move sections
[python/dscho.git] / Python / ceval.c
blob673eac2ed42ffbfc245187f2707f27a7a26bed3e
2 /* Execute compiled code */
4 /* XXX TO DO:
5 XXX speed up searching for keywords by using a dictionary
6 XXX document it!
7 */
9 /* enable more aggressive intra-module optimizations, where available */
10 #define PY_LOCAL_AGGRESSIVE
12 #include "Python.h"
14 #include "code.h"
15 #include "frameobject.h"
16 #include "eval.h"
17 #include "opcode.h"
18 #include "structmember.h"
20 #include <ctype.h>
22 #ifndef WITH_TSC
24 #define READ_TIMESTAMP(var)
26 #else
28 typedef unsigned long long uint64;
30 #if defined(__ppc__) /* <- Don't know if this is the correct symbol; this
31 section should work for GCC on any PowerPC
32 platform, irrespective of OS.
33 POWER? Who knows :-) */
35 #define READ_TIMESTAMP(var) ppc_getcounter(&var)
37 static void
38 ppc_getcounter(uint64 *v)
40 register unsigned long tbu, tb, tbu2;
42 loop:
43 asm volatile ("mftbu %0" : "=r" (tbu) );
44 asm volatile ("mftb %0" : "=r" (tb) );
45 asm volatile ("mftbu %0" : "=r" (tbu2));
46 if (__builtin_expect(tbu != tbu2, 0)) goto loop;
48 /* The slightly peculiar way of writing the next lines is
49 compiled better by GCC than any other way I tried. */
50 ((long*)(v))[0] = tbu;
51 ((long*)(v))[1] = tb;
54 #elif defined(__i386__)
56 /* this is for linux/x86 (and probably any other GCC/x86 combo) */
58 #define READ_TIMESTAMP(val) \
59 __asm__ __volatile__("rdtsc" : "=A" (val))
61 #elif defined(__x86_64__)
63 /* for gcc/x86_64, the "A" constraint in DI mode means *either* rax *or* rdx;
64 not edx:eax as it does for i386. Since rdtsc puts its result in edx:eax
65 even in 64-bit mode, we need to use "a" and "d" for the lower and upper
66 32-bit pieces of the result. */
68 #define READ_TIMESTAMP(val) \
69 __asm__ __volatile__("rdtsc" : \
70 "=a" (((int*)&(val))[0]), "=d" (((int*)&(val))[1]));
73 #else
75 #error "Don't know how to implement timestamp counter for this architecture"
77 #endif
79 void dump_tsc(int opcode, int ticked, uint64 inst0, uint64 inst1,
80 uint64 loop0, uint64 loop1, uint64 intr0, uint64 intr1)
82 uint64 intr, inst, loop;
83 PyThreadState *tstate = PyThreadState_Get();
84 if (!tstate->interp->tscdump)
85 return;
86 intr = intr1 - intr0;
87 inst = inst1 - inst0 - intr;
88 loop = loop1 - loop0 - intr;
89 fprintf(stderr, "opcode=%03d t=%d inst=%06lld loop=%06lld\n",
90 opcode, ticked, inst, loop);
93 #endif
95 /* Turn this on if your compiler chokes on the big switch: */
96 /* #define CASE_TOO_BIG 1 */
98 #ifdef Py_DEBUG
99 /* For debugging the interpreter: */
100 #define LLTRACE 1 /* Low-level trace feature */
101 #define CHECKEXC 1 /* Double-check exception checking */
102 #endif
104 typedef PyObject *(*callproc)(PyObject *, PyObject *, PyObject *);
106 /* Forward declarations */
107 #ifdef WITH_TSC
108 static PyObject * call_function(PyObject ***, int, uint64*, uint64*);
109 #else
110 static PyObject * call_function(PyObject ***, int);
111 #endif
112 static PyObject * fast_function(PyObject *, PyObject ***, int, int, int);
113 static PyObject * do_call(PyObject *, PyObject ***, int, int);
114 static PyObject * ext_do_call(PyObject *, PyObject ***, int, int, int);
115 static PyObject * update_keyword_args(PyObject *, int, PyObject ***,
116 PyObject *);
117 static PyObject * update_star_args(int, int, PyObject *, PyObject ***);
118 static PyObject * load_args(PyObject ***, int);
119 #define CALL_FLAG_VAR 1
120 #define CALL_FLAG_KW 2
122 #ifdef LLTRACE
123 static int lltrace;
124 static int prtrace(PyObject *, char *);
125 #endif
126 static int call_trace(Py_tracefunc, PyObject *, PyFrameObject *,
127 int, PyObject *);
128 static int call_trace_protected(Py_tracefunc, PyObject *,
129 PyFrameObject *, int, PyObject *);
130 static void call_exc_trace(Py_tracefunc, PyObject *, PyFrameObject *);
131 static int maybe_call_line_trace(Py_tracefunc, PyObject *,
132 PyFrameObject *, int *, int *, int *);
134 static PyObject * apply_slice(PyObject *, PyObject *, PyObject *);
135 static int assign_slice(PyObject *, PyObject *,
136 PyObject *, PyObject *);
137 static PyObject * cmp_outcome(int, PyObject *, PyObject *);
138 static PyObject * import_from(PyObject *, PyObject *);
139 static int import_all_from(PyObject *, PyObject *);
140 static PyObject * build_class(PyObject *, PyObject *, PyObject *);
141 static int exec_statement(PyFrameObject *,
142 PyObject *, PyObject *, PyObject *);
143 static void set_exc_info(PyThreadState *, PyObject *, PyObject *, PyObject *);
144 static void reset_exc_info(PyThreadState *);
145 static void format_exc_check_arg(PyObject *, char *, PyObject *);
146 static PyObject * string_concatenate(PyObject *, PyObject *,
147 PyFrameObject *, unsigned char *);
148 static PyObject * kwd_as_string(PyObject *);
149 static PyObject * special_lookup(PyObject *, char *, PyObject **);
151 #define NAME_ERROR_MSG \
152 "name '%.200s' is not defined"
153 #define GLOBAL_NAME_ERROR_MSG \
154 "global name '%.200s' is not defined"
155 #define UNBOUNDLOCAL_ERROR_MSG \
156 "local variable '%.200s' referenced before assignment"
157 #define UNBOUNDFREE_ERROR_MSG \
158 "free variable '%.200s' referenced before assignment" \
159 " in enclosing scope"
161 /* Dynamic execution profile */
162 #ifdef DYNAMIC_EXECUTION_PROFILE
163 #ifdef DXPAIRS
164 static long dxpairs[257][256];
165 #define dxp dxpairs[256]
166 #else
167 static long dxp[256];
168 #endif
169 #endif
171 /* Function call profile */
172 #ifdef CALL_PROFILE
173 #define PCALL_NUM 11
174 static int pcall[PCALL_NUM];
176 #define PCALL_ALL 0
177 #define PCALL_FUNCTION 1
178 #define PCALL_FAST_FUNCTION 2
179 #define PCALL_FASTER_FUNCTION 3
180 #define PCALL_METHOD 4
181 #define PCALL_BOUND_METHOD 5
182 #define PCALL_CFUNCTION 6
183 #define PCALL_TYPE 7
184 #define PCALL_GENERATOR 8
185 #define PCALL_OTHER 9
186 #define PCALL_POP 10
188 /* Notes about the statistics
190 PCALL_FAST stats
192 FAST_FUNCTION means no argument tuple needs to be created.
193 FASTER_FUNCTION means that the fast-path frame setup code is used.
195 If there is a method call where the call can be optimized by changing
196 the argument tuple and calling the function directly, it gets recorded
197 twice.
199 As a result, the relationship among the statistics appears to be
200 PCALL_ALL == PCALL_FUNCTION + PCALL_METHOD - PCALL_BOUND_METHOD +
201 PCALL_CFUNCTION + PCALL_TYPE + PCALL_GENERATOR + PCALL_OTHER
202 PCALL_FUNCTION > PCALL_FAST_FUNCTION > PCALL_FASTER_FUNCTION
203 PCALL_METHOD > PCALL_BOUND_METHOD
206 #define PCALL(POS) pcall[POS]++
208 PyObject *
209 PyEval_GetCallStats(PyObject *self)
211 return Py_BuildValue("iiiiiiiiiii",
212 pcall[0], pcall[1], pcall[2], pcall[3],
213 pcall[4], pcall[5], pcall[6], pcall[7],
214 pcall[8], pcall[9], pcall[10]);
216 #else
217 #define PCALL(O)
219 PyObject *
220 PyEval_GetCallStats(PyObject *self)
222 Py_INCREF(Py_None);
223 return Py_None;
225 #endif
228 #ifdef WITH_THREAD
230 #ifdef HAVE_ERRNO_H
231 #include <errno.h>
232 #endif
233 #include "pythread.h"
235 static PyThread_type_lock interpreter_lock = 0; /* This is the GIL */
236 static PyThread_type_lock pending_lock = 0; /* for pending calls */
237 static long main_thread = 0;
240 PyEval_ThreadsInitialized(void)
242 return interpreter_lock != 0;
245 void
246 PyEval_InitThreads(void)
248 if (interpreter_lock)
249 return;
250 interpreter_lock = PyThread_allocate_lock();
251 PyThread_acquire_lock(interpreter_lock, 1);
252 main_thread = PyThread_get_thread_ident();
255 void
256 PyEval_AcquireLock(void)
258 PyThread_acquire_lock(interpreter_lock, 1);
261 void
262 PyEval_ReleaseLock(void)
264 PyThread_release_lock(interpreter_lock);
267 void
268 PyEval_AcquireThread(PyThreadState *tstate)
270 if (tstate == NULL)
271 Py_FatalError("PyEval_AcquireThread: NULL new thread state");
272 /* Check someone has called PyEval_InitThreads() to create the lock */
273 assert(interpreter_lock);
274 PyThread_acquire_lock(interpreter_lock, 1);
275 if (PyThreadState_Swap(tstate) != NULL)
276 Py_FatalError(
277 "PyEval_AcquireThread: non-NULL old thread state");
280 void
281 PyEval_ReleaseThread(PyThreadState *tstate)
283 if (tstate == NULL)
284 Py_FatalError("PyEval_ReleaseThread: NULL thread state");
285 if (PyThreadState_Swap(NULL) != tstate)
286 Py_FatalError("PyEval_ReleaseThread: wrong thread state");
287 PyThread_release_lock(interpreter_lock);
290 /* This function is called from PyOS_AfterFork to ensure that newly
291 created child processes don't hold locks referring to threads which
292 are not running in the child process. (This could also be done using
293 pthread_atfork mechanism, at least for the pthreads implementation.) */
295 void
296 PyEval_ReInitThreads(void)
298 PyObject *threading, *result;
299 PyThreadState *tstate;
301 if (!interpreter_lock)
302 return;
303 /*XXX Can't use PyThread_free_lock here because it does too
304 much error-checking. Doing this cleanly would require
305 adding a new function to each thread_*.h. Instead, just
306 create a new lock and waste a little bit of memory */
307 interpreter_lock = PyThread_allocate_lock();
308 pending_lock = PyThread_allocate_lock();
309 PyThread_acquire_lock(interpreter_lock, 1);
310 main_thread = PyThread_get_thread_ident();
312 /* Update the threading module with the new state.
314 tstate = PyThreadState_GET();
315 threading = PyMapping_GetItemString(tstate->interp->modules,
316 "threading");
317 if (threading == NULL) {
318 /* threading not imported */
319 PyErr_Clear();
320 return;
322 result = PyObject_CallMethod(threading, "_after_fork", NULL);
323 if (result == NULL)
324 PyErr_WriteUnraisable(threading);
325 else
326 Py_DECREF(result);
327 Py_DECREF(threading);
329 #endif
331 /* Functions save_thread and restore_thread are always defined so
332 dynamically loaded modules needn't be compiled separately for use
333 with and without threads: */
335 PyThreadState *
336 PyEval_SaveThread(void)
338 PyThreadState *tstate = PyThreadState_Swap(NULL);
339 if (tstate == NULL)
340 Py_FatalError("PyEval_SaveThread: NULL tstate");
341 #ifdef WITH_THREAD
342 if (interpreter_lock)
343 PyThread_release_lock(interpreter_lock);
344 #endif
345 return tstate;
348 void
349 PyEval_RestoreThread(PyThreadState *tstate)
351 if (tstate == NULL)
352 Py_FatalError("PyEval_RestoreThread: NULL tstate");
353 #ifdef WITH_THREAD
354 if (interpreter_lock) {
355 int err = errno;
356 PyThread_acquire_lock(interpreter_lock, 1);
357 errno = err;
359 #endif
360 PyThreadState_Swap(tstate);
364 /* Mechanism whereby asynchronously executing callbacks (e.g. UNIX
365 signal handlers or Mac I/O completion routines) can schedule calls
366 to a function to be called synchronously.
367 The synchronous function is called with one void* argument.
368 It should return 0 for success or -1 for failure -- failure should
369 be accompanied by an exception.
371 If registry succeeds, the registry function returns 0; if it fails
372 (e.g. due to too many pending calls) it returns -1 (without setting
373 an exception condition).
375 Note that because registry may occur from within signal handlers,
376 or other asynchronous events, calling malloc() is unsafe!
378 #ifdef WITH_THREAD
379 Any thread can schedule pending calls, but only the main thread
380 will execute them.
381 There is no facility to schedule calls to a particular thread, but
382 that should be easy to change, should that ever be required. In
383 that case, the static variables here should go into the python
384 threadstate.
385 #endif
388 #ifdef WITH_THREAD
390 /* The WITH_THREAD implementation is thread-safe. It allows
391 scheduling to be made from any thread, and even from an executing
392 callback.
395 #define NPENDINGCALLS 32
396 static struct {
397 int (*func)(void *);
398 void *arg;
399 } pendingcalls[NPENDINGCALLS];
400 static int pendingfirst = 0;
401 static int pendinglast = 0;
402 static volatile int pendingcalls_to_do = 1; /* trigger initialization of lock */
403 static char pendingbusy = 0;
406 Py_AddPendingCall(int (*func)(void *), void *arg)
408 int i, j, result=0;
409 PyThread_type_lock lock = pending_lock;
411 /* try a few times for the lock. Since this mechanism is used
412 * for signal handling (on the main thread), there is a (slim)
413 * chance that a signal is delivered on the same thread while we
414 * hold the lock during the Py_MakePendingCalls() function.
415 * This avoids a deadlock in that case.
416 * Note that signals can be delivered on any thread. In particular,
417 * on Windows, a SIGINT is delivered on a system-created worker
418 * thread.
419 * We also check for lock being NULL, in the unlikely case that
420 * this function is called before any bytecode evaluation takes place.
422 if (lock != NULL) {
423 for (i = 0; i<100; i++) {
424 if (PyThread_acquire_lock(lock, NOWAIT_LOCK))
425 break;
427 if (i == 100)
428 return -1;
431 i = pendinglast;
432 j = (i + 1) % NPENDINGCALLS;
433 if (j == pendingfirst) {
434 result = -1; /* Queue full */
435 } else {
436 pendingcalls[i].func = func;
437 pendingcalls[i].arg = arg;
438 pendinglast = j;
440 /* signal main loop */
441 _Py_Ticker = 0;
442 pendingcalls_to_do = 1;
443 if (lock != NULL)
444 PyThread_release_lock(lock);
445 return result;
449 Py_MakePendingCalls(void)
451 int i;
452 int r = 0;
454 if (!pending_lock) {
455 /* initial allocation of the lock */
456 pending_lock = PyThread_allocate_lock();
457 if (pending_lock == NULL)
458 return -1;
461 /* only service pending calls on main thread */
462 if (main_thread && PyThread_get_thread_ident() != main_thread)
463 return 0;
464 /* don't perform recursive pending calls */
465 if (pendingbusy)
466 return 0;
467 pendingbusy = 1;
468 /* perform a bounded number of calls, in case of recursion */
469 for (i=0; i<NPENDINGCALLS; i++) {
470 int j;
471 int (*func)(void *);
472 void *arg = NULL;
474 /* pop one item off the queue while holding the lock */
475 PyThread_acquire_lock(pending_lock, WAIT_LOCK);
476 j = pendingfirst;
477 if (j == pendinglast) {
478 func = NULL; /* Queue empty */
479 } else {
480 func = pendingcalls[j].func;
481 arg = pendingcalls[j].arg;
482 pendingfirst = (j + 1) % NPENDINGCALLS;
484 pendingcalls_to_do = pendingfirst != pendinglast;
485 PyThread_release_lock(pending_lock);
486 /* having released the lock, perform the callback */
487 if (func == NULL)
488 break;
489 r = func(arg);
490 if (r)
491 break;
493 pendingbusy = 0;
494 return r;
497 #else /* if ! defined WITH_THREAD */
500 WARNING! ASYNCHRONOUSLY EXECUTING CODE!
501 This code is used for signal handling in python that isn't built
502 with WITH_THREAD.
503 Don't use this implementation when Py_AddPendingCalls() can happen
504 on a different thread!
506 There are two possible race conditions:
507 (1) nested asynchronous calls to Py_AddPendingCall()
508 (2) AddPendingCall() calls made while pending calls are being processed.
510 (1) is very unlikely because typically signal delivery
511 is blocked during signal handling. So it should be impossible.
512 (2) is a real possibility.
513 The current code is safe against (2), but not against (1).
514 The safety against (2) is derived from the fact that only one
515 thread is present, interrupted by signals, and that the critical
516 section is protected with the "busy" variable. On Windows, which
517 delivers SIGINT on a system thread, this does not hold and therefore
518 Windows really shouldn't use this version.
519 The two threads could theoretically wiggle around the "busy" variable.
522 #define NPENDINGCALLS 32
523 static struct {
524 int (*func)(void *);
525 void *arg;
526 } pendingcalls[NPENDINGCALLS];
527 static volatile int pendingfirst = 0;
528 static volatile int pendinglast = 0;
529 static volatile int pendingcalls_to_do = 0;
532 Py_AddPendingCall(int (*func)(void *), void *arg)
534 static volatile int busy = 0;
535 int i, j;
536 /* XXX Begin critical section */
537 if (busy)
538 return -1;
539 busy = 1;
540 i = pendinglast;
541 j = (i + 1) % NPENDINGCALLS;
542 if (j == pendingfirst) {
543 busy = 0;
544 return -1; /* Queue full */
546 pendingcalls[i].func = func;
547 pendingcalls[i].arg = arg;
548 pendinglast = j;
550 _Py_Ticker = 0;
551 pendingcalls_to_do = 1; /* Signal main loop */
552 busy = 0;
553 /* XXX End critical section */
554 return 0;
558 Py_MakePendingCalls(void)
560 static int busy = 0;
561 if (busy)
562 return 0;
563 busy = 1;
564 pendingcalls_to_do = 0;
565 for (;;) {
566 int i;
567 int (*func)(void *);
568 void *arg;
569 i = pendingfirst;
570 if (i == pendinglast)
571 break; /* Queue empty */
572 func = pendingcalls[i].func;
573 arg = pendingcalls[i].arg;
574 pendingfirst = (i + 1) % NPENDINGCALLS;
575 if (func(arg) < 0) {
576 busy = 0;
577 pendingcalls_to_do = 1; /* We're not done yet */
578 return -1;
581 busy = 0;
582 return 0;
585 #endif /* WITH_THREAD */
588 /* The interpreter's recursion limit */
590 #ifndef Py_DEFAULT_RECURSION_LIMIT
591 #define Py_DEFAULT_RECURSION_LIMIT 1000
592 #endif
593 static int recursion_limit = Py_DEFAULT_RECURSION_LIMIT;
594 int _Py_CheckRecursionLimit = Py_DEFAULT_RECURSION_LIMIT;
597 Py_GetRecursionLimit(void)
599 return recursion_limit;
602 void
603 Py_SetRecursionLimit(int new_limit)
605 recursion_limit = new_limit;
606 _Py_CheckRecursionLimit = recursion_limit;
609 /* the macro Py_EnterRecursiveCall() only calls _Py_CheckRecursiveCall()
610 if the recursion_depth reaches _Py_CheckRecursionLimit.
611 If USE_STACKCHECK, the macro decrements _Py_CheckRecursionLimit
612 to guarantee that _Py_CheckRecursiveCall() is regularly called.
613 Without USE_STACKCHECK, there is no need for this. */
615 _Py_CheckRecursiveCall(char *where)
617 PyThreadState *tstate = PyThreadState_GET();
619 #ifdef USE_STACKCHECK
620 if (PyOS_CheckStack()) {
621 --tstate->recursion_depth;
622 PyErr_SetString(PyExc_MemoryError, "Stack overflow");
623 return -1;
625 #endif
626 if (tstate->recursion_depth > recursion_limit) {
627 --tstate->recursion_depth;
628 PyErr_Format(PyExc_RuntimeError,
629 "maximum recursion depth exceeded%s",
630 where);
631 return -1;
633 _Py_CheckRecursionLimit = recursion_limit;
634 return 0;
637 /* Status code for main loop (reason for stack unwind) */
638 enum why_code {
639 WHY_NOT = 0x0001, /* No error */
640 WHY_EXCEPTION = 0x0002, /* Exception occurred */
641 WHY_RERAISE = 0x0004, /* Exception re-raised by 'finally' */
642 WHY_RETURN = 0x0008, /* 'return' statement */
643 WHY_BREAK = 0x0010, /* 'break' statement */
644 WHY_CONTINUE = 0x0020, /* 'continue' statement */
645 WHY_YIELD = 0x0040 /* 'yield' operator */
648 static enum why_code do_raise(PyObject *, PyObject *, PyObject *);
649 static int unpack_iterable(PyObject *, int, PyObject **);
651 /* Records whether tracing is on for any thread. Counts the number of
652 threads for which tstate->c_tracefunc is non-NULL, so if the value
653 is 0, we know we don't have to check this thread's c_tracefunc.
654 This speeds up the if statement in PyEval_EvalFrameEx() after
655 fast_next_opcode*/
656 static int _Py_TracingPossible = 0;
658 /* for manipulating the thread switch and periodic "stuff" - used to be
659 per thread, now just a pair o' globals */
660 int _Py_CheckInterval = 100;
661 volatile int _Py_Ticker = 0; /* so that we hit a "tick" first thing */
663 PyObject *
664 PyEval_EvalCode(PyCodeObject *co, PyObject *globals, PyObject *locals)
666 return PyEval_EvalCodeEx(co,
667 globals, locals,
668 (PyObject **)NULL, 0,
669 (PyObject **)NULL, 0,
670 (PyObject **)NULL, 0,
671 NULL);
675 /* Interpreter main loop */
677 PyObject *
678 PyEval_EvalFrame(PyFrameObject *f) {
679 /* This is for backward compatibility with extension modules that
680 used this API; core interpreter code should call
681 PyEval_EvalFrameEx() */
682 return PyEval_EvalFrameEx(f, 0);
685 PyObject *
686 PyEval_EvalFrameEx(PyFrameObject *f, int throwflag)
688 #ifdef DXPAIRS
689 int lastopcode = 0;
690 #endif
691 register PyObject **stack_pointer; /* Next free slot in value stack */
692 register unsigned char *next_instr;
693 register int opcode; /* Current opcode */
694 register int oparg; /* Current opcode argument, if any */
695 register enum why_code why; /* Reason for block stack unwind */
696 register int err; /* Error status -- nonzero if error */
697 register PyObject *x; /* Result object -- NULL if error */
698 register PyObject *v; /* Temporary objects popped off stack */
699 register PyObject *w;
700 register PyObject *u;
701 register PyObject *t;
702 register PyObject *stream = NULL; /* for PRINT opcodes */
703 register PyObject **fastlocals, **freevars;
704 PyObject *retval = NULL; /* Return value */
705 PyThreadState *tstate = PyThreadState_GET();
706 PyCodeObject *co;
708 /* when tracing we set things up so that
710 not (instr_lb <= current_bytecode_offset < instr_ub)
712 is true when the line being executed has changed. The
713 initial values are such as to make this false the first
714 time it is tested. */
715 int instr_ub = -1, instr_lb = 0, instr_prev = -1;
717 unsigned char *first_instr;
718 PyObject *names;
719 PyObject *consts;
720 #if defined(Py_DEBUG) || defined(LLTRACE)
721 /* Make it easier to find out where we are with a debugger */
722 char *filename;
723 #endif
725 /* Tuple access macros */
727 #ifndef Py_DEBUG
728 #define GETITEM(v, i) PyTuple_GET_ITEM((PyTupleObject *)(v), (i))
729 #else
730 #define GETITEM(v, i) PyTuple_GetItem((v), (i))
731 #endif
733 #ifdef WITH_TSC
734 /* Use Pentium timestamp counter to mark certain events:
735 inst0 -- beginning of switch statement for opcode dispatch
736 inst1 -- end of switch statement (may be skipped)
737 loop0 -- the top of the mainloop
738 loop1 -- place where control returns again to top of mainloop
739 (may be skipped)
740 intr1 -- beginning of long interruption
741 intr2 -- end of long interruption
743 Many opcodes call out to helper C functions. In some cases, the
744 time in those functions should be counted towards the time for the
745 opcode, but not in all cases. For example, a CALL_FUNCTION opcode
746 calls another Python function; there's no point in charge all the
747 bytecode executed by the called function to the caller.
749 It's hard to make a useful judgement statically. In the presence
750 of operator overloading, it's impossible to tell if a call will
751 execute new Python code or not.
753 It's a case-by-case judgement. I'll use intr1 for the following
754 cases:
756 EXEC_STMT
757 IMPORT_STAR
758 IMPORT_FROM
759 CALL_FUNCTION (and friends)
762 uint64 inst0, inst1, loop0, loop1, intr0 = 0, intr1 = 0;
763 int ticked = 0;
765 READ_TIMESTAMP(inst0);
766 READ_TIMESTAMP(inst1);
767 READ_TIMESTAMP(loop0);
768 READ_TIMESTAMP(loop1);
770 /* shut up the compiler */
771 opcode = 0;
772 #endif
774 /* Code access macros */
776 #define INSTR_OFFSET() ((int)(next_instr - first_instr))
777 #define NEXTOP() (*next_instr++)
778 #define NEXTARG() (next_instr += 2, (next_instr[-1]<<8) + next_instr[-2])
779 #define PEEKARG() ((next_instr[2]<<8) + next_instr[1])
780 #define JUMPTO(x) (next_instr = first_instr + (x))
781 #define JUMPBY(x) (next_instr += (x))
783 /* OpCode prediction macros
784 Some opcodes tend to come in pairs thus making it possible to
785 predict the second code when the first is run. For example,
786 GET_ITER is often followed by FOR_ITER. And FOR_ITER is often
787 followed by STORE_FAST or UNPACK_SEQUENCE.
789 Verifying the prediction costs a single high-speed test of a register
790 variable against a constant. If the pairing was good, then the
791 processor's own internal branch predication has a high likelihood of
792 success, resulting in a nearly zero-overhead transition to the
793 next opcode. A successful prediction saves a trip through the eval-loop
794 including its two unpredictable branches, the HAS_ARG test and the
795 switch-case. Combined with the processor's internal branch prediction,
796 a successful PREDICT has the effect of making the two opcodes run as if
797 they were a single new opcode with the bodies combined.
799 If collecting opcode statistics, your choices are to either keep the
800 predictions turned-on and interpret the results as if some opcodes
801 had been combined or turn-off predictions so that the opcode frequency
802 counter updates for both opcodes.
805 #ifdef DYNAMIC_EXECUTION_PROFILE
806 #define PREDICT(op) if (0) goto PRED_##op
807 #else
808 #define PREDICT(op) if (*next_instr == op) goto PRED_##op
809 #endif
811 #define PREDICTED(op) PRED_##op: next_instr++
812 #define PREDICTED_WITH_ARG(op) PRED_##op: oparg = PEEKARG(); next_instr += 3
814 /* Stack manipulation macros */
816 /* The stack can grow at most MAXINT deep, as co_nlocals and
817 co_stacksize are ints. */
818 #define STACK_LEVEL() ((int)(stack_pointer - f->f_valuestack))
819 #define EMPTY() (STACK_LEVEL() == 0)
820 #define TOP() (stack_pointer[-1])
821 #define SECOND() (stack_pointer[-2])
822 #define THIRD() (stack_pointer[-3])
823 #define FOURTH() (stack_pointer[-4])
824 #define PEEK(n) (stack_pointer[-(n)])
825 #define SET_TOP(v) (stack_pointer[-1] = (v))
826 #define SET_SECOND(v) (stack_pointer[-2] = (v))
827 #define SET_THIRD(v) (stack_pointer[-3] = (v))
828 #define SET_FOURTH(v) (stack_pointer[-4] = (v))
829 #define SET_VALUE(n, v) (stack_pointer[-(n)] = (v))
830 #define BASIC_STACKADJ(n) (stack_pointer += n)
831 #define BASIC_PUSH(v) (*stack_pointer++ = (v))
832 #define BASIC_POP() (*--stack_pointer)
834 #ifdef LLTRACE
835 #define PUSH(v) { (void)(BASIC_PUSH(v), \
836 lltrace && prtrace(TOP(), "push")); \
837 assert(STACK_LEVEL() <= co->co_stacksize); }
838 #define POP() ((void)(lltrace && prtrace(TOP(), "pop")), \
839 BASIC_POP())
840 #define STACKADJ(n) { (void)(BASIC_STACKADJ(n), \
841 lltrace && prtrace(TOP(), "stackadj")); \
842 assert(STACK_LEVEL() <= co->co_stacksize); }
843 #define EXT_POP(STACK_POINTER) ((void)(lltrace && \
844 prtrace((STACK_POINTER)[-1], "ext_pop")), \
845 *--(STACK_POINTER))
846 #else
847 #define PUSH(v) BASIC_PUSH(v)
848 #define POP() BASIC_POP()
849 #define STACKADJ(n) BASIC_STACKADJ(n)
850 #define EXT_POP(STACK_POINTER) (*--(STACK_POINTER))
851 #endif
853 /* Local variable macros */
855 #define GETLOCAL(i) (fastlocals[i])
857 /* The SETLOCAL() macro must not DECREF the local variable in-place and
858 then store the new value; it must copy the old value to a temporary
859 value, then store the new value, and then DECREF the temporary value.
860 This is because it is possible that during the DECREF the frame is
861 accessed by other code (e.g. a __del__ method or gc.collect()) and the
862 variable would be pointing to already-freed memory. */
863 #define SETLOCAL(i, value) do { PyObject *tmp = GETLOCAL(i); \
864 GETLOCAL(i) = value; \
865 Py_XDECREF(tmp); } while (0)
867 /* Start of code */
869 if (f == NULL)
870 return NULL;
872 /* push frame */
873 if (Py_EnterRecursiveCall(""))
874 return NULL;
876 tstate->frame = f;
878 if (tstate->use_tracing) {
879 if (tstate->c_tracefunc != NULL) {
880 /* tstate->c_tracefunc, if defined, is a
881 function that will be called on *every* entry
882 to a code block. Its return value, if not
883 None, is a function that will be called at
884 the start of each executed line of code.
885 (Actually, the function must return itself
886 in order to continue tracing.) The trace
887 functions are called with three arguments:
888 a pointer to the current frame, a string
889 indicating why the function is called, and
890 an argument which depends on the situation.
891 The global trace function is also called
892 whenever an exception is detected. */
893 if (call_trace_protected(tstate->c_tracefunc,
894 tstate->c_traceobj,
895 f, PyTrace_CALL, Py_None)) {
896 /* Trace function raised an error */
897 goto exit_eval_frame;
900 if (tstate->c_profilefunc != NULL) {
901 /* Similar for c_profilefunc, except it needn't
902 return itself and isn't called for "line" events */
903 if (call_trace_protected(tstate->c_profilefunc,
904 tstate->c_profileobj,
905 f, PyTrace_CALL, Py_None)) {
906 /* Profile function raised an error */
907 goto exit_eval_frame;
912 co = f->f_code;
913 names = co->co_names;
914 consts = co->co_consts;
915 fastlocals = f->f_localsplus;
916 freevars = f->f_localsplus + co->co_nlocals;
917 first_instr = (unsigned char*) PyString_AS_STRING(co->co_code);
918 /* An explanation is in order for the next line.
920 f->f_lasti now refers to the index of the last instruction
921 executed. You might think this was obvious from the name, but
922 this wasn't always true before 2.3! PyFrame_New now sets
923 f->f_lasti to -1 (i.e. the index *before* the first instruction)
924 and YIELD_VALUE doesn't fiddle with f_lasti any more. So this
925 does work. Promise.
927 When the PREDICT() macros are enabled, some opcode pairs follow in
928 direct succession without updating f->f_lasti. A successful
929 prediction effectively links the two codes together as if they
930 were a single new opcode; accordingly,f->f_lasti will point to
931 the first code in the pair (for instance, GET_ITER followed by
932 FOR_ITER is effectively a single opcode and f->f_lasti will point
933 at to the beginning of the combined pair.)
935 next_instr = first_instr + f->f_lasti + 1;
936 stack_pointer = f->f_stacktop;
937 assert(stack_pointer != NULL);
938 f->f_stacktop = NULL; /* remains NULL unless yield suspends frame */
940 #ifdef LLTRACE
941 lltrace = PyDict_GetItemString(f->f_globals, "__lltrace__") != NULL;
942 #endif
943 #if defined(Py_DEBUG) || defined(LLTRACE)
944 filename = PyString_AsString(co->co_filename);
945 #endif
947 why = WHY_NOT;
948 err = 0;
949 x = Py_None; /* Not a reference, just anything non-NULL */
950 w = NULL;
952 if (throwflag) { /* support for generator.throw() */
953 why = WHY_EXCEPTION;
954 goto on_error;
957 for (;;) {
958 #ifdef WITH_TSC
959 if (inst1 == 0) {
960 /* Almost surely, the opcode executed a break
961 or a continue, preventing inst1 from being set
962 on the way out of the loop.
964 READ_TIMESTAMP(inst1);
965 loop1 = inst1;
967 dump_tsc(opcode, ticked, inst0, inst1, loop0, loop1,
968 intr0, intr1);
969 ticked = 0;
970 inst1 = 0;
971 intr0 = 0;
972 intr1 = 0;
973 READ_TIMESTAMP(loop0);
974 #endif
975 assert(stack_pointer >= f->f_valuestack); /* else underflow */
976 assert(STACK_LEVEL() <= co->co_stacksize); /* else overflow */
978 /* Do periodic things. Doing this every time through
979 the loop would add too much overhead, so we do it
980 only every Nth instruction. We also do it if
981 ``pendingcalls_to_do'' is set, i.e. when an asynchronous
982 event needs attention (e.g. a signal handler or
983 async I/O handler); see Py_AddPendingCall() and
984 Py_MakePendingCalls() above. */
986 if (--_Py_Ticker < 0) {
987 if (*next_instr == SETUP_FINALLY) {
988 /* Make the last opcode before
989 a try: finally: block uninterruptable. */
990 goto fast_next_opcode;
992 _Py_Ticker = _Py_CheckInterval;
993 tstate->tick_counter++;
994 #ifdef WITH_TSC
995 ticked = 1;
996 #endif
997 if (pendingcalls_to_do) {
998 if (Py_MakePendingCalls() < 0) {
999 why = WHY_EXCEPTION;
1000 goto on_error;
1002 if (pendingcalls_to_do)
1003 /* MakePendingCalls() didn't succeed.
1004 Force early re-execution of this
1005 "periodic" code, possibly after
1006 a thread switch */
1007 _Py_Ticker = 0;
1009 #ifdef WITH_THREAD
1010 if (interpreter_lock) {
1011 /* Give another thread a chance */
1013 if (PyThreadState_Swap(NULL) != tstate)
1014 Py_FatalError("ceval: tstate mix-up");
1015 PyThread_release_lock(interpreter_lock);
1017 /* Other threads may run now */
1019 PyThread_acquire_lock(interpreter_lock, 1);
1020 if (PyThreadState_Swap(tstate) != NULL)
1021 Py_FatalError("ceval: orphan tstate");
1023 /* Check for thread interrupts */
1025 if (tstate->async_exc != NULL) {
1026 x = tstate->async_exc;
1027 tstate->async_exc = NULL;
1028 PyErr_SetNone(x);
1029 Py_DECREF(x);
1030 why = WHY_EXCEPTION;
1031 goto on_error;
1034 #endif
1037 fast_next_opcode:
1038 f->f_lasti = INSTR_OFFSET();
1040 /* line-by-line tracing support */
1042 if (_Py_TracingPossible &&
1043 tstate->c_tracefunc != NULL && !tstate->tracing) {
1044 /* see maybe_call_line_trace
1045 for expository comments */
1046 f->f_stacktop = stack_pointer;
1048 err = maybe_call_line_trace(tstate->c_tracefunc,
1049 tstate->c_traceobj,
1050 f, &instr_lb, &instr_ub,
1051 &instr_prev);
1052 /* Reload possibly changed frame fields */
1053 JUMPTO(f->f_lasti);
1054 if (f->f_stacktop != NULL) {
1055 stack_pointer = f->f_stacktop;
1056 f->f_stacktop = NULL;
1058 if (err) {
1059 /* trace function raised an exception */
1060 goto on_error;
1064 /* Extract opcode and argument */
1066 opcode = NEXTOP();
1067 oparg = 0; /* allows oparg to be stored in a register because
1068 it doesn't have to be remembered across a full loop */
1069 if (HAS_ARG(opcode))
1070 oparg = NEXTARG();
1071 dispatch_opcode:
1072 #ifdef DYNAMIC_EXECUTION_PROFILE
1073 #ifdef DXPAIRS
1074 dxpairs[lastopcode][opcode]++;
1075 lastopcode = opcode;
1076 #endif
1077 dxp[opcode]++;
1078 #endif
1080 #ifdef LLTRACE
1081 /* Instruction tracing */
1083 if (lltrace) {
1084 if (HAS_ARG(opcode)) {
1085 printf("%d: %d, %d\n",
1086 f->f_lasti, opcode, oparg);
1088 else {
1089 printf("%d: %d\n",
1090 f->f_lasti, opcode);
1093 #endif
1095 /* Main switch on opcode */
1096 READ_TIMESTAMP(inst0);
1098 switch (opcode) {
1100 /* BEWARE!
1101 It is essential that any operation that fails sets either
1102 x to NULL, err to nonzero, or why to anything but WHY_NOT,
1103 and that no operation that succeeds does this! */
1105 /* case STOP_CODE: this is an error! */
1107 case NOP:
1108 goto fast_next_opcode;
1110 case LOAD_FAST:
1111 x = GETLOCAL(oparg);
1112 if (x != NULL) {
1113 Py_INCREF(x);
1114 PUSH(x);
1115 goto fast_next_opcode;
1117 format_exc_check_arg(PyExc_UnboundLocalError,
1118 UNBOUNDLOCAL_ERROR_MSG,
1119 PyTuple_GetItem(co->co_varnames, oparg));
1120 break;
1122 case LOAD_CONST:
1123 x = GETITEM(consts, oparg);
1124 Py_INCREF(x);
1125 PUSH(x);
1126 goto fast_next_opcode;
1128 PREDICTED_WITH_ARG(STORE_FAST);
1129 case STORE_FAST:
1130 v = POP();
1131 SETLOCAL(oparg, v);
1132 goto fast_next_opcode;
1134 case POP_TOP:
1135 v = POP();
1136 Py_DECREF(v);
1137 goto fast_next_opcode;
1139 case ROT_TWO:
1140 v = TOP();
1141 w = SECOND();
1142 SET_TOP(w);
1143 SET_SECOND(v);
1144 goto fast_next_opcode;
1146 case ROT_THREE:
1147 v = TOP();
1148 w = SECOND();
1149 x = THIRD();
1150 SET_TOP(w);
1151 SET_SECOND(x);
1152 SET_THIRD(v);
1153 goto fast_next_opcode;
1155 case ROT_FOUR:
1156 u = TOP();
1157 v = SECOND();
1158 w = THIRD();
1159 x = FOURTH();
1160 SET_TOP(v);
1161 SET_SECOND(w);
1162 SET_THIRD(x);
1163 SET_FOURTH(u);
1164 goto fast_next_opcode;
1166 case DUP_TOP:
1167 v = TOP();
1168 Py_INCREF(v);
1169 PUSH(v);
1170 goto fast_next_opcode;
1172 case DUP_TOPX:
1173 if (oparg == 2) {
1174 x = TOP();
1175 Py_INCREF(x);
1176 w = SECOND();
1177 Py_INCREF(w);
1178 STACKADJ(2);
1179 SET_TOP(x);
1180 SET_SECOND(w);
1181 goto fast_next_opcode;
1182 } else if (oparg == 3) {
1183 x = TOP();
1184 Py_INCREF(x);
1185 w = SECOND();
1186 Py_INCREF(w);
1187 v = THIRD();
1188 Py_INCREF(v);
1189 STACKADJ(3);
1190 SET_TOP(x);
1191 SET_SECOND(w);
1192 SET_THIRD(v);
1193 goto fast_next_opcode;
1195 Py_FatalError("invalid argument to DUP_TOPX"
1196 " (bytecode corruption?)");
1197 /* Never returns, so don't bother to set why. */
1198 break;
1200 case UNARY_POSITIVE:
1201 v = TOP();
1202 x = PyNumber_Positive(v);
1203 Py_DECREF(v);
1204 SET_TOP(x);
1205 if (x != NULL) continue;
1206 break;
1208 case UNARY_NEGATIVE:
1209 v = TOP();
1210 x = PyNumber_Negative(v);
1211 Py_DECREF(v);
1212 SET_TOP(x);
1213 if (x != NULL) continue;
1214 break;
1216 case UNARY_NOT:
1217 v = TOP();
1218 err = PyObject_IsTrue(v);
1219 Py_DECREF(v);
1220 if (err == 0) {
1221 Py_INCREF(Py_True);
1222 SET_TOP(Py_True);
1223 continue;
1225 else if (err > 0) {
1226 Py_INCREF(Py_False);
1227 SET_TOP(Py_False);
1228 err = 0;
1229 continue;
1231 STACKADJ(-1);
1232 break;
1234 case UNARY_CONVERT:
1235 v = TOP();
1236 x = PyObject_Repr(v);
1237 Py_DECREF(v);
1238 SET_TOP(x);
1239 if (x != NULL) continue;
1240 break;
1242 case UNARY_INVERT:
1243 v = TOP();
1244 x = PyNumber_Invert(v);
1245 Py_DECREF(v);
1246 SET_TOP(x);
1247 if (x != NULL) continue;
1248 break;
1250 case BINARY_POWER:
1251 w = POP();
1252 v = TOP();
1253 x = PyNumber_Power(v, w, Py_None);
1254 Py_DECREF(v);
1255 Py_DECREF(w);
1256 SET_TOP(x);
1257 if (x != NULL) continue;
1258 break;
1260 case BINARY_MULTIPLY:
1261 w = POP();
1262 v = TOP();
1263 x = PyNumber_Multiply(v, w);
1264 Py_DECREF(v);
1265 Py_DECREF(w);
1266 SET_TOP(x);
1267 if (x != NULL) continue;
1268 break;
1270 case BINARY_DIVIDE:
1271 if (!_Py_QnewFlag) {
1272 w = POP();
1273 v = TOP();
1274 x = PyNumber_Divide(v, w);
1275 Py_DECREF(v);
1276 Py_DECREF(w);
1277 SET_TOP(x);
1278 if (x != NULL) continue;
1279 break;
1281 /* -Qnew is in effect: fall through to
1282 BINARY_TRUE_DIVIDE */
1283 case BINARY_TRUE_DIVIDE:
1284 w = POP();
1285 v = TOP();
1286 x = PyNumber_TrueDivide(v, w);
1287 Py_DECREF(v);
1288 Py_DECREF(w);
1289 SET_TOP(x);
1290 if (x != NULL) continue;
1291 break;
1293 case BINARY_FLOOR_DIVIDE:
1294 w = POP();
1295 v = TOP();
1296 x = PyNumber_FloorDivide(v, w);
1297 Py_DECREF(v);
1298 Py_DECREF(w);
1299 SET_TOP(x);
1300 if (x != NULL) continue;
1301 break;
1303 case BINARY_MODULO:
1304 w = POP();
1305 v = TOP();
1306 if (PyString_CheckExact(v))
1307 x = PyString_Format(v, w);
1308 else
1309 x = PyNumber_Remainder(v, w);
1310 Py_DECREF(v);
1311 Py_DECREF(w);
1312 SET_TOP(x);
1313 if (x != NULL) continue;
1314 break;
1316 case BINARY_ADD:
1317 w = POP();
1318 v = TOP();
1319 if (PyInt_CheckExact(v) && PyInt_CheckExact(w)) {
1320 /* INLINE: int + int */
1321 register long a, b, i;
1322 a = PyInt_AS_LONG(v);
1323 b = PyInt_AS_LONG(w);
1324 /* cast to avoid undefined behaviour
1325 on overflow */
1326 i = (long)((unsigned long)a + b);
1327 if ((i^a) < 0 && (i^b) < 0)
1328 goto slow_add;
1329 x = PyInt_FromLong(i);
1331 else if (PyString_CheckExact(v) &&
1332 PyString_CheckExact(w)) {
1333 x = string_concatenate(v, w, f, next_instr);
1334 /* string_concatenate consumed the ref to v */
1335 goto skip_decref_vx;
1337 else {
1338 slow_add:
1339 x = PyNumber_Add(v, w);
1341 Py_DECREF(v);
1342 skip_decref_vx:
1343 Py_DECREF(w);
1344 SET_TOP(x);
1345 if (x != NULL) continue;
1346 break;
1348 case BINARY_SUBTRACT:
1349 w = POP();
1350 v = TOP();
1351 if (PyInt_CheckExact(v) && PyInt_CheckExact(w)) {
1352 /* INLINE: int - int */
1353 register long a, b, i;
1354 a = PyInt_AS_LONG(v);
1355 b = PyInt_AS_LONG(w);
1356 /* cast to avoid undefined behaviour
1357 on overflow */
1358 i = (long)((unsigned long)a - b);
1359 if ((i^a) < 0 && (i^~b) < 0)
1360 goto slow_sub;
1361 x = PyInt_FromLong(i);
1363 else {
1364 slow_sub:
1365 x = PyNumber_Subtract(v, w);
1367 Py_DECREF(v);
1368 Py_DECREF(w);
1369 SET_TOP(x);
1370 if (x != NULL) continue;
1371 break;
1373 case BINARY_SUBSCR:
1374 w = POP();
1375 v = TOP();
1376 if (PyList_CheckExact(v) && PyInt_CheckExact(w)) {
1377 /* INLINE: list[int] */
1378 Py_ssize_t i = PyInt_AsSsize_t(w);
1379 if (i < 0)
1380 i += PyList_GET_SIZE(v);
1381 if (i >= 0 && i < PyList_GET_SIZE(v)) {
1382 x = PyList_GET_ITEM(v, i);
1383 Py_INCREF(x);
1385 else
1386 goto slow_get;
1388 else
1389 slow_get:
1390 x = PyObject_GetItem(v, w);
1391 Py_DECREF(v);
1392 Py_DECREF(w);
1393 SET_TOP(x);
1394 if (x != NULL) continue;
1395 break;
1397 case BINARY_LSHIFT:
1398 w = POP();
1399 v = TOP();
1400 x = PyNumber_Lshift(v, w);
1401 Py_DECREF(v);
1402 Py_DECREF(w);
1403 SET_TOP(x);
1404 if (x != NULL) continue;
1405 break;
1407 case BINARY_RSHIFT:
1408 w = POP();
1409 v = TOP();
1410 x = PyNumber_Rshift(v, w);
1411 Py_DECREF(v);
1412 Py_DECREF(w);
1413 SET_TOP(x);
1414 if (x != NULL) continue;
1415 break;
1417 case BINARY_AND:
1418 w = POP();
1419 v = TOP();
1420 x = PyNumber_And(v, w);
1421 Py_DECREF(v);
1422 Py_DECREF(w);
1423 SET_TOP(x);
1424 if (x != NULL) continue;
1425 break;
1427 case BINARY_XOR:
1428 w = POP();
1429 v = TOP();
1430 x = PyNumber_Xor(v, w);
1431 Py_DECREF(v);
1432 Py_DECREF(w);
1433 SET_TOP(x);
1434 if (x != NULL) continue;
1435 break;
1437 case BINARY_OR:
1438 w = POP();
1439 v = TOP();
1440 x = PyNumber_Or(v, w);
1441 Py_DECREF(v);
1442 Py_DECREF(w);
1443 SET_TOP(x);
1444 if (x != NULL) continue;
1445 break;
1447 case LIST_APPEND:
1448 w = POP();
1449 v = PEEK(oparg);
1450 err = PyList_Append(v, w);
1451 Py_DECREF(w);
1452 if (err == 0) {
1453 PREDICT(JUMP_ABSOLUTE);
1454 continue;
1456 break;
1458 case SET_ADD:
1459 w = POP();
1460 v = stack_pointer[-oparg];
1461 err = PySet_Add(v, w);
1462 Py_DECREF(w);
1463 if (err == 0) {
1464 PREDICT(JUMP_ABSOLUTE);
1465 continue;
1467 break;
1469 case INPLACE_POWER:
1470 w = POP();
1471 v = TOP();
1472 x = PyNumber_InPlacePower(v, w, Py_None);
1473 Py_DECREF(v);
1474 Py_DECREF(w);
1475 SET_TOP(x);
1476 if (x != NULL) continue;
1477 break;
1479 case INPLACE_MULTIPLY:
1480 w = POP();
1481 v = TOP();
1482 x = PyNumber_InPlaceMultiply(v, w);
1483 Py_DECREF(v);
1484 Py_DECREF(w);
1485 SET_TOP(x);
1486 if (x != NULL) continue;
1487 break;
1489 case INPLACE_DIVIDE:
1490 if (!_Py_QnewFlag) {
1491 w = POP();
1492 v = TOP();
1493 x = PyNumber_InPlaceDivide(v, w);
1494 Py_DECREF(v);
1495 Py_DECREF(w);
1496 SET_TOP(x);
1497 if (x != NULL) continue;
1498 break;
1500 /* -Qnew is in effect: fall through to
1501 INPLACE_TRUE_DIVIDE */
1502 case INPLACE_TRUE_DIVIDE:
1503 w = POP();
1504 v = TOP();
1505 x = PyNumber_InPlaceTrueDivide(v, w);
1506 Py_DECREF(v);
1507 Py_DECREF(w);
1508 SET_TOP(x);
1509 if (x != NULL) continue;
1510 break;
1512 case INPLACE_FLOOR_DIVIDE:
1513 w = POP();
1514 v = TOP();
1515 x = PyNumber_InPlaceFloorDivide(v, w);
1516 Py_DECREF(v);
1517 Py_DECREF(w);
1518 SET_TOP(x);
1519 if (x != NULL) continue;
1520 break;
1522 case INPLACE_MODULO:
1523 w = POP();
1524 v = TOP();
1525 x = PyNumber_InPlaceRemainder(v, w);
1526 Py_DECREF(v);
1527 Py_DECREF(w);
1528 SET_TOP(x);
1529 if (x != NULL) continue;
1530 break;
1532 case INPLACE_ADD:
1533 w = POP();
1534 v = TOP();
1535 if (PyInt_CheckExact(v) && PyInt_CheckExact(w)) {
1536 /* INLINE: int + int */
1537 register long a, b, i;
1538 a = PyInt_AS_LONG(v);
1539 b = PyInt_AS_LONG(w);
1540 i = a + b;
1541 if ((i^a) < 0 && (i^b) < 0)
1542 goto slow_iadd;
1543 x = PyInt_FromLong(i);
1545 else if (PyString_CheckExact(v) &&
1546 PyString_CheckExact(w)) {
1547 x = string_concatenate(v, w, f, next_instr);
1548 /* string_concatenate consumed the ref to v */
1549 goto skip_decref_v;
1551 else {
1552 slow_iadd:
1553 x = PyNumber_InPlaceAdd(v, w);
1555 Py_DECREF(v);
1556 skip_decref_v:
1557 Py_DECREF(w);
1558 SET_TOP(x);
1559 if (x != NULL) continue;
1560 break;
1562 case INPLACE_SUBTRACT:
1563 w = POP();
1564 v = TOP();
1565 if (PyInt_CheckExact(v) && PyInt_CheckExact(w)) {
1566 /* INLINE: int - int */
1567 register long a, b, i;
1568 a = PyInt_AS_LONG(v);
1569 b = PyInt_AS_LONG(w);
1570 i = a - b;
1571 if ((i^a) < 0 && (i^~b) < 0)
1572 goto slow_isub;
1573 x = PyInt_FromLong(i);
1575 else {
1576 slow_isub:
1577 x = PyNumber_InPlaceSubtract(v, w);
1579 Py_DECREF(v);
1580 Py_DECREF(w);
1581 SET_TOP(x);
1582 if (x != NULL) continue;
1583 break;
1585 case INPLACE_LSHIFT:
1586 w = POP();
1587 v = TOP();
1588 x = PyNumber_InPlaceLshift(v, w);
1589 Py_DECREF(v);
1590 Py_DECREF(w);
1591 SET_TOP(x);
1592 if (x != NULL) continue;
1593 break;
1595 case INPLACE_RSHIFT:
1596 w = POP();
1597 v = TOP();
1598 x = PyNumber_InPlaceRshift(v, w);
1599 Py_DECREF(v);
1600 Py_DECREF(w);
1601 SET_TOP(x);
1602 if (x != NULL) continue;
1603 break;
1605 case INPLACE_AND:
1606 w = POP();
1607 v = TOP();
1608 x = PyNumber_InPlaceAnd(v, w);
1609 Py_DECREF(v);
1610 Py_DECREF(w);
1611 SET_TOP(x);
1612 if (x != NULL) continue;
1613 break;
1615 case INPLACE_XOR:
1616 w = POP();
1617 v = TOP();
1618 x = PyNumber_InPlaceXor(v, w);
1619 Py_DECREF(v);
1620 Py_DECREF(w);
1621 SET_TOP(x);
1622 if (x != NULL) continue;
1623 break;
1625 case INPLACE_OR:
1626 w = POP();
1627 v = TOP();
1628 x = PyNumber_InPlaceOr(v, w);
1629 Py_DECREF(v);
1630 Py_DECREF(w);
1631 SET_TOP(x);
1632 if (x != NULL) continue;
1633 break;
1635 case SLICE+0:
1636 case SLICE+1:
1637 case SLICE+2:
1638 case SLICE+3:
1639 if ((opcode-SLICE) & 2)
1640 w = POP();
1641 else
1642 w = NULL;
1643 if ((opcode-SLICE) & 1)
1644 v = POP();
1645 else
1646 v = NULL;
1647 u = TOP();
1648 x = apply_slice(u, v, w);
1649 Py_DECREF(u);
1650 Py_XDECREF(v);
1651 Py_XDECREF(w);
1652 SET_TOP(x);
1653 if (x != NULL) continue;
1654 break;
1656 case STORE_SLICE+0:
1657 case STORE_SLICE+1:
1658 case STORE_SLICE+2:
1659 case STORE_SLICE+3:
1660 if ((opcode-STORE_SLICE) & 2)
1661 w = POP();
1662 else
1663 w = NULL;
1664 if ((opcode-STORE_SLICE) & 1)
1665 v = POP();
1666 else
1667 v = NULL;
1668 u = POP();
1669 t = POP();
1670 err = assign_slice(u, v, w, t); /* u[v:w] = t */
1671 Py_DECREF(t);
1672 Py_DECREF(u);
1673 Py_XDECREF(v);
1674 Py_XDECREF(w);
1675 if (err == 0) continue;
1676 break;
1678 case DELETE_SLICE+0:
1679 case DELETE_SLICE+1:
1680 case DELETE_SLICE+2:
1681 case DELETE_SLICE+3:
1682 if ((opcode-DELETE_SLICE) & 2)
1683 w = POP();
1684 else
1685 w = NULL;
1686 if ((opcode-DELETE_SLICE) & 1)
1687 v = POP();
1688 else
1689 v = NULL;
1690 u = POP();
1691 err = assign_slice(u, v, w, (PyObject *)NULL);
1692 /* del u[v:w] */
1693 Py_DECREF(u);
1694 Py_XDECREF(v);
1695 Py_XDECREF(w);
1696 if (err == 0) continue;
1697 break;
1699 case STORE_SUBSCR:
1700 w = TOP();
1701 v = SECOND();
1702 u = THIRD();
1703 STACKADJ(-3);
1704 /* v[w] = u */
1705 err = PyObject_SetItem(v, w, u);
1706 Py_DECREF(u);
1707 Py_DECREF(v);
1708 Py_DECREF(w);
1709 if (err == 0) continue;
1710 break;
1712 case DELETE_SUBSCR:
1713 w = TOP();
1714 v = SECOND();
1715 STACKADJ(-2);
1716 /* del v[w] */
1717 err = PyObject_DelItem(v, w);
1718 Py_DECREF(v);
1719 Py_DECREF(w);
1720 if (err == 0) continue;
1721 break;
1723 case PRINT_EXPR:
1724 v = POP();
1725 w = PySys_GetObject("displayhook");
1726 if (w == NULL) {
1727 PyErr_SetString(PyExc_RuntimeError,
1728 "lost sys.displayhook");
1729 err = -1;
1730 x = NULL;
1732 if (err == 0) {
1733 x = PyTuple_Pack(1, v);
1734 if (x == NULL)
1735 err = -1;
1737 if (err == 0) {
1738 w = PyEval_CallObject(w, x);
1739 Py_XDECREF(w);
1740 if (w == NULL)
1741 err = -1;
1743 Py_DECREF(v);
1744 Py_XDECREF(x);
1745 break;
1747 case PRINT_ITEM_TO:
1748 w = stream = POP();
1749 /* fall through to PRINT_ITEM */
1751 case PRINT_ITEM:
1752 v = POP();
1753 if (stream == NULL || stream == Py_None) {
1754 w = PySys_GetObject("stdout");
1755 if (w == NULL) {
1756 PyErr_SetString(PyExc_RuntimeError,
1757 "lost sys.stdout");
1758 err = -1;
1761 /* PyFile_SoftSpace() can exececute arbitrary code
1762 if sys.stdout is an instance with a __getattr__.
1763 If __getattr__ raises an exception, w will
1764 be freed, so we need to prevent that temporarily. */
1765 Py_XINCREF(w);
1766 if (w != NULL && PyFile_SoftSpace(w, 0))
1767 err = PyFile_WriteString(" ", w);
1768 if (err == 0)
1769 err = PyFile_WriteObject(v, w, Py_PRINT_RAW);
1770 if (err == 0) {
1771 /* XXX move into writeobject() ? */
1772 if (PyString_Check(v)) {
1773 char *s = PyString_AS_STRING(v);
1774 Py_ssize_t len = PyString_GET_SIZE(v);
1775 if (len == 0 ||
1776 !isspace(Py_CHARMASK(s[len-1])) ||
1777 s[len-1] == ' ')
1778 PyFile_SoftSpace(w, 1);
1780 #ifdef Py_USING_UNICODE
1781 else if (PyUnicode_Check(v)) {
1782 Py_UNICODE *s = PyUnicode_AS_UNICODE(v);
1783 Py_ssize_t len = PyUnicode_GET_SIZE(v);
1784 if (len == 0 ||
1785 !Py_UNICODE_ISSPACE(s[len-1]) ||
1786 s[len-1] == ' ')
1787 PyFile_SoftSpace(w, 1);
1789 #endif
1790 else
1791 PyFile_SoftSpace(w, 1);
1793 Py_XDECREF(w);
1794 Py_DECREF(v);
1795 Py_XDECREF(stream);
1796 stream = NULL;
1797 if (err == 0)
1798 continue;
1799 break;
1801 case PRINT_NEWLINE_TO:
1802 w = stream = POP();
1803 /* fall through to PRINT_NEWLINE */
1805 case PRINT_NEWLINE:
1806 if (stream == NULL || stream == Py_None) {
1807 w = PySys_GetObject("stdout");
1808 if (w == NULL) {
1809 PyErr_SetString(PyExc_RuntimeError,
1810 "lost sys.stdout");
1811 why = WHY_EXCEPTION;
1814 if (w != NULL) {
1815 /* w.write() may replace sys.stdout, so we
1816 * have to keep our reference to it */
1817 Py_INCREF(w);
1818 err = PyFile_WriteString("\n", w);
1819 if (err == 0)
1820 PyFile_SoftSpace(w, 0);
1821 Py_DECREF(w);
1823 Py_XDECREF(stream);
1824 stream = NULL;
1825 break;
1828 #ifdef CASE_TOO_BIG
1829 default: switch (opcode) {
1830 #endif
1831 case RAISE_VARARGS:
1832 u = v = w = NULL;
1833 switch (oparg) {
1834 case 3:
1835 u = POP(); /* traceback */
1836 /* Fallthrough */
1837 case 2:
1838 v = POP(); /* value */
1839 /* Fallthrough */
1840 case 1:
1841 w = POP(); /* exc */
1842 case 0: /* Fallthrough */
1843 why = do_raise(w, v, u);
1844 break;
1845 default:
1846 PyErr_SetString(PyExc_SystemError,
1847 "bad RAISE_VARARGS oparg");
1848 why = WHY_EXCEPTION;
1849 break;
1851 break;
1853 case LOAD_LOCALS:
1854 if ((x = f->f_locals) != NULL) {
1855 Py_INCREF(x);
1856 PUSH(x);
1857 continue;
1859 PyErr_SetString(PyExc_SystemError, "no locals");
1860 break;
1862 case RETURN_VALUE:
1863 retval = POP();
1864 why = WHY_RETURN;
1865 goto fast_block_end;
1867 case YIELD_VALUE:
1868 retval = POP();
1869 f->f_stacktop = stack_pointer;
1870 why = WHY_YIELD;
1871 goto fast_yield;
1873 case EXEC_STMT:
1874 w = TOP();
1875 v = SECOND();
1876 u = THIRD();
1877 STACKADJ(-3);
1878 READ_TIMESTAMP(intr0);
1879 err = exec_statement(f, u, v, w);
1880 READ_TIMESTAMP(intr1);
1881 Py_DECREF(u);
1882 Py_DECREF(v);
1883 Py_DECREF(w);
1884 break;
1886 case POP_BLOCK:
1888 PyTryBlock *b = PyFrame_BlockPop(f);
1889 while (STACK_LEVEL() > b->b_level) {
1890 v = POP();
1891 Py_DECREF(v);
1894 continue;
1896 PREDICTED(END_FINALLY);
1897 case END_FINALLY:
1898 v = POP();
1899 if (PyInt_Check(v)) {
1900 why = (enum why_code) PyInt_AS_LONG(v);
1901 assert(why != WHY_YIELD);
1902 if (why == WHY_RETURN ||
1903 why == WHY_CONTINUE)
1904 retval = POP();
1906 else if (PyExceptionClass_Check(v) ||
1907 PyString_Check(v)) {
1908 w = POP();
1909 u = POP();
1910 PyErr_Restore(v, w, u);
1911 why = WHY_RERAISE;
1912 break;
1914 else if (v != Py_None) {
1915 PyErr_SetString(PyExc_SystemError,
1916 "'finally' pops bad exception");
1917 why = WHY_EXCEPTION;
1919 Py_DECREF(v);
1920 break;
1922 case BUILD_CLASS:
1923 u = TOP();
1924 v = SECOND();
1925 w = THIRD();
1926 STACKADJ(-2);
1927 x = build_class(u, v, w);
1928 SET_TOP(x);
1929 Py_DECREF(u);
1930 Py_DECREF(v);
1931 Py_DECREF(w);
1932 break;
1934 case STORE_NAME:
1935 w = GETITEM(names, oparg);
1936 v = POP();
1937 if ((x = f->f_locals) != NULL) {
1938 if (PyDict_CheckExact(x))
1939 err = PyDict_SetItem(x, w, v);
1940 else
1941 err = PyObject_SetItem(x, w, v);
1942 Py_DECREF(v);
1943 if (err == 0) continue;
1944 break;
1946 PyErr_Format(PyExc_SystemError,
1947 "no locals found when storing %s",
1948 PyObject_REPR(w));
1949 break;
1951 case DELETE_NAME:
1952 w = GETITEM(names, oparg);
1953 if ((x = f->f_locals) != NULL) {
1954 if ((err = PyObject_DelItem(x, w)) != 0)
1955 format_exc_check_arg(PyExc_NameError,
1956 NAME_ERROR_MSG,
1958 break;
1960 PyErr_Format(PyExc_SystemError,
1961 "no locals when deleting %s",
1962 PyObject_REPR(w));
1963 break;
1965 PREDICTED_WITH_ARG(UNPACK_SEQUENCE);
1966 case UNPACK_SEQUENCE:
1967 v = POP();
1968 if (PyTuple_CheckExact(v) &&
1969 PyTuple_GET_SIZE(v) == oparg) {
1970 PyObject **items = \
1971 ((PyTupleObject *)v)->ob_item;
1972 while (oparg--) {
1973 w = items[oparg];
1974 Py_INCREF(w);
1975 PUSH(w);
1977 Py_DECREF(v);
1978 continue;
1979 } else if (PyList_CheckExact(v) &&
1980 PyList_GET_SIZE(v) == oparg) {
1981 PyObject **items = \
1982 ((PyListObject *)v)->ob_item;
1983 while (oparg--) {
1984 w = items[oparg];
1985 Py_INCREF(w);
1986 PUSH(w);
1988 } else if (unpack_iterable(v, oparg,
1989 stack_pointer + oparg)) {
1990 STACKADJ(oparg);
1991 } else {
1992 /* unpack_iterable() raised an exception */
1993 why = WHY_EXCEPTION;
1995 Py_DECREF(v);
1996 break;
1998 case STORE_ATTR:
1999 w = GETITEM(names, oparg);
2000 v = TOP();
2001 u = SECOND();
2002 STACKADJ(-2);
2003 err = PyObject_SetAttr(v, w, u); /* v.w = u */
2004 Py_DECREF(v);
2005 Py_DECREF(u);
2006 if (err == 0) continue;
2007 break;
2009 case DELETE_ATTR:
2010 w = GETITEM(names, oparg);
2011 v = POP();
2012 err = PyObject_SetAttr(v, w, (PyObject *)NULL);
2013 /* del v.w */
2014 Py_DECREF(v);
2015 break;
2017 case STORE_GLOBAL:
2018 w = GETITEM(names, oparg);
2019 v = POP();
2020 err = PyDict_SetItem(f->f_globals, w, v);
2021 Py_DECREF(v);
2022 if (err == 0) continue;
2023 break;
2025 case DELETE_GLOBAL:
2026 w = GETITEM(names, oparg);
2027 if ((err = PyDict_DelItem(f->f_globals, w)) != 0)
2028 format_exc_check_arg(
2029 PyExc_NameError, GLOBAL_NAME_ERROR_MSG, w);
2030 break;
2032 case LOAD_NAME:
2033 w = GETITEM(names, oparg);
2034 if ((v = f->f_locals) == NULL) {
2035 PyErr_Format(PyExc_SystemError,
2036 "no locals when loading %s",
2037 PyObject_REPR(w));
2038 why = WHY_EXCEPTION;
2039 break;
2041 if (PyDict_CheckExact(v)) {
2042 x = PyDict_GetItem(v, w);
2043 Py_XINCREF(x);
2045 else {
2046 x = PyObject_GetItem(v, w);
2047 if (x == NULL && PyErr_Occurred()) {
2048 if (!PyErr_ExceptionMatches(
2049 PyExc_KeyError))
2050 break;
2051 PyErr_Clear();
2054 if (x == NULL) {
2055 x = PyDict_GetItem(f->f_globals, w);
2056 if (x == NULL) {
2057 x = PyDict_GetItem(f->f_builtins, w);
2058 if (x == NULL) {
2059 format_exc_check_arg(
2060 PyExc_NameError,
2061 NAME_ERROR_MSG, w);
2062 break;
2065 Py_INCREF(x);
2067 PUSH(x);
2068 continue;
2070 case LOAD_GLOBAL:
2071 w = GETITEM(names, oparg);
2072 if (PyString_CheckExact(w)) {
2073 /* Inline the PyDict_GetItem() calls.
2074 WARNING: this is an extreme speed hack.
2075 Do not try this at home. */
2076 long hash = ((PyStringObject *)w)->ob_shash;
2077 if (hash != -1) {
2078 PyDictObject *d;
2079 PyDictEntry *e;
2080 d = (PyDictObject *)(f->f_globals);
2081 e = d->ma_lookup(d, w, hash);
2082 if (e == NULL) {
2083 x = NULL;
2084 break;
2086 x = e->me_value;
2087 if (x != NULL) {
2088 Py_INCREF(x);
2089 PUSH(x);
2090 continue;
2092 d = (PyDictObject *)(f->f_builtins);
2093 e = d->ma_lookup(d, w, hash);
2094 if (e == NULL) {
2095 x = NULL;
2096 break;
2098 x = e->me_value;
2099 if (x != NULL) {
2100 Py_INCREF(x);
2101 PUSH(x);
2102 continue;
2104 goto load_global_error;
2107 /* This is the un-inlined version of the code above */
2108 x = PyDict_GetItem(f->f_globals, w);
2109 if (x == NULL) {
2110 x = PyDict_GetItem(f->f_builtins, w);
2111 if (x == NULL) {
2112 load_global_error:
2113 format_exc_check_arg(
2114 PyExc_NameError,
2115 GLOBAL_NAME_ERROR_MSG, w);
2116 break;
2119 Py_INCREF(x);
2120 PUSH(x);
2121 continue;
2123 case DELETE_FAST:
2124 x = GETLOCAL(oparg);
2125 if (x != NULL) {
2126 SETLOCAL(oparg, NULL);
2127 continue;
2129 format_exc_check_arg(
2130 PyExc_UnboundLocalError,
2131 UNBOUNDLOCAL_ERROR_MSG,
2132 PyTuple_GetItem(co->co_varnames, oparg)
2134 break;
2136 case LOAD_CLOSURE:
2137 x = freevars[oparg];
2138 Py_INCREF(x);
2139 PUSH(x);
2140 if (x != NULL) continue;
2141 break;
2143 case LOAD_DEREF:
2144 x = freevars[oparg];
2145 w = PyCell_Get(x);
2146 if (w != NULL) {
2147 PUSH(w);
2148 continue;
2150 err = -1;
2151 /* Don't stomp existing exception */
2152 if (PyErr_Occurred())
2153 break;
2154 if (oparg < PyTuple_GET_SIZE(co->co_cellvars)) {
2155 v = PyTuple_GET_ITEM(co->co_cellvars,
2156 oparg);
2157 format_exc_check_arg(
2158 PyExc_UnboundLocalError,
2159 UNBOUNDLOCAL_ERROR_MSG,
2161 } else {
2162 v = PyTuple_GET_ITEM(co->co_freevars, oparg -
2163 PyTuple_GET_SIZE(co->co_cellvars));
2164 format_exc_check_arg(PyExc_NameError,
2165 UNBOUNDFREE_ERROR_MSG, v);
2167 break;
2169 case STORE_DEREF:
2170 w = POP();
2171 x = freevars[oparg];
2172 PyCell_Set(x, w);
2173 Py_DECREF(w);
2174 continue;
2176 case BUILD_TUPLE:
2177 x = PyTuple_New(oparg);
2178 if (x != NULL) {
2179 for (; --oparg >= 0;) {
2180 w = POP();
2181 PyTuple_SET_ITEM(x, oparg, w);
2183 PUSH(x);
2184 continue;
2186 break;
2188 case BUILD_LIST:
2189 x = PyList_New(oparg);
2190 if (x != NULL) {
2191 for (; --oparg >= 0;) {
2192 w = POP();
2193 PyList_SET_ITEM(x, oparg, w);
2195 PUSH(x);
2196 continue;
2198 break;
2200 case BUILD_SET:
2201 x = PySet_New(NULL);
2202 if (x != NULL) {
2203 for (; --oparg >= 0;) {
2204 w = POP();
2205 if (err == 0)
2206 err = PySet_Add(x, w);
2207 Py_DECREF(w);
2209 if (err != 0) {
2210 Py_DECREF(x);
2211 break;
2213 PUSH(x);
2214 continue;
2216 break;
2219 case BUILD_MAP:
2220 x = _PyDict_NewPresized((Py_ssize_t)oparg);
2221 PUSH(x);
2222 if (x != NULL) continue;
2223 break;
2225 case STORE_MAP:
2226 w = TOP(); /* key */
2227 u = SECOND(); /* value */
2228 v = THIRD(); /* dict */
2229 STACKADJ(-2);
2230 assert (PyDict_CheckExact(v));
2231 err = PyDict_SetItem(v, w, u); /* v[w] = u */
2232 Py_DECREF(u);
2233 Py_DECREF(w);
2234 if (err == 0) continue;
2235 break;
2237 case MAP_ADD:
2238 w = TOP(); /* key */
2239 u = SECOND(); /* value */
2240 STACKADJ(-2);
2241 v = stack_pointer[-oparg]; /* dict */
2242 assert (PyDict_CheckExact(v));
2243 err = PyDict_SetItem(v, w, u); /* v[w] = u */
2244 Py_DECREF(u);
2245 Py_DECREF(w);
2246 if (err == 0) {
2247 PREDICT(JUMP_ABSOLUTE);
2248 continue;
2250 break;
2252 case LOAD_ATTR:
2253 w = GETITEM(names, oparg);
2254 v = TOP();
2255 x = PyObject_GetAttr(v, w);
2256 Py_DECREF(v);
2257 SET_TOP(x);
2258 if (x != NULL) continue;
2259 break;
2261 case COMPARE_OP:
2262 w = POP();
2263 v = TOP();
2264 if (PyInt_CheckExact(w) && PyInt_CheckExact(v)) {
2265 /* INLINE: cmp(int, int) */
2266 register long a, b;
2267 register int res;
2268 a = PyInt_AS_LONG(v);
2269 b = PyInt_AS_LONG(w);
2270 switch (oparg) {
2271 case PyCmp_LT: res = a < b; break;
2272 case PyCmp_LE: res = a <= b; break;
2273 case PyCmp_EQ: res = a == b; break;
2274 case PyCmp_NE: res = a != b; break;
2275 case PyCmp_GT: res = a > b; break;
2276 case PyCmp_GE: res = a >= b; break;
2277 case PyCmp_IS: res = v == w; break;
2278 case PyCmp_IS_NOT: res = v != w; break;
2279 default: goto slow_compare;
2281 x = res ? Py_True : Py_False;
2282 Py_INCREF(x);
2284 else {
2285 slow_compare:
2286 x = cmp_outcome(oparg, v, w);
2288 Py_DECREF(v);
2289 Py_DECREF(w);
2290 SET_TOP(x);
2291 if (x == NULL) break;
2292 PREDICT(POP_JUMP_IF_FALSE);
2293 PREDICT(POP_JUMP_IF_TRUE);
2294 continue;
2296 case IMPORT_NAME:
2297 w = GETITEM(names, oparg);
2298 x = PyDict_GetItemString(f->f_builtins, "__import__");
2299 if (x == NULL) {
2300 PyErr_SetString(PyExc_ImportError,
2301 "__import__ not found");
2302 break;
2304 Py_INCREF(x);
2305 v = POP();
2306 u = TOP();
2307 if (PyInt_AsLong(u) != -1 || PyErr_Occurred())
2308 w = PyTuple_Pack(5,
2310 f->f_globals,
2311 f->f_locals == NULL ?
2312 Py_None : f->f_locals,
2315 else
2316 w = PyTuple_Pack(4,
2318 f->f_globals,
2319 f->f_locals == NULL ?
2320 Py_None : f->f_locals,
2322 Py_DECREF(v);
2323 Py_DECREF(u);
2324 if (w == NULL) {
2325 u = POP();
2326 Py_DECREF(x);
2327 x = NULL;
2328 break;
2330 READ_TIMESTAMP(intr0);
2331 v = x;
2332 x = PyEval_CallObject(v, w);
2333 Py_DECREF(v);
2334 READ_TIMESTAMP(intr1);
2335 Py_DECREF(w);
2336 SET_TOP(x);
2337 if (x != NULL) continue;
2338 break;
2340 case IMPORT_STAR:
2341 v = POP();
2342 PyFrame_FastToLocals(f);
2343 if ((x = f->f_locals) == NULL) {
2344 PyErr_SetString(PyExc_SystemError,
2345 "no locals found during 'import *'");
2346 break;
2348 READ_TIMESTAMP(intr0);
2349 err = import_all_from(x, v);
2350 READ_TIMESTAMP(intr1);
2351 PyFrame_LocalsToFast(f, 0);
2352 Py_DECREF(v);
2353 if (err == 0) continue;
2354 break;
2356 case IMPORT_FROM:
2357 w = GETITEM(names, oparg);
2358 v = TOP();
2359 READ_TIMESTAMP(intr0);
2360 x = import_from(v, w);
2361 READ_TIMESTAMP(intr1);
2362 PUSH(x);
2363 if (x != NULL) continue;
2364 break;
2366 case JUMP_FORWARD:
2367 JUMPBY(oparg);
2368 goto fast_next_opcode;
2370 PREDICTED_WITH_ARG(POP_JUMP_IF_FALSE);
2371 case POP_JUMP_IF_FALSE:
2372 w = POP();
2373 if (w == Py_True) {
2374 Py_DECREF(w);
2375 goto fast_next_opcode;
2377 if (w == Py_False) {
2378 Py_DECREF(w);
2379 JUMPTO(oparg);
2380 goto fast_next_opcode;
2382 err = PyObject_IsTrue(w);
2383 Py_DECREF(w);
2384 if (err > 0)
2385 err = 0;
2386 else if (err == 0)
2387 JUMPTO(oparg);
2388 else
2389 break;
2390 continue;
2392 PREDICTED_WITH_ARG(POP_JUMP_IF_TRUE);
2393 case POP_JUMP_IF_TRUE:
2394 w = POP();
2395 if (w == Py_False) {
2396 Py_DECREF(w);
2397 goto fast_next_opcode;
2399 if (w == Py_True) {
2400 Py_DECREF(w);
2401 JUMPTO(oparg);
2402 goto fast_next_opcode;
2404 err = PyObject_IsTrue(w);
2405 Py_DECREF(w);
2406 if (err > 0) {
2407 err = 0;
2408 JUMPTO(oparg);
2410 else if (err == 0)
2412 else
2413 break;
2414 continue;
2416 case JUMP_IF_FALSE_OR_POP:
2417 w = TOP();
2418 if (w == Py_True) {
2419 STACKADJ(-1);
2420 Py_DECREF(w);
2421 goto fast_next_opcode;
2423 if (w == Py_False) {
2424 JUMPTO(oparg);
2425 goto fast_next_opcode;
2427 err = PyObject_IsTrue(w);
2428 if (err > 0) {
2429 STACKADJ(-1);
2430 Py_DECREF(w);
2431 err = 0;
2433 else if (err == 0)
2434 JUMPTO(oparg);
2435 else
2436 break;
2437 continue;
2439 case JUMP_IF_TRUE_OR_POP:
2440 w = TOP();
2441 if (w == Py_False) {
2442 STACKADJ(-1);
2443 Py_DECREF(w);
2444 goto fast_next_opcode;
2446 if (w == Py_True) {
2447 JUMPTO(oparg);
2448 goto fast_next_opcode;
2450 err = PyObject_IsTrue(w);
2451 if (err > 0) {
2452 err = 0;
2453 JUMPTO(oparg);
2455 else if (err == 0) {
2456 STACKADJ(-1);
2457 Py_DECREF(w);
2459 else
2460 break;
2461 continue;
2463 PREDICTED_WITH_ARG(JUMP_ABSOLUTE);
2464 case JUMP_ABSOLUTE:
2465 JUMPTO(oparg);
2466 #if FAST_LOOPS
2467 /* Enabling this path speeds-up all while and for-loops by bypassing
2468 the per-loop checks for signals. By default, this should be turned-off
2469 because it prevents detection of a control-break in tight loops like
2470 "while 1: pass". Compile with this option turned-on when you need
2471 the speed-up and do not need break checking inside tight loops (ones
2472 that contain only instructions ending with goto fast_next_opcode).
2474 goto fast_next_opcode;
2475 #else
2476 continue;
2477 #endif
2479 case GET_ITER:
2480 /* before: [obj]; after [getiter(obj)] */
2481 v = TOP();
2482 x = PyObject_GetIter(v);
2483 Py_DECREF(v);
2484 if (x != NULL) {
2485 SET_TOP(x);
2486 PREDICT(FOR_ITER);
2487 continue;
2489 STACKADJ(-1);
2490 break;
2492 PREDICTED_WITH_ARG(FOR_ITER);
2493 case FOR_ITER:
2494 /* before: [iter]; after: [iter, iter()] *or* [] */
2495 v = TOP();
2496 x = (*v->ob_type->tp_iternext)(v);
2497 if (x != NULL) {
2498 PUSH(x);
2499 PREDICT(STORE_FAST);
2500 PREDICT(UNPACK_SEQUENCE);
2501 continue;
2503 if (PyErr_Occurred()) {
2504 if (!PyErr_ExceptionMatches(
2505 PyExc_StopIteration))
2506 break;
2507 PyErr_Clear();
2509 /* iterator ended normally */
2510 x = v = POP();
2511 Py_DECREF(v);
2512 JUMPBY(oparg);
2513 continue;
2515 case BREAK_LOOP:
2516 why = WHY_BREAK;
2517 goto fast_block_end;
2519 case CONTINUE_LOOP:
2520 retval = PyInt_FromLong(oparg);
2521 if (!retval) {
2522 x = NULL;
2523 break;
2525 why = WHY_CONTINUE;
2526 goto fast_block_end;
2528 case SETUP_LOOP:
2529 case SETUP_EXCEPT:
2530 case SETUP_FINALLY:
2531 /* NOTE: If you add any new block-setup opcodes that
2532 are not try/except/finally handlers, you may need
2533 to update the PyGen_NeedsFinalizing() function.
2536 PyFrame_BlockSetup(f, opcode, INSTR_OFFSET() + oparg,
2537 STACK_LEVEL());
2538 continue;
2540 case SETUP_WITH:
2542 static PyObject *exit, *enter;
2543 w = TOP();
2544 x = special_lookup(w, "__exit__", &exit);
2545 if (!x)
2546 break;
2547 SET_TOP(x);
2548 u = special_lookup(w, "__enter__", &enter);
2549 Py_DECREF(w);
2550 if (!u) {
2551 x = NULL;
2552 break;
2554 x = PyObject_CallFunctionObjArgs(u, NULL);
2555 Py_DECREF(u);
2556 if (!x)
2557 break;
2558 /* Setup a finally block (SETUP_WITH as a block is
2559 equivalent to SETUP_FINALLY except it normalizes
2560 the exception) before pushing the result of
2561 __enter__ on the stack. */
2562 PyFrame_BlockSetup(f, SETUP_WITH, INSTR_OFFSET() + oparg,
2563 STACK_LEVEL());
2565 PUSH(x);
2566 continue;
2569 case WITH_CLEANUP:
2571 /* At the top of the stack are 1-3 values indicating
2572 how/why we entered the finally clause:
2573 - TOP = None
2574 - (TOP, SECOND) = (WHY_{RETURN,CONTINUE}), retval
2575 - TOP = WHY_*; no retval below it
2576 - (TOP, SECOND, THIRD) = exc_info()
2577 Below them is EXIT, the context.__exit__ bound method.
2578 In the last case, we must call
2579 EXIT(TOP, SECOND, THIRD)
2580 otherwise we must call
2581 EXIT(None, None, None)
2583 In all cases, we remove EXIT from the stack, leaving
2584 the rest in the same order.
2586 In addition, if the stack represents an exception,
2587 *and* the function call returns a 'true' value, we
2588 "zap" this information, to prevent END_FINALLY from
2589 re-raising the exception. (But non-local gotos
2590 should still be resumed.)
2593 PyObject *exit_func;
2595 u = POP();
2596 if (u == Py_None) {
2597 exit_func = TOP();
2598 SET_TOP(u);
2599 v = w = Py_None;
2601 else if (PyInt_Check(u)) {
2602 switch(PyInt_AS_LONG(u)) {
2603 case WHY_RETURN:
2604 case WHY_CONTINUE:
2605 /* Retval in TOP. */
2606 exit_func = SECOND();
2607 SET_SECOND(TOP());
2608 SET_TOP(u);
2609 break;
2610 default:
2611 exit_func = TOP();
2612 SET_TOP(u);
2613 break;
2615 u = v = w = Py_None;
2617 else {
2618 v = TOP();
2619 w = SECOND();
2620 exit_func = THIRD();
2621 SET_TOP(u);
2622 SET_SECOND(v);
2623 SET_THIRD(w);
2625 /* XXX Not the fastest way to call it... */
2626 x = PyObject_CallFunctionObjArgs(exit_func, u, v, w,
2627 NULL);
2628 Py_DECREF(exit_func);
2629 if (x == NULL)
2630 break; /* Go to error exit */
2632 if (u != Py_None)
2633 err = PyObject_IsTrue(x);
2634 else
2635 err = 0;
2636 Py_DECREF(x);
2638 if (err < 0)
2639 break; /* Go to error exit */
2640 else if (err > 0) {
2641 err = 0;
2642 /* There was an exception and a true return */
2643 STACKADJ(-2);
2644 Py_INCREF(Py_None);
2645 SET_TOP(Py_None);
2646 Py_DECREF(u);
2647 Py_DECREF(v);
2648 Py_DECREF(w);
2649 } else {
2650 /* The stack was rearranged to remove EXIT
2651 above. Let END_FINALLY do its thing */
2653 PREDICT(END_FINALLY);
2654 break;
2657 case CALL_FUNCTION:
2659 PyObject **sp;
2660 PCALL(PCALL_ALL);
2661 sp = stack_pointer;
2662 #ifdef WITH_TSC
2663 x = call_function(&sp, oparg, &intr0, &intr1);
2664 #else
2665 x = call_function(&sp, oparg);
2666 #endif
2667 stack_pointer = sp;
2668 PUSH(x);
2669 if (x != NULL)
2670 continue;
2671 break;
2674 case CALL_FUNCTION_VAR:
2675 case CALL_FUNCTION_KW:
2676 case CALL_FUNCTION_VAR_KW:
2678 int na = oparg & 0xff;
2679 int nk = (oparg>>8) & 0xff;
2680 int flags = (opcode - CALL_FUNCTION) & 3;
2681 int n = na + 2 * nk;
2682 PyObject **pfunc, *func, **sp;
2683 PCALL(PCALL_ALL);
2684 if (flags & CALL_FLAG_VAR)
2685 n++;
2686 if (flags & CALL_FLAG_KW)
2687 n++;
2688 pfunc = stack_pointer - n - 1;
2689 func = *pfunc;
2691 if (PyMethod_Check(func)
2692 && PyMethod_GET_SELF(func) != NULL) {
2693 PyObject *self = PyMethod_GET_SELF(func);
2694 Py_INCREF(self);
2695 func = PyMethod_GET_FUNCTION(func);
2696 Py_INCREF(func);
2697 Py_DECREF(*pfunc);
2698 *pfunc = self;
2699 na++;
2700 } else
2701 Py_INCREF(func);
2702 sp = stack_pointer;
2703 READ_TIMESTAMP(intr0);
2704 x = ext_do_call(func, &sp, flags, na, nk);
2705 READ_TIMESTAMP(intr1);
2706 stack_pointer = sp;
2707 Py_DECREF(func);
2709 while (stack_pointer > pfunc) {
2710 w = POP();
2711 Py_DECREF(w);
2713 PUSH(x);
2714 if (x != NULL)
2715 continue;
2716 break;
2719 case MAKE_FUNCTION:
2720 v = POP(); /* code object */
2721 x = PyFunction_New(v, f->f_globals);
2722 Py_DECREF(v);
2723 /* XXX Maybe this should be a separate opcode? */
2724 if (x != NULL && oparg > 0) {
2725 v = PyTuple_New(oparg);
2726 if (v == NULL) {
2727 Py_DECREF(x);
2728 x = NULL;
2729 break;
2731 while (--oparg >= 0) {
2732 w = POP();
2733 PyTuple_SET_ITEM(v, oparg, w);
2735 err = PyFunction_SetDefaults(x, v);
2736 Py_DECREF(v);
2738 PUSH(x);
2739 break;
2741 case MAKE_CLOSURE:
2743 v = POP(); /* code object */
2744 x = PyFunction_New(v, f->f_globals);
2745 Py_DECREF(v);
2746 if (x != NULL) {
2747 v = POP();
2748 if (PyFunction_SetClosure(x, v) != 0) {
2749 /* Can't happen unless bytecode is corrupt. */
2750 why = WHY_EXCEPTION;
2752 Py_DECREF(v);
2754 if (x != NULL && oparg > 0) {
2755 v = PyTuple_New(oparg);
2756 if (v == NULL) {
2757 Py_DECREF(x);
2758 x = NULL;
2759 break;
2761 while (--oparg >= 0) {
2762 w = POP();
2763 PyTuple_SET_ITEM(v, oparg, w);
2765 if (PyFunction_SetDefaults(x, v) != 0) {
2766 /* Can't happen unless
2767 PyFunction_SetDefaults changes. */
2768 why = WHY_EXCEPTION;
2770 Py_DECREF(v);
2772 PUSH(x);
2773 break;
2776 case BUILD_SLICE:
2777 if (oparg == 3)
2778 w = POP();
2779 else
2780 w = NULL;
2781 v = POP();
2782 u = TOP();
2783 x = PySlice_New(u, v, w);
2784 Py_DECREF(u);
2785 Py_DECREF(v);
2786 Py_XDECREF(w);
2787 SET_TOP(x);
2788 if (x != NULL) continue;
2789 break;
2791 case EXTENDED_ARG:
2792 opcode = NEXTOP();
2793 oparg = oparg<<16 | NEXTARG();
2794 goto dispatch_opcode;
2796 default:
2797 fprintf(stderr,
2798 "XXX lineno: %d, opcode: %d\n",
2799 PyFrame_GetLineNumber(f),
2800 opcode);
2801 PyErr_SetString(PyExc_SystemError, "unknown opcode");
2802 why = WHY_EXCEPTION;
2803 break;
2805 #ifdef CASE_TOO_BIG
2807 #endif
2809 } /* switch */
2811 on_error:
2813 READ_TIMESTAMP(inst1);
2815 /* Quickly continue if no error occurred */
2817 if (why == WHY_NOT) {
2818 if (err == 0 && x != NULL) {
2819 #ifdef CHECKEXC
2820 /* This check is expensive! */
2821 if (PyErr_Occurred())
2822 fprintf(stderr,
2823 "XXX undetected error\n");
2824 else {
2825 #endif
2826 READ_TIMESTAMP(loop1);
2827 continue; /* Normal, fast path */
2828 #ifdef CHECKEXC
2830 #endif
2832 why = WHY_EXCEPTION;
2833 x = Py_None;
2834 err = 0;
2837 /* Double-check exception status */
2839 if (why == WHY_EXCEPTION || why == WHY_RERAISE) {
2840 if (!PyErr_Occurred()) {
2841 PyErr_SetString(PyExc_SystemError,
2842 "error return without exception set");
2843 why = WHY_EXCEPTION;
2846 #ifdef CHECKEXC
2847 else {
2848 /* This check is expensive! */
2849 if (PyErr_Occurred()) {
2850 char buf[128];
2851 sprintf(buf, "Stack unwind with exception "
2852 "set and why=%d", why);
2853 Py_FatalError(buf);
2856 #endif
2858 /* Log traceback info if this is a real exception */
2860 if (why == WHY_EXCEPTION) {
2861 PyTraceBack_Here(f);
2863 if (tstate->c_tracefunc != NULL)
2864 call_exc_trace(tstate->c_tracefunc,
2865 tstate->c_traceobj, f);
2868 /* For the rest, treat WHY_RERAISE as WHY_EXCEPTION */
2870 if (why == WHY_RERAISE)
2871 why = WHY_EXCEPTION;
2873 /* Unwind stacks if a (pseudo) exception occurred */
2875 fast_block_end:
2876 while (why != WHY_NOT && f->f_iblock > 0) {
2877 /* Peek at the current block. */
2878 PyTryBlock *b = &f->f_blockstack[f->f_iblock - 1];
2880 assert(why != WHY_YIELD);
2881 if (b->b_type == SETUP_LOOP && why == WHY_CONTINUE) {
2882 why = WHY_NOT;
2883 JUMPTO(PyInt_AS_LONG(retval));
2884 Py_DECREF(retval);
2885 break;
2888 /* Now we have to pop the block. */
2889 f->f_iblock--;
2891 while (STACK_LEVEL() > b->b_level) {
2892 v = POP();
2893 Py_XDECREF(v);
2895 if (b->b_type == SETUP_LOOP && why == WHY_BREAK) {
2896 why = WHY_NOT;
2897 JUMPTO(b->b_handler);
2898 break;
2900 if (b->b_type == SETUP_FINALLY ||
2901 (b->b_type == SETUP_EXCEPT &&
2902 why == WHY_EXCEPTION) ||
2903 b->b_type == SETUP_WITH) {
2904 if (why == WHY_EXCEPTION) {
2905 PyObject *exc, *val, *tb;
2906 PyErr_Fetch(&exc, &val, &tb);
2907 if (val == NULL) {
2908 val = Py_None;
2909 Py_INCREF(val);
2911 /* Make the raw exception data
2912 available to the handler,
2913 so a program can emulate the
2914 Python main loop. Don't do
2915 this for 'finally'. */
2916 if (b->b_type == SETUP_EXCEPT ||
2917 b->b_type == SETUP_WITH) {
2918 PyErr_NormalizeException(
2919 &exc, &val, &tb);
2920 set_exc_info(tstate,
2921 exc, val, tb);
2923 if (tb == NULL) {
2924 Py_INCREF(Py_None);
2925 PUSH(Py_None);
2926 } else
2927 PUSH(tb);
2928 PUSH(val);
2929 PUSH(exc);
2931 else {
2932 if (why & (WHY_RETURN | WHY_CONTINUE))
2933 PUSH(retval);
2934 v = PyInt_FromLong((long)why);
2935 PUSH(v);
2937 why = WHY_NOT;
2938 JUMPTO(b->b_handler);
2939 break;
2941 } /* unwind stack */
2943 /* End the loop if we still have an error (or return) */
2945 if (why != WHY_NOT)
2946 break;
2947 READ_TIMESTAMP(loop1);
2949 } /* main loop */
2951 assert(why != WHY_YIELD);
2952 /* Pop remaining stack entries. */
2953 while (!EMPTY()) {
2954 v = POP();
2955 Py_XDECREF(v);
2958 if (why != WHY_RETURN)
2959 retval = NULL;
2961 fast_yield:
2962 if (tstate->use_tracing) {
2963 if (tstate->c_tracefunc) {
2964 if (why == WHY_RETURN || why == WHY_YIELD) {
2965 if (call_trace(tstate->c_tracefunc,
2966 tstate->c_traceobj, f,
2967 PyTrace_RETURN, retval)) {
2968 Py_XDECREF(retval);
2969 retval = NULL;
2970 why = WHY_EXCEPTION;
2973 else if (why == WHY_EXCEPTION) {
2974 call_trace_protected(tstate->c_tracefunc,
2975 tstate->c_traceobj, f,
2976 PyTrace_RETURN, NULL);
2979 if (tstate->c_profilefunc) {
2980 if (why == WHY_EXCEPTION)
2981 call_trace_protected(tstate->c_profilefunc,
2982 tstate->c_profileobj, f,
2983 PyTrace_RETURN, NULL);
2984 else if (call_trace(tstate->c_profilefunc,
2985 tstate->c_profileobj, f,
2986 PyTrace_RETURN, retval)) {
2987 Py_XDECREF(retval);
2988 retval = NULL;
2989 why = WHY_EXCEPTION;
2994 if (tstate->frame->f_exc_type != NULL)
2995 reset_exc_info(tstate);
2996 else {
2997 assert(tstate->frame->f_exc_value == NULL);
2998 assert(tstate->frame->f_exc_traceback == NULL);
3001 /* pop frame */
3002 exit_eval_frame:
3003 Py_LeaveRecursiveCall();
3004 tstate->frame = f->f_back;
3006 return retval;
3009 /* This is gonna seem *real weird*, but if you put some other code between
3010 PyEval_EvalFrame() and PyEval_EvalCodeEx() you will need to adjust
3011 the test in the if statements in Misc/gdbinit (pystack and pystackv). */
3013 PyObject *
3014 PyEval_EvalCodeEx(PyCodeObject *co, PyObject *globals, PyObject *locals,
3015 PyObject **args, int argcount, PyObject **kws, int kwcount,
3016 PyObject **defs, int defcount, PyObject *closure)
3018 register PyFrameObject *f;
3019 register PyObject *retval = NULL;
3020 register PyObject **fastlocals, **freevars;
3021 PyThreadState *tstate = PyThreadState_GET();
3022 PyObject *x, *u;
3024 if (globals == NULL) {
3025 PyErr_SetString(PyExc_SystemError,
3026 "PyEval_EvalCodeEx: NULL globals");
3027 return NULL;
3030 assert(tstate != NULL);
3031 assert(globals != NULL);
3032 f = PyFrame_New(tstate, co, globals, locals);
3033 if (f == NULL)
3034 return NULL;
3036 fastlocals = f->f_localsplus;
3037 freevars = f->f_localsplus + co->co_nlocals;
3039 if (co->co_argcount > 0 ||
3040 co->co_flags & (CO_VARARGS | CO_VARKEYWORDS)) {
3041 int i;
3042 int n = argcount;
3043 PyObject *kwdict = NULL;
3044 if (co->co_flags & CO_VARKEYWORDS) {
3045 kwdict = PyDict_New();
3046 if (kwdict == NULL)
3047 goto fail;
3048 i = co->co_argcount;
3049 if (co->co_flags & CO_VARARGS)
3050 i++;
3051 SETLOCAL(i, kwdict);
3053 if (argcount > co->co_argcount) {
3054 if (!(co->co_flags & CO_VARARGS)) {
3055 PyErr_Format(PyExc_TypeError,
3056 "%.200s() takes %s %d "
3057 "argument%s (%d given)",
3058 PyString_AsString(co->co_name),
3059 defcount ? "at most" : "exactly",
3060 co->co_argcount,
3061 co->co_argcount == 1 ? "" : "s",
3062 argcount + kwcount);
3063 goto fail;
3065 n = co->co_argcount;
3067 for (i = 0; i < n; i++) {
3068 x = args[i];
3069 Py_INCREF(x);
3070 SETLOCAL(i, x);
3072 if (co->co_flags & CO_VARARGS) {
3073 u = PyTuple_New(argcount - n);
3074 if (u == NULL)
3075 goto fail;
3076 SETLOCAL(co->co_argcount, u);
3077 for (i = n; i < argcount; i++) {
3078 x = args[i];
3079 Py_INCREF(x);
3080 PyTuple_SET_ITEM(u, i-n, x);
3083 for (i = 0; i < kwcount; i++) {
3084 PyObject **co_varnames;
3085 PyObject *keyword = kws[2*i];
3086 PyObject *value = kws[2*i + 1];
3087 int j;
3088 if (keyword == NULL || !(PyString_Check(keyword)
3089 #ifdef Py_USING_UNICODE
3090 || PyUnicode_Check(keyword)
3091 #endif
3092 )) {
3093 PyErr_Format(PyExc_TypeError,
3094 "%.200s() keywords must be strings",
3095 PyString_AsString(co->co_name));
3096 goto fail;
3098 /* Speed hack: do raw pointer compares. As names are
3099 normally interned this should almost always hit. */
3100 co_varnames = ((PyTupleObject *)(co->co_varnames))->ob_item;
3101 for (j = 0; j < co->co_argcount; j++) {
3102 PyObject *nm = co_varnames[j];
3103 if (nm == keyword)
3104 goto kw_found;
3106 /* Slow fallback, just in case */
3107 for (j = 0; j < co->co_argcount; j++) {
3108 PyObject *nm = co_varnames[j];
3109 int cmp = PyObject_RichCompareBool(
3110 keyword, nm, Py_EQ);
3111 if (cmp > 0)
3112 goto kw_found;
3113 else if (cmp < 0)
3114 goto fail;
3116 if (kwdict == NULL) {
3117 PyObject *kwd_str = kwd_as_string(keyword);
3118 if (kwd_str) {
3119 PyErr_Format(PyExc_TypeError,
3120 "%.200s() got an unexpected "
3121 "keyword argument '%.400s'",
3122 PyString_AsString(co->co_name),
3123 PyString_AsString(kwd_str));
3124 Py_DECREF(kwd_str);
3126 goto fail;
3128 PyDict_SetItem(kwdict, keyword, value);
3129 continue;
3130 kw_found:
3131 if (GETLOCAL(j) != NULL) {
3132 PyObject *kwd_str = kwd_as_string(keyword);
3133 if (kwd_str) {
3134 PyErr_Format(PyExc_TypeError,
3135 "%.200s() got multiple "
3136 "values for keyword "
3137 "argument '%.400s'",
3138 PyString_AsString(co->co_name),
3139 PyString_AsString(kwd_str));
3140 Py_DECREF(kwd_str);
3142 goto fail;
3144 Py_INCREF(value);
3145 SETLOCAL(j, value);
3147 if (argcount < co->co_argcount) {
3148 int m = co->co_argcount - defcount;
3149 for (i = argcount; i < m; i++) {
3150 if (GETLOCAL(i) == NULL) {
3151 int j, given = 0;
3152 for (j = 0; j < co->co_argcount; j++)
3153 if (GETLOCAL(j))
3154 given++;
3155 PyErr_Format(PyExc_TypeError,
3156 "%.200s() takes %s %d "
3157 "argument%s (%d given)",
3158 PyString_AsString(co->co_name),
3159 ((co->co_flags & CO_VARARGS) ||
3160 defcount) ? "at least"
3161 : "exactly",
3162 m, m == 1 ? "" : "s", given);
3163 goto fail;
3166 if (n > m)
3167 i = n - m;
3168 else
3169 i = 0;
3170 for (; i < defcount; i++) {
3171 if (GETLOCAL(m+i) == NULL) {
3172 PyObject *def = defs[i];
3173 Py_INCREF(def);
3174 SETLOCAL(m+i, def);
3179 else if (argcount > 0 || kwcount > 0) {
3180 PyErr_Format(PyExc_TypeError,
3181 "%.200s() takes no arguments (%d given)",
3182 PyString_AsString(co->co_name),
3183 argcount + kwcount);
3184 goto fail;
3186 /* Allocate and initialize storage for cell vars, and copy free
3187 vars into frame. This isn't too efficient right now. */
3188 if (PyTuple_GET_SIZE(co->co_cellvars)) {
3189 int i, j, nargs, found;
3190 char *cellname, *argname;
3191 PyObject *c;
3193 nargs = co->co_argcount;
3194 if (co->co_flags & CO_VARARGS)
3195 nargs++;
3196 if (co->co_flags & CO_VARKEYWORDS)
3197 nargs++;
3199 /* Initialize each cell var, taking into account
3200 cell vars that are initialized from arguments.
3202 Should arrange for the compiler to put cellvars
3203 that are arguments at the beginning of the cellvars
3204 list so that we can march over it more efficiently?
3206 for (i = 0; i < PyTuple_GET_SIZE(co->co_cellvars); ++i) {
3207 cellname = PyString_AS_STRING(
3208 PyTuple_GET_ITEM(co->co_cellvars, i));
3209 found = 0;
3210 for (j = 0; j < nargs; j++) {
3211 argname = PyString_AS_STRING(
3212 PyTuple_GET_ITEM(co->co_varnames, j));
3213 if (strcmp(cellname, argname) == 0) {
3214 c = PyCell_New(GETLOCAL(j));
3215 if (c == NULL)
3216 goto fail;
3217 GETLOCAL(co->co_nlocals + i) = c;
3218 found = 1;
3219 break;
3222 if (found == 0) {
3223 c = PyCell_New(NULL);
3224 if (c == NULL)
3225 goto fail;
3226 SETLOCAL(co->co_nlocals + i, c);
3230 if (PyTuple_GET_SIZE(co->co_freevars)) {
3231 int i;
3232 for (i = 0; i < PyTuple_GET_SIZE(co->co_freevars); ++i) {
3233 PyObject *o = PyTuple_GET_ITEM(closure, i);
3234 Py_INCREF(o);
3235 freevars[PyTuple_GET_SIZE(co->co_cellvars) + i] = o;
3239 if (co->co_flags & CO_GENERATOR) {
3240 /* Don't need to keep the reference to f_back, it will be set
3241 * when the generator is resumed. */
3242 Py_XDECREF(f->f_back);
3243 f->f_back = NULL;
3245 PCALL(PCALL_GENERATOR);
3247 /* Create a new generator that owns the ready to run frame
3248 * and return that as the value. */
3249 return PyGen_New(f);
3252 retval = PyEval_EvalFrameEx(f,0);
3254 fail: /* Jump here from prelude on failure */
3256 /* decref'ing the frame can cause __del__ methods to get invoked,
3257 which can call back into Python. While we're done with the
3258 current Python frame (f), the associated C stack is still in use,
3259 so recursion_depth must be boosted for the duration.
3261 assert(tstate != NULL);
3262 ++tstate->recursion_depth;
3263 Py_DECREF(f);
3264 --tstate->recursion_depth;
3265 return retval;
3269 static PyObject *
3270 special_lookup(PyObject *o, char *meth, PyObject **cache)
3272 PyObject *res;
3273 if (PyInstance_Check(o)) {
3274 if (!*cache)
3275 return PyObject_GetAttrString(o, meth);
3276 else
3277 return PyObject_GetAttr(o, *cache);
3279 res = _PyObject_LookupSpecial(o, meth, cache);
3280 if (res == NULL && !PyErr_Occurred()) {
3281 PyErr_SetObject(PyExc_AttributeError, *cache);
3282 return NULL;
3284 return res;
3288 static PyObject *
3289 kwd_as_string(PyObject *kwd) {
3290 #ifdef Py_USING_UNICODE
3291 if (PyString_Check(kwd)) {
3292 #else
3293 assert(PyString_Check(kwd));
3294 #endif
3295 Py_INCREF(kwd);
3296 return kwd;
3297 #ifdef Py_USING_UNICODE
3299 return _PyUnicode_AsDefaultEncodedString(kwd, "replace");
3300 #endif
3304 /* Implementation notes for set_exc_info() and reset_exc_info():
3306 - Below, 'exc_ZZZ' stands for 'exc_type', 'exc_value' and
3307 'exc_traceback'. These always travel together.
3309 - tstate->curexc_ZZZ is the "hot" exception that is set by
3310 PyErr_SetString(), cleared by PyErr_Clear(), and so on.
3312 - Once an exception is caught by an except clause, it is transferred
3313 from tstate->curexc_ZZZ to tstate->exc_ZZZ, from which sys.exc_info()
3314 can pick it up. This is the primary task of set_exc_info().
3315 XXX That can't be right: set_exc_info() doesn't look at tstate->curexc_ZZZ.
3317 - Now let me explain the complicated dance with frame->f_exc_ZZZ.
3319 Long ago, when none of this existed, there were just a few globals:
3320 one set corresponding to the "hot" exception, and one set
3321 corresponding to sys.exc_ZZZ. (Actually, the latter weren't C
3322 globals; they were simply stored as sys.exc_ZZZ. For backwards
3323 compatibility, they still are!) The problem was that in code like
3324 this:
3326 try:
3327 "something that may fail"
3328 except "some exception":
3329 "do something else first"
3330 "print the exception from sys.exc_ZZZ."
3332 if "do something else first" invoked something that raised and caught
3333 an exception, sys.exc_ZZZ were overwritten. That was a frequent
3334 cause of subtle bugs. I fixed this by changing the semantics as
3335 follows:
3337 - Within one frame, sys.exc_ZZZ will hold the last exception caught
3338 *in that frame*.
3340 - But initially, and as long as no exception is caught in a given
3341 frame, sys.exc_ZZZ will hold the last exception caught in the
3342 previous frame (or the frame before that, etc.).
3344 The first bullet fixed the bug in the above example. The second
3345 bullet was for backwards compatibility: it was (and is) common to
3346 have a function that is called when an exception is caught, and to
3347 have that function access the caught exception via sys.exc_ZZZ.
3348 (Example: traceback.print_exc()).
3350 At the same time I fixed the problem that sys.exc_ZZZ weren't
3351 thread-safe, by introducing sys.exc_info() which gets it from tstate;
3352 but that's really a separate improvement.
3354 The reset_exc_info() function in ceval.c restores the tstate->exc_ZZZ
3355 variables to what they were before the current frame was called. The
3356 set_exc_info() function saves them on the frame so that
3357 reset_exc_info() can restore them. The invariant is that
3358 frame->f_exc_ZZZ is NULL iff the current frame never caught an
3359 exception (where "catching" an exception applies only to successful
3360 except clauses); and if the current frame ever caught an exception,
3361 frame->f_exc_ZZZ is the exception that was stored in tstate->exc_ZZZ
3362 at the start of the current frame.
3366 static void
3367 set_exc_info(PyThreadState *tstate,
3368 PyObject *type, PyObject *value, PyObject *tb)
3370 PyFrameObject *frame = tstate->frame;
3371 PyObject *tmp_type, *tmp_value, *tmp_tb;
3373 assert(type != NULL);
3374 assert(frame != NULL);
3375 if (frame->f_exc_type == NULL) {
3376 assert(frame->f_exc_value == NULL);
3377 assert(frame->f_exc_traceback == NULL);
3378 /* This frame didn't catch an exception before. */
3379 /* Save previous exception of this thread in this frame. */
3380 if (tstate->exc_type == NULL) {
3381 /* XXX Why is this set to Py_None? */
3382 Py_INCREF(Py_None);
3383 tstate->exc_type = Py_None;
3385 Py_INCREF(tstate->exc_type);
3386 Py_XINCREF(tstate->exc_value);
3387 Py_XINCREF(tstate->exc_traceback);
3388 frame->f_exc_type = tstate->exc_type;
3389 frame->f_exc_value = tstate->exc_value;
3390 frame->f_exc_traceback = tstate->exc_traceback;
3392 /* Set new exception for this thread. */
3393 tmp_type = tstate->exc_type;
3394 tmp_value = tstate->exc_value;
3395 tmp_tb = tstate->exc_traceback;
3396 Py_INCREF(type);
3397 Py_XINCREF(value);
3398 Py_XINCREF(tb);
3399 tstate->exc_type = type;
3400 tstate->exc_value = value;
3401 tstate->exc_traceback = tb;
3402 Py_XDECREF(tmp_type);
3403 Py_XDECREF(tmp_value);
3404 Py_XDECREF(tmp_tb);
3405 /* For b/w compatibility */
3406 PySys_SetObject("exc_type", type);
3407 PySys_SetObject("exc_value", value);
3408 PySys_SetObject("exc_traceback", tb);
3411 static void
3412 reset_exc_info(PyThreadState *tstate)
3414 PyFrameObject *frame;
3415 PyObject *tmp_type, *tmp_value, *tmp_tb;
3417 /* It's a precondition that the thread state's frame caught an
3418 * exception -- verify in a debug build.
3420 assert(tstate != NULL);
3421 frame = tstate->frame;
3422 assert(frame != NULL);
3423 assert(frame->f_exc_type != NULL);
3425 /* Copy the frame's exception info back to the thread state. */
3426 tmp_type = tstate->exc_type;
3427 tmp_value = tstate->exc_value;
3428 tmp_tb = tstate->exc_traceback;
3429 Py_INCREF(frame->f_exc_type);
3430 Py_XINCREF(frame->f_exc_value);
3431 Py_XINCREF(frame->f_exc_traceback);
3432 tstate->exc_type = frame->f_exc_type;
3433 tstate->exc_value = frame->f_exc_value;
3434 tstate->exc_traceback = frame->f_exc_traceback;
3435 Py_XDECREF(tmp_type);
3436 Py_XDECREF(tmp_value);
3437 Py_XDECREF(tmp_tb);
3439 /* For b/w compatibility */
3440 PySys_SetObject("exc_type", frame->f_exc_type);
3441 PySys_SetObject("exc_value", frame->f_exc_value);
3442 PySys_SetObject("exc_traceback", frame->f_exc_traceback);
3444 /* Clear the frame's exception info. */
3445 tmp_type = frame->f_exc_type;
3446 tmp_value = frame->f_exc_value;
3447 tmp_tb = frame->f_exc_traceback;
3448 frame->f_exc_type = NULL;
3449 frame->f_exc_value = NULL;
3450 frame->f_exc_traceback = NULL;
3451 Py_DECREF(tmp_type);
3452 Py_XDECREF(tmp_value);
3453 Py_XDECREF(tmp_tb);
3456 /* Logic for the raise statement (too complicated for inlining).
3457 This *consumes* a reference count to each of its arguments. */
3458 static enum why_code
3459 do_raise(PyObject *type, PyObject *value, PyObject *tb)
3461 if (type == NULL) {
3462 /* Reraise */
3463 PyThreadState *tstate = PyThreadState_GET();
3464 type = tstate->exc_type == NULL ? Py_None : tstate->exc_type;
3465 value = tstate->exc_value;
3466 tb = tstate->exc_traceback;
3467 Py_XINCREF(type);
3468 Py_XINCREF(value);
3469 Py_XINCREF(tb);
3472 /* We support the following forms of raise:
3473 raise <class>, <classinstance>
3474 raise <class>, <argument tuple>
3475 raise <class>, None
3476 raise <class>, <argument>
3477 raise <classinstance>, None
3478 raise <string>, <object>
3479 raise <string>, None
3481 An omitted second argument is the same as None.
3483 In addition, raise <tuple>, <anything> is the same as
3484 raising the tuple's first item (and it better have one!);
3485 this rule is applied recursively.
3487 Finally, an optional third argument can be supplied, which
3488 gives the traceback to be substituted (useful when
3489 re-raising an exception after examining it). */
3491 /* First, check the traceback argument, replacing None with
3492 NULL. */
3493 if (tb == Py_None) {
3494 Py_DECREF(tb);
3495 tb = NULL;
3497 else if (tb != NULL && !PyTraceBack_Check(tb)) {
3498 PyErr_SetString(PyExc_TypeError,
3499 "raise: arg 3 must be a traceback or None");
3500 goto raise_error;
3503 /* Next, replace a missing value with None */
3504 if (value == NULL) {
3505 value = Py_None;
3506 Py_INCREF(value);
3509 /* Next, repeatedly, replace a tuple exception with its first item */
3510 while (PyTuple_Check(type) && PyTuple_Size(type) > 0) {
3511 PyObject *tmp = type;
3512 type = PyTuple_GET_ITEM(type, 0);
3513 Py_INCREF(type);
3514 Py_DECREF(tmp);
3517 if (PyExceptionClass_Check(type))
3518 PyErr_NormalizeException(&type, &value, &tb);
3520 else if (PyExceptionInstance_Check(type)) {
3521 /* Raising an instance. The value should be a dummy. */
3522 if (value != Py_None) {
3523 PyErr_SetString(PyExc_TypeError,
3524 "instance exception may not have a separate value");
3525 goto raise_error;
3527 else {
3528 /* Normalize to raise <class>, <instance> */
3529 Py_DECREF(value);
3530 value = type;
3531 type = PyExceptionInstance_Class(type);
3532 Py_INCREF(type);
3535 else {
3536 /* Not something you can raise. You get an exception
3537 anyway, just not what you specified :-) */
3538 PyErr_Format(PyExc_TypeError,
3539 "exceptions must be old-style classes or "
3540 "derived from BaseException, not %s",
3541 type->ob_type->tp_name);
3542 goto raise_error;
3545 assert(PyExceptionClass_Check(type));
3546 if (Py_Py3kWarningFlag && PyClass_Check(type)) {
3547 if (PyErr_WarnEx(PyExc_DeprecationWarning,
3548 "exceptions must derive from BaseException "
3549 "in 3.x", 1) < 0)
3550 goto raise_error;
3553 PyErr_Restore(type, value, tb);
3554 if (tb == NULL)
3555 return WHY_EXCEPTION;
3556 else
3557 return WHY_RERAISE;
3558 raise_error:
3559 Py_XDECREF(value);
3560 Py_XDECREF(type);
3561 Py_XDECREF(tb);
3562 return WHY_EXCEPTION;
3565 /* Iterate v argcnt times and store the results on the stack (via decreasing
3566 sp). Return 1 for success, 0 if error. */
3568 static int
3569 unpack_iterable(PyObject *v, int argcnt, PyObject **sp)
3571 int i = 0;
3572 PyObject *it; /* iter(v) */
3573 PyObject *w;
3575 assert(v != NULL);
3577 it = PyObject_GetIter(v);
3578 if (it == NULL)
3579 goto Error;
3581 for (; i < argcnt; i++) {
3582 w = PyIter_Next(it);
3583 if (w == NULL) {
3584 /* Iterator done, via error or exhaustion. */
3585 if (!PyErr_Occurred()) {
3586 PyErr_Format(PyExc_ValueError,
3587 "need more than %d value%s to unpack",
3588 i, i == 1 ? "" : "s");
3590 goto Error;
3592 *--sp = w;
3595 /* We better have exhausted the iterator now. */
3596 w = PyIter_Next(it);
3597 if (w == NULL) {
3598 if (PyErr_Occurred())
3599 goto Error;
3600 Py_DECREF(it);
3601 return 1;
3603 Py_DECREF(w);
3604 PyErr_SetString(PyExc_ValueError, "too many values to unpack");
3605 /* fall through */
3606 Error:
3607 for (; i > 0; i--, sp++)
3608 Py_DECREF(*sp);
3609 Py_XDECREF(it);
3610 return 0;
3614 #ifdef LLTRACE
3615 static int
3616 prtrace(PyObject *v, char *str)
3618 printf("%s ", str);
3619 if (PyObject_Print(v, stdout, 0) != 0)
3620 PyErr_Clear(); /* Don't know what else to do */
3621 printf("\n");
3622 return 1;
3624 #endif
3626 static void
3627 call_exc_trace(Py_tracefunc func, PyObject *self, PyFrameObject *f)
3629 PyObject *type, *value, *traceback, *arg;
3630 int err;
3631 PyErr_Fetch(&type, &value, &traceback);
3632 if (value == NULL) {
3633 value = Py_None;
3634 Py_INCREF(value);
3636 arg = PyTuple_Pack(3, type, value, traceback);
3637 if (arg == NULL) {
3638 PyErr_Restore(type, value, traceback);
3639 return;
3641 err = call_trace(func, self, f, PyTrace_EXCEPTION, arg);
3642 Py_DECREF(arg);
3643 if (err == 0)
3644 PyErr_Restore(type, value, traceback);
3645 else {
3646 Py_XDECREF(type);
3647 Py_XDECREF(value);
3648 Py_XDECREF(traceback);
3652 static int
3653 call_trace_protected(Py_tracefunc func, PyObject *obj, PyFrameObject *frame,
3654 int what, PyObject *arg)
3656 PyObject *type, *value, *traceback;
3657 int err;
3658 PyErr_Fetch(&type, &value, &traceback);
3659 err = call_trace(func, obj, frame, what, arg);
3660 if (err == 0)
3662 PyErr_Restore(type, value, traceback);
3663 return 0;
3665 else {
3666 Py_XDECREF(type);
3667 Py_XDECREF(value);
3668 Py_XDECREF(traceback);
3669 return -1;
3673 static int
3674 call_trace(Py_tracefunc func, PyObject *obj, PyFrameObject *frame,
3675 int what, PyObject *arg)
3677 register PyThreadState *tstate = frame->f_tstate;
3678 int result;
3679 if (tstate->tracing)
3680 return 0;
3681 tstate->tracing++;
3682 tstate->use_tracing = 0;
3683 result = func(obj, frame, what, arg);
3684 tstate->use_tracing = ((tstate->c_tracefunc != NULL)
3685 || (tstate->c_profilefunc != NULL));
3686 tstate->tracing--;
3687 return result;
3690 PyObject *
3691 _PyEval_CallTracing(PyObject *func, PyObject *args)
3693 PyFrameObject *frame = PyEval_GetFrame();
3694 PyThreadState *tstate = frame->f_tstate;
3695 int save_tracing = tstate->tracing;
3696 int save_use_tracing = tstate->use_tracing;
3697 PyObject *result;
3699 tstate->tracing = 0;
3700 tstate->use_tracing = ((tstate->c_tracefunc != NULL)
3701 || (tstate->c_profilefunc != NULL));
3702 result = PyObject_Call(func, args, NULL);
3703 tstate->tracing = save_tracing;
3704 tstate->use_tracing = save_use_tracing;
3705 return result;
3708 /* See Objects/lnotab_notes.txt for a description of how tracing works. */
3709 static int
3710 maybe_call_line_trace(Py_tracefunc func, PyObject *obj,
3711 PyFrameObject *frame, int *instr_lb, int *instr_ub,
3712 int *instr_prev)
3714 int result = 0;
3715 int line = frame->f_lineno;
3717 /* If the last instruction executed isn't in the current
3718 instruction window, reset the window.
3720 if (frame->f_lasti < *instr_lb || frame->f_lasti >= *instr_ub) {
3721 PyAddrPair bounds;
3722 line = _PyCode_CheckLineNumber(frame->f_code, frame->f_lasti,
3723 &bounds);
3724 *instr_lb = bounds.ap_lower;
3725 *instr_ub = bounds.ap_upper;
3727 /* If the last instruction falls at the start of a line or if
3728 it represents a jump backwards, update the frame's line
3729 number and call the trace function. */
3730 if (frame->f_lasti == *instr_lb || frame->f_lasti < *instr_prev) {
3731 frame->f_lineno = line;
3732 result = call_trace(func, obj, frame, PyTrace_LINE, Py_None);
3734 *instr_prev = frame->f_lasti;
3735 return result;
3738 void
3739 PyEval_SetProfile(Py_tracefunc func, PyObject *arg)
3741 PyThreadState *tstate = PyThreadState_GET();
3742 PyObject *temp = tstate->c_profileobj;
3743 Py_XINCREF(arg);
3744 tstate->c_profilefunc = NULL;
3745 tstate->c_profileobj = NULL;
3746 /* Must make sure that tracing is not ignored if 'temp' is freed */
3747 tstate->use_tracing = tstate->c_tracefunc != NULL;
3748 Py_XDECREF(temp);
3749 tstate->c_profilefunc = func;
3750 tstate->c_profileobj = arg;
3751 /* Flag that tracing or profiling is turned on */
3752 tstate->use_tracing = (func != NULL) || (tstate->c_tracefunc != NULL);
3755 void
3756 PyEval_SetTrace(Py_tracefunc func, PyObject *arg)
3758 PyThreadState *tstate = PyThreadState_GET();
3759 PyObject *temp = tstate->c_traceobj;
3760 _Py_TracingPossible += (func != NULL) - (tstate->c_tracefunc != NULL);
3761 Py_XINCREF(arg);
3762 tstate->c_tracefunc = NULL;
3763 tstate->c_traceobj = NULL;
3764 /* Must make sure that profiling is not ignored if 'temp' is freed */
3765 tstate->use_tracing = tstate->c_profilefunc != NULL;
3766 Py_XDECREF(temp);
3767 tstate->c_tracefunc = func;
3768 tstate->c_traceobj = arg;
3769 /* Flag that tracing or profiling is turned on */
3770 tstate->use_tracing = ((func != NULL)
3771 || (tstate->c_profilefunc != NULL));
3774 PyObject *
3775 PyEval_GetBuiltins(void)
3777 PyFrameObject *current_frame = PyEval_GetFrame();
3778 if (current_frame == NULL)
3779 return PyThreadState_GET()->interp->builtins;
3780 else
3781 return current_frame->f_builtins;
3784 PyObject *
3785 PyEval_GetLocals(void)
3787 PyFrameObject *current_frame = PyEval_GetFrame();
3788 if (current_frame == NULL)
3789 return NULL;
3790 PyFrame_FastToLocals(current_frame);
3791 return current_frame->f_locals;
3794 PyObject *
3795 PyEval_GetGlobals(void)
3797 PyFrameObject *current_frame = PyEval_GetFrame();
3798 if (current_frame == NULL)
3799 return NULL;
3800 else
3801 return current_frame->f_globals;
3804 PyFrameObject *
3805 PyEval_GetFrame(void)
3807 PyThreadState *tstate = PyThreadState_GET();
3808 return _PyThreadState_GetFrame(tstate);
3812 PyEval_GetRestricted(void)
3814 PyFrameObject *current_frame = PyEval_GetFrame();
3815 return current_frame == NULL ? 0 : PyFrame_IsRestricted(current_frame);
3819 PyEval_MergeCompilerFlags(PyCompilerFlags *cf)
3821 PyFrameObject *current_frame = PyEval_GetFrame();
3822 int result = cf->cf_flags != 0;
3824 if (current_frame != NULL) {
3825 const int codeflags = current_frame->f_code->co_flags;
3826 const int compilerflags = codeflags & PyCF_MASK;
3827 if (compilerflags) {
3828 result = 1;
3829 cf->cf_flags |= compilerflags;
3831 #if 0 /* future keyword */
3832 if (codeflags & CO_GENERATOR_ALLOWED) {
3833 result = 1;
3834 cf->cf_flags |= CO_GENERATOR_ALLOWED;
3836 #endif
3838 return result;
3842 Py_FlushLine(void)
3844 PyObject *f = PySys_GetObject("stdout");
3845 if (f == NULL)
3846 return 0;
3847 if (!PyFile_SoftSpace(f, 0))
3848 return 0;
3849 return PyFile_WriteString("\n", f);
3853 /* External interface to call any callable object.
3854 The arg must be a tuple or NULL. The kw must be a dict or NULL. */
3856 PyObject *
3857 PyEval_CallObjectWithKeywords(PyObject *func, PyObject *arg, PyObject *kw)
3859 PyObject *result;
3861 if (arg == NULL) {
3862 arg = PyTuple_New(0);
3863 if (arg == NULL)
3864 return NULL;
3866 else if (!PyTuple_Check(arg)) {
3867 PyErr_SetString(PyExc_TypeError,
3868 "argument list must be a tuple");
3869 return NULL;
3871 else
3872 Py_INCREF(arg);
3874 if (kw != NULL && !PyDict_Check(kw)) {
3875 PyErr_SetString(PyExc_TypeError,
3876 "keyword list must be a dictionary");
3877 Py_DECREF(arg);
3878 return NULL;
3881 result = PyObject_Call(func, arg, kw);
3882 Py_DECREF(arg);
3883 return result;
3886 const char *
3887 PyEval_GetFuncName(PyObject *func)
3889 if (PyMethod_Check(func))
3890 return PyEval_GetFuncName(PyMethod_GET_FUNCTION(func));
3891 else if (PyFunction_Check(func))
3892 return PyString_AsString(((PyFunctionObject*)func)->func_name);
3893 else if (PyCFunction_Check(func))
3894 return ((PyCFunctionObject*)func)->m_ml->ml_name;
3895 else if (PyClass_Check(func))
3896 return PyString_AsString(((PyClassObject*)func)->cl_name);
3897 else if (PyInstance_Check(func)) {
3898 return PyString_AsString(
3899 ((PyInstanceObject*)func)->in_class->cl_name);
3900 } else {
3901 return func->ob_type->tp_name;
3905 const char *
3906 PyEval_GetFuncDesc(PyObject *func)
3908 if (PyMethod_Check(func))
3909 return "()";
3910 else if (PyFunction_Check(func))
3911 return "()";
3912 else if (PyCFunction_Check(func))
3913 return "()";
3914 else if (PyClass_Check(func))
3915 return " constructor";
3916 else if (PyInstance_Check(func)) {
3917 return " instance";
3918 } else {
3919 return " object";
3923 static void
3924 err_args(PyObject *func, int flags, int nargs)
3926 if (flags & METH_NOARGS)
3927 PyErr_Format(PyExc_TypeError,
3928 "%.200s() takes no arguments (%d given)",
3929 ((PyCFunctionObject *)func)->m_ml->ml_name,
3930 nargs);
3931 else
3932 PyErr_Format(PyExc_TypeError,
3933 "%.200s() takes exactly one argument (%d given)",
3934 ((PyCFunctionObject *)func)->m_ml->ml_name,
3935 nargs);
3938 #define C_TRACE(x, call) \
3939 if (tstate->use_tracing && tstate->c_profilefunc) { \
3940 if (call_trace(tstate->c_profilefunc, \
3941 tstate->c_profileobj, \
3942 tstate->frame, PyTrace_C_CALL, \
3943 func)) { \
3944 x = NULL; \
3946 else { \
3947 x = call; \
3948 if (tstate->c_profilefunc != NULL) { \
3949 if (x == NULL) { \
3950 call_trace_protected(tstate->c_profilefunc, \
3951 tstate->c_profileobj, \
3952 tstate->frame, PyTrace_C_EXCEPTION, \
3953 func); \
3954 /* XXX should pass (type, value, tb) */ \
3955 } else { \
3956 if (call_trace(tstate->c_profilefunc, \
3957 tstate->c_profileobj, \
3958 tstate->frame, PyTrace_C_RETURN, \
3959 func)) { \
3960 Py_DECREF(x); \
3961 x = NULL; \
3966 } else { \
3967 x = call; \
3970 static PyObject *
3971 call_function(PyObject ***pp_stack, int oparg
3972 #ifdef WITH_TSC
3973 , uint64* pintr0, uint64* pintr1
3974 #endif
3977 int na = oparg & 0xff;
3978 int nk = (oparg>>8) & 0xff;
3979 int n = na + 2 * nk;
3980 PyObject **pfunc = (*pp_stack) - n - 1;
3981 PyObject *func = *pfunc;
3982 PyObject *x, *w;
3984 /* Always dispatch PyCFunction first, because these are
3985 presumed to be the most frequent callable object.
3987 if (PyCFunction_Check(func) && nk == 0) {
3988 int flags = PyCFunction_GET_FLAGS(func);
3989 PyThreadState *tstate = PyThreadState_GET();
3991 PCALL(PCALL_CFUNCTION);
3992 if (flags & (METH_NOARGS | METH_O)) {
3993 PyCFunction meth = PyCFunction_GET_FUNCTION(func);
3994 PyObject *self = PyCFunction_GET_SELF(func);
3995 if (flags & METH_NOARGS && na == 0) {
3996 C_TRACE(x, (*meth)(self,NULL));
3998 else if (flags & METH_O && na == 1) {
3999 PyObject *arg = EXT_POP(*pp_stack);
4000 C_TRACE(x, (*meth)(self,arg));
4001 Py_DECREF(arg);
4003 else {
4004 err_args(func, flags, na);
4005 x = NULL;
4008 else {
4009 PyObject *callargs;
4010 callargs = load_args(pp_stack, na);
4011 READ_TIMESTAMP(*pintr0);
4012 C_TRACE(x, PyCFunction_Call(func,callargs,NULL));
4013 READ_TIMESTAMP(*pintr1);
4014 Py_XDECREF(callargs);
4016 } else {
4017 if (PyMethod_Check(func) && PyMethod_GET_SELF(func) != NULL) {
4018 /* optimize access to bound methods */
4019 PyObject *self = PyMethod_GET_SELF(func);
4020 PCALL(PCALL_METHOD);
4021 PCALL(PCALL_BOUND_METHOD);
4022 Py_INCREF(self);
4023 func = PyMethod_GET_FUNCTION(func);
4024 Py_INCREF(func);
4025 Py_DECREF(*pfunc);
4026 *pfunc = self;
4027 na++;
4028 n++;
4029 } else
4030 Py_INCREF(func);
4031 READ_TIMESTAMP(*pintr0);
4032 if (PyFunction_Check(func))
4033 x = fast_function(func, pp_stack, n, na, nk);
4034 else
4035 x = do_call(func, pp_stack, na, nk);
4036 READ_TIMESTAMP(*pintr1);
4037 Py_DECREF(func);
4040 /* Clear the stack of the function object. Also removes
4041 the arguments in case they weren't consumed already
4042 (fast_function() and err_args() leave them on the stack).
4044 while ((*pp_stack) > pfunc) {
4045 w = EXT_POP(*pp_stack);
4046 Py_DECREF(w);
4047 PCALL(PCALL_POP);
4049 return x;
4052 /* The fast_function() function optimize calls for which no argument
4053 tuple is necessary; the objects are passed directly from the stack.
4054 For the simplest case -- a function that takes only positional
4055 arguments and is called with only positional arguments -- it
4056 inlines the most primitive frame setup code from
4057 PyEval_EvalCodeEx(), which vastly reduces the checks that must be
4058 done before evaluating the frame.
4061 static PyObject *
4062 fast_function(PyObject *func, PyObject ***pp_stack, int n, int na, int nk)
4064 PyCodeObject *co = (PyCodeObject *)PyFunction_GET_CODE(func);
4065 PyObject *globals = PyFunction_GET_GLOBALS(func);
4066 PyObject *argdefs = PyFunction_GET_DEFAULTS(func);
4067 PyObject **d = NULL;
4068 int nd = 0;
4070 PCALL(PCALL_FUNCTION);
4071 PCALL(PCALL_FAST_FUNCTION);
4072 if (argdefs == NULL && co->co_argcount == n && nk==0 &&
4073 co->co_flags == (CO_OPTIMIZED | CO_NEWLOCALS | CO_NOFREE)) {
4074 PyFrameObject *f;
4075 PyObject *retval = NULL;
4076 PyThreadState *tstate = PyThreadState_GET();
4077 PyObject **fastlocals, **stack;
4078 int i;
4080 PCALL(PCALL_FASTER_FUNCTION);
4081 assert(globals != NULL);
4082 /* XXX Perhaps we should create a specialized
4083 PyFrame_New() that doesn't take locals, but does
4084 take builtins without sanity checking them.
4086 assert(tstate != NULL);
4087 f = PyFrame_New(tstate, co, globals, NULL);
4088 if (f == NULL)
4089 return NULL;
4091 fastlocals = f->f_localsplus;
4092 stack = (*pp_stack) - n;
4094 for (i = 0; i < n; i++) {
4095 Py_INCREF(*stack);
4096 fastlocals[i] = *stack++;
4098 retval = PyEval_EvalFrameEx(f,0);
4099 ++tstate->recursion_depth;
4100 Py_DECREF(f);
4101 --tstate->recursion_depth;
4102 return retval;
4104 if (argdefs != NULL) {
4105 d = &PyTuple_GET_ITEM(argdefs, 0);
4106 nd = Py_SIZE(argdefs);
4108 return PyEval_EvalCodeEx(co, globals,
4109 (PyObject *)NULL, (*pp_stack)-n, na,
4110 (*pp_stack)-2*nk, nk, d, nd,
4111 PyFunction_GET_CLOSURE(func));
4114 static PyObject *
4115 update_keyword_args(PyObject *orig_kwdict, int nk, PyObject ***pp_stack,
4116 PyObject *func)
4118 PyObject *kwdict = NULL;
4119 if (orig_kwdict == NULL)
4120 kwdict = PyDict_New();
4121 else {
4122 kwdict = PyDict_Copy(orig_kwdict);
4123 Py_DECREF(orig_kwdict);
4125 if (kwdict == NULL)
4126 return NULL;
4127 while (--nk >= 0) {
4128 int err;
4129 PyObject *value = EXT_POP(*pp_stack);
4130 PyObject *key = EXT_POP(*pp_stack);
4131 if (PyDict_GetItem(kwdict, key) != NULL) {
4132 PyErr_Format(PyExc_TypeError,
4133 "%.200s%s got multiple values "
4134 "for keyword argument '%.200s'",
4135 PyEval_GetFuncName(func),
4136 PyEval_GetFuncDesc(func),
4137 PyString_AsString(key));
4138 Py_DECREF(key);
4139 Py_DECREF(value);
4140 Py_DECREF(kwdict);
4141 return NULL;
4143 err = PyDict_SetItem(kwdict, key, value);
4144 Py_DECREF(key);
4145 Py_DECREF(value);
4146 if (err) {
4147 Py_DECREF(kwdict);
4148 return NULL;
4151 return kwdict;
4154 static PyObject *
4155 update_star_args(int nstack, int nstar, PyObject *stararg,
4156 PyObject ***pp_stack)
4158 PyObject *callargs, *w;
4160 callargs = PyTuple_New(nstack + nstar);
4161 if (callargs == NULL) {
4162 return NULL;
4164 if (nstar) {
4165 int i;
4166 for (i = 0; i < nstar; i++) {
4167 PyObject *a = PyTuple_GET_ITEM(stararg, i);
4168 Py_INCREF(a);
4169 PyTuple_SET_ITEM(callargs, nstack + i, a);
4172 while (--nstack >= 0) {
4173 w = EXT_POP(*pp_stack);
4174 PyTuple_SET_ITEM(callargs, nstack, w);
4176 return callargs;
4179 static PyObject *
4180 load_args(PyObject ***pp_stack, int na)
4182 PyObject *args = PyTuple_New(na);
4183 PyObject *w;
4185 if (args == NULL)
4186 return NULL;
4187 while (--na >= 0) {
4188 w = EXT_POP(*pp_stack);
4189 PyTuple_SET_ITEM(args, na, w);
4191 return args;
4194 static PyObject *
4195 do_call(PyObject *func, PyObject ***pp_stack, int na, int nk)
4197 PyObject *callargs = NULL;
4198 PyObject *kwdict = NULL;
4199 PyObject *result = NULL;
4201 if (nk > 0) {
4202 kwdict = update_keyword_args(NULL, nk, pp_stack, func);
4203 if (kwdict == NULL)
4204 goto call_fail;
4206 callargs = load_args(pp_stack, na);
4207 if (callargs == NULL)
4208 goto call_fail;
4209 #ifdef CALL_PROFILE
4210 /* At this point, we have to look at the type of func to
4211 update the call stats properly. Do it here so as to avoid
4212 exposing the call stats machinery outside ceval.c
4214 if (PyFunction_Check(func))
4215 PCALL(PCALL_FUNCTION);
4216 else if (PyMethod_Check(func))
4217 PCALL(PCALL_METHOD);
4218 else if (PyType_Check(func))
4219 PCALL(PCALL_TYPE);
4220 else if (PyCFunction_Check(func))
4221 PCALL(PCALL_CFUNCTION);
4222 else
4223 PCALL(PCALL_OTHER);
4224 #endif
4225 if (PyCFunction_Check(func)) {
4226 PyThreadState *tstate = PyThreadState_GET();
4227 C_TRACE(result, PyCFunction_Call(func, callargs, kwdict));
4229 else
4230 result = PyObject_Call(func, callargs, kwdict);
4231 call_fail:
4232 Py_XDECREF(callargs);
4233 Py_XDECREF(kwdict);
4234 return result;
4237 static PyObject *
4238 ext_do_call(PyObject *func, PyObject ***pp_stack, int flags, int na, int nk)
4240 int nstar = 0;
4241 PyObject *callargs = NULL;
4242 PyObject *stararg = NULL;
4243 PyObject *kwdict = NULL;
4244 PyObject *result = NULL;
4246 if (flags & CALL_FLAG_KW) {
4247 kwdict = EXT_POP(*pp_stack);
4248 if (!PyDict_Check(kwdict)) {
4249 PyObject *d;
4250 d = PyDict_New();
4251 if (d == NULL)
4252 goto ext_call_fail;
4253 if (PyDict_Update(d, kwdict) != 0) {
4254 Py_DECREF(d);
4255 /* PyDict_Update raises attribute
4256 * error (percolated from an attempt
4257 * to get 'keys' attribute) instead of
4258 * a type error if its second argument
4259 * is not a mapping.
4261 if (PyErr_ExceptionMatches(PyExc_AttributeError)) {
4262 PyErr_Format(PyExc_TypeError,
4263 "%.200s%.200s argument after ** "
4264 "must be a mapping, not %.200s",
4265 PyEval_GetFuncName(func),
4266 PyEval_GetFuncDesc(func),
4267 kwdict->ob_type->tp_name);
4269 goto ext_call_fail;
4271 Py_DECREF(kwdict);
4272 kwdict = d;
4275 if (flags & CALL_FLAG_VAR) {
4276 stararg = EXT_POP(*pp_stack);
4277 if (!PyTuple_Check(stararg)) {
4278 PyObject *t = NULL;
4279 t = PySequence_Tuple(stararg);
4280 if (t == NULL) {
4281 if (PyErr_ExceptionMatches(PyExc_TypeError)) {
4282 PyErr_Format(PyExc_TypeError,
4283 "%.200s%.200s argument after * "
4284 "must be a sequence, not %200s",
4285 PyEval_GetFuncName(func),
4286 PyEval_GetFuncDesc(func),
4287 stararg->ob_type->tp_name);
4289 goto ext_call_fail;
4291 Py_DECREF(stararg);
4292 stararg = t;
4294 nstar = PyTuple_GET_SIZE(stararg);
4296 if (nk > 0) {
4297 kwdict = update_keyword_args(kwdict, nk, pp_stack, func);
4298 if (kwdict == NULL)
4299 goto ext_call_fail;
4301 callargs = update_star_args(na, nstar, stararg, pp_stack);
4302 if (callargs == NULL)
4303 goto ext_call_fail;
4304 #ifdef CALL_PROFILE
4305 /* At this point, we have to look at the type of func to
4306 update the call stats properly. Do it here so as to avoid
4307 exposing the call stats machinery outside ceval.c
4309 if (PyFunction_Check(func))
4310 PCALL(PCALL_FUNCTION);
4311 else if (PyMethod_Check(func))
4312 PCALL(PCALL_METHOD);
4313 else if (PyType_Check(func))
4314 PCALL(PCALL_TYPE);
4315 else if (PyCFunction_Check(func))
4316 PCALL(PCALL_CFUNCTION);
4317 else
4318 PCALL(PCALL_OTHER);
4319 #endif
4320 if (PyCFunction_Check(func)) {
4321 PyThreadState *tstate = PyThreadState_GET();
4322 C_TRACE(result, PyCFunction_Call(func, callargs, kwdict));
4324 else
4325 result = PyObject_Call(func, callargs, kwdict);
4326 ext_call_fail:
4327 Py_XDECREF(callargs);
4328 Py_XDECREF(kwdict);
4329 Py_XDECREF(stararg);
4330 return result;
4333 /* Extract a slice index from a PyInt or PyLong or an object with the
4334 nb_index slot defined, and store in *pi.
4335 Silently reduce values larger than PY_SSIZE_T_MAX to PY_SSIZE_T_MAX,
4336 and silently boost values less than -PY_SSIZE_T_MAX-1 to -PY_SSIZE_T_MAX-1.
4337 Return 0 on error, 1 on success.
4339 /* Note: If v is NULL, return success without storing into *pi. This
4340 is because_PyEval_SliceIndex() is called by apply_slice(), which can be
4341 called by the SLICE opcode with v and/or w equal to NULL.
4344 _PyEval_SliceIndex(PyObject *v, Py_ssize_t *pi)
4346 if (v != NULL) {
4347 Py_ssize_t x;
4348 if (PyInt_Check(v)) {
4349 /* XXX(nnorwitz): I think PyInt_AS_LONG is correct,
4350 however, it looks like it should be AsSsize_t.
4351 There should be a comment here explaining why.
4353 x = PyInt_AS_LONG(v);
4355 else if (PyIndex_Check(v)) {
4356 x = PyNumber_AsSsize_t(v, NULL);
4357 if (x == -1 && PyErr_Occurred())
4358 return 0;
4360 else {
4361 PyErr_SetString(PyExc_TypeError,
4362 "slice indices must be integers or "
4363 "None or have an __index__ method");
4364 return 0;
4366 *pi = x;
4368 return 1;
4371 #undef ISINDEX
4372 #define ISINDEX(x) ((x) == NULL || \
4373 PyInt_Check(x) || PyLong_Check(x) || PyIndex_Check(x))
4375 static PyObject *
4376 apply_slice(PyObject *u, PyObject *v, PyObject *w) /* return u[v:w] */
4378 PyTypeObject *tp = u->ob_type;
4379 PySequenceMethods *sq = tp->tp_as_sequence;
4381 if (sq && sq->sq_slice && ISINDEX(v) && ISINDEX(w)) {
4382 Py_ssize_t ilow = 0, ihigh = PY_SSIZE_T_MAX;
4383 if (!_PyEval_SliceIndex(v, &ilow))
4384 return NULL;
4385 if (!_PyEval_SliceIndex(w, &ihigh))
4386 return NULL;
4387 return PySequence_GetSlice(u, ilow, ihigh);
4389 else {
4390 PyObject *slice = PySlice_New(v, w, NULL);
4391 if (slice != NULL) {
4392 PyObject *res = PyObject_GetItem(u, slice);
4393 Py_DECREF(slice);
4394 return res;
4396 else
4397 return NULL;
4401 static int
4402 assign_slice(PyObject *u, PyObject *v, PyObject *w, PyObject *x)
4403 /* u[v:w] = x */
4405 PyTypeObject *tp = u->ob_type;
4406 PySequenceMethods *sq = tp->tp_as_sequence;
4408 if (sq && sq->sq_ass_slice && ISINDEX(v) && ISINDEX(w)) {
4409 Py_ssize_t ilow = 0, ihigh = PY_SSIZE_T_MAX;
4410 if (!_PyEval_SliceIndex(v, &ilow))
4411 return -1;
4412 if (!_PyEval_SliceIndex(w, &ihigh))
4413 return -1;
4414 if (x == NULL)
4415 return PySequence_DelSlice(u, ilow, ihigh);
4416 else
4417 return PySequence_SetSlice(u, ilow, ihigh, x);
4419 else {
4420 PyObject *slice = PySlice_New(v, w, NULL);
4421 if (slice != NULL) {
4422 int res;
4423 if (x != NULL)
4424 res = PyObject_SetItem(u, slice, x);
4425 else
4426 res = PyObject_DelItem(u, slice);
4427 Py_DECREF(slice);
4428 return res;
4430 else
4431 return -1;
4435 #define Py3kExceptionClass_Check(x) \
4436 (PyType_Check((x)) && \
4437 PyType_FastSubclass((PyTypeObject*)(x), Py_TPFLAGS_BASE_EXC_SUBCLASS))
4439 #define CANNOT_CATCH_MSG "catching classes that don't inherit from " \
4440 "BaseException is not allowed in 3.x"
4442 static PyObject *
4443 cmp_outcome(int op, register PyObject *v, register PyObject *w)
4445 int res = 0;
4446 switch (op) {
4447 case PyCmp_IS:
4448 res = (v == w);
4449 break;
4450 case PyCmp_IS_NOT:
4451 res = (v != w);
4452 break;
4453 case PyCmp_IN:
4454 res = PySequence_Contains(w, v);
4455 if (res < 0)
4456 return NULL;
4457 break;
4458 case PyCmp_NOT_IN:
4459 res = PySequence_Contains(w, v);
4460 if (res < 0)
4461 return NULL;
4462 res = !res;
4463 break;
4464 case PyCmp_EXC_MATCH:
4465 if (PyTuple_Check(w)) {
4466 Py_ssize_t i, length;
4467 length = PyTuple_Size(w);
4468 for (i = 0; i < length; i += 1) {
4469 PyObject *exc = PyTuple_GET_ITEM(w, i);
4470 if (PyString_Check(exc)) {
4471 int ret_val;
4472 ret_val = PyErr_WarnEx(
4473 PyExc_DeprecationWarning,
4474 "catching of string "
4475 "exceptions is deprecated", 1);
4476 if (ret_val < 0)
4477 return NULL;
4479 else if (Py_Py3kWarningFlag &&
4480 !PyTuple_Check(exc) &&
4481 !Py3kExceptionClass_Check(exc))
4483 int ret_val;
4484 ret_val = PyErr_WarnEx(
4485 PyExc_DeprecationWarning,
4486 CANNOT_CATCH_MSG, 1);
4487 if (ret_val < 0)
4488 return NULL;
4492 else {
4493 if (PyString_Check(w)) {
4494 int ret_val;
4495 ret_val = PyErr_WarnEx(
4496 PyExc_DeprecationWarning,
4497 "catching of string "
4498 "exceptions is deprecated", 1);
4499 if (ret_val < 0)
4500 return NULL;
4502 else if (Py_Py3kWarningFlag &&
4503 !PyTuple_Check(w) &&
4504 !Py3kExceptionClass_Check(w))
4506 int ret_val;
4507 ret_val = PyErr_WarnEx(
4508 PyExc_DeprecationWarning,
4509 CANNOT_CATCH_MSG, 1);
4510 if (ret_val < 0)
4511 return NULL;
4514 res = PyErr_GivenExceptionMatches(v, w);
4515 break;
4516 default:
4517 return PyObject_RichCompare(v, w, op);
4519 v = res ? Py_True : Py_False;
4520 Py_INCREF(v);
4521 return v;
4524 static PyObject *
4525 import_from(PyObject *v, PyObject *name)
4527 PyObject *x;
4529 x = PyObject_GetAttr(v, name);
4530 if (x == NULL && PyErr_ExceptionMatches(PyExc_AttributeError)) {
4531 PyErr_Format(PyExc_ImportError,
4532 "cannot import name %.230s",
4533 PyString_AsString(name));
4535 return x;
4538 static int
4539 import_all_from(PyObject *locals, PyObject *v)
4541 PyObject *all = PyObject_GetAttrString(v, "__all__");
4542 PyObject *dict, *name, *value;
4543 int skip_leading_underscores = 0;
4544 int pos, err;
4546 if (all == NULL) {
4547 if (!PyErr_ExceptionMatches(PyExc_AttributeError))
4548 return -1; /* Unexpected error */
4549 PyErr_Clear();
4550 dict = PyObject_GetAttrString(v, "__dict__");
4551 if (dict == NULL) {
4552 if (!PyErr_ExceptionMatches(PyExc_AttributeError))
4553 return -1;
4554 PyErr_SetString(PyExc_ImportError,
4555 "from-import-* object has no __dict__ and no __all__");
4556 return -1;
4558 all = PyMapping_Keys(dict);
4559 Py_DECREF(dict);
4560 if (all == NULL)
4561 return -1;
4562 skip_leading_underscores = 1;
4565 for (pos = 0, err = 0; ; pos++) {
4566 name = PySequence_GetItem(all, pos);
4567 if (name == NULL) {
4568 if (!PyErr_ExceptionMatches(PyExc_IndexError))
4569 err = -1;
4570 else
4571 PyErr_Clear();
4572 break;
4574 if (skip_leading_underscores &&
4575 PyString_Check(name) &&
4576 PyString_AS_STRING(name)[0] == '_')
4578 Py_DECREF(name);
4579 continue;
4581 value = PyObject_GetAttr(v, name);
4582 if (value == NULL)
4583 err = -1;
4584 else if (PyDict_CheckExact(locals))
4585 err = PyDict_SetItem(locals, name, value);
4586 else
4587 err = PyObject_SetItem(locals, name, value);
4588 Py_DECREF(name);
4589 Py_XDECREF(value);
4590 if (err != 0)
4591 break;
4593 Py_DECREF(all);
4594 return err;
4597 static PyObject *
4598 build_class(PyObject *methods, PyObject *bases, PyObject *name)
4600 PyObject *metaclass = NULL, *result, *base;
4602 if (PyDict_Check(methods))
4603 metaclass = PyDict_GetItemString(methods, "__metaclass__");
4604 if (metaclass != NULL)
4605 Py_INCREF(metaclass);
4606 else if (PyTuple_Check(bases) && PyTuple_GET_SIZE(bases) > 0) {
4607 base = PyTuple_GET_ITEM(bases, 0);
4608 metaclass = PyObject_GetAttrString(base, "__class__");
4609 if (metaclass == NULL) {
4610 PyErr_Clear();
4611 metaclass = (PyObject *)base->ob_type;
4612 Py_INCREF(metaclass);
4615 else {
4616 PyObject *g = PyEval_GetGlobals();
4617 if (g != NULL && PyDict_Check(g))
4618 metaclass = PyDict_GetItemString(g, "__metaclass__");
4619 if (metaclass == NULL)
4620 metaclass = (PyObject *) &PyClass_Type;
4621 Py_INCREF(metaclass);
4623 result = PyObject_CallFunctionObjArgs(metaclass, name, bases, methods,
4624 NULL);
4625 Py_DECREF(metaclass);
4626 if (result == NULL && PyErr_ExceptionMatches(PyExc_TypeError)) {
4627 /* A type error here likely means that the user passed
4628 in a base that was not a class (such the random module
4629 instead of the random.random type). Help them out with
4630 by augmenting the error message with more information.*/
4632 PyObject *ptype, *pvalue, *ptraceback;
4634 PyErr_Fetch(&ptype, &pvalue, &ptraceback);
4635 if (PyString_Check(pvalue)) {
4636 PyObject *newmsg;
4637 newmsg = PyString_FromFormat(
4638 "Error when calling the metaclass bases\n"
4639 " %s",
4640 PyString_AS_STRING(pvalue));
4641 if (newmsg != NULL) {
4642 Py_DECREF(pvalue);
4643 pvalue = newmsg;
4646 PyErr_Restore(ptype, pvalue, ptraceback);
4648 return result;
4651 static int
4652 exec_statement(PyFrameObject *f, PyObject *prog, PyObject *globals,
4653 PyObject *locals)
4655 int n;
4656 PyObject *v;
4657 int plain = 0;
4659 if (PyTuple_Check(prog) && globals == Py_None && locals == Py_None &&
4660 ((n = PyTuple_Size(prog)) == 2 || n == 3)) {
4661 /* Backward compatibility hack */
4662 globals = PyTuple_GetItem(prog, 1);
4663 if (n == 3)
4664 locals = PyTuple_GetItem(prog, 2);
4665 prog = PyTuple_GetItem(prog, 0);
4667 if (globals == Py_None) {
4668 globals = PyEval_GetGlobals();
4669 if (locals == Py_None) {
4670 locals = PyEval_GetLocals();
4671 plain = 1;
4673 if (!globals || !locals) {
4674 PyErr_SetString(PyExc_SystemError,
4675 "globals and locals cannot be NULL");
4676 return -1;
4679 else if (locals == Py_None)
4680 locals = globals;
4681 if (!PyString_Check(prog) &&
4682 #ifdef Py_USING_UNICODE
4683 !PyUnicode_Check(prog) &&
4684 #endif
4685 !PyCode_Check(prog) &&
4686 !PyFile_Check(prog)) {
4687 PyErr_SetString(PyExc_TypeError,
4688 "exec: arg 1 must be a string, file, or code object");
4689 return -1;
4691 if (!PyDict_Check(globals)) {
4692 PyErr_SetString(PyExc_TypeError,
4693 "exec: arg 2 must be a dictionary or None");
4694 return -1;
4696 if (!PyMapping_Check(locals)) {
4697 PyErr_SetString(PyExc_TypeError,
4698 "exec: arg 3 must be a mapping or None");
4699 return -1;
4701 if (PyDict_GetItemString(globals, "__builtins__") == NULL)
4702 PyDict_SetItemString(globals, "__builtins__", f->f_builtins);
4703 if (PyCode_Check(prog)) {
4704 if (PyCode_GetNumFree((PyCodeObject *)prog) > 0) {
4705 PyErr_SetString(PyExc_TypeError,
4706 "code object passed to exec may not contain free variables");
4707 return -1;
4709 v = PyEval_EvalCode((PyCodeObject *) prog, globals, locals);
4711 else if (PyFile_Check(prog)) {
4712 FILE *fp = PyFile_AsFile(prog);
4713 char *name = PyString_AsString(PyFile_Name(prog));
4714 PyCompilerFlags cf;
4715 if (name == NULL)
4716 return -1;
4717 cf.cf_flags = 0;
4718 if (PyEval_MergeCompilerFlags(&cf))
4719 v = PyRun_FileFlags(fp, name, Py_file_input, globals,
4720 locals, &cf);
4721 else
4722 v = PyRun_File(fp, name, Py_file_input, globals,
4723 locals);
4725 else {
4726 PyObject *tmp = NULL;
4727 char *str;
4728 PyCompilerFlags cf;
4729 cf.cf_flags = 0;
4730 #ifdef Py_USING_UNICODE
4731 if (PyUnicode_Check(prog)) {
4732 tmp = PyUnicode_AsUTF8String(prog);
4733 if (tmp == NULL)
4734 return -1;
4735 prog = tmp;
4736 cf.cf_flags |= PyCF_SOURCE_IS_UTF8;
4738 #endif
4739 if (PyString_AsStringAndSize(prog, &str, NULL))
4740 return -1;
4741 if (PyEval_MergeCompilerFlags(&cf))
4742 v = PyRun_StringFlags(str, Py_file_input, globals,
4743 locals, &cf);
4744 else
4745 v = PyRun_String(str, Py_file_input, globals, locals);
4746 Py_XDECREF(tmp);
4748 if (plain)
4749 PyFrame_LocalsToFast(f, 0);
4750 if (v == NULL)
4751 return -1;
4752 Py_DECREF(v);
4753 return 0;
4756 static void
4757 format_exc_check_arg(PyObject *exc, char *format_str, PyObject *obj)
4759 char *obj_str;
4761 if (!obj)
4762 return;
4764 obj_str = PyString_AsString(obj);
4765 if (!obj_str)
4766 return;
4768 PyErr_Format(exc, format_str, obj_str);
4771 static PyObject *
4772 string_concatenate(PyObject *v, PyObject *w,
4773 PyFrameObject *f, unsigned char *next_instr)
4775 /* This function implements 'variable += expr' when both arguments
4776 are strings. */
4777 Py_ssize_t v_len = PyString_GET_SIZE(v);
4778 Py_ssize_t w_len = PyString_GET_SIZE(w);
4779 Py_ssize_t new_len = v_len + w_len;
4780 if (new_len < 0) {
4781 PyErr_SetString(PyExc_OverflowError,
4782 "strings are too large to concat");
4783 return NULL;
4786 if (v->ob_refcnt == 2) {
4787 /* In the common case, there are 2 references to the value
4788 * stored in 'variable' when the += is performed: one on the
4789 * value stack (in 'v') and one still stored in the
4790 * 'variable'. We try to delete the variable now to reduce
4791 * the refcnt to 1.
4793 switch (*next_instr) {
4794 case STORE_FAST:
4796 int oparg = PEEKARG();
4797 PyObject **fastlocals = f->f_localsplus;
4798 if (GETLOCAL(oparg) == v)
4799 SETLOCAL(oparg, NULL);
4800 break;
4802 case STORE_DEREF:
4804 PyObject **freevars = (f->f_localsplus +
4805 f->f_code->co_nlocals);
4806 PyObject *c = freevars[PEEKARG()];
4807 if (PyCell_GET(c) == v)
4808 PyCell_Set(c, NULL);
4809 break;
4811 case STORE_NAME:
4813 PyObject *names = f->f_code->co_names;
4814 PyObject *name = GETITEM(names, PEEKARG());
4815 PyObject *locals = f->f_locals;
4816 if (PyDict_CheckExact(locals) &&
4817 PyDict_GetItem(locals, name) == v) {
4818 if (PyDict_DelItem(locals, name) != 0) {
4819 PyErr_Clear();
4822 break;
4827 if (v->ob_refcnt == 1 && !PyString_CHECK_INTERNED(v)) {
4828 /* Now we own the last reference to 'v', so we can resize it
4829 * in-place.
4831 if (_PyString_Resize(&v, new_len) != 0) {
4832 /* XXX if _PyString_Resize() fails, 'v' has been
4833 * deallocated so it cannot be put back into
4834 * 'variable'. The MemoryError is raised when there
4835 * is no value in 'variable', which might (very
4836 * remotely) be a cause of incompatibilities.
4838 return NULL;
4840 /* copy 'w' into the newly allocated area of 'v' */
4841 memcpy(PyString_AS_STRING(v) + v_len,
4842 PyString_AS_STRING(w), w_len);
4843 return v;
4845 else {
4846 /* When in-place resizing is not an option. */
4847 PyString_Concat(&v, w);
4848 return v;
4852 #ifdef DYNAMIC_EXECUTION_PROFILE
4854 static PyObject *
4855 getarray(long a[256])
4857 int i;
4858 PyObject *l = PyList_New(256);
4859 if (l == NULL) return NULL;
4860 for (i = 0; i < 256; i++) {
4861 PyObject *x = PyInt_FromLong(a[i]);
4862 if (x == NULL) {
4863 Py_DECREF(l);
4864 return NULL;
4866 PyList_SetItem(l, i, x);
4868 for (i = 0; i < 256; i++)
4869 a[i] = 0;
4870 return l;
4873 PyObject *
4874 _Py_GetDXProfile(PyObject *self, PyObject *args)
4876 #ifndef DXPAIRS
4877 return getarray(dxp);
4878 #else
4879 int i;
4880 PyObject *l = PyList_New(257);
4881 if (l == NULL) return NULL;
4882 for (i = 0; i < 257; i++) {
4883 PyObject *x = getarray(dxpairs[i]);
4884 if (x == NULL) {
4885 Py_DECREF(l);
4886 return NULL;
4888 PyList_SetItem(l, i, x);
4890 return l;
4891 #endif
4894 #endif