1 # Tests for the correctly-rounded string -> float conversions
2 # introduced in Python 2.7 and 3.1.
9 from test
import test_support
11 if getattr(sys
, 'float_repr_style', '') != 'short':
12 raise unittest
.SkipTest('correctly-rounded string->float conversions '
13 'not available on this system')
15 # Correctly rounded str -> float in pure Python, for comparison.
17 strtod_parser
= re
.compile(r
""" # A numeric string consists of:
18 (?P<sign>[-+])? # an optional sign, followed by
19 (?=\d|\.\d) # a number with at least one digit
20 (?P<int>\d*) # having a (possibly empty) integer part
21 (?:\.(?P<frac>\d*))? # followed by an optional fractional part
22 (?:E(?P<exp>[-+]?\d+))? # and an optional exponent
24 """, re
.VERBOSE | re
.IGNORECASE
).match
26 # Pure Python version of correctly rounded string->float conversion.
27 # Avoids any use of floating-point by returning the result as a hex string.
28 def strtod(s
, mant_dig
=53, min_exp
= -1021, max_exp
= 1024):
29 """Convert a finite decimal string to a hex string representing an
30 IEEE 754 binary64 float. Return 'inf' or '-inf' on overflow.
31 This function makes no use of floating-point arithmetic at any
34 # parse string into a pair of integers 'a' and 'b' such that
35 # abs(decimal value) = a/b, along with a boolean 'negative'.
38 raise ValueError('invalid numeric string')
39 fraction
= m
.group('frac') or ''
40 intpart
= int(m
.group('int') + fraction
)
41 exp
= int(m
.group('exp') or '0') - len(fraction
)
42 negative
= m
.group('sign') == '-'
43 a
, b
= intpart
*10**max(exp
, 0), 10**max(0, -exp
)
45 # quick return for zeros
47 return '-0x0.0p+0' if negative
else '0x0.0p+0'
49 # compute exponent e for result; may be one too small in the case
50 # that the rounded value of a/b lies in a different binade from a/b
51 d
= a
.bit_length() - b
.bit_length()
52 d
+= (a
>> d
if d
>= 0 else a
<< -d
) >= b
53 e
= max(d
, min_exp
) - mant_dig
55 # approximate a/b by number of the form q * 2**e; adjust e if necessary
56 a
, b
= a
<< max(-e
, 0), b
<< max(e
, 0)
58 if 2*r
> b
or 2*r
== b
and q
& 1:
60 if q
.bit_length() == mant_dig
+1:
64 # double check that (q, e) has the right form
65 assert q
.bit_length() <= mant_dig
and e
>= min_exp
- mant_dig
66 assert q
.bit_length() == mant_dig
or e
== min_exp
- mant_dig
68 # check for overflow and underflow
69 if e
+ q
.bit_length() > max_exp
:
70 return '-inf' if negative
else 'inf'
72 return '-0x0.0p+0' if negative
else '0x0.0p+0'
74 # for hex representation, shift so # bits after point is a multiple of 4
75 hexdigs
= 1 + (mant_dig
-2)//4
76 shift
= 3 - (mant_dig
-2)%4
77 q
, e
= q
<< shift
, e
- shift
78 return '{}0x{:x}.{:0{}x}p{:+d}'.format(
79 '-' if negative
else '',
87 class StrtodTests(unittest
.TestCase
):
88 def check_strtod(self
, s
):
89 """Compare the result of Python's builtin correctly rounded
90 string->float conversion (using float) to a pure Python
91 correctly rounded string->float implementation. Fail if the
92 two methods give different results."""
97 got
= '-inf' if s
[0] == '-' else 'inf'
103 self
.assertEqual(expected
, got
,
104 "Incorrectly rounded str->float conversion for {}: "
105 "expected {}, got {}".format(s
, expected
, got
))
107 def test_short_halfway_cases(self
):
108 # exact halfway cases with a small number of significant digits
109 for k
in 0, 5, 10, 15, 20:
110 # upper = smallest integer >= 2**54/5**k
111 upper
= -(-2**54//5**k
)
112 # lower = smallest odd number >= 2**53/5**k
113 lower
= -(-2**53//5**k
)
116 for i
in xrange(TEST_SIZE
):
117 # Select a random odd n in [2**53/5**k,
118 # 2**54/5**k). Then n * 10**k gives a halfway case
119 # with small number of significant digits.
120 n
, e
= random
.randrange(lower
, upper
, 2), k
122 # Remove any additional powers of 5.
125 assert n
% 10 in (1, 3, 7, 9)
127 # Try numbers of the form n * 2**p2 * 10**e, p2 >= 0,
128 # until n * 2**p2 has more than 20 significant digits.
129 digits
, exponent
= n
, e
130 while digits
< 10**20:
131 s
= '{}e{}'.format(digits
, exponent
)
133 # Same again, but with extra trailing zeros.
134 s
= '{}e{}'.format(digits
* 10**40, exponent
- 40)
138 # Try numbers of the form n * 5**p2 * 10**(e - p5), p5
139 # >= 0, with n * 5**p5 < 10**20.
140 digits
, exponent
= n
, e
141 while digits
< 10**20:
142 s
= '{}e{}'.format(digits
, exponent
)
144 # Same again, but with extra trailing zeros.
145 s
= '{}e{}'.format(digits
* 10**40, exponent
- 40)
150 def test_halfway_cases(self
):
151 # test halfway cases for the round-half-to-even rule
152 for i
in xrange(100 * TEST_SIZE
):
153 # bit pattern for a random finite positive (or +0.0) float
154 bits
= random
.randrange(2047*2**52)
156 # convert bit pattern to a number of the form m * 2**e
157 e
, m
= divmod(bits
, 2**52)
159 m
, e
= m
+ 2**52, e
- 1
163 m
, e
= 2*m
+ 1, e
- 1
165 # convert to a decimal string
170 # m * 2**e = (m * 5**-e) * 10**e
173 s
= '{}e{}'.format(digits
, exponent
)
176 def test_boundaries(self
):
177 # boundaries expressed as triples (n, e, u), where
178 # n*10**e is an approximation to the boundary value and
181 (10000000000000000000, -19, 1110), # a power of 2 boundary (1.0)
182 (17976931348623159077, 289, 1995), # overflow boundary (2.**1024)
183 (22250738585072013831, -327, 4941), # normal/subnormal (2.**-1022)
184 (0, -327, 4941), # zero
186 for n
, e
, u
in boundaries
:
187 for j
in xrange(1000):
188 digits
= n
+ random
.randrange(-3*u
, 3*u
)
190 s
= '{}e{}'.format(digits
, exponent
)
196 def test_underflow_boundary(self
):
197 # test values close to 2**-1075, the underflow boundary; similar
198 # to boundary_tests, except that the random error doesn't scale
200 for exponent
in xrange(-400, -320):
201 base
= 10**-exponent
// 2**1075
202 for j
in xrange(TEST_SIZE
):
203 digits
= base
+ random
.randrange(-1000, 1000)
204 s
= '{}e{}'.format(digits
, exponent
)
207 def test_bigcomp(self
):
208 for ndigs
in 5, 10, 14, 15, 16, 17, 18, 19, 20, 40, 41, 50:
210 for i
in xrange(10 * TEST_SIZE
):
211 digits
= random
.randrange(dig10
)
212 exponent
= random
.randrange(-400, 400)
213 s
= '{}e{}'.format(digits
, exponent
)
216 def test_parsing(self
):
217 # make '0' more likely to be chosen than other digits
218 digits
= '000000123456789'
219 signs
= ('+', '-', '')
221 # put together random short valid strings
223 for i
in xrange(1000):
224 for j
in xrange(TEST_SIZE
):
225 s
= random
.choice(signs
)
226 intpart_len
= random
.randrange(5)
227 s
+= ''.join(random
.choice(digits
) for _
in xrange(intpart_len
))
228 if random
.choice([True, False]):
230 fracpart_len
= random
.randrange(5)
231 s
+= ''.join(random
.choice(digits
)
232 for _
in xrange(fracpart_len
))
235 if random
.choice([True, False]):
236 s
+= random
.choice(['e', 'E'])
237 s
+= random
.choice(signs
)
238 exponent_len
= random
.randrange(1, 4)
239 s
+= ''.join(random
.choice(digits
)
240 for _
in xrange(exponent_len
))
242 if intpart_len
+ fracpart_len
:
250 assert False, "expected ValueError"
252 def test_particular(self
):
253 # inputs that produced crashes or incorrectly rounded results with
254 # previous versions of dtoa.c, for various reasons
256 # issue 7632 bug 1, originally reported failing case
257 '2183167012312112312312.23538020374420446192e-370',
258 # 5 instances of issue 7632 bug 2
259 '12579816049008305546974391768996369464963024663104e-357',
260 '17489628565202117263145367596028389348922981857013e-357',
261 '18487398785991994634182916638542680759613590482273e-357',
262 '32002864200581033134358724675198044527469366773928e-358',
263 '94393431193180696942841837085033647913224148539854e-358',
264 '73608278998966969345824653500136787876436005957953e-358',
265 '64774478836417299491718435234611299336288082136054e-358',
266 '13704940134126574534878641876947980878824688451169e-357',
267 '46697445774047060960624497964425416610480524760471e-358',
268 # failing case for bug introduced by METD in r77451 (attempted
269 # fix for issue 7632, bug 2), and fixed in r77482.
270 '28639097178261763178489759107321392745108491825303e-311',
271 # two numbers demonstrating a flaw in the bigcomp 'dig == 0'
272 # correction block (issue 7632, bug 3)
273 '1.00000000000000001e44',
274 '1.0000000000000000100000000000000000000001e44',
275 # dtoa.c bug for numbers just smaller than a power of 2 (issue
277 '99999999999999994487665465554760717039532578546e-47',
278 # failing case for off-by-one error introduced by METD in
279 # r77483 (dtoa.c cleanup), fixed in r77490
280 '965437176333654931799035513671997118345570045914469' #...
281 '6213413350821416312194420007991306908470147322020121018368e0',
282 # incorrect lsb detection for round-half-to-even when
283 # bc->scale != 0 (issue 7632, bug 6).
284 '104308485241983990666713401708072175773165034278685' #...
285 '682646111762292409330928739751702404658197872319129' #...
286 '036519947435319418387839758990478549477777586673075' #...
287 '945844895981012024387992135617064532141489278815239' #...
288 '849108105951619997829153633535314849999674266169258' #...
289 '928940692239684771590065027025835804863585454872499' #...
290 '320500023126142553932654370362024104462255244034053' #...
291 '203998964360882487378334860197725139151265590832887' #...
292 '433736189468858614521708567646743455601905935595381' #...
293 '852723723645799866672558576993978025033590728687206' #...
294 '296379801363024094048327273913079612469982585674824' #...
295 '156000783167963081616214710691759864332339239688734' #...
296 '656548790656486646106983450809073750535624894296242' #...
297 '072010195710276073042036425579852459556183541199012' #...
298 '652571123898996574563824424330960027873516082763671875e-1075',
299 # demonstration that original fix for issue 7632 bug 1 was
300 # buggy; the exit condition was too strong
301 '247032822920623295e-341',
302 # demonstrate similar problem to issue 7632 bug1: crash
303 # with 'oversized quotient in quorem' message.
304 '99037485700245683102805043437346965248029601286431e-373',
305 '99617639833743863161109961162881027406769510558457e-373',
306 '98852915025769345295749278351563179840130565591462e-372',
307 '99059944827693569659153042769690930905148015876788e-373',
308 '98914979205069368270421829889078356254059760327101e-372',
309 # issue 7632 bug 5: the following 2 strings convert differently
310 '1000000000000000000000000000000000000000e-16',
311 '10000000000000000000000000000000000000000e-17',
313 '991633793189150720000000000000000000000000000000000000000e-33',
314 # And another, similar, failing halfway case
315 '4106250198039490000000000000000000000000000000000000000e-38',
316 # issue 7632 bug 8: the following produced 10.0
317 '10.900000000000000012345678912345678912345',
319 # two humongous values from issue 7743
320 '116512874940594195638617907092569881519034793229385' #...
321 '228569165191541890846564669771714896916084883987920' #...
322 '473321268100296857636200926065340769682863349205363' #...
323 '349247637660671783209907949273683040397979984107806' #...
324 '461822693332712828397617946036239581632976585100633' #...
325 '520260770761060725403904123144384571612073732754774' #...
326 '588211944406465572591022081973828448927338602556287' #...
327 '851831745419397433012491884869454462440536895047499' #...
328 '436551974649731917170099387762871020403582994193439' #...
329 '761933412166821484015883631622539314203799034497982' #...
330 '130038741741727907429575673302461380386596501187482' #...
331 '006257527709842179336488381672818798450229339123527' #...
332 '858844448336815912020452294624916993546388956561522' #...
333 '161875352572590420823607478788399460162228308693742' #...
334 '05287663441403533948204085390898399055004119873046875e-1075',
336 '525440653352955266109661060358202819561258984964913' #...
337 '892256527849758956045218257059713765874251436193619' #...
338 '443248205998870001633865657517447355992225852945912' #...
339 '016668660000210283807209850662224417504752264995360' #...
340 '631512007753855801075373057632157738752800840302596' #...
341 '237050247910530538250008682272783660778181628040733' #...
342 '653121492436408812668023478001208529190359254322340' #...
343 '397575185248844788515410722958784640926528544043090' #...
344 '115352513640884988017342469275006999104519620946430' #...
345 '818767147966495485406577703972687838176778993472989' #...
346 '561959000047036638938396333146685137903018376496408' #...
347 '319705333868476925297317136513970189073693314710318' #...
348 '991252811050501448326875232850600451776091303043715' #...
349 '157191292827614046876950225714743118291034780466325' #...
350 '085141343734564915193426994587206432697337118211527' #...
351 '278968731294639353354774788602467795167875117481660' #...
352 '4738791256853675690543663283782215866825e-1180',
354 # exercise exit conditions in bigcomp comparison loop
355 '2602129298404963083833853479113577253105939995688e2',
356 '260212929840496308383385347911357725310593999568896e0',
357 '26021292984049630838338534791135772531059399956889601e-2',
358 '260212929840496308383385347911357725310593999568895e0',
359 '260212929840496308383385347911357725310593999568897e0',
360 '260212929840496308383385347911357725310593999568996e0',
361 '260212929840496308383385347911357725310593999568866e0',
363 '9007199254740992.00',
364 # 2**1024 - 2**970: exact overflow boundary. All values
365 # smaller than this should round to something finite; any value
366 # greater than or equal to this one overflows.
367 '179769313486231580793728971405303415079934132710037' #...
368 '826936173778980444968292764750946649017977587207096' #...
369 '330286416692887910946555547851940402630657488671505' #...
370 '820681908902000708383676273854845817711531764475730' #...
371 '270069855571366959622842914819860834936475292719074' #...
372 '168444365510704342711559699508093042880177904174497792',
373 # 2**1024 - 2**970 - tiny
374 '179769313486231580793728971405303415079934132710037' #...
375 '826936173778980444968292764750946649017977587207096' #...
376 '330286416692887910946555547851940402630657488671505' #...
377 '820681908902000708383676273854845817711531764475730' #...
378 '270069855571366959622842914819860834936475292719074' #...
379 '168444365510704342711559699508093042880177904174497791.999',
380 # 2**1024 - 2**970 + tiny
381 '179769313486231580793728971405303415079934132710037' #...
382 '826936173778980444968292764750946649017977587207096' #...
383 '330286416692887910946555547851940402630657488671505' #...
384 '820681908902000708383676273854845817711531764475730' #...
385 '270069855571366959622842914819860834936475292719074' #...
386 '168444365510704342711559699508093042880177904174497792.001',
388 '999999999999999944488848768742172978818416595458984375e-54',
389 '9999999999999999444888487687421729788184165954589843749999999e-54',
390 '9999999999999999444888487687421729788184165954589843750000001e-54',
392 for s
in test_strings
:
396 test_support
.run_unittest(StrtodTests
)
398 if __name__
== "__main__":