, which implies the
279 * desired day is December 31 at the end of a 400-year cycle.
281 n100 = n / DI100Y;
282 n = n % DI100Y;
284 /* Now compute how many 4-year cycles precede it. */
285 n4 = n / DI4Y;
286 n = n % DI4Y;
288 /* And now how many single years. Again n1 can be 4, and again
289 * meaning that the desired day is December 31 at the end of the
290 * 4-year cycle.
292 n1 = n / 365;
293 n = n % 365;
295 *year += n100 * 100 + n4 * 4 + n1;
296 if (n1 == 4 || n100 == 4) {
297 assert(n == 0);
298 *year -= 1;
299 *month = 12;
300 *day = 31;
301 return;
304 /* Now the year is correct, and n is the offset from January 1. We
305 * find the month via an estimate that's either exact or one too
306 * large.
308 leapyear = n1 == 3 && (n4 != 24 || n100 == 3);
309 assert(leapyear == is_leap(*year));
310 *month = (n + 50) >> 5;
311 preceding = (_days_before_month[*month] + (*month > 2 && leapyear));
312 if (preceding > n) {
313 /* estimate is too large */
314 *month -= 1;
315 preceding -= days_in_month(*year, *month);
317 n -= preceding;
318 assert(0 <= n);
319 assert(n < days_in_month(*year, *month));
321 *day = n + 1;
324 /* year, month, day -> ordinal, considering 01-Jan-0001 as day 1. */
325 static int
326 ymd_to_ord(int year, int month, int day)
328 return days_before_year(year) + days_before_month(year, month) + day;
331 /* Day of week, where Monday==0, ..., Sunday==6. 1/1/1 was a Monday. */
332 static int
333 weekday(int year, int month, int day)
335 return (ymd_to_ord(year, month, day) + 6) % 7;
338 /* Ordinal of the Monday starting week 1 of the ISO year. Week 1 is the
339 * first calendar week containing a Thursday.
341 static int
342 iso_week1_monday(int year)
344 int first_day = ymd_to_ord(year, 1, 1); /* ord of 1/1 */
345 /* 0 if 1/1 is a Monday, 1 if a Tue, etc. */
346 int first_weekday = (first_day + 6) % 7;
347 /* ordinal of closest Monday at or before 1/1 */
348 int week1_monday = first_day - first_weekday;
350 if (first_weekday > 3) /* if 1/1 was Fri, Sat, Sun */
351 week1_monday += 7;
352 return week1_monday;
355 /* ---------------------------------------------------------------------------
356 * Range checkers.
359 /* Check that -MAX_DELTA_DAYS <= days <= MAX_DELTA_DAYS. If so, return 0.
360 * If not, raise OverflowError and return -1.
362 static int
363 check_delta_day_range(int days)
365 if (-MAX_DELTA_DAYS <= days && days <= MAX_DELTA_DAYS)
366 return 0;
367 PyErr_Format(PyExc_OverflowError,
368 "days=%d; must have magnitude <= %d",
369 days, MAX_DELTA_DAYS);
370 return -1;
373 /* Check that date arguments are in range. Return 0 if they are. If they
374 * aren't, raise ValueError and return -1.
376 static int
377 check_date_args(int year, int month, int day)
380 if (year < MINYEAR || year > MAXYEAR) {
381 PyErr_SetString(PyExc_ValueError,
382 "year is out of range");
383 return -1;
385 if (month < 1 || month > 12) {
386 PyErr_SetString(PyExc_ValueError,
387 "month must be in 1..12");
388 return -1;
390 if (day < 1 || day > days_in_month(year, month)) {
391 PyErr_SetString(PyExc_ValueError,
392 "day is out of range for month");
393 return -1;
395 return 0;
398 /* Check that time arguments are in range. Return 0 if they are. If they
399 * aren't, raise ValueError and return -1.
401 static int
402 check_time_args(int h, int m, int s, int us)
404 if (h < 0 || h > 23) {
405 PyErr_SetString(PyExc_ValueError,
406 "hour must be in 0..23");
407 return -1;
409 if (m < 0 || m > 59) {
410 PyErr_SetString(PyExc_ValueError,
411 "minute must be in 0..59");
412 return -1;
414 if (s < 0 || s > 59) {
415 PyErr_SetString(PyExc_ValueError,
416 "second must be in 0..59");
417 return -1;
419 if (us < 0 || us > 999999) {
420 PyErr_SetString(PyExc_ValueError,
421 "microsecond must be in 0..999999");
422 return -1;
424 return 0;
427 /* ---------------------------------------------------------------------------
428 * Normalization utilities.
431 /* One step of a mixed-radix conversion. A "hi" unit is equivalent to
432 * factor "lo" units. factor must be > 0. If *lo is less than 0, or
433 * at least factor, enough of *lo is converted into "hi" units so that
434 * 0 <= *lo < factor. The input values must be such that int overflow
435 * is impossible.
437 static void
438 normalize_pair(int *hi, int *lo, int factor)
440 assert(factor > 0);
441 assert(lo != hi);
442 if (*lo < 0 || *lo >= factor) {
443 const int num_hi = divmod(*lo, factor, lo);
444 const int new_hi = *hi + num_hi;
445 assert(! SIGNED_ADD_OVERFLOWED(new_hi, *hi, num_hi));
446 *hi = new_hi;
448 assert(0 <= *lo && *lo < factor);
451 /* Fiddle days (d), seconds (s), and microseconds (us) so that
452 * 0 <= *s < 24*3600
453 * 0 <= *us < 1000000
454 * The input values must be such that the internals don't overflow.
455 * The way this routine is used, we don't get close.
457 static void
458 normalize_d_s_us(int *d, int *s, int *us)
460 if (*us < 0 || *us >= 1000000) {
461 normalize_pair(s, us, 1000000);
462 /* |s| can't be bigger than about
463 * |original s| + |original us|/1000000 now.
467 if (*s < 0 || *s >= 24*3600) {
468 normalize_pair(d, s, 24*3600);
469 /* |d| can't be bigger than about
470 * |original d| +
471 * (|original s| + |original us|/1000000) / (24*3600) now.
474 assert(0 <= *s && *s < 24*3600);
475 assert(0 <= *us && *us < 1000000);
478 /* Fiddle years (y), months (m), and days (d) so that
479 * 1 <= *m <= 12
480 * 1 <= *d <= days_in_month(*y, *m)
481 * The input values must be such that the internals don't overflow.
482 * The way this routine is used, we don't get close.
484 static int
485 normalize_y_m_d(int *y, int *m, int *d)
487 int dim; /* # of days in month */
489 /* This gets muddy: the proper range for day can't be determined
490 * without knowing the correct month and year, but if day is, e.g.,
491 * plus or minus a million, the current month and year values make
492 * no sense (and may also be out of bounds themselves).
493 * Saying 12 months == 1 year should be non-controversial.
495 if (*m < 1 || *m > 12) {
496 --*m;
497 normalize_pair(y, m, 12);
498 ++*m;
499 /* |y| can't be bigger than about
500 * |original y| + |original m|/12 now.
503 assert(1 <= *m && *m <= 12);
505 /* Now only day can be out of bounds (year may also be out of bounds
506 * for a datetime object, but we don't care about that here).
507 * If day is out of bounds, what to do is arguable, but at least the
508 * method here is principled and explainable.
510 dim = days_in_month(*y, *m);
511 if (*d < 1 || *d > dim) {
512 /* Move day-1 days from the first of the month. First try to
513 * get off cheap if we're only one day out of range
514 * (adjustments for timezone alone can't be worse than that).
516 if (*d == 0) {
517 --*m;
518 if (*m > 0)
519 *d = days_in_month(*y, *m);
520 else {
521 --*y;
522 *m = 12;
523 *d = 31;
526 else if (*d == dim + 1) {
527 /* move forward a day */
528 ++*m;
529 *d = 1;
530 if (*m > 12) {
531 *m = 1;
532 ++*y;
535 else {
536 int ordinal = ymd_to_ord(*y, *m, 1) +
537 *d - 1;
538 if (ordinal < 1 || ordinal > MAXORDINAL) {
539 goto error;
540 } else {
541 ord_to_ymd(ordinal, y, m, d);
542 return 0;
546 assert(*m > 0);
547 assert(*d > 0);
548 if (MINYEAR <= *y && *y <= MAXYEAR)
549 return 0;
550 error:
551 PyErr_SetString(PyExc_OverflowError,
552 "date value out of range");
553 return -1;
557 /* Fiddle out-of-bounds months and days so that the result makes some kind
558 * of sense. The parameters are both inputs and outputs. Returns < 0 on
559 * failure, where failure means the adjusted year is out of bounds.
561 static int
562 normalize_date(int *year, int *month, int *day)
564 return normalize_y_m_d(year, month, day);
567 /* Force all the datetime fields into range. The parameters are both
568 * inputs and outputs. Returns < 0 on error.
570 static int
571 normalize_datetime(int *year, int *month, int *day,
572 int *hour, int *minute, int *second,
573 int *microsecond)
575 normalize_pair(second, microsecond, 1000000);
576 normalize_pair(minute, second, 60);
577 normalize_pair(hour, minute, 60);
578 normalize_pair(day, hour, 24);
579 return normalize_date(year, month, day);
582 /* ---------------------------------------------------------------------------
583 * Basic object allocation: tp_alloc implementations. These allocate
584 * Python objects of the right size and type, and do the Python object-
585 * initialization bit. If there's not enough memory, they return NULL after
586 * setting MemoryError. All data members remain uninitialized trash.
588 * We abuse the tp_alloc "nitems" argument to communicate whether a tzinfo
589 * member is needed. This is ugly, imprecise, and possibly insecure.
590 * tp_basicsize for the time and datetime types is set to the size of the
591 * struct that has room for the tzinfo member, so subclasses in Python will
592 * allocate enough space for a tzinfo member whether or not one is actually
593 * needed. That's the "ugly and imprecise" parts. The "possibly insecure"
594 * part is that PyType_GenericAlloc() (which subclasses in Python end up
595 * using) just happens today to effectively ignore the nitems argument
596 * when tp_itemsize is 0, which it is for these type objects. If that
597 * changes, perhaps the callers of tp_alloc slots in this file should
598 * be changed to force a 0 nitems argument unless the type being allocated
599 * is a base type implemented in this file (so that tp_alloc is time_alloc
600 * or datetime_alloc below, which know about the nitems abuse).
603 static PyObject *
604 time_alloc(PyTypeObject *type, Py_ssize_t aware)
606 PyObject *self;
608 self = (PyObject *)
609 PyObject_MALLOC(aware ?
610 sizeof(PyDateTime_Time) :
611 sizeof(_PyDateTime_BaseTime));
612 if (self == NULL)
613 return (PyObject *)PyErr_NoMemory();
614 PyObject_INIT(self, type);
615 return self;
618 static PyObject *
619 datetime_alloc(PyTypeObject *type, Py_ssize_t aware)
621 PyObject *self;
623 self = (PyObject *)
624 PyObject_MALLOC(aware ?
625 sizeof(PyDateTime_DateTime) :
626 sizeof(_PyDateTime_BaseDateTime));
627 if (self == NULL)
628 return (PyObject *)PyErr_NoMemory();
629 PyObject_INIT(self, type);
630 return self;
633 /* ---------------------------------------------------------------------------
634 * Helpers for setting object fields. These work on pointers to the
635 * appropriate base class.
638 /* For date and datetime. */
639 static void
640 set_date_fields(PyDateTime_Date *self, int y, int m, int d)
642 self->hashcode = -1;
643 SET_YEAR(self, y);
644 SET_MONTH(self, m);
645 SET_DAY(self, d);
648 /* ---------------------------------------------------------------------------
649 * Create various objects, mostly without range checking.
652 /* Create a date instance with no range checking. */
653 static PyObject *
654 new_date_ex(int year, int month, int day, PyTypeObject *type)
656 PyDateTime_Date *self;
658 self = (PyDateTime_Date *) (type->tp_alloc(type, 0));
659 if (self != NULL)
660 set_date_fields(self, year, month, day);
661 return (PyObject *) self;
664 #define new_date(year, month, day) \
665 new_date_ex(year, month, day, &PyDateTime_DateType)
667 /* Create a datetime instance with no range checking. */
668 static PyObject *
669 new_datetime_ex(int year, int month, int day, int hour, int minute,
670 int second, int usecond, PyObject *tzinfo, PyTypeObject *type)
672 PyDateTime_DateTime *self;
673 char aware = tzinfo != Py_None;
675 self = (PyDateTime_DateTime *) (type->tp_alloc(type, aware));
676 if (self != NULL) {
677 self->hastzinfo = aware;
678 set_date_fields((PyDateTime_Date *)self, year, month, day);
679 DATE_SET_HOUR(self, hour);
680 DATE_SET_MINUTE(self, minute);
681 DATE_SET_SECOND(self, second);
682 DATE_SET_MICROSECOND(self, usecond);
683 if (aware) {
684 Py_INCREF(tzinfo);
685 self->tzinfo = tzinfo;
688 return (PyObject *)self;
691 #define new_datetime(y, m, d, hh, mm, ss, us, tzinfo) \
692 new_datetime_ex(y, m, d, hh, mm, ss, us, tzinfo, \
693 &PyDateTime_DateTimeType)
695 /* Create a time instance with no range checking. */
696 static PyObject *
697 new_time_ex(int hour, int minute, int second, int usecond,
698 PyObject *tzinfo, PyTypeObject *type)
700 PyDateTime_Time *self;
701 char aware = tzinfo != Py_None;
703 self = (PyDateTime_Time *) (type->tp_alloc(type, aware));
704 if (self != NULL) {
705 self->hastzinfo = aware;
706 self->hashcode = -1;
707 TIME_SET_HOUR(self, hour);
708 TIME_SET_MINUTE(self, minute);
709 TIME_SET_SECOND(self, second);
710 TIME_SET_MICROSECOND(self, usecond);
711 if (aware) {
712 Py_INCREF(tzinfo);
713 self->tzinfo = tzinfo;
716 return (PyObject *)self;
719 #define new_time(hh, mm, ss, us, tzinfo) \
720 new_time_ex(hh, mm, ss, us, tzinfo, &PyDateTime_TimeType)
722 /* Create a timedelta instance. Normalize the members iff normalize is
723 * true. Passing false is a speed optimization, if you know for sure
724 * that seconds and microseconds are already in their proper ranges. In any
725 * case, raises OverflowError and returns NULL if the normalized days is out
726 * of range).
728 static PyObject *
729 new_delta_ex(int days, int seconds, int microseconds, int normalize,
730 PyTypeObject *type)
732 PyDateTime_Delta *self;
734 if (normalize)
735 normalize_d_s_us(&days, &seconds, &microseconds);
736 assert(0 <= seconds && seconds < 24*3600);
737 assert(0 <= microseconds && microseconds < 1000000);
739 if (check_delta_day_range(days) < 0)
740 return NULL;
742 self = (PyDateTime_Delta *) (type->tp_alloc(type, 0));
743 if (self != NULL) {
744 self->hashcode = -1;
745 SET_TD_DAYS(self, days);
746 SET_TD_SECONDS(self, seconds);
747 SET_TD_MICROSECONDS(self, microseconds);
749 return (PyObject *) self;
752 #define new_delta(d, s, us, normalize) \
753 new_delta_ex(d, s, us, normalize, &PyDateTime_DeltaType)
755 /* ---------------------------------------------------------------------------
756 * tzinfo helpers.
759 /* Ensure that p is None or of a tzinfo subclass. Return 0 if OK; if not
760 * raise TypeError and return -1.
762 static int
763 check_tzinfo_subclass(PyObject *p)
765 if (p == Py_None || PyTZInfo_Check(p))
766 return 0;
767 PyErr_Format(PyExc_TypeError,
768 "tzinfo argument must be None or of a tzinfo subclass, "
769 "not type '%s'",
770 Py_TYPE(p)->tp_name);
771 return -1;
774 /* Return tzinfo.methname(tzinfoarg), without any checking of results.
775 * If tzinfo is None, returns None.
777 static PyObject *
778 call_tzinfo_method(PyObject *tzinfo, char *methname, PyObject *tzinfoarg)
780 PyObject *result;
782 assert(tzinfo && methname && tzinfoarg);
783 assert(check_tzinfo_subclass(tzinfo) >= 0);
784 if (tzinfo == Py_None) {
785 result = Py_None;
786 Py_INCREF(result);
788 else
789 result = PyObject_CallMethod(tzinfo, methname, "O", tzinfoarg);
790 return result;
793 /* If self has a tzinfo member, return a BORROWED reference to it. Else
794 * return NULL, which is NOT AN ERROR. There are no error returns here,
795 * and the caller must not decref the result.
797 static PyObject *
798 get_tzinfo_member(PyObject *self)
800 PyObject *tzinfo = NULL;
802 if (PyDateTime_Check(self) && HASTZINFO(self))
803 tzinfo = ((PyDateTime_DateTime *)self)->tzinfo;
804 else if (PyTime_Check(self) && HASTZINFO(self))
805 tzinfo = ((PyDateTime_Time *)self)->tzinfo;
807 return tzinfo;
810 /* Call getattr(tzinfo, name)(tzinfoarg), and extract an int from the
811 * result. tzinfo must be an instance of the tzinfo class. If the method
812 * returns None, this returns 0 and sets *none to 1. If the method doesn't
813 * return None or timedelta, TypeError is raised and this returns -1. If it
814 * returnsa timedelta and the value is out of range or isn't a whole number
815 * of minutes, ValueError is raised and this returns -1.
816 * Else *none is set to 0 and the integer method result is returned.
818 static int
819 call_utc_tzinfo_method(PyObject *tzinfo, char *name, PyObject *tzinfoarg,
820 int *none)
822 PyObject *u;
823 int result = -1;
825 assert(tzinfo != NULL);
826 assert(PyTZInfo_Check(tzinfo));
827 assert(tzinfoarg != NULL);
829 *none = 0;
830 u = call_tzinfo_method(tzinfo, name, tzinfoarg);
831 if (u == NULL)
832 return -1;
834 else if (u == Py_None) {
835 result = 0;
836 *none = 1;
838 else if (PyDelta_Check(u)) {
839 const int days = GET_TD_DAYS(u);
840 if (days < -1 || days > 0)
841 result = 24*60; /* trigger ValueError below */
842 else {
843 /* next line can't overflow because we know days
844 * is -1 or 0 now
846 int ss = days * 24 * 3600 + GET_TD_SECONDS(u);
847 result = divmod(ss, 60, &ss);
848 if (ss || GET_TD_MICROSECONDS(u)) {
849 PyErr_Format(PyExc_ValueError,
850 "tzinfo.%s() must return a "
851 "whole number of minutes",
852 name);
853 result = -1;
857 else {
858 PyErr_Format(PyExc_TypeError,
859 "tzinfo.%s() must return None or "
860 "timedelta, not '%s'",
861 name, Py_TYPE(u)->tp_name);
864 Py_DECREF(u);
865 if (result < -1439 || result > 1439) {
866 PyErr_Format(PyExc_ValueError,
867 "tzinfo.%s() returned %d; must be in "
868 "-1439 .. 1439",
869 name, result);
870 result = -1;
872 return result;
875 /* Call tzinfo.utcoffset(tzinfoarg), and extract an integer from the
876 * result. tzinfo must be an instance of the tzinfo class. If utcoffset()
877 * returns None, call_utcoffset returns 0 and sets *none to 1. If uctoffset()
878 * doesn't return None or timedelta, TypeError is raised and this returns -1.
879 * If utcoffset() returns an invalid timedelta (out of range, or not a whole
880 * # of minutes), ValueError is raised and this returns -1. Else *none is
881 * set to 0 and the offset is returned (as int # of minutes east of UTC).
883 static int
884 call_utcoffset(PyObject *tzinfo, PyObject *tzinfoarg, int *none)
886 return call_utc_tzinfo_method(tzinfo, "utcoffset", tzinfoarg, none);
889 /* Call tzinfo.name(tzinfoarg), and return the offset as a timedelta or None.
891 static PyObject *
892 offset_as_timedelta(PyObject *tzinfo, char *name, PyObject *tzinfoarg) {
893 PyObject *result;
895 assert(tzinfo && name && tzinfoarg);
896 if (tzinfo == Py_None) {
897 result = Py_None;
898 Py_INCREF(result);
900 else {
901 int none;
902 int offset = call_utc_tzinfo_method(tzinfo, name, tzinfoarg,
903 &none);
904 if (offset < 0 && PyErr_Occurred())
905 return NULL;
906 if (none) {
907 result = Py_None;
908 Py_INCREF(result);
910 else
911 result = new_delta(0, offset * 60, 0, 1);
913 return result;
916 /* Call tzinfo.dst(tzinfoarg), and extract an integer from the
917 * result. tzinfo must be an instance of the tzinfo class. If dst()
918 * returns None, call_dst returns 0 and sets *none to 1. If dst()
919 & doesn't return None or timedelta, TypeError is raised and this
920 * returns -1. If dst() returns an invalid timedelta for a UTC offset,
921 * ValueError is raised and this returns -1. Else *none is set to 0 and
922 * the offset is returned (as an int # of minutes east of UTC).
924 static int
925 call_dst(PyObject *tzinfo, PyObject *tzinfoarg, int *none)
927 return call_utc_tzinfo_method(tzinfo, "dst", tzinfoarg, none);
930 /* Call tzinfo.tzname(tzinfoarg), and return the result. tzinfo must be
931 * an instance of the tzinfo class or None. If tzinfo isn't None, and
932 * tzname() doesn't return None or a string, TypeError is raised and this
933 * returns NULL. If the result is a string, we ensure it is a Unicode
934 * string.
936 static PyObject *
937 call_tzname(PyObject *tzinfo, PyObject *tzinfoarg)
939 PyObject *result;
941 assert(tzinfo != NULL);
942 assert(check_tzinfo_subclass(tzinfo) >= 0);
943 assert(tzinfoarg != NULL);
945 if (tzinfo == Py_None) {
946 result = Py_None;
947 Py_INCREF(result);
949 else
950 result = PyObject_CallMethod(tzinfo, "tzname", "O", tzinfoarg);
952 if (result != NULL && result != Py_None) {
953 if (!PyUnicode_Check(result)) {
954 PyErr_Format(PyExc_TypeError, "tzinfo.tzname() must "
955 "return None or a string, not '%s'",
956 Py_TYPE(result)->tp_name);
957 Py_DECREF(result);
958 result = NULL;
961 return result;
964 typedef enum {
965 /* an exception has been set; the caller should pass it on */
966 OFFSET_ERROR,
968 /* type isn't date, datetime, or time subclass */
969 OFFSET_UNKNOWN,
971 /* date,
972 * datetime with !hastzinfo
973 * datetime with None tzinfo,
974 * datetime where utcoffset() returns None
975 * time with !hastzinfo
976 * time with None tzinfo,
977 * time where utcoffset() returns None
979 OFFSET_NAIVE,
981 /* time or datetime where utcoffset() doesn't return None */
982 OFFSET_AWARE
983 } naivety;
985 /* Classify an object as to whether it's naive or offset-aware. See
986 * the "naivety" typedef for details. If the type is aware, *offset is set
987 * to minutes east of UTC (as returned by the tzinfo.utcoffset() method).
988 * If the type is offset-naive (or unknown, or error), *offset is set to 0.
989 * tzinfoarg is the argument to pass to the tzinfo.utcoffset() method.
991 static naivety
992 classify_utcoffset(PyObject *op, PyObject *tzinfoarg, int *offset)
994 int none;
995 PyObject *tzinfo;
997 assert(tzinfoarg != NULL);
998 *offset = 0;
999 tzinfo = get_tzinfo_member(op); /* NULL means no tzinfo, not error */
1000 if (tzinfo == Py_None)
1001 return OFFSET_NAIVE;
1002 if (tzinfo == NULL) {
1003 /* note that a datetime passes the PyDate_Check test */
1004 return (PyTime_Check(op) || PyDate_Check(op)) ?
1005 OFFSET_NAIVE : OFFSET_UNKNOWN;
1007 *offset = call_utcoffset(tzinfo, tzinfoarg, &none);
1008 if (*offset == -1 && PyErr_Occurred())
1009 return OFFSET_ERROR;
1010 return none ? OFFSET_NAIVE : OFFSET_AWARE;
1013 /* Classify two objects as to whether they're naive or offset-aware.
1014 * This isn't quite the same as calling classify_utcoffset() twice: for
1015 * binary operations (comparison and subtraction), we generally want to
1016 * ignore the tzinfo members if they're identical. This is by design,
1017 * so that results match "naive" expectations when mixing objects from a
1018 * single timezone. So in that case, this sets both offsets to 0 and
1019 * both naiveties to OFFSET_NAIVE.
1020 * The function returns 0 if everything's OK, and -1 on error.
1022 static int
1023 classify_two_utcoffsets(PyObject *o1, int *offset1, naivety *n1,
1024 PyObject *tzinfoarg1,
1025 PyObject *o2, int *offset2, naivety *n2,
1026 PyObject *tzinfoarg2)
1028 if (get_tzinfo_member(o1) == get_tzinfo_member(o2)) {
1029 *offset1 = *offset2 = 0;
1030 *n1 = *n2 = OFFSET_NAIVE;
1032 else {
1033 *n1 = classify_utcoffset(o1, tzinfoarg1, offset1);
1034 if (*n1 == OFFSET_ERROR)
1035 return -1;
1036 *n2 = classify_utcoffset(o2, tzinfoarg2, offset2);
1037 if (*n2 == OFFSET_ERROR)
1038 return -1;
1040 return 0;
1043 /* repr is like "someclass(arg1, arg2)". If tzinfo isn't None,
1044 * stuff
1045 * ", tzinfo=" + repr(tzinfo)
1046 * before the closing ")".
1048 static PyObject *
1049 append_keyword_tzinfo(PyObject *repr, PyObject *tzinfo)
1051 PyObject *temp;
1053 assert(PyUnicode_Check(repr));
1054 assert(tzinfo);
1055 if (tzinfo == Py_None)
1056 return repr;
1057 /* Get rid of the trailing ')'. */
1058 assert(PyUnicode_AS_UNICODE(repr)[PyUnicode_GET_SIZE(repr)-1] == ')');
1059 temp = PyUnicode_FromUnicode(PyUnicode_AS_UNICODE(repr),
1060 PyUnicode_GET_SIZE(repr) - 1);
1061 Py_DECREF(repr);
1062 if (temp == NULL)
1063 return NULL;
1064 repr = PyUnicode_FromFormat("%U, tzinfo=%R)", temp, tzinfo);
1065 Py_DECREF(temp);
1066 return repr;
1069 /* ---------------------------------------------------------------------------
1070 * String format helpers.
1073 static PyObject *
1074 format_ctime(PyDateTime_Date *date, int hours, int minutes, int seconds)
1076 static const char *DayNames[] = {
1077 "Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"
1079 static const char *MonthNames[] = {
1080 "Jan", "Feb", "Mar", "Apr", "May", "Jun",
1081 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"
1084 int wday = weekday(GET_YEAR(date), GET_MONTH(date), GET_DAY(date));
1086 return PyUnicode_FromFormat("%s %s %2d %02d:%02d:%02d %04d",
1087 DayNames[wday], MonthNames[GET_MONTH(date)-1],
1088 GET_DAY(date), hours, minutes, seconds,
1089 GET_YEAR(date));
1092 /* Add an hours & minutes UTC offset string to buf. buf has no more than
1093 * buflen bytes remaining. The UTC offset is gotten by calling
1094 * tzinfo.uctoffset(tzinfoarg). If that returns None, \0 is stored into
1095 * *buf, and that's all. Else the returned value is checked for sanity (an
1096 * integer in range), and if that's OK it's converted to an hours & minutes
1097 * string of the form
1098 * sign HH sep MM
1099 * Returns 0 if everything is OK. If the return value from utcoffset() is
1100 * bogus, an appropriate exception is set and -1 is returned.
1102 static int
1103 format_utcoffset(char *buf, size_t buflen, const char *sep,
1104 PyObject *tzinfo, PyObject *tzinfoarg)
1106 int offset;
1107 int hours;
1108 int minutes;
1109 char sign;
1110 int none;
1112 assert(buflen >= 1);
1114 offset = call_utcoffset(tzinfo, tzinfoarg, &none);
1115 if (offset == -1 && PyErr_Occurred())
1116 return -1;
1117 if (none) {
1118 *buf = '\0';
1119 return 0;
1121 sign = '+';
1122 if (offset < 0) {
1123 sign = '-';
1124 offset = - offset;
1126 hours = divmod(offset, 60, &minutes);
1127 PyOS_snprintf(buf, buflen, "%c%02d%s%02d", sign, hours, sep, minutes);
1128 return 0;
1131 static PyObject *
1132 make_Zreplacement(PyObject *object, PyObject *tzinfoarg)
1134 PyObject *temp;
1135 PyObject *tzinfo = get_tzinfo_member(object);
1136 PyObject *Zreplacement = PyUnicode_FromStringAndSize(NULL, 0);
1137 if (Zreplacement == NULL)
1138 return NULL;
1139 if (tzinfo == Py_None || tzinfo == NULL)
1140 return Zreplacement;
1142 assert(tzinfoarg != NULL);
1143 temp = call_tzname(tzinfo, tzinfoarg);
1144 if (temp == NULL)
1145 goto Error;
1146 if (temp == Py_None) {
1147 Py_DECREF(temp);
1148 return Zreplacement;
1151 assert(PyUnicode_Check(temp));
1152 /* Since the tzname is getting stuffed into the
1153 * format, we have to double any % signs so that
1154 * strftime doesn't treat them as format codes.
1156 Py_DECREF(Zreplacement);
1157 Zreplacement = PyObject_CallMethod(temp, "replace", "ss", "%", "%%");
1158 Py_DECREF(temp);
1159 if (Zreplacement == NULL)
1160 return NULL;
1161 if (!PyUnicode_Check(Zreplacement)) {
1162 PyErr_SetString(PyExc_TypeError,
1163 "tzname.replace() did not return a string");
1164 goto Error;
1166 return Zreplacement;
1168 Error:
1169 Py_DECREF(Zreplacement);
1170 return NULL;
1173 static PyObject *
1174 make_freplacement(PyObject *object)
1176 char freplacement[64];
1177 if (PyTime_Check(object))
1178 sprintf(freplacement, "%06d", TIME_GET_MICROSECOND(object));
1179 else if (PyDateTime_Check(object))
1180 sprintf(freplacement, "%06d", DATE_GET_MICROSECOND(object));
1181 else
1182 sprintf(freplacement, "%06d", 0);
1184 return PyBytes_FromStringAndSize(freplacement, strlen(freplacement));
1187 /* I sure don't want to reproduce the strftime code from the time module,
1188 * so this imports the module and calls it. All the hair is due to
1189 * giving special meanings to the %z, %Z and %f format codes via a
1190 * preprocessing step on the format string.
1191 * tzinfoarg is the argument to pass to the object's tzinfo method, if
1192 * needed.
1194 static PyObject *
1195 wrap_strftime(PyObject *object, PyObject *format, PyObject *timetuple,
1196 PyObject *tzinfoarg)
1198 PyObject *result = NULL; /* guilty until proved innocent */
1200 PyObject *zreplacement = NULL; /* py string, replacement for %z */
1201 PyObject *Zreplacement = NULL; /* py string, replacement for %Z */
1202 PyObject *freplacement = NULL; /* py string, replacement for %f */
1204 const char *pin; /* pointer to next char in input format */
1205 Py_ssize_t flen; /* length of input format */
1206 char ch; /* next char in input format */
1208 PyObject *newfmt = NULL; /* py string, the output format */
1209 char *pnew; /* pointer to available byte in output format */
1210 size_t totalnew; /* number bytes total in output format buffer,
1211 exclusive of trailing \0 */
1212 size_t usednew; /* number bytes used so far in output format buffer */
1214 const char *ptoappend; /* ptr to string to append to output buffer */
1215 Py_ssize_t ntoappend; /* # of bytes to append to output buffer */
1217 assert(object && format && timetuple);
1218 assert(PyUnicode_Check(format));
1219 /* Convert the input format to a C string and size */
1220 pin = _PyUnicode_AsStringAndSize(format, &flen);
1221 if (!pin)
1222 return NULL;
1224 /* Give up if the year is before 1900.
1225 * Python strftime() plays games with the year, and different
1226 * games depending on whether envar PYTHON2K is set. This makes
1227 * years before 1900 a nightmare, even if the platform strftime
1228 * supports them (and not all do).
1229 * We could get a lot farther here by avoiding Python's strftime
1230 * wrapper and calling the C strftime() directly, but that isn't
1231 * an option in the Python implementation of this module.
1234 long year;
1235 PyObject *pyyear = PySequence_GetItem(timetuple, 0);
1236 if (pyyear == NULL) return NULL;
1237 assert(PyLong_Check(pyyear));
1238 year = PyLong_AsLong(pyyear);
1239 Py_DECREF(pyyear);
1240 if (year < 1900) {
1241 PyErr_Format(PyExc_ValueError, "year=%ld is before "
1242 "1900; the datetime strftime() "
1243 "methods require year >= 1900",
1244 year);
1245 return NULL;
1249 /* Scan the input format, looking for %z/%Z/%f escapes, building
1250 * a new format. Since computing the replacements for those codes
1251 * is expensive, don't unless they're actually used.
1253 if (flen > INT_MAX - 1) {
1254 PyErr_NoMemory();
1255 goto Done;
1258 totalnew = flen + 1; /* realistic if no %z/%Z */
1259 newfmt = PyBytes_FromStringAndSize(NULL, totalnew);
1260 if (newfmt == NULL) goto Done;
1261 pnew = PyBytes_AsString(newfmt);
1262 usednew = 0;
1264 while ((ch = *pin++) != '\0') {
1265 if (ch != '%') {
1266 ptoappend = pin - 1;
1267 ntoappend = 1;
1269 else if ((ch = *pin++) == '\0') {
1270 /* There's a lone trailing %; doesn't make sense. */
1271 PyErr_SetString(PyExc_ValueError, "strftime format "
1272 "ends with raw %");
1273 goto Done;
1275 /* A % has been seen and ch is the character after it. */
1276 else if (ch == 'z') {
1277 if (zreplacement == NULL) {
1278 /* format utcoffset */
1279 char buf[100];
1280 PyObject *tzinfo = get_tzinfo_member(object);
1281 zreplacement = PyBytes_FromStringAndSize("", 0);
1282 if (zreplacement == NULL) goto Done;
1283 if (tzinfo != Py_None && tzinfo != NULL) {
1284 assert(tzinfoarg != NULL);
1285 if (format_utcoffset(buf,
1286 sizeof(buf),
1288 tzinfo,
1289 tzinfoarg) < 0)
1290 goto Done;
1291 Py_DECREF(zreplacement);
1292 zreplacement =
1293 PyBytes_FromStringAndSize(buf,
1294 strlen(buf));
1295 if (zreplacement == NULL)
1296 goto Done;
1299 assert(zreplacement != NULL);
1300 ptoappend = PyBytes_AS_STRING(zreplacement);
1301 ntoappend = PyBytes_GET_SIZE(zreplacement);
1303 else if (ch == 'Z') {
1304 /* format tzname */
1305 if (Zreplacement == NULL) {
1306 Zreplacement = make_Zreplacement(object,
1307 tzinfoarg);
1308 if (Zreplacement == NULL)
1309 goto Done;
1311 assert(Zreplacement != NULL);
1312 assert(PyUnicode_Check(Zreplacement));
1313 ptoappend = _PyUnicode_AsStringAndSize(Zreplacement,
1314 &ntoappend);
1315 ntoappend = Py_SIZE(Zreplacement);
1317 else if (ch == 'f') {
1318 /* format microseconds */
1319 if (freplacement == NULL) {
1320 freplacement = make_freplacement(object);
1321 if (freplacement == NULL)
1322 goto Done;
1324 assert(freplacement != NULL);
1325 assert(PyBytes_Check(freplacement));
1326 ptoappend = PyBytes_AS_STRING(freplacement);
1327 ntoappend = PyBytes_GET_SIZE(freplacement);
1329 else {
1330 /* percent followed by neither z nor Z */
1331 ptoappend = pin - 2;
1332 ntoappend = 2;
1335 /* Append the ntoappend chars starting at ptoappend to
1336 * the new format.
1338 if (ntoappend == 0)
1339 continue;
1340 assert(ptoappend != NULL);
1341 assert(ntoappend > 0);
1342 while (usednew + ntoappend > totalnew) {
1343 size_t bigger = totalnew << 1;
1344 if ((bigger >> 1) != totalnew) { /* overflow */
1345 PyErr_NoMemory();
1346 goto Done;
1348 if (_PyBytes_Resize(&newfmt, bigger) < 0)
1349 goto Done;
1350 totalnew = bigger;
1351 pnew = PyBytes_AsString(newfmt) + usednew;
1353 memcpy(pnew, ptoappend, ntoappend);
1354 pnew += ntoappend;
1355 usednew += ntoappend;
1356 assert(usednew <= totalnew);
1357 } /* end while() */
1359 if (_PyBytes_Resize(&newfmt, usednew) < 0)
1360 goto Done;
1362 PyObject *format;
1363 PyObject *time = PyImport_ImportModuleNoBlock("time");
1364 if (time == NULL)
1365 goto Done;
1366 format = PyUnicode_FromString(PyBytes_AS_STRING(newfmt));
1367 if (format != NULL) {
1368 result = PyObject_CallMethod(time, "strftime", "OO",
1369 format, timetuple);
1370 Py_DECREF(format);
1372 Py_DECREF(time);
1374 Done:
1375 Py_XDECREF(freplacement);
1376 Py_XDECREF(zreplacement);
1377 Py_XDECREF(Zreplacement);
1378 Py_XDECREF(newfmt);
1379 return result;
1382 /* ---------------------------------------------------------------------------
1383 * Wrap functions from the time module. These aren't directly available
1384 * from C. Perhaps they should be.
1387 /* Call time.time() and return its result (a Python float). */
1388 static PyObject *
1389 time_time(void)
1391 PyObject *result = NULL;
1392 PyObject *time = PyImport_ImportModuleNoBlock("time");
1394 if (time != NULL) {
1395 result = PyObject_CallMethod(time, "time", "()");
1396 Py_DECREF(time);
1398 return result;
1401 /* Build a time.struct_time. The weekday and day number are automatically
1402 * computed from the y,m,d args.
1404 static PyObject *
1405 build_struct_time(int y, int m, int d, int hh, int mm, int ss, int dstflag)
1407 PyObject *time;
1408 PyObject *result = NULL;
1410 time = PyImport_ImportModuleNoBlock("time");
1411 if (time != NULL) {
1412 result = PyObject_CallMethod(time, "struct_time",
1413 "((iiiiiiiii))",
1414 y, m, d,
1415 hh, mm, ss,
1416 weekday(y, m, d),
1417 days_before_month(y, m) + d,
1418 dstflag);
1419 Py_DECREF(time);
1421 return result;
1424 /* ---------------------------------------------------------------------------
1425 * Miscellaneous helpers.
1428 /* For various reasons, we need to use tp_richcompare instead of tp_reserved.
1429 * The comparisons here all most naturally compute a cmp()-like result.
1430 * This little helper turns that into a bool result for rich comparisons.
1432 static PyObject *
1433 diff_to_bool(int diff, int op)
1435 PyObject *result;
1436 int istrue;
1438 switch (op) {
1439 case Py_EQ: istrue = diff == 0; break;
1440 case Py_NE: istrue = diff != 0; break;
1441 case Py_LE: istrue = diff <= 0; break;
1442 case Py_GE: istrue = diff >= 0; break;
1443 case Py_LT: istrue = diff < 0; break;
1444 case Py_GT: istrue = diff > 0; break;
1445 default:
1446 assert(! "op unknown");
1447 istrue = 0; /* To shut up compiler */
1449 result = istrue ? Py_True : Py_False;
1450 Py_INCREF(result);
1451 return result;
1454 /* Raises a "can't compare" TypeError and returns NULL. */
1455 static PyObject *
1456 cmperror(PyObject *a, PyObject *b)
1458 PyErr_Format(PyExc_TypeError,
1459 "can't compare %s to %s",
1460 Py_TYPE(a)->tp_name, Py_TYPE(b)->tp_name);
1461 return NULL;
1464 /* ---------------------------------------------------------------------------
1465 * Cached Python objects; these are set by the module init function.
1468 /* Conversion factors. */
1469 static PyObject *us_per_us = NULL; /* 1 */
1470 static PyObject *us_per_ms = NULL; /* 1000 */
1471 static PyObject *us_per_second = NULL; /* 1000000 */
1472 static PyObject *us_per_minute = NULL; /* 1e6 * 60 as Python int */
1473 static PyObject *us_per_hour = NULL; /* 1e6 * 3600 as Python long */
1474 static PyObject *us_per_day = NULL; /* 1e6 * 3600 * 24 as Python long */
1475 static PyObject *us_per_week = NULL; /* 1e6*3600*24*7 as Python long */
1476 static PyObject *seconds_per_day = NULL; /* 3600*24 as Python int */
1478 /* ---------------------------------------------------------------------------
1479 * Class implementations.
1483 * PyDateTime_Delta implementation.
1486 /* Convert a timedelta to a number of us,
1487 * (24*3600*self.days + self.seconds)*1000000 + self.microseconds
1488 * as a Python int or long.
1489 * Doing mixed-radix arithmetic by hand instead is excruciating in C,
1490 * due to ubiquitous overflow possibilities.
1492 static PyObject *
1493 delta_to_microseconds(PyDateTime_Delta *self)
1495 PyObject *x1 = NULL;
1496 PyObject *x2 = NULL;
1497 PyObject *x3 = NULL;
1498 PyObject *result = NULL;
1500 x1 = PyLong_FromLong(GET_TD_DAYS(self));
1501 if (x1 == NULL)
1502 goto Done;
1503 x2 = PyNumber_Multiply(x1, seconds_per_day); /* days in seconds */
1504 if (x2 == NULL)
1505 goto Done;
1506 Py_DECREF(x1);
1507 x1 = NULL;
1509 /* x2 has days in seconds */
1510 x1 = PyLong_FromLong(GET_TD_SECONDS(self)); /* seconds */
1511 if (x1 == NULL)
1512 goto Done;
1513 x3 = PyNumber_Add(x1, x2); /* days and seconds in seconds */
1514 if (x3 == NULL)
1515 goto Done;
1516 Py_DECREF(x1);
1517 Py_DECREF(x2);
1518 x1 = x2 = NULL;
1520 /* x3 has days+seconds in seconds */
1521 x1 = PyNumber_Multiply(x3, us_per_second); /* us */
1522 if (x1 == NULL)
1523 goto Done;
1524 Py_DECREF(x3);
1525 x3 = NULL;
1527 /* x1 has days+seconds in us */
1528 x2 = PyLong_FromLong(GET_TD_MICROSECONDS(self));
1529 if (x2 == NULL)
1530 goto Done;
1531 result = PyNumber_Add(x1, x2);
1533 Done:
1534 Py_XDECREF(x1);
1535 Py_XDECREF(x2);
1536 Py_XDECREF(x3);
1537 return result;
1540 /* Convert a number of us (as a Python int or long) to a timedelta.
1542 static PyObject *
1543 microseconds_to_delta_ex(PyObject *pyus, PyTypeObject *type)
1545 int us;
1546 int s;
1547 int d;
1548 long temp;
1550 PyObject *tuple = NULL;
1551 PyObject *num = NULL;
1552 PyObject *result = NULL;
1554 tuple = PyNumber_Divmod(pyus, us_per_second);
1555 if (tuple == NULL)
1556 goto Done;
1558 num = PyTuple_GetItem(tuple, 1); /* us */
1559 if (num == NULL)
1560 goto Done;
1561 temp = PyLong_AsLong(num);
1562 num = NULL;
1563 if (temp == -1 && PyErr_Occurred())
1564 goto Done;
1565 assert(0 <= temp && temp < 1000000);
1566 us = (int)temp;
1567 if (us < 0) {
1568 /* The divisor was positive, so this must be an error. */
1569 assert(PyErr_Occurred());
1570 goto Done;
1573 num = PyTuple_GetItem(tuple, 0); /* leftover seconds */
1574 if (num == NULL)
1575 goto Done;
1576 Py_INCREF(num);
1577 Py_DECREF(tuple);
1579 tuple = PyNumber_Divmod(num, seconds_per_day);
1580 if (tuple == NULL)
1581 goto Done;
1582 Py_DECREF(num);
1584 num = PyTuple_GetItem(tuple, 1); /* seconds */
1585 if (num == NULL)
1586 goto Done;
1587 temp = PyLong_AsLong(num);
1588 num = NULL;
1589 if (temp == -1 && PyErr_Occurred())
1590 goto Done;
1591 assert(0 <= temp && temp < 24*3600);
1592 s = (int)temp;
1594 if (s < 0) {
1595 /* The divisor was positive, so this must be an error. */
1596 assert(PyErr_Occurred());
1597 goto Done;
1600 num = PyTuple_GetItem(tuple, 0); /* leftover days */
1601 if (num == NULL)
1602 goto Done;
1603 Py_INCREF(num);
1604 temp = PyLong_AsLong(num);
1605 if (temp == -1 && PyErr_Occurred())
1606 goto Done;
1607 d = (int)temp;
1608 if ((long)d != temp) {
1609 PyErr_SetString(PyExc_OverflowError, "normalized days too "
1610 "large to fit in a C int");
1611 goto Done;
1613 result = new_delta_ex(d, s, us, 0, type);
1615 Done:
1616 Py_XDECREF(tuple);
1617 Py_XDECREF(num);
1618 return result;
1621 #define microseconds_to_delta(pymicros) \
1622 microseconds_to_delta_ex(pymicros, &PyDateTime_DeltaType)
1624 static PyObject *
1625 multiply_int_timedelta(PyObject *intobj, PyDateTime_Delta *delta)
1627 PyObject *pyus_in;
1628 PyObject *pyus_out;
1629 PyObject *result;
1631 pyus_in = delta_to_microseconds(delta);
1632 if (pyus_in == NULL)
1633 return NULL;
1635 pyus_out = PyNumber_Multiply(pyus_in, intobj);
1636 Py_DECREF(pyus_in);
1637 if (pyus_out == NULL)
1638 return NULL;
1640 result = microseconds_to_delta(pyus_out);
1641 Py_DECREF(pyus_out);
1642 return result;
1645 static PyObject *
1646 divide_timedelta_int(PyDateTime_Delta *delta, PyObject *intobj)
1648 PyObject *pyus_in;
1649 PyObject *pyus_out;
1650 PyObject *result;
1652 pyus_in = delta_to_microseconds(delta);
1653 if (pyus_in == NULL)
1654 return NULL;
1656 pyus_out = PyNumber_FloorDivide(pyus_in, intobj);
1657 Py_DECREF(pyus_in);
1658 if (pyus_out == NULL)
1659 return NULL;
1661 result = microseconds_to_delta(pyus_out);
1662 Py_DECREF(pyus_out);
1663 return result;
1666 static PyObject *
1667 delta_add(PyObject *left, PyObject *right)
1669 PyObject *result = Py_NotImplemented;
1671 if (PyDelta_Check(left) && PyDelta_Check(right)) {
1672 /* delta + delta */
1673 /* The C-level additions can't overflow because of the
1674 * invariant bounds.
1676 int days = GET_TD_DAYS(left) + GET_TD_DAYS(right);
1677 int seconds = GET_TD_SECONDS(left) + GET_TD_SECONDS(right);
1678 int microseconds = GET_TD_MICROSECONDS(left) +
1679 GET_TD_MICROSECONDS(right);
1680 result = new_delta(days, seconds, microseconds, 1);
1683 if (result == Py_NotImplemented)
1684 Py_INCREF(result);
1685 return result;
1688 static PyObject *
1689 delta_negative(PyDateTime_Delta *self)
1691 return new_delta(-GET_TD_DAYS(self),
1692 -GET_TD_SECONDS(self),
1693 -GET_TD_MICROSECONDS(self),
1697 static PyObject *
1698 delta_positive(PyDateTime_Delta *self)
1700 /* Could optimize this (by returning self) if this isn't a
1701 * subclass -- but who uses unary + ? Approximately nobody.
1703 return new_delta(GET_TD_DAYS(self),
1704 GET_TD_SECONDS(self),
1705 GET_TD_MICROSECONDS(self),
1709 static PyObject *
1710 delta_abs(PyDateTime_Delta *self)
1712 PyObject *result;
1714 assert(GET_TD_MICROSECONDS(self) >= 0);
1715 assert(GET_TD_SECONDS(self) >= 0);
1717 if (GET_TD_DAYS(self) < 0)
1718 result = delta_negative(self);
1719 else
1720 result = delta_positive(self);
1722 return result;
1725 static PyObject *
1726 delta_subtract(PyObject *left, PyObject *right)
1728 PyObject *result = Py_NotImplemented;
1730 if (PyDelta_Check(left) && PyDelta_Check(right)) {
1731 /* delta - delta */
1732 PyObject *minus_right = PyNumber_Negative(right);
1733 if (minus_right) {
1734 result = delta_add(left, minus_right);
1735 Py_DECREF(minus_right);
1737 else
1738 result = NULL;
1741 if (result == Py_NotImplemented)
1742 Py_INCREF(result);
1743 return result;
1746 static PyObject *
1747 delta_richcompare(PyObject *self, PyObject *other, int op)
1749 if (PyDelta_Check(other)) {
1750 int diff = GET_TD_DAYS(self) - GET_TD_DAYS(other);
1751 if (diff == 0) {
1752 diff = GET_TD_SECONDS(self) - GET_TD_SECONDS(other);
1753 if (diff == 0)
1754 diff = GET_TD_MICROSECONDS(self) -
1755 GET_TD_MICROSECONDS(other);
1757 return diff_to_bool(diff, op);
1759 else {
1760 Py_INCREF(Py_NotImplemented);
1761 return Py_NotImplemented;
1765 static PyObject *delta_getstate(PyDateTime_Delta *self);
1767 static long
1768 delta_hash(PyDateTime_Delta *self)
1770 if (self->hashcode == -1) {
1771 PyObject *temp = delta_getstate(self);
1772 if (temp != NULL) {
1773 self->hashcode = PyObject_Hash(temp);
1774 Py_DECREF(temp);
1777 return self->hashcode;
1780 static PyObject *
1781 delta_multiply(PyObject *left, PyObject *right)
1783 PyObject *result = Py_NotImplemented;
1785 if (PyDelta_Check(left)) {
1786 /* delta * ??? */
1787 if (PyLong_Check(right))
1788 result = multiply_int_timedelta(right,
1789 (PyDateTime_Delta *) left);
1791 else if (PyLong_Check(left))
1792 result = multiply_int_timedelta(left,
1793 (PyDateTime_Delta *) right);
1795 if (result == Py_NotImplemented)
1796 Py_INCREF(result);
1797 return result;
1800 static PyObject *
1801 delta_divide(PyObject *left, PyObject *right)
1803 PyObject *result = Py_NotImplemented;
1805 if (PyDelta_Check(left)) {
1806 /* delta * ??? */
1807 if (PyLong_Check(right))
1808 result = divide_timedelta_int(
1809 (PyDateTime_Delta *)left,
1810 right);
1813 if (result == Py_NotImplemented)
1814 Py_INCREF(result);
1815 return result;
1818 /* Fold in the value of the tag ("seconds", "weeks", etc) component of a
1819 * timedelta constructor. sofar is the # of microseconds accounted for
1820 * so far, and there are factor microseconds per current unit, the number
1821 * of which is given by num. num * factor is added to sofar in a
1822 * numerically careful way, and that's the result. Any fractional
1823 * microseconds left over (this can happen if num is a float type) are
1824 * added into *leftover.
1825 * Note that there are many ways this can give an error (NULL) return.
1827 static PyObject *
1828 accum(const char* tag, PyObject *sofar, PyObject *num, PyObject *factor,
1829 double *leftover)
1831 PyObject *prod;
1832 PyObject *sum;
1834 assert(num != NULL);
1836 if (PyLong_Check(num)) {
1837 prod = PyNumber_Multiply(num, factor);
1838 if (prod == NULL)
1839 return NULL;
1840 sum = PyNumber_Add(sofar, prod);
1841 Py_DECREF(prod);
1842 return sum;
1845 if (PyFloat_Check(num)) {
1846 double dnum;
1847 double fracpart;
1848 double intpart;
1849 PyObject *x;
1850 PyObject *y;
1852 /* The Plan: decompose num into an integer part and a
1853 * fractional part, num = intpart + fracpart.
1854 * Then num * factor ==
1855 * intpart * factor + fracpart * factor
1856 * and the LHS can be computed exactly in long arithmetic.
1857 * The RHS is again broken into an int part and frac part.
1858 * and the frac part is added into *leftover.
1860 dnum = PyFloat_AsDouble(num);
1861 if (dnum == -1.0 && PyErr_Occurred())
1862 return NULL;
1863 fracpart = modf(dnum, &intpart);
1864 x = PyLong_FromDouble(intpart);
1865 if (x == NULL)
1866 return NULL;
1868 prod = PyNumber_Multiply(x, factor);
1869 Py_DECREF(x);
1870 if (prod == NULL)
1871 return NULL;
1873 sum = PyNumber_Add(sofar, prod);
1874 Py_DECREF(prod);
1875 if (sum == NULL)
1876 return NULL;
1878 if (fracpart == 0.0)
1879 return sum;
1880 /* So far we've lost no information. Dealing with the
1881 * fractional part requires float arithmetic, and may
1882 * lose a little info.
1884 assert(PyLong_Check(factor));
1885 dnum = PyLong_AsDouble(factor);
1887 dnum *= fracpart;
1888 fracpart = modf(dnum, &intpart);
1889 x = PyLong_FromDouble(intpart);
1890 if (x == NULL) {
1891 Py_DECREF(sum);
1892 return NULL;
1895 y = PyNumber_Add(sum, x);
1896 Py_DECREF(sum);
1897 Py_DECREF(x);
1898 *leftover += fracpart;
1899 return y;
1902 PyErr_Format(PyExc_TypeError,
1903 "unsupported type for timedelta %s component: %s",
1904 tag, Py_TYPE(num)->tp_name);
1905 return NULL;
1908 static PyObject *
1909 delta_new(PyTypeObject *type, PyObject *args, PyObject *kw)
1911 PyObject *self = NULL;
1913 /* Argument objects. */
1914 PyObject *day = NULL;
1915 PyObject *second = NULL;
1916 PyObject *us = NULL;
1917 PyObject *ms = NULL;
1918 PyObject *minute = NULL;
1919 PyObject *hour = NULL;
1920 PyObject *week = NULL;
1922 PyObject *x = NULL; /* running sum of microseconds */
1923 PyObject *y = NULL; /* temp sum of microseconds */
1924 double leftover_us = 0.0;
1926 static char *keywords[] = {
1927 "days", "seconds", "microseconds", "milliseconds",
1928 "minutes", "hours", "weeks", NULL
1931 if (PyArg_ParseTupleAndKeywords(args, kw, "|OOOOOOO:__new__",
1932 keywords,
1933 &day, &second, &us,
1934 &ms, &minute, &hour, &week) == 0)
1935 goto Done;
1937 x = PyLong_FromLong(0);
1938 if (x == NULL)
1939 goto Done;
1941 #define CLEANUP \
1942 Py_DECREF(x); \
1943 x = y; \
1944 if (x == NULL) \
1945 goto Done
1947 if (us) {
1948 y = accum("microseconds", x, us, us_per_us, &leftover_us);
1949 CLEANUP;
1951 if (ms) {
1952 y = accum("milliseconds", x, ms, us_per_ms, &leftover_us);
1953 CLEANUP;
1955 if (second) {
1956 y = accum("seconds", x, second, us_per_second, &leftover_us);
1957 CLEANUP;
1959 if (minute) {
1960 y = accum("minutes", x, minute, us_per_minute, &leftover_us);
1961 CLEANUP;
1963 if (hour) {
1964 y = accum("hours", x, hour, us_per_hour, &leftover_us);
1965 CLEANUP;
1967 if (day) {
1968 y = accum("days", x, day, us_per_day, &leftover_us);
1969 CLEANUP;
1971 if (week) {
1972 y = accum("weeks", x, week, us_per_week, &leftover_us);
1973 CLEANUP;
1975 if (leftover_us) {
1976 /* Round to nearest whole # of us, and add into x. */
1977 PyObject *temp = PyLong_FromLong(round_to_long(leftover_us));
1978 if (temp == NULL) {
1979 Py_DECREF(x);
1980 goto Done;
1982 y = PyNumber_Add(x, temp);
1983 Py_DECREF(temp);
1984 CLEANUP;
1987 self = microseconds_to_delta_ex(x, type);
1988 Py_DECREF(x);
1989 Done:
1990 return self;
1992 #undef CLEANUP
1995 static int
1996 delta_bool(PyDateTime_Delta *self)
1998 return (GET_TD_DAYS(self) != 0
1999 || GET_TD_SECONDS(self) != 0
2000 || GET_TD_MICROSECONDS(self) != 0);
2003 static PyObject *
2004 delta_repr(PyDateTime_Delta *self)
2006 if (GET_TD_MICROSECONDS(self) != 0)
2007 return PyUnicode_FromFormat("%s(%d, %d, %d)",
2008 Py_TYPE(self)->tp_name,
2009 GET_TD_DAYS(self),
2010 GET_TD_SECONDS(self),
2011 GET_TD_MICROSECONDS(self));
2012 if (GET_TD_SECONDS(self) != 0)
2013 return PyUnicode_FromFormat("%s(%d, %d)",
2014 Py_TYPE(self)->tp_name,
2015 GET_TD_DAYS(self),
2016 GET_TD_SECONDS(self));
2018 return PyUnicode_FromFormat("%s(%d)",
2019 Py_TYPE(self)->tp_name,
2020 GET_TD_DAYS(self));
2023 static PyObject *
2024 delta_str(PyDateTime_Delta *self)
2026 int us = GET_TD_MICROSECONDS(self);
2027 int seconds = GET_TD_SECONDS(self);
2028 int minutes = divmod(seconds, 60, &seconds);
2029 int hours = divmod(minutes, 60, &minutes);
2030 int days = GET_TD_DAYS(self);
2032 if (days) {
2033 if (us)
2034 return PyUnicode_FromFormat("%d day%s, %d:%02d:%02d.%06d",
2035 days, (days == 1 || days == -1) ? "" : "s",
2036 hours, minutes, seconds, us);
2037 else
2038 return PyUnicode_FromFormat("%d day%s, %d:%02d:%02d",
2039 days, (days == 1 || days == -1) ? "" : "s",
2040 hours, minutes, seconds);
2041 } else {
2042 if (us)
2043 return PyUnicode_FromFormat("%d:%02d:%02d.%06d",
2044 hours, minutes, seconds, us);
2045 else
2046 return PyUnicode_FromFormat("%d:%02d:%02d",
2047 hours, minutes, seconds);
2052 /* Pickle support, a simple use of __reduce__. */
2054 /* __getstate__ isn't exposed */
2055 static PyObject *
2056 delta_getstate(PyDateTime_Delta *self)
2058 return Py_BuildValue("iii", GET_TD_DAYS(self),
2059 GET_TD_SECONDS(self),
2060 GET_TD_MICROSECONDS(self));
2063 static PyObject *
2064 delta_reduce(PyDateTime_Delta* self)
2066 return Py_BuildValue("ON", Py_TYPE(self), delta_getstate(self));
2069 #define OFFSET(field) offsetof(PyDateTime_Delta, field)
2071 static PyMemberDef delta_members[] = {
2073 {"days", T_INT, OFFSET(days), READONLY,
2074 PyDoc_STR("Number of days.")},
2076 {"seconds", T_INT, OFFSET(seconds), READONLY,
2077 PyDoc_STR("Number of seconds (>= 0 and less than 1 day).")},
2079 {"microseconds", T_INT, OFFSET(microseconds), READONLY,
2080 PyDoc_STR("Number of microseconds (>= 0 and less than 1 second).")},
2081 {NULL}
2084 static PyMethodDef delta_methods[] = {
2085 {"__reduce__", (PyCFunction)delta_reduce, METH_NOARGS,
2086 PyDoc_STR("__reduce__() -> (cls, state)")},
2088 {NULL, NULL},
2091 static char delta_doc[] =
2092 PyDoc_STR("Difference between two datetime values.");
2094 static PyNumberMethods delta_as_number = {
2095 delta_add, /* nb_add */
2096 delta_subtract, /* nb_subtract */
2097 delta_multiply, /* nb_multiply */
2098 0, /* nb_remainder */
2099 0, /* nb_divmod */
2100 0, /* nb_power */
2101 (unaryfunc)delta_negative, /* nb_negative */
2102 (unaryfunc)delta_positive, /* nb_positive */
2103 (unaryfunc)delta_abs, /* nb_absolute */
2104 (inquiry)delta_bool, /* nb_bool */
2105 0, /*nb_invert*/
2106 0, /*nb_lshift*/
2107 0, /*nb_rshift*/
2108 0, /*nb_and*/
2109 0, /*nb_xor*/
2110 0, /*nb_or*/
2111 0, /*nb_int*/
2112 0, /*nb_reserved*/
2113 0, /*nb_float*/
2114 0, /*nb_inplace_add*/
2115 0, /*nb_inplace_subtract*/
2116 0, /*nb_inplace_multiply*/
2117 0, /*nb_inplace_remainder*/
2118 0, /*nb_inplace_power*/
2119 0, /*nb_inplace_lshift*/
2120 0, /*nb_inplace_rshift*/
2121 0, /*nb_inplace_and*/
2122 0, /*nb_inplace_xor*/
2123 0, /*nb_inplace_or*/
2124 delta_divide, /* nb_floor_divide */
2125 0, /* nb_true_divide */
2126 0, /* nb_inplace_floor_divide */
2127 0, /* nb_inplace_true_divide */
2130 static PyTypeObject PyDateTime_DeltaType = {
2131 PyVarObject_HEAD_INIT(NULL, 0)
2132 "datetime.timedelta", /* tp_name */
2133 sizeof(PyDateTime_Delta), /* tp_basicsize */
2134 0, /* tp_itemsize */
2135 0, /* tp_dealloc */
2136 0, /* tp_print */
2137 0, /* tp_getattr */
2138 0, /* tp_setattr */
2139 0, /* tp_reserved */
2140 (reprfunc)delta_repr, /* tp_repr */
2141 &delta_as_number, /* tp_as_number */
2142 0, /* tp_as_sequence */
2143 0, /* tp_as_mapping */
2144 (hashfunc)delta_hash, /* tp_hash */
2145 0, /* tp_call */
2146 (reprfunc)delta_str, /* tp_str */
2147 PyObject_GenericGetAttr, /* tp_getattro */
2148 0, /* tp_setattro */
2149 0, /* tp_as_buffer */
2150 Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */
2151 delta_doc, /* tp_doc */
2152 0, /* tp_traverse */
2153 0, /* tp_clear */
2154 delta_richcompare, /* tp_richcompare */
2155 0, /* tp_weaklistoffset */
2156 0, /* tp_iter */
2157 0, /* tp_iternext */
2158 delta_methods, /* tp_methods */
2159 delta_members, /* tp_members */
2160 0, /* tp_getset */
2161 0, /* tp_base */
2162 0, /* tp_dict */
2163 0, /* tp_descr_get */
2164 0, /* tp_descr_set */
2165 0, /* tp_dictoffset */
2166 0, /* tp_init */
2167 0, /* tp_alloc */
2168 delta_new, /* tp_new */
2169 0, /* tp_free */
2173 * PyDateTime_Date implementation.
2176 /* Accessor properties. */
2178 static PyObject *
2179 date_year(PyDateTime_Date *self, void *unused)
2181 return PyLong_FromLong(GET_YEAR(self));
2184 static PyObject *
2185 date_month(PyDateTime_Date *self, void *unused)
2187 return PyLong_FromLong(GET_MONTH(self));
2190 static PyObject *
2191 date_day(PyDateTime_Date *self, void *unused)
2193 return PyLong_FromLong(GET_DAY(self));
2196 static PyGetSetDef date_getset[] = {
2197 {"year", (getter)date_year},
2198 {"month", (getter)date_month},
2199 {"day", (getter)date_day},
2200 {NULL}
2203 /* Constructors. */
2205 static char *date_kws[] = {"year", "month", "day", NULL};
2207 static PyObject *
2208 date_new(PyTypeObject *type, PyObject *args, PyObject *kw)
2210 PyObject *self = NULL;
2211 PyObject *state;
2212 int year;
2213 int month;
2214 int day;
2216 /* Check for invocation from pickle with __getstate__ state */
2217 if (PyTuple_GET_SIZE(args) == 1 &&
2218 PyBytes_Check(state = PyTuple_GET_ITEM(args, 0)) &&
2219 PyBytes_GET_SIZE(state) == _PyDateTime_DATE_DATASIZE &&
2220 MONTH_IS_SANE(PyBytes_AS_STRING(state)[2]))
2222 PyDateTime_Date *me;
2224 me = (PyDateTime_Date *) (type->tp_alloc(type, 0));
2225 if (me != NULL) {
2226 char *pdata = PyBytes_AS_STRING(state);
2227 memcpy(me->data, pdata, _PyDateTime_DATE_DATASIZE);
2228 me->hashcode = -1;
2230 return (PyObject *)me;
2233 if (PyArg_ParseTupleAndKeywords(args, kw, "iii", date_kws,
2234 &year, &month, &day)) {
2235 if (check_date_args(year, month, day) < 0)
2236 return NULL;
2237 self = new_date_ex(year, month, day, type);
2239 return self;
2242 /* Return new date from localtime(t). */
2243 static PyObject *
2244 date_local_from_time_t(PyObject *cls, double ts)
2246 struct tm *tm;
2247 time_t t;
2248 PyObject *result = NULL;
2250 t = _PyTime_DoubleToTimet(ts);
2251 if (t == (time_t)-1 && PyErr_Occurred())
2252 return NULL;
2253 tm = localtime(&t);
2254 if (tm)
2255 result = PyObject_CallFunction(cls, "iii",
2256 tm->tm_year + 1900,
2257 tm->tm_mon + 1,
2258 tm->tm_mday);
2259 else
2260 PyErr_SetString(PyExc_ValueError,
2261 "timestamp out of range for "
2262 "platform localtime() function");
2263 return result;
2266 /* Return new date from current time.
2267 * We say this is equivalent to fromtimestamp(time.time()), and the
2268 * only way to be sure of that is to *call* time.time(). That's not
2269 * generally the same as calling C's time.
2271 static PyObject *
2272 date_today(PyObject *cls, PyObject *dummy)
2274 PyObject *time;
2275 PyObject *result;
2277 time = time_time();
2278 if (time == NULL)
2279 return NULL;
2281 /* Note well: today() is a class method, so this may not call
2282 * date.fromtimestamp. For example, it may call
2283 * datetime.fromtimestamp. That's why we need all the accuracy
2284 * time.time() delivers; if someone were gonzo about optimization,
2285 * date.today() could get away with plain C time().
2287 result = PyObject_CallMethod(cls, "fromtimestamp", "O", time);
2288 Py_DECREF(time);
2289 return result;
2292 /* Return new date from given timestamp (Python timestamp -- a double). */
2293 static PyObject *
2294 date_fromtimestamp(PyObject *cls, PyObject *args)
2296 double timestamp;
2297 PyObject *result = NULL;
2299 if (PyArg_ParseTuple(args, "d:fromtimestamp", &timestamp))
2300 result = date_local_from_time_t(cls, timestamp);
2301 return result;
2304 /* Return new date from proleptic Gregorian ordinal. Raises ValueError if
2305 * the ordinal is out of range.
2307 static PyObject *
2308 date_fromordinal(PyObject *cls, PyObject *args)
2310 PyObject *result = NULL;
2311 int ordinal;
2313 if (PyArg_ParseTuple(args, "i:fromordinal", &ordinal)) {
2314 int year;
2315 int month;
2316 int day;
2318 if (ordinal < 1)
2319 PyErr_SetString(PyExc_ValueError, "ordinal must be "
2320 ">= 1");
2321 else {
2322 ord_to_ymd(ordinal, &year, &month, &day);
2323 result = PyObject_CallFunction(cls, "iii",
2324 year, month, day);
2327 return result;
2331 * Date arithmetic.
2334 /* date + timedelta -> date. If arg negate is true, subtract the timedelta
2335 * instead.
2337 static PyObject *
2338 add_date_timedelta(PyDateTime_Date *date, PyDateTime_Delta *delta, int negate)
2340 PyObject *result = NULL;
2341 int year = GET_YEAR(date);
2342 int month = GET_MONTH(date);
2343 int deltadays = GET_TD_DAYS(delta);
2344 /* C-level overflow is impossible because |deltadays| < 1e9. */
2345 int day = GET_DAY(date) + (negate ? -deltadays : deltadays);
2347 if (normalize_date(&year, &month, &day) >= 0)
2348 result = new_date(year, month, day);
2349 return result;
2352 static PyObject *
2353 date_add(PyObject *left, PyObject *right)
2355 if (PyDateTime_Check(left) || PyDateTime_Check(right)) {
2356 Py_INCREF(Py_NotImplemented);
2357 return Py_NotImplemented;
2359 if (PyDate_Check(left)) {
2360 /* date + ??? */
2361 if (PyDelta_Check(right))
2362 /* date + delta */
2363 return add_date_timedelta((PyDateTime_Date *) left,
2364 (PyDateTime_Delta *) right,
2367 else {
2368 /* ??? + date
2369 * 'right' must be one of us, or we wouldn't have been called
2371 if (PyDelta_Check(left))
2372 /* delta + date */
2373 return add_date_timedelta((PyDateTime_Date *) right,
2374 (PyDateTime_Delta *) left,
2377 Py_INCREF(Py_NotImplemented);
2378 return Py_NotImplemented;
2381 static PyObject *
2382 date_subtract(PyObject *left, PyObject *right)
2384 if (PyDateTime_Check(left) || PyDateTime_Check(right)) {
2385 Py_INCREF(Py_NotImplemented);
2386 return Py_NotImplemented;
2388 if (PyDate_Check(left)) {
2389 if (PyDate_Check(right)) {
2390 /* date - date */
2391 int left_ord = ymd_to_ord(GET_YEAR(left),
2392 GET_MONTH(left),
2393 GET_DAY(left));
2394 int right_ord = ymd_to_ord(GET_YEAR(right),
2395 GET_MONTH(right),
2396 GET_DAY(right));
2397 return new_delta(left_ord - right_ord, 0, 0, 0);
2399 if (PyDelta_Check(right)) {
2400 /* date - delta */
2401 return add_date_timedelta((PyDateTime_Date *) left,
2402 (PyDateTime_Delta *) right,
2406 Py_INCREF(Py_NotImplemented);
2407 return Py_NotImplemented;
2411 /* Various ways to turn a date into a string. */
2413 static PyObject *
2414 date_repr(PyDateTime_Date *self)
2416 return PyUnicode_FromFormat("%s(%d, %d, %d)",
2417 Py_TYPE(self)->tp_name,
2418 GET_YEAR(self), GET_MONTH(self), GET_DAY(self));
2421 static PyObject *
2422 date_isoformat(PyDateTime_Date *self)
2424 return PyUnicode_FromFormat("%04d-%02d-%02d",
2425 GET_YEAR(self), GET_MONTH(self), GET_DAY(self));
2428 /* str() calls the appropriate isoformat() method. */
2429 static PyObject *
2430 date_str(PyDateTime_Date *self)
2432 return PyObject_CallMethod((PyObject *)self, "isoformat", "()");
2436 static PyObject *
2437 date_ctime(PyDateTime_Date *self)
2439 return format_ctime(self, 0, 0, 0);
2442 static PyObject *
2443 date_strftime(PyDateTime_Date *self, PyObject *args, PyObject *kw)
2445 /* This method can be inherited, and needs to call the
2446 * timetuple() method appropriate to self's class.
2448 PyObject *result;
2449 PyObject *tuple;
2450 PyObject *format;
2451 static char *keywords[] = {"format", NULL};
2453 if (! PyArg_ParseTupleAndKeywords(args, kw, "U:strftime", keywords,
2454 &format))
2455 return NULL;
2457 tuple = PyObject_CallMethod((PyObject *)self, "timetuple", "()");
2458 if (tuple == NULL)
2459 return NULL;
2460 result = wrap_strftime((PyObject *)self, format, tuple,
2461 (PyObject *)self);
2462 Py_DECREF(tuple);
2463 return result;
2466 static PyObject *
2467 date_format(PyDateTime_Date *self, PyObject *args)
2469 PyObject *format;
2471 if (!PyArg_ParseTuple(args, "U:__format__", &format))
2472 return NULL;
2474 /* if the format is zero length, return str(self) */
2475 if (PyUnicode_GetSize(format) == 0)
2476 return PyObject_Str((PyObject *)self);
2478 return PyObject_CallMethod((PyObject *)self, "strftime", "O", format);
2481 /* ISO methods. */
2483 static PyObject *
2484 date_isoweekday(PyDateTime_Date *self)
2486 int dow = weekday(GET_YEAR(self), GET_MONTH(self), GET_DAY(self));
2488 return PyLong_FromLong(dow + 1);
2491 static PyObject *
2492 date_isocalendar(PyDateTime_Date *self)
2494 int year = GET_YEAR(self);
2495 int week1_monday = iso_week1_monday(year);
2496 int today = ymd_to_ord(year, GET_MONTH(self), GET_DAY(self));
2497 int week;
2498 int day;
2500 week = divmod(today - week1_monday, 7, &day);
2501 if (week < 0) {
2502 --year;
2503 week1_monday = iso_week1_monday(year);
2504 week = divmod(today - week1_monday, 7, &day);
2506 else if (week >= 52 && today >= iso_week1_monday(year + 1)) {
2507 ++year;
2508 week = 0;
2510 return Py_BuildValue("iii", year, week + 1, day + 1);
2513 /* Miscellaneous methods. */
2515 static PyObject *
2516 date_richcompare(PyObject *self, PyObject *other, int op)
2518 if (PyDate_Check(other)) {
2519 int diff = memcmp(((PyDateTime_Date *)self)->data,
2520 ((PyDateTime_Date *)other)->data,
2521 _PyDateTime_DATE_DATASIZE);
2522 return diff_to_bool(diff, op);
2524 else {
2525 Py_INCREF(Py_NotImplemented);
2526 return Py_NotImplemented;
2530 static PyObject *
2531 date_timetuple(PyDateTime_Date *self)
2533 return build_struct_time(GET_YEAR(self),
2534 GET_MONTH(self),
2535 GET_DAY(self),
2536 0, 0, 0, -1);
2539 static PyObject *
2540 date_replace(PyDateTime_Date *self, PyObject *args, PyObject *kw)
2542 PyObject *clone;
2543 PyObject *tuple;
2544 int year = GET_YEAR(self);
2545 int month = GET_MONTH(self);
2546 int day = GET_DAY(self);
2548 if (! PyArg_ParseTupleAndKeywords(args, kw, "|iii:replace", date_kws,
2549 &year, &month, &day))
2550 return NULL;
2551 tuple = Py_BuildValue("iii", year, month, day);
2552 if (tuple == NULL)
2553 return NULL;
2554 clone = date_new(Py_TYPE(self), tuple, NULL);
2555 Py_DECREF(tuple);
2556 return clone;
2560 Borrowed from stringobject.c, originally it was string_hash()
2562 static long
2563 generic_hash(unsigned char *data, int len)
2565 register unsigned char *p;
2566 register long x;
2568 p = (unsigned char *) data;
2569 x = *p << 7;
2570 while (--len >= 0)
2571 x = (1000003*x) ^ *p++;
2572 x ^= len;
2573 if (x == -1)
2574 x = -2;
2576 return x;
2580 static PyObject *date_getstate(PyDateTime_Date *self);
2582 static long
2583 date_hash(PyDateTime_Date *self)
2585 if (self->hashcode == -1)
2586 self->hashcode = generic_hash(
2587 (unsigned char *)self->data, _PyDateTime_DATE_DATASIZE);
2589 return self->hashcode;
2592 static PyObject *
2593 date_toordinal(PyDateTime_Date *self)
2595 return PyLong_FromLong(ymd_to_ord(GET_YEAR(self), GET_MONTH(self),
2596 GET_DAY(self)));
2599 static PyObject *
2600 date_weekday(PyDateTime_Date *self)
2602 int dow = weekday(GET_YEAR(self), GET_MONTH(self), GET_DAY(self));
2604 return PyLong_FromLong(dow);
2607 /* Pickle support, a simple use of __reduce__. */
2609 /* __getstate__ isn't exposed */
2610 static PyObject *
2611 date_getstate(PyDateTime_Date *self)
2613 PyObject* field;
2614 field = PyBytes_FromStringAndSize((char*)self->data,
2615 _PyDateTime_DATE_DATASIZE);
2616 return Py_BuildValue("(N)", field);
2619 static PyObject *
2620 date_reduce(PyDateTime_Date *self, PyObject *arg)
2622 return Py_BuildValue("(ON)", Py_TYPE(self), date_getstate(self));
2625 static PyMethodDef date_methods[] = {
2627 /* Class methods: */
2629 {"fromtimestamp", (PyCFunction)date_fromtimestamp, METH_VARARGS |
2630 METH_CLASS,
2631 PyDoc_STR("timestamp -> local date from a POSIX timestamp (like "
2632 "time.time()).")},
2634 {"fromordinal", (PyCFunction)date_fromordinal, METH_VARARGS |
2635 METH_CLASS,
2636 PyDoc_STR("int -> date corresponding to a proleptic Gregorian "
2637 "ordinal.")},
2639 {"today", (PyCFunction)date_today, METH_NOARGS | METH_CLASS,
2640 PyDoc_STR("Current date or datetime: same as "
2641 "self.__class__.fromtimestamp(time.time()).")},
2643 /* Instance methods: */
2645 {"ctime", (PyCFunction)date_ctime, METH_NOARGS,
2646 PyDoc_STR("Return ctime() style string.")},
2648 {"strftime", (PyCFunction)date_strftime, METH_VARARGS | METH_KEYWORDS,
2649 PyDoc_STR("format -> strftime() style string.")},
2651 {"__format__", (PyCFunction)date_format, METH_VARARGS,
2652 PyDoc_STR("Formats self with strftime.")},
2654 {"timetuple", (PyCFunction)date_timetuple, METH_NOARGS,
2655 PyDoc_STR("Return time tuple, compatible with time.localtime().")},
2657 {"isocalendar", (PyCFunction)date_isocalendar, METH_NOARGS,
2658 PyDoc_STR("Return a 3-tuple containing ISO year, week number, and "
2659 "weekday.")},
2661 {"isoformat", (PyCFunction)date_isoformat, METH_NOARGS,
2662 PyDoc_STR("Return string in ISO 8601 format, YYYY-MM-DD.")},
2664 {"isoweekday", (PyCFunction)date_isoweekday, METH_NOARGS,
2665 PyDoc_STR("Return the day of the week represented by the date.\n"
2666 "Monday == 1 ... Sunday == 7")},
2668 {"toordinal", (PyCFunction)date_toordinal, METH_NOARGS,
2669 PyDoc_STR("Return proleptic Gregorian ordinal. January 1 of year "
2670 "1 is day 1.")},
2672 {"weekday", (PyCFunction)date_weekday, METH_NOARGS,
2673 PyDoc_STR("Return the day of the week represented by the date.\n"
2674 "Monday == 0 ... Sunday == 6")},
2676 {"replace", (PyCFunction)date_replace, METH_VARARGS | METH_KEYWORDS,
2677 PyDoc_STR("Return date with new specified fields.")},
2679 {"__reduce__", (PyCFunction)date_reduce, METH_NOARGS,
2680 PyDoc_STR("__reduce__() -> (cls, state)")},
2682 {NULL, NULL}
2685 static char date_doc[] =
2686 PyDoc_STR("date(year, month, day) --> date object");
2688 static PyNumberMethods date_as_number = {
2689 date_add, /* nb_add */
2690 date_subtract, /* nb_subtract */
2691 0, /* nb_multiply */
2692 0, /* nb_remainder */
2693 0, /* nb_divmod */
2694 0, /* nb_power */
2695 0, /* nb_negative */
2696 0, /* nb_positive */
2697 0, /* nb_absolute */
2698 0, /* nb_bool */
2701 static PyTypeObject PyDateTime_DateType = {
2702 PyVarObject_HEAD_INIT(NULL, 0)
2703 "datetime.date", /* tp_name */
2704 sizeof(PyDateTime_Date), /* tp_basicsize */
2705 0, /* tp_itemsize */
2706 0, /* tp_dealloc */
2707 0, /* tp_print */
2708 0, /* tp_getattr */
2709 0, /* tp_setattr */
2710 0, /* tp_reserved */
2711 (reprfunc)date_repr, /* tp_repr */
2712 &date_as_number, /* tp_as_number */
2713 0, /* tp_as_sequence */
2714 0, /* tp_as_mapping */
2715 (hashfunc)date_hash, /* tp_hash */
2716 0, /* tp_call */
2717 (reprfunc)date_str, /* tp_str */
2718 PyObject_GenericGetAttr, /* tp_getattro */
2719 0, /* tp_setattro */
2720 0, /* tp_as_buffer */
2721 Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */
2722 date_doc, /* tp_doc */
2723 0, /* tp_traverse */
2724 0, /* tp_clear */
2725 date_richcompare, /* tp_richcompare */
2726 0, /* tp_weaklistoffset */
2727 0, /* tp_iter */
2728 0, /* tp_iternext */
2729 date_methods, /* tp_methods */
2730 0, /* tp_members */
2731 date_getset, /* tp_getset */
2732 0, /* tp_base */
2733 0, /* tp_dict */
2734 0, /* tp_descr_get */
2735 0, /* tp_descr_set */
2736 0, /* tp_dictoffset */
2737 0, /* tp_init */
2738 0, /* tp_alloc */
2739 date_new, /* tp_new */
2740 0, /* tp_free */
2744 * PyDateTime_TZInfo implementation.
2747 /* This is a pure abstract base class, so doesn't do anything beyond
2748 * raising NotImplemented exceptions. Real tzinfo classes need
2749 * to derive from this. This is mostly for clarity, and for efficiency in
2750 * datetime and time constructors (their tzinfo arguments need to
2751 * be subclasses of this tzinfo class, which is easy and quick to check).
2753 * Note: For reasons having to do with pickling of subclasses, we have
2754 * to allow tzinfo objects to be instantiated. This wasn't an issue
2755 * in the Python implementation (__init__() could raise NotImplementedError
2756 * there without ill effect), but doing so in the C implementation hit a
2757 * brick wall.
2760 static PyObject *
2761 tzinfo_nogo(const char* methodname)
2763 PyErr_Format(PyExc_NotImplementedError,
2764 "a tzinfo subclass must implement %s()",
2765 methodname);
2766 return NULL;
2769 /* Methods. A subclass must implement these. */
2771 static PyObject *
2772 tzinfo_tzname(PyDateTime_TZInfo *self, PyObject *dt)
2774 return tzinfo_nogo("tzname");
2777 static PyObject *
2778 tzinfo_utcoffset(PyDateTime_TZInfo *self, PyObject *dt)
2780 return tzinfo_nogo("utcoffset");
2783 static PyObject *
2784 tzinfo_dst(PyDateTime_TZInfo *self, PyObject *dt)
2786 return tzinfo_nogo("dst");
2789 static PyObject *
2790 tzinfo_fromutc(PyDateTime_TZInfo *self, PyDateTime_DateTime *dt)
2792 int y, m, d, hh, mm, ss, us;
2794 PyObject *result;
2795 int off, dst;
2796 int none;
2797 int delta;
2799 if (! PyDateTime_Check(dt)) {
2800 PyErr_SetString(PyExc_TypeError,
2801 "fromutc: argument must be a datetime");
2802 return NULL;
2804 if (! HASTZINFO(dt) || dt->tzinfo != (PyObject *)self) {
2805 PyErr_SetString(PyExc_ValueError, "fromutc: dt.tzinfo "
2806 "is not self");
2807 return NULL;
2810 off = call_utcoffset(dt->tzinfo, (PyObject *)dt, &none);
2811 if (off == -1 && PyErr_Occurred())
2812 return NULL;
2813 if (none) {
2814 PyErr_SetString(PyExc_ValueError, "fromutc: non-None "
2815 "utcoffset() result required");
2816 return NULL;
2819 dst = call_dst(dt->tzinfo, (PyObject *)dt, &none);
2820 if (dst == -1 && PyErr_Occurred())
2821 return NULL;
2822 if (none) {
2823 PyErr_SetString(PyExc_ValueError, "fromutc: non-None "
2824 "dst() result required");
2825 return NULL;
2828 y = GET_YEAR(dt);
2829 m = GET_MONTH(dt);
2830 d = GET_DAY(dt);
2831 hh = DATE_GET_HOUR(dt);
2832 mm = DATE_GET_MINUTE(dt);
2833 ss = DATE_GET_SECOND(dt);
2834 us = DATE_GET_MICROSECOND(dt);
2836 delta = off - dst;
2837 mm += delta;
2838 if ((mm < 0 || mm >= 60) &&
2839 normalize_datetime(&y, &m, &d, &hh, &mm, &ss, &us) < 0)
2840 return NULL;
2841 result = new_datetime(y, m, d, hh, mm, ss, us, dt->tzinfo);
2842 if (result == NULL)
2843 return result;
2845 dst = call_dst(dt->tzinfo, result, &none);
2846 if (dst == -1 && PyErr_Occurred())
2847 goto Fail;
2848 if (none)
2849 goto Inconsistent;
2850 if (dst == 0)
2851 return result;
2853 mm += dst;
2854 if ((mm < 0 || mm >= 60) &&
2855 normalize_datetime(&y, &m, &d, &hh, &mm, &ss, &us) < 0)
2856 goto Fail;
2857 Py_DECREF(result);
2858 result = new_datetime(y, m, d, hh, mm, ss, us, dt->tzinfo);
2859 return result;
2861 Inconsistent:
2862 PyErr_SetString(PyExc_ValueError, "fromutc: tz.dst() gave"
2863 "inconsistent results; cannot convert");
2865 /* fall thru to failure */
2866 Fail:
2867 Py_DECREF(result);
2868 return NULL;
2872 * Pickle support. This is solely so that tzinfo subclasses can use
2873 * pickling -- tzinfo itself is supposed to be uninstantiable.
2876 static PyObject *
2877 tzinfo_reduce(PyObject *self)
2879 PyObject *args, *state, *tmp;
2880 PyObject *getinitargs, *getstate;
2882 tmp = PyTuple_New(0);
2883 if (tmp == NULL)
2884 return NULL;
2886 getinitargs = PyObject_GetAttrString(self, "__getinitargs__");
2887 if (getinitargs != NULL) {
2888 args = PyObject_CallObject(getinitargs, tmp);
2889 Py_DECREF(getinitargs);
2890 if (args == NULL) {
2891 Py_DECREF(tmp);
2892 return NULL;
2895 else {
2896 PyErr_Clear();
2897 args = tmp;
2898 Py_INCREF(args);
2901 getstate = PyObject_GetAttrString(self, "__getstate__");
2902 if (getstate != NULL) {
2903 state = PyObject_CallObject(getstate, tmp);
2904 Py_DECREF(getstate);
2905 if (state == NULL) {
2906 Py_DECREF(args);
2907 Py_DECREF(tmp);
2908 return NULL;
2911 else {
2912 PyObject **dictptr;
2913 PyErr_Clear();
2914 state = Py_None;
2915 dictptr = _PyObject_GetDictPtr(self);
2916 if (dictptr && *dictptr && PyDict_Size(*dictptr))
2917 state = *dictptr;
2918 Py_INCREF(state);
2921 Py_DECREF(tmp);
2923 if (state == Py_None) {
2924 Py_DECREF(state);
2925 return Py_BuildValue("(ON)", Py_TYPE(self), args);
2927 else
2928 return Py_BuildValue("(ONN)", Py_TYPE(self), args, state);
2931 static PyMethodDef tzinfo_methods[] = {
2933 {"tzname", (PyCFunction)tzinfo_tzname, METH_O,
2934 PyDoc_STR("datetime -> string name of time zone.")},
2936 {"utcoffset", (PyCFunction)tzinfo_utcoffset, METH_O,
2937 PyDoc_STR("datetime -> minutes east of UTC (negative for "
2938 "west of UTC).")},
2940 {"dst", (PyCFunction)tzinfo_dst, METH_O,
2941 PyDoc_STR("datetime -> DST offset in minutes east of UTC.")},
2943 {"fromutc", (PyCFunction)tzinfo_fromutc, METH_O,
2944 PyDoc_STR("datetime -> timedelta showing offset from UTC, negative "
2945 "values indicating West of UTC")},
2947 {"__reduce__", (PyCFunction)tzinfo_reduce, METH_NOARGS,
2948 PyDoc_STR("-> (cls, state)")},
2950 {NULL, NULL}
2953 static char tzinfo_doc[] =
2954 PyDoc_STR("Abstract base class for time zone info objects.");
2956 static PyTypeObject PyDateTime_TZInfoType = {
2957 PyVarObject_HEAD_INIT(NULL, 0)
2958 "datetime.tzinfo", /* tp_name */
2959 sizeof(PyDateTime_TZInfo), /* tp_basicsize */
2960 0, /* tp_itemsize */
2961 0, /* tp_dealloc */
2962 0, /* tp_print */
2963 0, /* tp_getattr */
2964 0, /* tp_setattr */
2965 0, /* tp_reserved */
2966 0, /* tp_repr */
2967 0, /* tp_as_number */
2968 0, /* tp_as_sequence */
2969 0, /* tp_as_mapping */
2970 0, /* tp_hash */
2971 0, /* tp_call */
2972 0, /* tp_str */
2973 PyObject_GenericGetAttr, /* tp_getattro */
2974 0, /* tp_setattro */
2975 0, /* tp_as_buffer */
2976 Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */
2977 tzinfo_doc, /* tp_doc */
2978 0, /* tp_traverse */
2979 0, /* tp_clear */
2980 0, /* tp_richcompare */
2981 0, /* tp_weaklistoffset */
2982 0, /* tp_iter */
2983 0, /* tp_iternext */
2984 tzinfo_methods, /* tp_methods */
2985 0, /* tp_members */
2986 0, /* tp_getset */
2987 0, /* tp_base */
2988 0, /* tp_dict */
2989 0, /* tp_descr_get */
2990 0, /* tp_descr_set */
2991 0, /* tp_dictoffset */
2992 0, /* tp_init */
2993 0, /* tp_alloc */
2994 PyType_GenericNew, /* tp_new */
2995 0, /* tp_free */
2999 * PyDateTime_Time implementation.
3002 /* Accessor properties.
3005 static PyObject *
3006 time_hour(PyDateTime_Time *self, void *unused)
3008 return PyLong_FromLong(TIME_GET_HOUR(self));
3011 static PyObject *
3012 time_minute(PyDateTime_Time *self, void *unused)
3014 return PyLong_FromLong(TIME_GET_MINUTE(self));
3017 /* The name time_second conflicted with some platform header file. */
3018 static PyObject *
3019 py_time_second(PyDateTime_Time *self, void *unused)
3021 return PyLong_FromLong(TIME_GET_SECOND(self));
3024 static PyObject *
3025 time_microsecond(PyDateTime_Time *self, void *unused)
3027 return PyLong_FromLong(TIME_GET_MICROSECOND(self));
3030 static PyObject *
3031 time_tzinfo(PyDateTime_Time *self, void *unused)
3033 PyObject *result = HASTZINFO(self) ? self->tzinfo : Py_None;
3034 Py_INCREF(result);
3035 return result;
3038 static PyGetSetDef time_getset[] = {
3039 {"hour", (getter)time_hour},
3040 {"minute", (getter)time_minute},
3041 {"second", (getter)py_time_second},
3042 {"microsecond", (getter)time_microsecond},
3043 {"tzinfo", (getter)time_tzinfo},
3044 {NULL}
3048 * Constructors.
3051 static char *time_kws[] = {"hour", "minute", "second", "microsecond",
3052 "tzinfo", NULL};
3054 static PyObject *
3055 time_new(PyTypeObject *type, PyObject *args, PyObject *kw)
3057 PyObject *self = NULL;
3058 PyObject *state;
3059 int hour = 0;
3060 int minute = 0;
3061 int second = 0;
3062 int usecond = 0;
3063 PyObject *tzinfo = Py_None;
3065 /* Check for invocation from pickle with __getstate__ state */
3066 if (PyTuple_GET_SIZE(args) >= 1 &&
3067 PyTuple_GET_SIZE(args) <= 2 &&
3068 PyBytes_Check(state = PyTuple_GET_ITEM(args, 0)) &&
3069 PyBytes_GET_SIZE(state) == _PyDateTime_TIME_DATASIZE &&
3070 ((unsigned char) (PyBytes_AS_STRING(state)[0])) < 24)
3072 PyDateTime_Time *me;
3073 char aware;
3075 if (PyTuple_GET_SIZE(args) == 2) {
3076 tzinfo = PyTuple_GET_ITEM(args, 1);
3077 if (check_tzinfo_subclass(tzinfo) < 0) {
3078 PyErr_SetString(PyExc_TypeError, "bad "
3079 "tzinfo state arg");
3080 return NULL;
3083 aware = (char)(tzinfo != Py_None);
3084 me = (PyDateTime_Time *) (type->tp_alloc(type, aware));
3085 if (me != NULL) {
3086 char *pdata = PyBytes_AS_STRING(state);
3088 memcpy(me->data, pdata, _PyDateTime_TIME_DATASIZE);
3089 me->hashcode = -1;
3090 me->hastzinfo = aware;
3091 if (aware) {
3092 Py_INCREF(tzinfo);
3093 me->tzinfo = tzinfo;
3096 return (PyObject *)me;
3099 if (PyArg_ParseTupleAndKeywords(args, kw, "|iiiiO", time_kws,
3100 &hour, &minute, &second, &usecond,
3101 &tzinfo)) {
3102 if (check_time_args(hour, minute, second, usecond) < 0)
3103 return NULL;
3104 if (check_tzinfo_subclass(tzinfo) < 0)
3105 return NULL;
3106 self = new_time_ex(hour, minute, second, usecond, tzinfo,
3107 type);
3109 return self;
3113 * Destructor.
3116 static void
3117 time_dealloc(PyDateTime_Time *self)
3119 if (HASTZINFO(self)) {
3120 Py_XDECREF(self->tzinfo);
3122 Py_TYPE(self)->tp_free((PyObject *)self);
3126 * Indirect access to tzinfo methods.
3129 /* These are all METH_NOARGS, so don't need to check the arglist. */
3130 static PyObject *
3131 time_utcoffset(PyDateTime_Time *self, PyObject *unused) {
3132 return offset_as_timedelta(HASTZINFO(self) ? self->tzinfo : Py_None,
3133 "utcoffset", Py_None);
3136 static PyObject *
3137 time_dst(PyDateTime_Time *self, PyObject *unused) {
3138 return offset_as_timedelta(HASTZINFO(self) ? self->tzinfo : Py_None,
3139 "dst", Py_None);
3142 static PyObject *
3143 time_tzname(PyDateTime_Time *self, PyObject *unused) {
3144 return call_tzname(HASTZINFO(self) ? self->tzinfo : Py_None,
3145 Py_None);
3149 * Various ways to turn a time into a string.
3152 static PyObject *
3153 time_repr(PyDateTime_Time *self)
3155 const char *type_name = Py_TYPE(self)->tp_name;
3156 int h = TIME_GET_HOUR(self);
3157 int m = TIME_GET_MINUTE(self);
3158 int s = TIME_GET_SECOND(self);
3159 int us = TIME_GET_MICROSECOND(self);
3160 PyObject *result = NULL;
3162 if (us)
3163 result = PyUnicode_FromFormat("%s(%d, %d, %d, %d)",
3164 type_name, h, m, s, us);
3165 else if (s)
3166 result = PyUnicode_FromFormat("%s(%d, %d, %d)",
3167 type_name, h, m, s);
3168 else
3169 result = PyUnicode_FromFormat("%s(%d, %d)", type_name, h, m);
3170 if (result != NULL && HASTZINFO(self))
3171 result = append_keyword_tzinfo(result, self->tzinfo);
3172 return result;
3175 static PyObject *
3176 time_str(PyDateTime_Time *self)
3178 return PyObject_CallMethod((PyObject *)self, "isoformat", "()");
3181 static PyObject *
3182 time_isoformat(PyDateTime_Time *self, PyObject *unused)
3184 char buf[100];
3185 PyObject *result;
3186 int us = TIME_GET_MICROSECOND(self);;
3188 if (us)
3189 result = PyUnicode_FromFormat("%02d:%02d:%02d.%06d",
3190 TIME_GET_HOUR(self),
3191 TIME_GET_MINUTE(self),
3192 TIME_GET_SECOND(self),
3193 us);
3194 else
3195 result = PyUnicode_FromFormat("%02d:%02d:%02d",
3196 TIME_GET_HOUR(self),
3197 TIME_GET_MINUTE(self),
3198 TIME_GET_SECOND(self));
3200 if (result == NULL || ! HASTZINFO(self) || self->tzinfo == Py_None)
3201 return result;
3203 /* We need to append the UTC offset. */
3204 if (format_utcoffset(buf, sizeof(buf), ":", self->tzinfo,
3205 Py_None) < 0) {
3206 Py_DECREF(result);
3207 return NULL;
3209 PyUnicode_AppendAndDel(&result, PyUnicode_FromString(buf));
3210 return result;
3213 static PyObject *
3214 time_strftime(PyDateTime_Time *self, PyObject *args, PyObject *kw)
3216 PyObject *result;
3217 PyObject *tuple;
3218 PyObject *format;
3219 static char *keywords[] = {"format", NULL};
3221 if (! PyArg_ParseTupleAndKeywords(args, kw, "U:strftime", keywords,
3222 &format))
3223 return NULL;
3225 /* Python's strftime does insane things with the year part of the
3226 * timetuple. The year is forced to (the otherwise nonsensical)
3227 * 1900 to worm around that.
3229 tuple = Py_BuildValue("iiiiiiiii",
3230 1900, 1, 1, /* year, month, day */
3231 TIME_GET_HOUR(self),
3232 TIME_GET_MINUTE(self),
3233 TIME_GET_SECOND(self),
3234 0, 1, -1); /* weekday, daynum, dst */
3235 if (tuple == NULL)
3236 return NULL;
3237 assert(PyTuple_Size(tuple) == 9);
3238 result = wrap_strftime((PyObject *)self, format, tuple,
3239 Py_None);
3240 Py_DECREF(tuple);
3241 return result;
3245 * Miscellaneous methods.
3248 static PyObject *
3249 time_richcompare(PyObject *self, PyObject *other, int op)
3251 int diff;
3252 naivety n1, n2;
3253 int offset1, offset2;
3255 if (! PyTime_Check(other)) {
3256 Py_INCREF(Py_NotImplemented);
3257 return Py_NotImplemented;
3259 if (classify_two_utcoffsets(self, &offset1, &n1, Py_None,
3260 other, &offset2, &n2, Py_None) < 0)
3261 return NULL;
3262 assert(n1 != OFFSET_UNKNOWN && n2 != OFFSET_UNKNOWN);
3263 /* If they're both naive, or both aware and have the same offsets,
3264 * we get off cheap. Note that if they're both naive, offset1 ==
3265 * offset2 == 0 at this point.
3267 if (n1 == n2 && offset1 == offset2) {
3268 diff = memcmp(((PyDateTime_Time *)self)->data,
3269 ((PyDateTime_Time *)other)->data,
3270 _PyDateTime_TIME_DATASIZE);
3271 return diff_to_bool(diff, op);
3274 if (n1 == OFFSET_AWARE && n2 == OFFSET_AWARE) {
3275 assert(offset1 != offset2); /* else last "if" handled it */
3276 /* Convert everything except microseconds to seconds. These
3277 * can't overflow (no more than the # of seconds in 2 days).
3279 offset1 = TIME_GET_HOUR(self) * 3600 +
3280 (TIME_GET_MINUTE(self) - offset1) * 60 +
3281 TIME_GET_SECOND(self);
3282 offset2 = TIME_GET_HOUR(other) * 3600 +
3283 (TIME_GET_MINUTE(other) - offset2) * 60 +
3284 TIME_GET_SECOND(other);
3285 diff = offset1 - offset2;
3286 if (diff == 0)
3287 diff = TIME_GET_MICROSECOND(self) -
3288 TIME_GET_MICROSECOND(other);
3289 return diff_to_bool(diff, op);
3292 assert(n1 != n2);
3293 PyErr_SetString(PyExc_TypeError,
3294 "can't compare offset-naive and "
3295 "offset-aware times");
3296 return NULL;
3299 static long
3300 time_hash(PyDateTime_Time *self)
3302 if (self->hashcode == -1) {
3303 naivety n;
3304 int offset;
3305 PyObject *temp;
3307 n = classify_utcoffset((PyObject *)self, Py_None, &offset);
3308 assert(n != OFFSET_UNKNOWN);
3309 if (n == OFFSET_ERROR)
3310 return -1;
3312 /* Reduce this to a hash of another object. */
3313 if (offset == 0) {
3314 self->hashcode = generic_hash(
3315 (unsigned char *)self->data, _PyDateTime_TIME_DATASIZE);
3316 return self->hashcode;
3318 else {
3319 int hour;
3320 int minute;
3322 assert(n == OFFSET_AWARE);
3323 assert(HASTZINFO(self));
3324 hour = divmod(TIME_GET_HOUR(self) * 60 +
3325 TIME_GET_MINUTE(self) - offset,
3327 &minute);
3328 if (0 <= hour && hour < 24)
3329 temp = new_time(hour, minute,
3330 TIME_GET_SECOND(self),
3331 TIME_GET_MICROSECOND(self),
3332 Py_None);
3333 else
3334 temp = Py_BuildValue("iiii",
3335 hour, minute,
3336 TIME_GET_SECOND(self),
3337 TIME_GET_MICROSECOND(self));
3339 if (temp != NULL) {
3340 self->hashcode = PyObject_Hash(temp);
3341 Py_DECREF(temp);
3344 return self->hashcode;
3347 static PyObject *
3348 time_replace(PyDateTime_Time *self, PyObject *args, PyObject *kw)
3350 PyObject *clone;
3351 PyObject *tuple;
3352 int hh = TIME_GET_HOUR(self);
3353 int mm = TIME_GET_MINUTE(self);
3354 int ss = TIME_GET_SECOND(self);
3355 int us = TIME_GET_MICROSECOND(self);
3356 PyObject *tzinfo = HASTZINFO(self) ? self->tzinfo : Py_None;
3358 if (! PyArg_ParseTupleAndKeywords(args, kw, "|iiiiO:replace",
3359 time_kws,
3360 &hh, &mm, &ss, &us, &tzinfo))
3361 return NULL;
3362 tuple = Py_BuildValue("iiiiO", hh, mm, ss, us, tzinfo);
3363 if (tuple == NULL)
3364 return NULL;
3365 clone = time_new(Py_TYPE(self), tuple, NULL);
3366 Py_DECREF(tuple);
3367 return clone;
3370 static int
3371 time_bool(PyDateTime_Time *self)
3373 int offset;
3374 int none;
3376 if (TIME_GET_SECOND(self) || TIME_GET_MICROSECOND(self)) {
3377 /* Since utcoffset is in whole minutes, nothing can
3378 * alter the conclusion that this is nonzero.
3380 return 1;
3382 offset = 0;
3383 if (HASTZINFO(self) && self->tzinfo != Py_None) {
3384 offset = call_utcoffset(self->tzinfo, Py_None, &none);
3385 if (offset == -1 && PyErr_Occurred())
3386 return -1;
3388 return (TIME_GET_MINUTE(self) - offset + TIME_GET_HOUR(self)*60) != 0;
3391 /* Pickle support, a simple use of __reduce__. */
3393 /* Let basestate be the non-tzinfo data string.
3394 * If tzinfo is None, this returns (basestate,), else (basestate, tzinfo).
3395 * So it's a tuple in any (non-error) case.
3396 * __getstate__ isn't exposed.
3398 static PyObject *
3399 time_getstate(PyDateTime_Time *self)
3401 PyObject *basestate;
3402 PyObject *result = NULL;
3404 basestate = PyBytes_FromStringAndSize((char *)self->data,
3405 _PyDateTime_TIME_DATASIZE);
3406 if (basestate != NULL) {
3407 if (! HASTZINFO(self) || self->tzinfo == Py_None)
3408 result = PyTuple_Pack(1, basestate);
3409 else
3410 result = PyTuple_Pack(2, basestate, self->tzinfo);
3411 Py_DECREF(basestate);
3413 return result;
3416 static PyObject *
3417 time_reduce(PyDateTime_Time *self, PyObject *arg)
3419 return Py_BuildValue("(ON)", Py_TYPE(self), time_getstate(self));
3422 static PyMethodDef time_methods[] = {
3424 {"isoformat", (PyCFunction)time_isoformat, METH_NOARGS,
3425 PyDoc_STR("Return string in ISO 8601 format, HH:MM:SS[.mmmmmm]"
3426 "[+HH:MM].")},
3428 {"strftime", (PyCFunction)time_strftime, METH_VARARGS | METH_KEYWORDS,
3429 PyDoc_STR("format -> strftime() style string.")},
3431 {"__format__", (PyCFunction)date_format, METH_VARARGS,
3432 PyDoc_STR("Formats self with strftime.")},
3434 {"utcoffset", (PyCFunction)time_utcoffset, METH_NOARGS,
3435 PyDoc_STR("Return self.tzinfo.utcoffset(self).")},
3437 {"tzname", (PyCFunction)time_tzname, METH_NOARGS,
3438 PyDoc_STR("Return self.tzinfo.tzname(self).")},
3440 {"dst", (PyCFunction)time_dst, METH_NOARGS,
3441 PyDoc_STR("Return self.tzinfo.dst(self).")},
3443 {"replace", (PyCFunction)time_replace, METH_VARARGS | METH_KEYWORDS,
3444 PyDoc_STR("Return time with new specified fields.")},
3446 {"__reduce__", (PyCFunction)time_reduce, METH_NOARGS,
3447 PyDoc_STR("__reduce__() -> (cls, state)")},
3449 {NULL, NULL}
3452 static char time_doc[] =
3453 PyDoc_STR("time([hour[, minute[, second[, microsecond[, tzinfo]]]]]) --> a time object\n\
3455 All arguments are optional. tzinfo may be None, or an instance of\n\
3456 a tzinfo subclass. The remaining arguments may be ints or longs.\n");
3458 static PyNumberMethods time_as_number = {
3459 0, /* nb_add */
3460 0, /* nb_subtract */
3461 0, /* nb_multiply */
3462 0, /* nb_remainder */
3463 0, /* nb_divmod */
3464 0, /* nb_power */
3465 0, /* nb_negative */
3466 0, /* nb_positive */
3467 0, /* nb_absolute */
3468 (inquiry)time_bool, /* nb_bool */
3471 static PyTypeObject PyDateTime_TimeType = {
3472 PyVarObject_HEAD_INIT(NULL, 0)
3473 "datetime.time", /* tp_name */
3474 sizeof(PyDateTime_Time), /* tp_basicsize */
3475 0, /* tp_itemsize */
3476 (destructor)time_dealloc, /* tp_dealloc */
3477 0, /* tp_print */
3478 0, /* tp_getattr */
3479 0, /* tp_setattr */
3480 0, /* tp_reserved */
3481 (reprfunc)time_repr, /* tp_repr */
3482 &time_as_number, /* tp_as_number */
3483 0, /* tp_as_sequence */
3484 0, /* tp_as_mapping */
3485 (hashfunc)time_hash, /* tp_hash */
3486 0, /* tp_call */
3487 (reprfunc)time_str, /* tp_str */
3488 PyObject_GenericGetAttr, /* tp_getattro */
3489 0, /* tp_setattro */
3490 0, /* tp_as_buffer */
3491 Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */
3492 time_doc, /* tp_doc */
3493 0, /* tp_traverse */
3494 0, /* tp_clear */
3495 time_richcompare, /* tp_richcompare */
3496 0, /* tp_weaklistoffset */
3497 0, /* tp_iter */
3498 0, /* tp_iternext */
3499 time_methods, /* tp_methods */
3500 0, /* tp_members */
3501 time_getset, /* tp_getset */
3502 0, /* tp_base */
3503 0, /* tp_dict */
3504 0, /* tp_descr_get */
3505 0, /* tp_descr_set */
3506 0, /* tp_dictoffset */
3507 0, /* tp_init */
3508 time_alloc, /* tp_alloc */
3509 time_new, /* tp_new */
3510 0, /* tp_free */
3514 * PyDateTime_DateTime implementation.
3517 /* Accessor properties. Properties for day, month, and year are inherited
3518 * from date.
3521 static PyObject *
3522 datetime_hour(PyDateTime_DateTime *self, void *unused)
3524 return PyLong_FromLong(DATE_GET_HOUR(self));
3527 static PyObject *
3528 datetime_minute(PyDateTime_DateTime *self, void *unused)
3530 return PyLong_FromLong(DATE_GET_MINUTE(self));
3533 static PyObject *
3534 datetime_second(PyDateTime_DateTime *self, void *unused)
3536 return PyLong_FromLong(DATE_GET_SECOND(self));
3539 static PyObject *
3540 datetime_microsecond(PyDateTime_DateTime *self, void *unused)
3542 return PyLong_FromLong(DATE_GET_MICROSECOND(self));
3545 static PyObject *
3546 datetime_tzinfo(PyDateTime_DateTime *self, void *unused)
3548 PyObject *result = HASTZINFO(self) ? self->tzinfo : Py_None;
3549 Py_INCREF(result);
3550 return result;
3553 static PyGetSetDef datetime_getset[] = {
3554 {"hour", (getter)datetime_hour},
3555 {"minute", (getter)datetime_minute},
3556 {"second", (getter)datetime_second},
3557 {"microsecond", (getter)datetime_microsecond},
3558 {"tzinfo", (getter)datetime_tzinfo},
3559 {NULL}
3563 * Constructors.
3566 static char *datetime_kws[] = {
3567 "year", "month", "day", "hour", "minute", "second",
3568 "microsecond", "tzinfo", NULL
3571 static PyObject *
3572 datetime_new(PyTypeObject *type, PyObject *args, PyObject *kw)
3574 PyObject *self = NULL;
3575 PyObject *state;
3576 int year;
3577 int month;
3578 int day;
3579 int hour = 0;
3580 int minute = 0;
3581 int second = 0;
3582 int usecond = 0;
3583 PyObject *tzinfo = Py_None;
3585 /* Check for invocation from pickle with __getstate__ state */
3586 if (PyTuple_GET_SIZE(args) >= 1 &&
3587 PyTuple_GET_SIZE(args) <= 2 &&
3588 PyBytes_Check(state = PyTuple_GET_ITEM(args, 0)) &&
3589 PyBytes_GET_SIZE(state) == _PyDateTime_DATETIME_DATASIZE &&
3590 MONTH_IS_SANE(PyBytes_AS_STRING(state)[2]))
3592 PyDateTime_DateTime *me;
3593 char aware;
3595 if (PyTuple_GET_SIZE(args) == 2) {
3596 tzinfo = PyTuple_GET_ITEM(args, 1);
3597 if (check_tzinfo_subclass(tzinfo) < 0) {
3598 PyErr_SetString(PyExc_TypeError, "bad "
3599 "tzinfo state arg");
3600 return NULL;
3603 aware = (char)(tzinfo != Py_None);
3604 me = (PyDateTime_DateTime *) (type->tp_alloc(type , aware));
3605 if (me != NULL) {
3606 char *pdata = PyBytes_AS_STRING(state);
3608 memcpy(me->data, pdata, _PyDateTime_DATETIME_DATASIZE);
3609 me->hashcode = -1;
3610 me->hastzinfo = aware;
3611 if (aware) {
3612 Py_INCREF(tzinfo);
3613 me->tzinfo = tzinfo;
3616 return (PyObject *)me;
3619 if (PyArg_ParseTupleAndKeywords(args, kw, "iii|iiiiO", datetime_kws,
3620 &year, &month, &day, &hour, &minute,
3621 &second, &usecond, &tzinfo)) {
3622 if (check_date_args(year, month, day) < 0)
3623 return NULL;
3624 if (check_time_args(hour, minute, second, usecond) < 0)
3625 return NULL;
3626 if (check_tzinfo_subclass(tzinfo) < 0)
3627 return NULL;
3628 self = new_datetime_ex(year, month, day,
3629 hour, minute, second, usecond,
3630 tzinfo, type);
3632 return self;
3635 /* TM_FUNC is the shared type of localtime() and gmtime(). */
3636 typedef struct tm *(*TM_FUNC)(const time_t *timer);
3638 /* Internal helper.
3639 * Build datetime from a time_t and a distinct count of microseconds.
3640 * Pass localtime or gmtime for f, to control the interpretation of timet.
3642 static PyObject *
3643 datetime_from_timet_and_us(PyObject *cls, TM_FUNC f, time_t timet, int us,
3644 PyObject *tzinfo)
3646 struct tm *tm;
3647 PyObject *result = NULL;
3649 tm = f(&timet);
3650 if (tm) {
3651 /* The platform localtime/gmtime may insert leap seconds,
3652 * indicated by tm->tm_sec > 59. We don't care about them,
3653 * except to the extent that passing them on to the datetime
3654 * constructor would raise ValueError for a reason that
3655 * made no sense to the user.
3657 if (tm->tm_sec > 59)
3658 tm->tm_sec = 59;
3659 result = PyObject_CallFunction(cls, "iiiiiiiO",
3660 tm->tm_year + 1900,
3661 tm->tm_mon + 1,
3662 tm->tm_mday,
3663 tm->tm_hour,
3664 tm->tm_min,
3665 tm->tm_sec,
3667 tzinfo);
3669 else
3670 PyErr_SetString(PyExc_ValueError,
3671 "timestamp out of range for "
3672 "platform localtime()/gmtime() function");
3673 return result;
3676 /* Internal helper.
3677 * Build datetime from a Python timestamp. Pass localtime or gmtime for f,
3678 * to control the interpretation of the timestamp. Since a double doesn't
3679 * have enough bits to cover a datetime's full range of precision, it's
3680 * better to call datetime_from_timet_and_us provided you have a way
3681 * to get that much precision (e.g., C time() isn't good enough).
3683 static PyObject *
3684 datetime_from_timestamp(PyObject *cls, TM_FUNC f, double timestamp,
3685 PyObject *tzinfo)
3687 time_t timet;
3688 double fraction;
3689 int us;
3691 timet = _PyTime_DoubleToTimet(timestamp);
3692 if (timet == (time_t)-1 && PyErr_Occurred())
3693 return NULL;
3694 fraction = timestamp - (double)timet;
3695 us = (int)round_to_long(fraction * 1e6);
3696 if (us < 0) {
3697 /* Truncation towards zero is not what we wanted
3698 for negative numbers (Python's mod semantics) */
3699 timet -= 1;
3700 us += 1000000;
3702 /* If timestamp is less than one microsecond smaller than a
3703 * full second, round up. Otherwise, ValueErrors are raised
3704 * for some floats. */
3705 if (us == 1000000) {
3706 timet += 1;
3707 us = 0;
3709 return datetime_from_timet_and_us(cls, f, timet, us, tzinfo);
3712 /* Internal helper.
3713 * Build most accurate possible datetime for current time. Pass localtime or
3714 * gmtime for f as appropriate.
3716 static PyObject *
3717 datetime_best_possible(PyObject *cls, TM_FUNC f, PyObject *tzinfo)
3719 #ifdef HAVE_GETTIMEOFDAY
3720 struct timeval t;
3722 #ifdef GETTIMEOFDAY_NO_TZ
3723 gettimeofday(&t);
3724 #else
3725 gettimeofday(&t, (struct timezone *)NULL);
3726 #endif
3727 return datetime_from_timet_and_us(cls, f, t.tv_sec, (int)t.tv_usec,
3728 tzinfo);
3730 #else /* ! HAVE_GETTIMEOFDAY */
3731 /* No flavor of gettimeofday exists on this platform. Python's
3732 * time.time() does a lot of other platform tricks to get the
3733 * best time it can on the platform, and we're not going to do
3734 * better than that (if we could, the better code would belong
3735 * in time.time()!) We're limited by the precision of a double,
3736 * though.
3738 PyObject *time;
3739 double dtime;
3741 time = time_time();
3742 if (time == NULL)
3743 return NULL;
3744 dtime = PyFloat_AsDouble(time);
3745 Py_DECREF(time);
3746 if (dtime == -1.0 && PyErr_Occurred())
3747 return NULL;
3748 return datetime_from_timestamp(cls, f, dtime, tzinfo);
3749 #endif /* ! HAVE_GETTIMEOFDAY */
3752 /* Return best possible local time -- this isn't constrained by the
3753 * precision of a timestamp.
3755 static PyObject *
3756 datetime_now(PyObject *cls, PyObject *args, PyObject *kw)
3758 PyObject *self;
3759 PyObject *tzinfo = Py_None;
3760 static char *keywords[] = {"tz", NULL};
3762 if (! PyArg_ParseTupleAndKeywords(args, kw, "|O:now", keywords,
3763 &tzinfo))
3764 return NULL;
3765 if (check_tzinfo_subclass(tzinfo) < 0)
3766 return NULL;
3768 self = datetime_best_possible(cls,
3769 tzinfo == Py_None ? localtime : gmtime,
3770 tzinfo);
3771 if (self != NULL && tzinfo != Py_None) {
3772 /* Convert UTC to tzinfo's zone. */
3773 PyObject *temp = self;
3774 self = PyObject_CallMethod(tzinfo, "fromutc", "O", self);
3775 Py_DECREF(temp);
3777 return self;
3780 /* Return best possible UTC time -- this isn't constrained by the
3781 * precision of a timestamp.
3783 static PyObject *
3784 datetime_utcnow(PyObject *cls, PyObject *dummy)
3786 return datetime_best_possible(cls, gmtime, Py_None);
3789 /* Return new local datetime from timestamp (Python timestamp -- a double). */
3790 static PyObject *
3791 datetime_fromtimestamp(PyObject *cls, PyObject *args, PyObject *kw)
3793 PyObject *self;
3794 double timestamp;
3795 PyObject *tzinfo = Py_None;
3796 static char *keywords[] = {"timestamp", "tz", NULL};
3798 if (! PyArg_ParseTupleAndKeywords(args, kw, "d|O:fromtimestamp",
3799 keywords, &timestamp, &tzinfo))
3800 return NULL;
3801 if (check_tzinfo_subclass(tzinfo) < 0)
3802 return NULL;
3804 self = datetime_from_timestamp(cls,
3805 tzinfo == Py_None ? localtime : gmtime,
3806 timestamp,
3807 tzinfo);
3808 if (self != NULL && tzinfo != Py_None) {
3809 /* Convert UTC to tzinfo's zone. */
3810 PyObject *temp = self;
3811 self = PyObject_CallMethod(tzinfo, "fromutc", "O", self);
3812 Py_DECREF(temp);
3814 return self;
3817 /* Return new UTC datetime from timestamp (Python timestamp -- a double). */
3818 static PyObject *
3819 datetime_utcfromtimestamp(PyObject *cls, PyObject *args)
3821 double timestamp;
3822 PyObject *result = NULL;
3824 if (PyArg_ParseTuple(args, "d:utcfromtimestamp", &timestamp))
3825 result = datetime_from_timestamp(cls, gmtime, timestamp,
3826 Py_None);
3827 return result;
3830 /* Return new datetime from time.strptime(). */
3831 static PyObject *
3832 datetime_strptime(PyObject *cls, PyObject *args)
3834 static PyObject *module = NULL;
3835 PyObject *result = NULL, *obj, *st = NULL, *frac = NULL;
3836 const Py_UNICODE *string, *format;
3838 if (!PyArg_ParseTuple(args, "uu:strptime", &string, &format))
3839 return NULL;
3841 if (module == NULL &&
3842 (module = PyImport_ImportModuleNoBlock("_strptime")) == NULL)
3843 return NULL;
3845 /* _strptime._strptime returns a two-element tuple. The first
3846 element is a time.struct_time object. The second is the
3847 microseconds (which are not defined for time.struct_time). */
3848 obj = PyObject_CallMethod(module, "_strptime", "uu", string, format);
3849 if (obj != NULL) {
3850 int i, good_timetuple = 1;
3851 long int ia[7];
3852 if (PySequence_Check(obj) && PySequence_Size(obj) == 2) {
3853 st = PySequence_GetItem(obj, 0);
3854 frac = PySequence_GetItem(obj, 1);
3855 if (st == NULL || frac == NULL)
3856 good_timetuple = 0;
3857 /* copy y/m/d/h/m/s values out of the
3858 time.struct_time */
3859 if (good_timetuple &&
3860 PySequence_Check(st) &&
3861 PySequence_Size(st) >= 6) {
3862 for (i=0; i < 6; i++) {
3863 PyObject *p = PySequence_GetItem(st, i);
3864 if (p == NULL) {
3865 good_timetuple = 0;
3866 break;
3868 if (PyLong_Check(p))
3869 ia[i] = PyLong_AsLong(p);
3870 else
3871 good_timetuple = 0;
3872 Py_DECREF(p);
3874 /* if (PyLong_CheckExact(p)) {
3875 ia[i] = PyLong_AsLongAndOverflow(p, &overflow);
3876 if (overflow)
3877 good_timetuple = 0;
3879 else
3880 good_timetuple = 0;
3881 Py_DECREF(p);
3882 */ }
3883 else
3884 good_timetuple = 0;
3885 /* follow that up with a little dose of microseconds */
3886 if (PyLong_Check(frac))
3887 ia[6] = PyLong_AsLong(frac);
3888 else
3889 good_timetuple = 0;
3891 else
3892 good_timetuple = 0;
3893 if (good_timetuple)
3894 result = PyObject_CallFunction(cls, "iiiiiii",
3895 ia[0], ia[1], ia[2],
3896 ia[3], ia[4], ia[5],
3897 ia[6]);
3898 else
3899 PyErr_SetString(PyExc_ValueError,
3900 "unexpected value from _strptime._strptime");
3902 Py_XDECREF(obj);
3903 Py_XDECREF(st);
3904 Py_XDECREF(frac);
3905 return result;
3908 /* Return new datetime from date/datetime and time arguments. */
3909 static PyObject *
3910 datetime_combine(PyObject *cls, PyObject *args, PyObject *kw)
3912 static char *keywords[] = {"date", "time", NULL};
3913 PyObject *date;
3914 PyObject *time;
3915 PyObject *result = NULL;
3917 if (PyArg_ParseTupleAndKeywords(args, kw, "O!O!:combine", keywords,
3918 &PyDateTime_DateType, &date,
3919 &PyDateTime_TimeType, &time)) {
3920 PyObject *tzinfo = Py_None;
3922 if (HASTZINFO(time))
3923 tzinfo = ((PyDateTime_Time *)time)->tzinfo;
3924 result = PyObject_CallFunction(cls, "iiiiiiiO",
3925 GET_YEAR(date),
3926 GET_MONTH(date),
3927 GET_DAY(date),
3928 TIME_GET_HOUR(time),
3929 TIME_GET_MINUTE(time),
3930 TIME_GET_SECOND(time),
3931 TIME_GET_MICROSECOND(time),
3932 tzinfo);
3934 return result;
3938 * Destructor.
3941 static void
3942 datetime_dealloc(PyDateTime_DateTime *self)
3944 if (HASTZINFO(self)) {
3945 Py_XDECREF(self->tzinfo);
3947 Py_TYPE(self)->tp_free((PyObject *)self);
3951 * Indirect access to tzinfo methods.
3954 /* These are all METH_NOARGS, so don't need to check the arglist. */
3955 static PyObject *
3956 datetime_utcoffset(PyDateTime_DateTime *self, PyObject *unused) {
3957 return offset_as_timedelta(HASTZINFO(self) ? self->tzinfo : Py_None,
3958 "utcoffset", (PyObject *)self);
3961 static PyObject *
3962 datetime_dst(PyDateTime_DateTime *self, PyObject *unused) {
3963 return offset_as_timedelta(HASTZINFO(self) ? self->tzinfo : Py_None,
3964 "dst", (PyObject *)self);
3967 static PyObject *
3968 datetime_tzname(PyDateTime_DateTime *self, PyObject *unused) {
3969 return call_tzname(HASTZINFO(self) ? self->tzinfo : Py_None,
3970 (PyObject *)self);
3974 * datetime arithmetic.
3977 /* factor must be 1 (to add) or -1 (to subtract). The result inherits
3978 * the tzinfo state of date.
3980 static PyObject *
3981 add_datetime_timedelta(PyDateTime_DateTime *date, PyDateTime_Delta *delta,
3982 int factor)
3984 /* Note that the C-level additions can't overflow, because of
3985 * invariant bounds on the member values.
3987 int year = GET_YEAR(date);
3988 int month = GET_MONTH(date);
3989 int day = GET_DAY(date) + GET_TD_DAYS(delta) * factor;
3990 int hour = DATE_GET_HOUR(date);
3991 int minute = DATE_GET_MINUTE(date);
3992 int second = DATE_GET_SECOND(date) + GET_TD_SECONDS(delta) * factor;
3993 int microsecond = DATE_GET_MICROSECOND(date) +
3994 GET_TD_MICROSECONDS(delta) * factor;
3996 assert(factor == 1 || factor == -1);
3997 if (normalize_datetime(&year, &month, &day,
3998 &hour, &minute, &second, &microsecond) < 0)
3999 return NULL;
4000 else
4001 return new_datetime(year, month, day,
4002 hour, minute, second, microsecond,
4003 HASTZINFO(date) ? date->tzinfo : Py_None);
4006 static PyObject *
4007 datetime_add(PyObject *left, PyObject *right)
4009 if (PyDateTime_Check(left)) {
4010 /* datetime + ??? */
4011 if (PyDelta_Check(right))
4012 /* datetime + delta */
4013 return add_datetime_timedelta(
4014 (PyDateTime_DateTime *)left,
4015 (PyDateTime_Delta *)right,
4018 else if (PyDelta_Check(left)) {
4019 /* delta + datetime */
4020 return add_datetime_timedelta((PyDateTime_DateTime *) right,
4021 (PyDateTime_Delta *) left,
4024 Py_INCREF(Py_NotImplemented);
4025 return Py_NotImplemented;
4028 static PyObject *
4029 datetime_subtract(PyObject *left, PyObject *right)
4031 PyObject *result = Py_NotImplemented;
4033 if (PyDateTime_Check(left)) {
4034 /* datetime - ??? */
4035 if (PyDateTime_Check(right)) {
4036 /* datetime - datetime */
4037 naivety n1, n2;
4038 int offset1, offset2;
4039 int delta_d, delta_s, delta_us;
4041 if (classify_two_utcoffsets(left, &offset1, &n1, left,
4042 right, &offset2, &n2,
4043 right) < 0)
4044 return NULL;
4045 assert(n1 != OFFSET_UNKNOWN && n2 != OFFSET_UNKNOWN);
4046 if (n1 != n2) {
4047 PyErr_SetString(PyExc_TypeError,
4048 "can't subtract offset-naive and "
4049 "offset-aware datetimes");
4050 return NULL;
4052 delta_d = ymd_to_ord(GET_YEAR(left),
4053 GET_MONTH(left),
4054 GET_DAY(left)) -
4055 ymd_to_ord(GET_YEAR(right),
4056 GET_MONTH(right),
4057 GET_DAY(right));
4058 /* These can't overflow, since the values are
4059 * normalized. At most this gives the number of
4060 * seconds in one day.
4062 delta_s = (DATE_GET_HOUR(left) -
4063 DATE_GET_HOUR(right)) * 3600 +
4064 (DATE_GET_MINUTE(left) -
4065 DATE_GET_MINUTE(right)) * 60 +
4066 (DATE_GET_SECOND(left) -
4067 DATE_GET_SECOND(right));
4068 delta_us = DATE_GET_MICROSECOND(left) -
4069 DATE_GET_MICROSECOND(right);
4070 /* (left - offset1) - (right - offset2) =
4071 * (left - right) + (offset2 - offset1)
4073 delta_s += (offset2 - offset1) * 60;
4074 result = new_delta(delta_d, delta_s, delta_us, 1);
4076 else if (PyDelta_Check(right)) {
4077 /* datetime - delta */
4078 result = add_datetime_timedelta(
4079 (PyDateTime_DateTime *)left,
4080 (PyDateTime_Delta *)right,
4081 -1);
4085 if (result == Py_NotImplemented)
4086 Py_INCREF(result);
4087 return result;
4090 /* Various ways to turn a datetime into a string. */
4092 static PyObject *
4093 datetime_repr(PyDateTime_DateTime *self)
4095 const char *type_name = Py_TYPE(self)->tp_name;
4096 PyObject *baserepr;
4098 if (DATE_GET_MICROSECOND(self)) {
4099 baserepr = PyUnicode_FromFormat(
4100 "%s(%d, %d, %d, %d, %d, %d, %d)",
4101 type_name,
4102 GET_YEAR(self), GET_MONTH(self), GET_DAY(self),
4103 DATE_GET_HOUR(self), DATE_GET_MINUTE(self),
4104 DATE_GET_SECOND(self),
4105 DATE_GET_MICROSECOND(self));
4107 else if (DATE_GET_SECOND(self)) {
4108 baserepr = PyUnicode_FromFormat(
4109 "%s(%d, %d, %d, %d, %d, %d)",
4110 type_name,
4111 GET_YEAR(self), GET_MONTH(self), GET_DAY(self),
4112 DATE_GET_HOUR(self), DATE_GET_MINUTE(self),
4113 DATE_GET_SECOND(self));
4115 else {
4116 baserepr = PyUnicode_FromFormat(
4117 "%s(%d, %d, %d, %d, %d)",
4118 type_name,
4119 GET_YEAR(self), GET_MONTH(self), GET_DAY(self),
4120 DATE_GET_HOUR(self), DATE_GET_MINUTE(self));
4122 if (baserepr == NULL || ! HASTZINFO(self))
4123 return baserepr;
4124 return append_keyword_tzinfo(baserepr, self->tzinfo);
4127 static PyObject *
4128 datetime_str(PyDateTime_DateTime *self)
4130 return PyObject_CallMethod((PyObject *)self, "isoformat", "(s)", " ");
4133 static PyObject *
4134 datetime_isoformat(PyDateTime_DateTime *self, PyObject *args, PyObject *kw)
4136 int sep = 'T';
4137 static char *keywords[] = {"sep", NULL};
4138 char buffer[100];
4139 PyObject *result;
4140 int us = DATE_GET_MICROSECOND(self);
4142 if (!PyArg_ParseTupleAndKeywords(args, kw, "|C:isoformat", keywords, &sep))
4143 return NULL;
4144 if (us)
4145 result = PyUnicode_FromFormat("%04d-%02d-%02d%c%02d:%02d:%02d.%06d",
4146 GET_YEAR(self), GET_MONTH(self),
4147 GET_DAY(self), (int)sep,
4148 DATE_GET_HOUR(self), DATE_GET_MINUTE(self),
4149 DATE_GET_SECOND(self), us);
4150 else
4151 result = PyUnicode_FromFormat("%04d-%02d-%02d%c%02d:%02d:%02d",
4152 GET_YEAR(self), GET_MONTH(self),
4153 GET_DAY(self), (int)sep,
4154 DATE_GET_HOUR(self), DATE_GET_MINUTE(self),
4155 DATE_GET_SECOND(self));
4157 if (!result || !HASTZINFO(self))
4158 return result;
4160 /* We need to append the UTC offset. */
4161 if (format_utcoffset(buffer, sizeof(buffer), ":", self->tzinfo,
4162 (PyObject *)self) < 0) {
4163 Py_DECREF(result);
4164 return NULL;
4166 PyUnicode_AppendAndDel(&result, PyUnicode_FromString(buffer));
4167 return result;
4170 static PyObject *
4171 datetime_ctime(PyDateTime_DateTime *self)
4173 return format_ctime((PyDateTime_Date *)self,
4174 DATE_GET_HOUR(self),
4175 DATE_GET_MINUTE(self),
4176 DATE_GET_SECOND(self));
4179 /* Miscellaneous methods. */
4181 static PyObject *
4182 datetime_richcompare(PyObject *self, PyObject *other, int op)
4184 int diff;
4185 naivety n1, n2;
4186 int offset1, offset2;
4188 if (! PyDateTime_Check(other)) {
4189 if (PyDate_Check(other)) {
4190 /* Prevent invocation of date_richcompare. We want to
4191 return NotImplemented here to give the other object
4192 a chance. But since DateTime is a subclass of
4193 Date, if the other object is a Date, it would
4194 compute an ordering based on the date part alone,
4195 and we don't want that. So force unequal or
4196 uncomparable here in that case. */
4197 if (op == Py_EQ)
4198 Py_RETURN_FALSE;
4199 if (op == Py_NE)
4200 Py_RETURN_TRUE;
4201 return cmperror(self, other);
4203 Py_INCREF(Py_NotImplemented);
4204 return Py_NotImplemented;
4207 if (classify_two_utcoffsets(self, &offset1, &n1, self,
4208 other, &offset2, &n2, other) < 0)
4209 return NULL;
4210 assert(n1 != OFFSET_UNKNOWN && n2 != OFFSET_UNKNOWN);
4211 /* If they're both naive, or both aware and have the same offsets,
4212 * we get off cheap. Note that if they're both naive, offset1 ==
4213 * offset2 == 0 at this point.
4215 if (n1 == n2 && offset1 == offset2) {
4216 diff = memcmp(((PyDateTime_DateTime *)self)->data,
4217 ((PyDateTime_DateTime *)other)->data,
4218 _PyDateTime_DATETIME_DATASIZE);
4219 return diff_to_bool(diff, op);
4222 if (n1 == OFFSET_AWARE && n2 == OFFSET_AWARE) {
4223 PyDateTime_Delta *delta;
4225 assert(offset1 != offset2); /* else last "if" handled it */
4226 delta = (PyDateTime_Delta *)datetime_subtract((PyObject *)self,
4227 other);
4228 if (delta == NULL)
4229 return NULL;
4230 diff = GET_TD_DAYS(delta);
4231 if (diff == 0)
4232 diff = GET_TD_SECONDS(delta) |
4233 GET_TD_MICROSECONDS(delta);
4234 Py_DECREF(delta);
4235 return diff_to_bool(diff, op);
4238 assert(n1 != n2);
4239 PyErr_SetString(PyExc_TypeError,
4240 "can't compare offset-naive and "
4241 "offset-aware datetimes");
4242 return NULL;
4245 static long
4246 datetime_hash(PyDateTime_DateTime *self)
4248 if (self->hashcode == -1) {
4249 naivety n;
4250 int offset;
4251 PyObject *temp;
4253 n = classify_utcoffset((PyObject *)self, (PyObject *)self,
4254 &offset);
4255 assert(n != OFFSET_UNKNOWN);
4256 if (n == OFFSET_ERROR)
4257 return -1;
4259 /* Reduce this to a hash of another object. */
4260 if (n == OFFSET_NAIVE) {
4261 self->hashcode = generic_hash(
4262 (unsigned char *)self->data, _PyDateTime_DATETIME_DATASIZE);
4263 return self->hashcode;
4265 else {
4266 int days;
4267 int seconds;
4269 assert(n == OFFSET_AWARE);
4270 assert(HASTZINFO(self));
4271 days = ymd_to_ord(GET_YEAR(self),
4272 GET_MONTH(self),
4273 GET_DAY(self));
4274 seconds = DATE_GET_HOUR(self) * 3600 +
4275 (DATE_GET_MINUTE(self) - offset) * 60 +
4276 DATE_GET_SECOND(self);
4277 temp = new_delta(days,
4278 seconds,
4279 DATE_GET_MICROSECOND(self),
4282 if (temp != NULL) {
4283 self->hashcode = PyObject_Hash(temp);
4284 Py_DECREF(temp);
4287 return self->hashcode;
4290 static PyObject *
4291 datetime_replace(PyDateTime_DateTime *self, PyObject *args, PyObject *kw)
4293 PyObject *clone;
4294 PyObject *tuple;
4295 int y = GET_YEAR(self);
4296 int m = GET_MONTH(self);
4297 int d = GET_DAY(self);
4298 int hh = DATE_GET_HOUR(self);
4299 int mm = DATE_GET_MINUTE(self);
4300 int ss = DATE_GET_SECOND(self);
4301 int us = DATE_GET_MICROSECOND(self);
4302 PyObject *tzinfo = HASTZINFO(self) ? self->tzinfo : Py_None;
4304 if (! PyArg_ParseTupleAndKeywords(args, kw, "|iiiiiiiO:replace",
4305 datetime_kws,
4306 &y, &m, &d, &hh, &mm, &ss, &us,
4307 &tzinfo))
4308 return NULL;
4309 tuple = Py_BuildValue("iiiiiiiO", y, m, d, hh, mm, ss, us, tzinfo);
4310 if (tuple == NULL)
4311 return NULL;
4312 clone = datetime_new(Py_TYPE(self), tuple, NULL);
4313 Py_DECREF(tuple);
4314 return clone;
4317 static PyObject *
4318 datetime_astimezone(PyDateTime_DateTime *self, PyObject *args, PyObject *kw)
4320 int y, m, d, hh, mm, ss, us;
4321 PyObject *result;
4322 int offset, none;
4324 PyObject *tzinfo;
4325 static char *keywords[] = {"tz", NULL};
4327 if (! PyArg_ParseTupleAndKeywords(args, kw, "O!:astimezone", keywords,
4328 &PyDateTime_TZInfoType, &tzinfo))
4329 return NULL;
4331 if (!HASTZINFO(self) || self->tzinfo == Py_None)
4332 goto NeedAware;
4334 /* Conversion to self's own time zone is a NOP. */
4335 if (self->tzinfo == tzinfo) {
4336 Py_INCREF(self);
4337 return (PyObject *)self;
4340 /* Convert self to UTC. */
4341 offset = call_utcoffset(self->tzinfo, (PyObject *)self, &none);
4342 if (offset == -1 && PyErr_Occurred())
4343 return NULL;
4344 if (none)
4345 goto NeedAware;
4347 y = GET_YEAR(self);
4348 m = GET_MONTH(self);
4349 d = GET_DAY(self);
4350 hh = DATE_GET_HOUR(self);
4351 mm = DATE_GET_MINUTE(self);
4352 ss = DATE_GET_SECOND(self);
4353 us = DATE_GET_MICROSECOND(self);
4355 mm -= offset;
4356 if ((mm < 0 || mm >= 60) &&
4357 normalize_datetime(&y, &m, &d, &hh, &mm, &ss, &us) < 0)
4358 return NULL;
4360 /* Attach new tzinfo and let fromutc() do the rest. */
4361 result = new_datetime(y, m, d, hh, mm, ss, us, tzinfo);
4362 if (result != NULL) {
4363 PyObject *temp = result;
4365 result = PyObject_CallMethod(tzinfo, "fromutc", "O", temp);
4366 Py_DECREF(temp);
4368 return result;
4370 NeedAware:
4371 PyErr_SetString(PyExc_ValueError, "astimezone() cannot be applied to "
4372 "a naive datetime");
4373 return NULL;
4376 static PyObject *
4377 datetime_timetuple(PyDateTime_DateTime *self)
4379 int dstflag = -1;
4381 if (HASTZINFO(self) && self->tzinfo != Py_None) {
4382 int none;
4384 dstflag = call_dst(self->tzinfo, (PyObject *)self, &none);
4385 if (dstflag == -1 && PyErr_Occurred())
4386 return NULL;
4388 if (none)
4389 dstflag = -1;
4390 else if (dstflag != 0)
4391 dstflag = 1;
4394 return build_struct_time(GET_YEAR(self),
4395 GET_MONTH(self),
4396 GET_DAY(self),
4397 DATE_GET_HOUR(self),
4398 DATE_GET_MINUTE(self),
4399 DATE_GET_SECOND(self),
4400 dstflag);
4403 static PyObject *
4404 datetime_getdate(PyDateTime_DateTime *self)
4406 return new_date(GET_YEAR(self),
4407 GET_MONTH(self),
4408 GET_DAY(self));
4411 static PyObject *
4412 datetime_gettime(PyDateTime_DateTime *self)
4414 return new_time(DATE_GET_HOUR(self),
4415 DATE_GET_MINUTE(self),
4416 DATE_GET_SECOND(self),
4417 DATE_GET_MICROSECOND(self),
4418 Py_None);
4421 static PyObject *
4422 datetime_gettimetz(PyDateTime_DateTime *self)
4424 return new_time(DATE_GET_HOUR(self),
4425 DATE_GET_MINUTE(self),
4426 DATE_GET_SECOND(self),
4427 DATE_GET_MICROSECOND(self),
4428 HASTZINFO(self) ? self->tzinfo : Py_None);
4431 static PyObject *
4432 datetime_utctimetuple(PyDateTime_DateTime *self)
4434 int y = GET_YEAR(self);
4435 int m = GET_MONTH(self);
4436 int d = GET_DAY(self);
4437 int hh = DATE_GET_HOUR(self);
4438 int mm = DATE_GET_MINUTE(self);
4439 int ss = DATE_GET_SECOND(self);
4440 int us = 0; /* microseconds are ignored in a timetuple */
4441 int offset = 0;
4443 if (HASTZINFO(self) && self->tzinfo != Py_None) {
4444 int none;
4446 offset = call_utcoffset(self->tzinfo, (PyObject *)self, &none);
4447 if (offset == -1 && PyErr_Occurred())
4448 return NULL;
4450 /* Even if offset is 0, don't call timetuple() -- tm_isdst should be
4451 * 0 in a UTC timetuple regardless of what dst() says.
4453 if (offset) {
4454 /* Subtract offset minutes & normalize. */
4455 int stat;
4457 mm -= offset;
4458 stat = normalize_datetime(&y, &m, &d, &hh, &mm, &ss, &us);
4459 if (stat < 0) {
4460 /* At the edges, it's possible we overflowed
4461 * beyond MINYEAR or MAXYEAR.
4463 if (PyErr_ExceptionMatches(PyExc_OverflowError))
4464 PyErr_Clear();
4465 else
4466 return NULL;
4469 return build_struct_time(y, m, d, hh, mm, ss, 0);
4472 /* Pickle support, a simple use of __reduce__. */
4474 /* Let basestate be the non-tzinfo data string.
4475 * If tzinfo is None, this returns (basestate,), else (basestate, tzinfo).
4476 * So it's a tuple in any (non-error) case.
4477 * __getstate__ isn't exposed.
4479 static PyObject *
4480 datetime_getstate(PyDateTime_DateTime *self)
4482 PyObject *basestate;
4483 PyObject *result = NULL;
4485 basestate = PyBytes_FromStringAndSize((char *)self->data,
4486 _PyDateTime_DATETIME_DATASIZE);
4487 if (basestate != NULL) {
4488 if (! HASTZINFO(self) || self->tzinfo == Py_None)
4489 result = PyTuple_Pack(1, basestate);
4490 else
4491 result = PyTuple_Pack(2, basestate, self->tzinfo);
4492 Py_DECREF(basestate);
4494 return result;
4497 static PyObject *
4498 datetime_reduce(PyDateTime_DateTime *self, PyObject *arg)
4500 return Py_BuildValue("(ON)", Py_TYPE(self), datetime_getstate(self));
4503 static PyMethodDef datetime_methods[] = {
4505 /* Class methods: */
4507 {"now", (PyCFunction)datetime_now,
4508 METH_VARARGS | METH_KEYWORDS | METH_CLASS,
4509 PyDoc_STR("[tz] -> new datetime with tz's local day and time.")},
4511 {"utcnow", (PyCFunction)datetime_utcnow,
4512 METH_NOARGS | METH_CLASS,
4513 PyDoc_STR("Return a new datetime representing UTC day and time.")},
4515 {"fromtimestamp", (PyCFunction)datetime_fromtimestamp,
4516 METH_VARARGS | METH_KEYWORDS | METH_CLASS,
4517 PyDoc_STR("timestamp[, tz] -> tz's local time from POSIX timestamp.")},
4519 {"utcfromtimestamp", (PyCFunction)datetime_utcfromtimestamp,
4520 METH_VARARGS | METH_CLASS,
4521 PyDoc_STR("timestamp -> UTC datetime from a POSIX timestamp "
4522 "(like time.time()).")},
4524 {"strptime", (PyCFunction)datetime_strptime,
4525 METH_VARARGS | METH_CLASS,
4526 PyDoc_STR("string, format -> new datetime parsed from a string "
4527 "(like time.strptime()).")},
4529 {"combine", (PyCFunction)datetime_combine,
4530 METH_VARARGS | METH_KEYWORDS | METH_CLASS,
4531 PyDoc_STR("date, time -> datetime with same date and time fields")},
4533 /* Instance methods: */
4535 {"date", (PyCFunction)datetime_getdate, METH_NOARGS,
4536 PyDoc_STR("Return date object with same year, month and day.")},
4538 {"time", (PyCFunction)datetime_gettime, METH_NOARGS,
4539 PyDoc_STR("Return time object with same time but with tzinfo=None.")},
4541 {"timetz", (PyCFunction)datetime_gettimetz, METH_NOARGS,
4542 PyDoc_STR("Return time object with same time and tzinfo.")},
4544 {"ctime", (PyCFunction)datetime_ctime, METH_NOARGS,
4545 PyDoc_STR("Return ctime() style string.")},
4547 {"timetuple", (PyCFunction)datetime_timetuple, METH_NOARGS,
4548 PyDoc_STR("Return time tuple, compatible with time.localtime().")},
4550 {"utctimetuple", (PyCFunction)datetime_utctimetuple, METH_NOARGS,
4551 PyDoc_STR("Return UTC time tuple, compatible with time.localtime().")},
4553 {"isoformat", (PyCFunction)datetime_isoformat, METH_VARARGS | METH_KEYWORDS,
4554 PyDoc_STR("[sep] -> string in ISO 8601 format, "
4555 "YYYY-MM-DDTHH:MM:SS[.mmmmmm][+HH:MM].\n\n"
4556 "sep is used to separate the year from the time, and "
4557 "defaults to 'T'.")},
4559 {"utcoffset", (PyCFunction)datetime_utcoffset, METH_NOARGS,
4560 PyDoc_STR("Return self.tzinfo.utcoffset(self).")},
4562 {"tzname", (PyCFunction)datetime_tzname, METH_NOARGS,
4563 PyDoc_STR("Return self.tzinfo.tzname(self).")},
4565 {"dst", (PyCFunction)datetime_dst, METH_NOARGS,
4566 PyDoc_STR("Return self.tzinfo.dst(self).")},
4568 {"replace", (PyCFunction)datetime_replace, METH_VARARGS | METH_KEYWORDS,
4569 PyDoc_STR("Return datetime with new specified fields.")},
4571 {"astimezone", (PyCFunction)datetime_astimezone, METH_VARARGS | METH_KEYWORDS,
4572 PyDoc_STR("tz -> convert to local time in new timezone tz\n")},
4574 {"__reduce__", (PyCFunction)datetime_reduce, METH_NOARGS,
4575 PyDoc_STR("__reduce__() -> (cls, state)")},
4577 {NULL, NULL}
4580 static char datetime_doc[] =
4581 PyDoc_STR("datetime(year, month, day[, hour[, minute[, second[, microsecond[,tzinfo]]]]])\n\
4583 The year, month and day arguments are required. tzinfo may be None, or an\n\
4584 instance of a tzinfo subclass. The remaining arguments may be ints or longs.\n");
4586 static PyNumberMethods datetime_as_number = {
4587 datetime_add, /* nb_add */
4588 datetime_subtract, /* nb_subtract */
4589 0, /* nb_multiply */
4590 0, /* nb_remainder */
4591 0, /* nb_divmod */
4592 0, /* nb_power */
4593 0, /* nb_negative */
4594 0, /* nb_positive */
4595 0, /* nb_absolute */
4596 0, /* nb_bool */
4599 static PyTypeObject PyDateTime_DateTimeType = {
4600 PyVarObject_HEAD_INIT(NULL, 0)
4601 "datetime.datetime", /* tp_name */
4602 sizeof(PyDateTime_DateTime), /* tp_basicsize */
4603 0, /* tp_itemsize */
4604 (destructor)datetime_dealloc, /* tp_dealloc */
4605 0, /* tp_print */
4606 0, /* tp_getattr */
4607 0, /* tp_setattr */
4608 0, /* tp_reserved */
4609 (reprfunc)datetime_repr, /* tp_repr */
4610 &datetime_as_number, /* tp_as_number */
4611 0, /* tp_as_sequence */
4612 0, /* tp_as_mapping */
4613 (hashfunc)datetime_hash, /* tp_hash */
4614 0, /* tp_call */
4615 (reprfunc)datetime_str, /* tp_str */
4616 PyObject_GenericGetAttr, /* tp_getattro */
4617 0, /* tp_setattro */
4618 0, /* tp_as_buffer */
4619 Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */
4620 datetime_doc, /* tp_doc */
4621 0, /* tp_traverse */
4622 0, /* tp_clear */
4623 datetime_richcompare, /* tp_richcompare */
4624 0, /* tp_weaklistoffset */
4625 0, /* tp_iter */
4626 0, /* tp_iternext */
4627 datetime_methods, /* tp_methods */
4628 0, /* tp_members */
4629 datetime_getset, /* tp_getset */
4630 &PyDateTime_DateType, /* tp_base */
4631 0, /* tp_dict */
4632 0, /* tp_descr_get */
4633 0, /* tp_descr_set */
4634 0, /* tp_dictoffset */
4635 0, /* tp_init */
4636 datetime_alloc, /* tp_alloc */
4637 datetime_new, /* tp_new */
4638 0, /* tp_free */
4641 /* ---------------------------------------------------------------------------
4642 * Module methods and initialization.
4645 static PyMethodDef module_methods[] = {
4646 {NULL, NULL}
4649 /* C API. Clients get at this via PyDateTime_IMPORT, defined in
4650 * datetime.h.
4652 static PyDateTime_CAPI CAPI = {
4653 &PyDateTime_DateType,
4654 &PyDateTime_DateTimeType,
4655 &PyDateTime_TimeType,
4656 &PyDateTime_DeltaType,
4657 &PyDateTime_TZInfoType,
4658 new_date_ex,
4659 new_datetime_ex,
4660 new_time_ex,
4661 new_delta_ex,
4662 datetime_fromtimestamp,
4663 date_fromtimestamp
4668 static struct PyModuleDef datetimemodule = {
4669 PyModuleDef_HEAD_INIT,
4670 "datetime",
4671 "Fast implementation of the datetime type.",
4673 module_methods,
4674 NULL,
4675 NULL,
4676 NULL,
4677 NULL
4680 PyMODINIT_FUNC
4681 PyInit_datetime(void)
4683 PyObject *m; /* a module object */
4684 PyObject *d; /* its dict */
4685 PyObject *x;
4687 m = PyModule_Create(&datetimemodule);
4688 if (m == NULL)
4689 return NULL;
4691 if (PyType_Ready(&PyDateTime_DateType) < 0)
4692 return NULL;
4693 if (PyType_Ready(&PyDateTime_DateTimeType) < 0)
4694 return NULL;
4695 if (PyType_Ready(&PyDateTime_DeltaType) < 0)
4696 return NULL;
4697 if (PyType_Ready(&PyDateTime_TimeType) < 0)
4698 return NULL;
4699 if (PyType_Ready(&PyDateTime_TZInfoType) < 0)
4700 return NULL;
4702 /* timedelta values */
4703 d = PyDateTime_DeltaType.tp_dict;
4705 x = new_delta(0, 0, 1, 0);
4706 if (x == NULL || PyDict_SetItemString(d, "resolution", x) < 0)
4707 return NULL;
4708 Py_DECREF(x);
4710 x = new_delta(-MAX_DELTA_DAYS, 0, 0, 0);
4711 if (x == NULL || PyDict_SetItemString(d, "min", x) < 0)
4712 return NULL;
4713 Py_DECREF(x);
4715 x = new_delta(MAX_DELTA_DAYS, 24*3600-1, 1000000-1, 0);
4716 if (x == NULL || PyDict_SetItemString(d, "max", x) < 0)
4717 return NULL;
4718 Py_DECREF(x);
4720 /* date values */
4721 d = PyDateTime_DateType.tp_dict;
4723 x = new_date(1, 1, 1);
4724 if (x == NULL || PyDict_SetItemString(d, "min", x) < 0)
4725 return NULL;
4726 Py_DECREF(x);
4728 x = new_date(MAXYEAR, 12, 31);
4729 if (x == NULL || PyDict_SetItemString(d, "max", x) < 0)
4730 return NULL;
4731 Py_DECREF(x);
4733 x = new_delta(1, 0, 0, 0);
4734 if (x == NULL || PyDict_SetItemString(d, "resolution", x) < 0)
4735 return NULL;
4736 Py_DECREF(x);
4738 /* time values */
4739 d = PyDateTime_TimeType.tp_dict;
4741 x = new_time(0, 0, 0, 0, Py_None);
4742 if (x == NULL || PyDict_SetItemString(d, "min", x) < 0)
4743 return NULL;
4744 Py_DECREF(x);
4746 x = new_time(23, 59, 59, 999999, Py_None);
4747 if (x == NULL || PyDict_SetItemString(d, "max", x) < 0)
4748 return NULL;
4749 Py_DECREF(x);
4751 x = new_delta(0, 0, 1, 0);
4752 if (x == NULL || PyDict_SetItemString(d, "resolution", x) < 0)
4753 return NULL;
4754 Py_DECREF(x);
4756 /* datetime values */
4757 d = PyDateTime_DateTimeType.tp_dict;
4759 x = new_datetime(1, 1, 1, 0, 0, 0, 0, Py_None);
4760 if (x == NULL || PyDict_SetItemString(d, "min", x) < 0)
4761 return NULL;
4762 Py_DECREF(x);
4764 x = new_datetime(MAXYEAR, 12, 31, 23, 59, 59, 999999, Py_None);
4765 if (x == NULL || PyDict_SetItemString(d, "max", x) < 0)
4766 return NULL;
4767 Py_DECREF(x);
4769 x = new_delta(0, 0, 1, 0);
4770 if (x == NULL || PyDict_SetItemString(d, "resolution", x) < 0)
4771 return NULL;
4772 Py_DECREF(x);
4774 /* module initialization */
4775 PyModule_AddIntConstant(m, "MINYEAR", MINYEAR);
4776 PyModule_AddIntConstant(m, "MAXYEAR", MAXYEAR);
4778 Py_INCREF(&PyDateTime_DateType);
4779 PyModule_AddObject(m, "date", (PyObject *) &PyDateTime_DateType);
4781 Py_INCREF(&PyDateTime_DateTimeType);
4782 PyModule_AddObject(m, "datetime",
4783 (PyObject *)&PyDateTime_DateTimeType);
4785 Py_INCREF(&PyDateTime_TimeType);
4786 PyModule_AddObject(m, "time", (PyObject *) &PyDateTime_TimeType);
4788 Py_INCREF(&PyDateTime_DeltaType);
4789 PyModule_AddObject(m, "timedelta", (PyObject *) &PyDateTime_DeltaType);
4791 Py_INCREF(&PyDateTime_TZInfoType);
4792 PyModule_AddObject(m, "tzinfo", (PyObject *) &PyDateTime_TZInfoType);
4794 x = PyCapsule_New(&CAPI, PyDateTime_CAPSULE_NAME, NULL);
4795 if (x == NULL)
4796 return NULL;
4797 PyModule_AddObject(m, "datetime_CAPI", x);
4799 /* A 4-year cycle has an extra leap day over what we'd get from
4800 * pasting together 4 single years.
4802 assert(DI4Y == 4 * 365 + 1);
4803 assert(DI4Y == days_before_year(4+1));
4805 /* Similarly, a 400-year cycle has an extra leap day over what we'd
4806 * get from pasting together 4 100-year cycles.
4808 assert(DI400Y == 4 * DI100Y + 1);
4809 assert(DI400Y == days_before_year(400+1));
4811 /* OTOH, a 100-year cycle has one fewer leap day than we'd get from
4812 * pasting together 25 4-year cycles.
4814 assert(DI100Y == 25 * DI4Y - 1);
4815 assert(DI100Y == days_before_year(100+1));
4817 us_per_us = PyLong_FromLong(1);
4818 us_per_ms = PyLong_FromLong(1000);
4819 us_per_second = PyLong_FromLong(1000000);
4820 us_per_minute = PyLong_FromLong(60000000);
4821 seconds_per_day = PyLong_FromLong(24 * 3600);
4822 if (us_per_us == NULL || us_per_ms == NULL || us_per_second == NULL ||
4823 us_per_minute == NULL || seconds_per_day == NULL)
4824 return NULL;
4826 /* The rest are too big for 32-bit ints, but even
4827 * us_per_week fits in 40 bits, so doubles should be exact.
4829 us_per_hour = PyLong_FromDouble(3600000000.0);
4830 us_per_day = PyLong_FromDouble(86400000000.0);
4831 us_per_week = PyLong_FromDouble(604800000000.0);
4832 if (us_per_hour == NULL || us_per_day == NULL || us_per_week == NULL)
4833 return NULL;
4834 return m;
4837 /* ---------------------------------------------------------------------------
4838 Some time zone algebra. For a datetime x, let
4839 x.n = x stripped of its timezone -- its naive time.
4840 x.o = x.utcoffset(), and assuming that doesn't raise an exception or
4841 return None
4842 x.d = x.dst(), and assuming that doesn't raise an exception or
4843 return None
4844 x.s = x's standard offset, x.o - x.d
4846 Now some derived rules, where k is a duration (timedelta).
4848 1. x.o = x.s + x.d
4849 This follows from the definition of x.s.
4851 2. If x and y have the same tzinfo member, x.s = y.s.
4852 This is actually a requirement, an assumption we need to make about
4853 sane tzinfo classes.
4855 3. The naive UTC time corresponding to x is x.n - x.o.
4856 This is again a requirement for a sane tzinfo class.
4858 4. (x+k).s = x.s
4859 This follows from #2, and that datimetimetz+timedelta preserves tzinfo.
4861 5. (x+k).n = x.n + k
4862 Again follows from how arithmetic is defined.
4864 Now we can explain tz.fromutc(x). Let's assume it's an interesting case
4865 (meaning that the various tzinfo methods exist, and don't blow up or return
4866 None when called).
4868 The function wants to return a datetime y with timezone tz, equivalent to x.
4869 x is already in UTC.
4871 By #3, we want
4873 y.n - y.o = x.n [1]
4875 The algorithm starts by attaching tz to x.n, and calling that y. So
4876 x.n = y.n at the start. Then it wants to add a duration k to y, so that [1]
4877 becomes true; in effect, we want to solve [2] for k:
4879 (y+k).n - (y+k).o = x.n [2]
4881 By #1, this is the same as
4883 (y+k).n - ((y+k).s + (y+k).d) = x.n [3]
4885 By #5, (y+k).n = y.n + k, which equals x.n + k because x.n=y.n at the start.
4886 Substituting that into [3],
4888 x.n + k - (y+k).s - (y+k).d = x.n; the x.n terms cancel, leaving
4889 k - (y+k).s - (y+k).d = 0; rearranging,
4890 k = (y+k).s - (y+k).d; by #4, (y+k).s == y.s, so
4891 k = y.s - (y+k).d
4893 On the RHS, (y+k).d can't be computed directly, but y.s can be, and we
4894 approximate k by ignoring the (y+k).d term at first. Note that k can't be
4895 very large, since all offset-returning methods return a duration of magnitude
4896 less than 24 hours. For that reason, if y is firmly in std time, (y+k).d must
4897 be 0, so ignoring it has no consequence then.
4899 In any case, the new value is
4901 z = y + y.s [4]
4903 It's helpful to step back at look at [4] from a higher level: it's simply
4904 mapping from UTC to tz's standard time.
4906 At this point, if
4908 z.n - z.o = x.n [5]
4910 we have an equivalent time, and are almost done. The insecurity here is
4911 at the start of daylight time. Picture US Eastern for concreteness. The wall
4912 time jumps from 1:59 to 3:00, and wall hours of the form 2:MM don't make good
4913 sense then. The docs ask that an Eastern tzinfo class consider such a time to
4914 be EDT (because it's "after 2"), which is a redundant spelling of 1:MM EST
4915 on the day DST starts. We want to return the 1:MM EST spelling because that's
4916 the only spelling that makes sense on the local wall clock.
4918 In fact, if [5] holds at this point, we do have the standard-time spelling,
4919 but that takes a bit of proof. We first prove a stronger result. What's the
4920 difference between the LHS and RHS of [5]? Let
4922 diff = x.n - (z.n - z.o) [6]
4925 z.n = by [4]
4926 (y + y.s).n = by #5
4927 y.n + y.s = since y.n = x.n
4928 x.n + y.s = since z and y are have the same tzinfo member,
4929 y.s = z.s by #2
4930 x.n + z.s
4932 Plugging that back into [6] gives
4934 diff =
4935 x.n - ((x.n + z.s) - z.o) = expanding
4936 x.n - x.n - z.s + z.o = cancelling
4937 - z.s + z.o = by #2
4940 So diff = z.d.
4942 If [5] is true now, diff = 0, so z.d = 0 too, and we have the standard-time
4943 spelling we wanted in the endcase described above. We're done. Contrarily,
4944 if z.d = 0, then we have a UTC equivalent, and are also done.
4946 If [5] is not true now, diff = z.d != 0, and z.d is the offset we need to
4947 add to z (in effect, z is in tz's standard time, and we need to shift the
4948 local clock into tz's daylight time).
4952 z' = z + z.d = z + diff [7]
4954 and we can again ask whether
4956 z'.n - z'.o = x.n [8]
4958 If so, we're done. If not, the tzinfo class is insane, according to the
4959 assumptions we've made. This also requires a bit of proof. As before, let's
4960 compute the difference between the LHS and RHS of [8] (and skipping some of
4961 the justifications for the kinds of substitutions we've done several times
4962 already):
4964 diff' = x.n - (z'.n - z'.o) = replacing z'.n via [7]
4965 x.n - (z.n + diff - z'.o) = replacing diff via [6]
4966 x.n - (z.n + x.n - (z.n - z.o) - z'.o) =
4967 x.n - z.n - x.n + z.n - z.o + z'.o = cancel x.n
4968 - z.n + z.n - z.o + z'.o = cancel z.n
4969 - z.o + z'.o = #1 twice
4970 -z.s - z.d + z'.s + z'.d = z and z' have same tzinfo
4971 z'.d - z.d
4973 So z' is UTC-equivalent to x iff z'.d = z.d at this point. If they are equal,
4974 we've found the UTC-equivalent so are done. In fact, we stop with [7] and
4975 return z', not bothering to compute z'.d.
4977 How could z.d and z'd differ? z' = z + z.d [7], so merely moving z' by
4978 a dst() offset, and starting *from* a time already in DST (we know z.d != 0),
4979 would have to change the result dst() returns: we start in DST, and moving
4980 a little further into it takes us out of DST.
4982 There isn't a sane case where this can happen. The closest it gets is at
4983 the end of DST, where there's an hour in UTC with no spelling in a hybrid
4984 tzinfo class. In US Eastern, that's 5:MM UTC = 0:MM EST = 1:MM EDT. During
4985 that hour, on an Eastern clock 1:MM is taken as being in standard time (6:MM
4986 UTC) because the docs insist on that, but 0:MM is taken as being in daylight
4987 time (4:MM UTC). There is no local time mapping to 5:MM UTC. The local
4988 clock jumps from 1:59 back to 1:00 again, and repeats the 1:MM hour in
4989 standard time. Since that's what the local clock *does*, we want to map both
4990 UTC hours 5:MM and 6:MM to 1:MM Eastern. The result is ambiguous
4991 in local time, but so it goes -- it's the way the local clock works.
4993 When x = 5:MM UTC is the input to this algorithm, x.o=0, y.o=-5 and y.d=0,
4994 so z=0:MM. z.d=60 (minutes) then, so [5] doesn't hold and we keep going.
4995 z' = z + z.d = 1:MM then, and z'.d=0, and z'.d - z.d = -60 != 0 so [8]
4996 (correctly) concludes that z' is not UTC-equivalent to x.
4998 Because we know z.d said z was in daylight time (else [5] would have held and
4999 we would have stopped then), and we know z.d != z'.d (else [8] would have held
5000 and we would have stopped then), and there are only 2 possible values dst() can
5001 return in Eastern, it follows that z'.d must be 0 (which it is in the example,
5002 but the reasoning doesn't depend on the example -- it depends on there being
5003 two possible dst() outcomes, one zero and the other non-zero). Therefore
5004 z' must be in standard time, and is the spelling we want in this case.
5006 Note again that z' is not UTC-equivalent as far as the hybrid tzinfo class is
5007 concerned (because it takes z' as being in standard time rather than the
5008 daylight time we intend here), but returning it gives the real-life "local
5009 clock repeats an hour" behavior when mapping the "unspellable" UTC hour into
5012 When the input is 6:MM, z=1:MM and z.d=0, and we stop at once, again with
5013 the 1:MM standard time spelling we want.
5015 So how can this break? One of the assumptions must be violated. Two
5016 possibilities:
5018 1) [2] effectively says that y.s is invariant across all y belong to a given
5019 time zone. This isn't true if, for political reasons or continental drift,
5020 a region decides to change its base offset from UTC.
5022 2) There may be versions of "double daylight" time where the tail end of
5023 the analysis gives up a step too early. I haven't thought about that
5024 enough to say.
5026 In any case, it's clear that the default fromutc() is strong enough to handle
5027 "almost all" time zones: so long as the standard offset is invariant, it
5028 doesn't matter if daylight time transition points change from year to year, or
5029 if daylight time is skipped in some years; it doesn't matter how large or
5030 small dst() may get within its bounds; and it doesn't even matter if some
5031 perverse time zone returns a negative dst()). So a breaking case must be
5032 pretty bizarre, and a tzinfo subclass can override fromutc() if it is.
5033 --------------------------------------------------------------------------- */