Merged revisions 82448 via svnmerge from
[python/dscho.git] / Objects / floatobject.c
blob865c960b88790cb0d3f865de489855ab30bd7c4c
2 /* Float object implementation */
4 /* XXX There should be overflow checks here, but it's hard to check
5 for any kind of float exception without losing portability. */
7 #include "Python.h"
8 #include "structseq.h"
10 #include <ctype.h>
11 #include <float.h>
13 #undef MAX
14 #undef MIN
15 #define MAX(x, y) ((x) < (y) ? (y) : (x))
16 #define MIN(x, y) ((x) < (y) ? (x) : (y))
18 #ifdef HAVE_IEEEFP_H
19 #include <ieeefp.h>
20 #endif
23 #ifdef _OSF_SOURCE
24 /* OSF1 5.1 doesn't make this available with XOPEN_SOURCE_EXTENDED defined */
25 extern int finite(double);
26 #endif
28 /* Special free list -- see comments for same code in intobject.c. */
29 #define BLOCK_SIZE 1000 /* 1K less typical malloc overhead */
30 #define BHEAD_SIZE 8 /* Enough for a 64-bit pointer */
31 #define N_FLOATOBJECTS ((BLOCK_SIZE - BHEAD_SIZE) / sizeof(PyFloatObject))
33 struct _floatblock {
34 struct _floatblock *next;
35 PyFloatObject objects[N_FLOATOBJECTS];
38 typedef struct _floatblock PyFloatBlock;
40 static PyFloatBlock *block_list = NULL;
41 static PyFloatObject *free_list = NULL;
43 static PyFloatObject *
44 fill_free_list(void)
46 PyFloatObject *p, *q;
47 /* XXX Float blocks escape the object heap. Use PyObject_MALLOC ??? */
48 p = (PyFloatObject *) PyMem_MALLOC(sizeof(PyFloatBlock));
49 if (p == NULL)
50 return (PyFloatObject *) PyErr_NoMemory();
51 ((PyFloatBlock *)p)->next = block_list;
52 block_list = (PyFloatBlock *)p;
53 p = &((PyFloatBlock *)p)->objects[0];
54 q = p + N_FLOATOBJECTS;
55 while (--q > p)
56 Py_TYPE(q) = (struct _typeobject *)(q-1);
57 Py_TYPE(q) = NULL;
58 return p + N_FLOATOBJECTS - 1;
61 double
62 PyFloat_GetMax(void)
64 return DBL_MAX;
67 double
68 PyFloat_GetMin(void)
70 return DBL_MIN;
73 static PyTypeObject FloatInfoType;
75 PyDoc_STRVAR(floatinfo__doc__,
76 "sys.floatinfo\n\
77 \n\
78 A structseq holding information about the float type. It contains low level\n\
79 information about the precision and internal representation. Please study\n\
80 your system's :file:`float.h` for more information.");
82 static PyStructSequence_Field floatinfo_fields[] = {
83 {"max", "DBL_MAX -- maximum representable finite float"},
84 {"max_exp", "DBL_MAX_EXP -- maximum int e such that radix**(e-1) "
85 "is representable"},
86 {"max_10_exp", "DBL_MAX_10_EXP -- maximum int e such that 10**e "
87 "is representable"},
88 {"min", "DBL_MIN -- Minimum positive normalizer float"},
89 {"min_exp", "DBL_MIN_EXP -- minimum int e such that radix**(e-1) "
90 "is a normalized float"},
91 {"min_10_exp", "DBL_MIN_10_EXP -- minimum int e such that 10**e is "
92 "a normalized"},
93 {"dig", "DBL_DIG -- digits"},
94 {"mant_dig", "DBL_MANT_DIG -- mantissa digits"},
95 {"epsilon", "DBL_EPSILON -- Difference between 1 and the next "
96 "representable float"},
97 {"radix", "FLT_RADIX -- radix of exponent"},
98 {"rounds", "FLT_ROUNDS -- addition rounds"},
99 {0}
102 static PyStructSequence_Desc floatinfo_desc = {
103 "sys.floatinfo", /* name */
104 floatinfo__doc__, /* doc */
105 floatinfo_fields, /* fields */
109 PyObject *
110 PyFloat_GetInfo(void)
112 PyObject* floatinfo;
113 int pos = 0;
115 floatinfo = PyStructSequence_New(&FloatInfoType);
116 if (floatinfo == NULL) {
117 return NULL;
120 #define SetIntFlag(flag) \
121 PyStructSequence_SET_ITEM(floatinfo, pos++, PyLong_FromLong(flag))
122 #define SetDblFlag(flag) \
123 PyStructSequence_SET_ITEM(floatinfo, pos++, PyFloat_FromDouble(flag))
125 SetDblFlag(DBL_MAX);
126 SetIntFlag(DBL_MAX_EXP);
127 SetIntFlag(DBL_MAX_10_EXP);
128 SetDblFlag(DBL_MIN);
129 SetIntFlag(DBL_MIN_EXP);
130 SetIntFlag(DBL_MIN_10_EXP);
131 SetIntFlag(DBL_DIG);
132 SetIntFlag(DBL_MANT_DIG);
133 SetDblFlag(DBL_EPSILON);
134 SetIntFlag(FLT_RADIX);
135 SetIntFlag(FLT_ROUNDS);
136 #undef SetIntFlag
137 #undef SetDblFlag
139 if (PyErr_Occurred()) {
140 Py_CLEAR(floatinfo);
141 return NULL;
143 return floatinfo;
146 PyObject *
147 PyFloat_FromDouble(double fval)
149 register PyFloatObject *op;
150 if (free_list == NULL) {
151 if ((free_list = fill_free_list()) == NULL)
152 return NULL;
154 /* Inline PyObject_New */
155 op = free_list;
156 free_list = (PyFloatObject *)Py_TYPE(op);
157 PyObject_INIT(op, &PyFloat_Type);
158 op->ob_fval = fval;
159 return (PyObject *) op;
162 PyObject *
163 PyFloat_FromString(PyObject *v)
165 const char *s, *last, *end;
166 double x;
167 char buffer[256]; /* for errors */
168 char *s_buffer = NULL;
169 Py_ssize_t len;
170 PyObject *result = NULL;
172 if (PyUnicode_Check(v)) {
173 s_buffer = (char *)PyMem_MALLOC(PyUnicode_GET_SIZE(v)+1);
174 if (s_buffer == NULL)
175 return PyErr_NoMemory();
176 if (PyUnicode_EncodeDecimal(PyUnicode_AS_UNICODE(v),
177 PyUnicode_GET_SIZE(v),
178 s_buffer,
179 NULL))
180 goto error;
181 s = s_buffer;
182 len = strlen(s);
184 else if (PyObject_AsCharBuffer(v, &s, &len)) {
185 PyErr_SetString(PyExc_TypeError,
186 "float() argument must be a string or a number");
187 return NULL;
189 last = s + len;
191 while (Py_ISSPACE(*s))
192 s++;
193 /* We don't care about overflow or underflow. If the platform
194 * supports them, infinities and signed zeroes (on underflow) are
195 * fine. */
196 x = PyOS_string_to_double(s, (char **)&end, NULL);
197 if (x == -1.0 && PyErr_Occurred())
198 goto error;
199 while (Py_ISSPACE(*end))
200 end++;
201 if (end == last)
202 result = PyFloat_FromDouble(x);
203 else {
204 PyOS_snprintf(buffer, sizeof(buffer),
205 "invalid literal for float(): %.200s", s);
206 PyErr_SetString(PyExc_ValueError, buffer);
207 result = NULL;
210 error:
211 if (s_buffer)
212 PyMem_FREE(s_buffer);
213 return result;
216 static void
217 float_dealloc(PyFloatObject *op)
219 if (PyFloat_CheckExact(op)) {
220 Py_TYPE(op) = (struct _typeobject *)free_list;
221 free_list = op;
223 else
224 Py_TYPE(op)->tp_free((PyObject *)op);
227 double
228 PyFloat_AsDouble(PyObject *op)
230 PyNumberMethods *nb;
231 PyFloatObject *fo;
232 double val;
234 if (op && PyFloat_Check(op))
235 return PyFloat_AS_DOUBLE((PyFloatObject*) op);
237 if (op == NULL) {
238 PyErr_BadArgument();
239 return -1;
242 if ((nb = Py_TYPE(op)->tp_as_number) == NULL || nb->nb_float == NULL) {
243 PyErr_SetString(PyExc_TypeError, "a float is required");
244 return -1;
247 fo = (PyFloatObject*) (*nb->nb_float) (op);
248 if (fo == NULL)
249 return -1;
250 if (!PyFloat_Check(fo)) {
251 PyErr_SetString(PyExc_TypeError,
252 "nb_float should return float object");
253 return -1;
256 val = PyFloat_AS_DOUBLE(fo);
257 Py_DECREF(fo);
259 return val;
262 /* Macro and helper that convert PyObject obj to a C double and store
263 the value in dbl. If conversion to double raises an exception, obj is
264 set to NULL, and the function invoking this macro returns NULL. If
265 obj is not of float, int or long type, Py_NotImplemented is incref'ed,
266 stored in obj, and returned from the function invoking this macro.
268 #define CONVERT_TO_DOUBLE(obj, dbl) \
269 if (PyFloat_Check(obj)) \
270 dbl = PyFloat_AS_DOUBLE(obj); \
271 else if (convert_to_double(&(obj), &(dbl)) < 0) \
272 return obj;
274 /* Methods */
276 static int
277 convert_to_double(PyObject **v, double *dbl)
279 register PyObject *obj = *v;
281 if (PyLong_Check(obj)) {
282 *dbl = PyLong_AsDouble(obj);
283 if (*dbl == -1.0 && PyErr_Occurred()) {
284 *v = NULL;
285 return -1;
288 else {
289 Py_INCREF(Py_NotImplemented);
290 *v = Py_NotImplemented;
291 return -1;
293 return 0;
296 static PyObject *
297 float_str_or_repr(PyFloatObject *v, int precision, char format_code)
299 PyObject *result;
300 char *buf = PyOS_double_to_string(PyFloat_AS_DOUBLE(v),
301 format_code, precision,
302 Py_DTSF_ADD_DOT_0,
303 NULL);
304 if (!buf)
305 return PyErr_NoMemory();
306 result = PyUnicode_FromString(buf);
307 PyMem_Free(buf);
308 return result;
311 static PyObject *
312 float_repr(PyFloatObject *v)
314 return float_str_or_repr(v, 0, 'r');
317 static PyObject *
318 float_str(PyFloatObject *v)
320 return float_str_or_repr(v, PyFloat_STR_PRECISION, 'g');
323 /* Comparison is pretty much a nightmare. When comparing float to float,
324 * we do it as straightforwardly (and long-windedly) as conceivable, so
325 * that, e.g., Python x == y delivers the same result as the platform
326 * C x == y when x and/or y is a NaN.
327 * When mixing float with an integer type, there's no good *uniform* approach.
328 * Converting the double to an integer obviously doesn't work, since we
329 * may lose info from fractional bits. Converting the integer to a double
330 * also has two failure modes: (1) a long int may trigger overflow (too
331 * large to fit in the dynamic range of a C double); (2) even a C long may have
332 * more bits than fit in a C double (e.g., on a a 64-bit box long may have
333 * 63 bits of precision, but a C double probably has only 53), and then
334 * we can falsely claim equality when low-order integer bits are lost by
335 * coercion to double. So this part is painful too.
338 static PyObject*
339 float_richcompare(PyObject *v, PyObject *w, int op)
341 double i, j;
342 int r = 0;
344 assert(PyFloat_Check(v));
345 i = PyFloat_AS_DOUBLE(v);
347 /* Switch on the type of w. Set i and j to doubles to be compared,
348 * and op to the richcomp to use.
350 if (PyFloat_Check(w))
351 j = PyFloat_AS_DOUBLE(w);
353 else if (!Py_IS_FINITE(i)) {
354 if (PyLong_Check(w))
355 /* If i is an infinity, its magnitude exceeds any
356 * finite integer, so it doesn't matter which int we
357 * compare i with. If i is a NaN, similarly.
359 j = 0.0;
360 else
361 goto Unimplemented;
364 else if (PyLong_Check(w)) {
365 int vsign = i == 0.0 ? 0 : i < 0.0 ? -1 : 1;
366 int wsign = _PyLong_Sign(w);
367 size_t nbits;
368 int exponent;
370 if (vsign != wsign) {
371 /* Magnitudes are irrelevant -- the signs alone
372 * determine the outcome.
374 i = (double)vsign;
375 j = (double)wsign;
376 goto Compare;
378 /* The signs are the same. */
379 /* Convert w to a double if it fits. In particular, 0 fits. */
380 nbits = _PyLong_NumBits(w);
381 if (nbits == (size_t)-1 && PyErr_Occurred()) {
382 /* This long is so large that size_t isn't big enough
383 * to hold the # of bits. Replace with little doubles
384 * that give the same outcome -- w is so large that
385 * its magnitude must exceed the magnitude of any
386 * finite float.
388 PyErr_Clear();
389 i = (double)vsign;
390 assert(wsign != 0);
391 j = wsign * 2.0;
392 goto Compare;
394 if (nbits <= 48) {
395 j = PyLong_AsDouble(w);
396 /* It's impossible that <= 48 bits overflowed. */
397 assert(j != -1.0 || ! PyErr_Occurred());
398 goto Compare;
400 assert(wsign != 0); /* else nbits was 0 */
401 assert(vsign != 0); /* if vsign were 0, then since wsign is
402 * not 0, we would have taken the
403 * vsign != wsign branch at the start */
404 /* We want to work with non-negative numbers. */
405 if (vsign < 0) {
406 /* "Multiply both sides" by -1; this also swaps the
407 * comparator.
409 i = -i;
410 op = _Py_SwappedOp[op];
412 assert(i > 0.0);
413 (void) frexp(i, &exponent);
414 /* exponent is the # of bits in v before the radix point;
415 * we know that nbits (the # of bits in w) > 48 at this point
417 if (exponent < 0 || (size_t)exponent < nbits) {
418 i = 1.0;
419 j = 2.0;
420 goto Compare;
422 if ((size_t)exponent > nbits) {
423 i = 2.0;
424 j = 1.0;
425 goto Compare;
427 /* v and w have the same number of bits before the radix
428 * point. Construct two longs that have the same comparison
429 * outcome.
432 double fracpart;
433 double intpart;
434 PyObject *result = NULL;
435 PyObject *one = NULL;
436 PyObject *vv = NULL;
437 PyObject *ww = w;
439 if (wsign < 0) {
440 ww = PyNumber_Negative(w);
441 if (ww == NULL)
442 goto Error;
444 else
445 Py_INCREF(ww);
447 fracpart = modf(i, &intpart);
448 vv = PyLong_FromDouble(intpart);
449 if (vv == NULL)
450 goto Error;
452 if (fracpart != 0.0) {
453 /* Shift left, and or a 1 bit into vv
454 * to represent the lost fraction.
456 PyObject *temp;
458 one = PyLong_FromLong(1);
459 if (one == NULL)
460 goto Error;
462 temp = PyNumber_Lshift(ww, one);
463 if (temp == NULL)
464 goto Error;
465 Py_DECREF(ww);
466 ww = temp;
468 temp = PyNumber_Lshift(vv, one);
469 if (temp == NULL)
470 goto Error;
471 Py_DECREF(vv);
472 vv = temp;
474 temp = PyNumber_Or(vv, one);
475 if (temp == NULL)
476 goto Error;
477 Py_DECREF(vv);
478 vv = temp;
481 r = PyObject_RichCompareBool(vv, ww, op);
482 if (r < 0)
483 goto Error;
484 result = PyBool_FromLong(r);
485 Error:
486 Py_XDECREF(vv);
487 Py_XDECREF(ww);
488 Py_XDECREF(one);
489 return result;
491 } /* else if (PyLong_Check(w)) */
493 else /* w isn't float, int, or long */
494 goto Unimplemented;
496 Compare:
497 PyFPE_START_PROTECT("richcompare", return NULL)
498 switch (op) {
499 case Py_EQ:
500 r = i == j;
501 break;
502 case Py_NE:
503 r = i != j;
504 break;
505 case Py_LE:
506 r = i <= j;
507 break;
508 case Py_GE:
509 r = i >= j;
510 break;
511 case Py_LT:
512 r = i < j;
513 break;
514 case Py_GT:
515 r = i > j;
516 break;
518 PyFPE_END_PROTECT(r)
519 return PyBool_FromLong(r);
521 Unimplemented:
522 Py_INCREF(Py_NotImplemented);
523 return Py_NotImplemented;
526 static long
527 float_hash(PyFloatObject *v)
529 return _Py_HashDouble(v->ob_fval);
532 static PyObject *
533 float_add(PyObject *v, PyObject *w)
535 double a,b;
536 CONVERT_TO_DOUBLE(v, a);
537 CONVERT_TO_DOUBLE(w, b);
538 PyFPE_START_PROTECT("add", return 0)
539 a = a + b;
540 PyFPE_END_PROTECT(a)
541 return PyFloat_FromDouble(a);
544 static PyObject *
545 float_sub(PyObject *v, PyObject *w)
547 double a,b;
548 CONVERT_TO_DOUBLE(v, a);
549 CONVERT_TO_DOUBLE(w, b);
550 PyFPE_START_PROTECT("subtract", return 0)
551 a = a - b;
552 PyFPE_END_PROTECT(a)
553 return PyFloat_FromDouble(a);
556 static PyObject *
557 float_mul(PyObject *v, PyObject *w)
559 double a,b;
560 CONVERT_TO_DOUBLE(v, a);
561 CONVERT_TO_DOUBLE(w, b);
562 PyFPE_START_PROTECT("multiply", return 0)
563 a = a * b;
564 PyFPE_END_PROTECT(a)
565 return PyFloat_FromDouble(a);
568 static PyObject *
569 float_div(PyObject *v, PyObject *w)
571 double a,b;
572 CONVERT_TO_DOUBLE(v, a);
573 CONVERT_TO_DOUBLE(w, b);
574 #ifdef Py_NAN
575 if (b == 0.0) {
576 PyErr_SetString(PyExc_ZeroDivisionError,
577 "float division");
578 return NULL;
580 #endif
581 PyFPE_START_PROTECT("divide", return 0)
582 a = a / b;
583 PyFPE_END_PROTECT(a)
584 return PyFloat_FromDouble(a);
587 static PyObject *
588 float_rem(PyObject *v, PyObject *w)
590 double vx, wx;
591 double mod;
592 CONVERT_TO_DOUBLE(v, vx);
593 CONVERT_TO_DOUBLE(w, wx);
594 #ifdef Py_NAN
595 if (wx == 0.0) {
596 PyErr_SetString(PyExc_ZeroDivisionError,
597 "float modulo");
598 return NULL;
600 #endif
601 PyFPE_START_PROTECT("modulo", return 0)
602 mod = fmod(vx, wx);
603 /* note: checking mod*wx < 0 is incorrect -- underflows to
604 0 if wx < sqrt(smallest nonzero double) */
605 if (mod && ((wx < 0) != (mod < 0))) {
606 mod += wx;
608 PyFPE_END_PROTECT(mod)
609 return PyFloat_FromDouble(mod);
612 static PyObject *
613 float_divmod(PyObject *v, PyObject *w)
615 double vx, wx;
616 double div, mod, floordiv;
617 CONVERT_TO_DOUBLE(v, vx);
618 CONVERT_TO_DOUBLE(w, wx);
619 if (wx == 0.0) {
620 PyErr_SetString(PyExc_ZeroDivisionError, "float divmod()");
621 return NULL;
623 PyFPE_START_PROTECT("divmod", return 0)
624 mod = fmod(vx, wx);
625 /* fmod is typically exact, so vx-mod is *mathematically* an
626 exact multiple of wx. But this is fp arithmetic, and fp
627 vx - mod is an approximation; the result is that div may
628 not be an exact integral value after the division, although
629 it will always be very close to one.
631 div = (vx - mod) / wx;
632 if (mod) {
633 /* ensure the remainder has the same sign as the denominator */
634 if ((wx < 0) != (mod < 0)) {
635 mod += wx;
636 div -= 1.0;
639 else {
640 /* the remainder is zero, and in the presence of signed zeroes
641 fmod returns different results across platforms; ensure
642 it has the same sign as the denominator; we'd like to do
643 "mod = wx * 0.0", but that may get optimized away */
644 mod *= mod; /* hide "mod = +0" from optimizer */
645 if (wx < 0.0)
646 mod = -mod;
648 /* snap quotient to nearest integral value */
649 if (div) {
650 floordiv = floor(div);
651 if (div - floordiv > 0.5)
652 floordiv += 1.0;
654 else {
655 /* div is zero - get the same sign as the true quotient */
656 div *= div; /* hide "div = +0" from optimizers */
657 floordiv = div * vx / wx; /* zero w/ sign of vx/wx */
659 PyFPE_END_PROTECT(floordiv)
660 return Py_BuildValue("(dd)", floordiv, mod);
663 static PyObject *
664 float_floor_div(PyObject *v, PyObject *w)
666 PyObject *t, *r;
668 t = float_divmod(v, w);
669 if (t == NULL || t == Py_NotImplemented)
670 return t;
671 assert(PyTuple_CheckExact(t));
672 r = PyTuple_GET_ITEM(t, 0);
673 Py_INCREF(r);
674 Py_DECREF(t);
675 return r;
678 static PyObject *
679 float_pow(PyObject *v, PyObject *w, PyObject *z)
681 double iv, iw, ix;
683 if ((PyObject *)z != Py_None) {
684 PyErr_SetString(PyExc_TypeError, "pow() 3rd argument not "
685 "allowed unless all arguments are integers");
686 return NULL;
689 CONVERT_TO_DOUBLE(v, iv);
690 CONVERT_TO_DOUBLE(w, iw);
692 /* Sort out special cases here instead of relying on pow() */
693 if (iw == 0) { /* v**0 is 1, even 0**0 */
694 return PyFloat_FromDouble(1.0);
696 if (iv == 0.0) { /* 0**w is error if w<0, else 1 */
697 if (iw < 0.0) {
698 PyErr_SetString(PyExc_ZeroDivisionError,
699 "0.0 cannot be raised to a negative power");
700 return NULL;
702 return PyFloat_FromDouble(0.0);
704 if (iv == 1.0) { /* 1**w is 1, even 1**inf and 1**nan */
705 return PyFloat_FromDouble(1.0);
707 if (iv < 0.0) {
708 /* Whether this is an error is a mess, and bumps into libm
709 * bugs so we have to figure it out ourselves.
711 if (iw != floor(iw)) {
712 /* Negative numbers raised to fractional powers
713 * become complex.
715 return PyComplex_Type.tp_as_number->nb_power(v, w, z);
717 /* iw is an exact integer, albeit perhaps a very large one.
718 * -1 raised to an exact integer should never be exceptional.
719 * Alas, some libms (chiefly glibc as of early 2003) return
720 * NaN and set EDOM on pow(-1, large_int) if the int doesn't
721 * happen to be representable in a *C* integer. That's a
722 * bug; we let that slide in math.pow() (which currently
723 * reflects all platform accidents), but not for Python's **.
725 if (iv == -1.0 && Py_IS_FINITE(iw)) {
726 /* Return 1 if iw is even, -1 if iw is odd; there's
727 * no guarantee that any C integral type is big
728 * enough to hold iw, so we have to check this
729 * indirectly.
731 ix = floor(iw * 0.5) * 2.0;
732 return PyFloat_FromDouble(ix == iw ? 1.0 : -1.0);
734 /* Else iv != -1.0, and overflow or underflow are possible.
735 * Unless we're to write pow() ourselves, we have to trust
736 * the platform to do this correctly.
739 errno = 0;
740 PyFPE_START_PROTECT("pow", return NULL)
741 ix = pow(iv, iw);
742 PyFPE_END_PROTECT(ix)
743 Py_ADJUST_ERANGE1(ix);
744 if (errno != 0) {
745 /* We don't expect any errno value other than ERANGE, but
746 * the range of libm bugs appears unbounded.
748 PyErr_SetFromErrno(errno == ERANGE ? PyExc_OverflowError :
749 PyExc_ValueError);
750 return NULL;
752 return PyFloat_FromDouble(ix);
755 static PyObject *
756 float_neg(PyFloatObject *v)
758 return PyFloat_FromDouble(-v->ob_fval);
761 static PyObject *
762 float_abs(PyFloatObject *v)
764 return PyFloat_FromDouble(fabs(v->ob_fval));
767 static int
768 float_bool(PyFloatObject *v)
770 return v->ob_fval != 0.0;
773 static PyObject *
774 float_is_integer(PyObject *v)
776 double x = PyFloat_AsDouble(v);
777 PyObject *o;
779 if (x == -1.0 && PyErr_Occurred())
780 return NULL;
781 if (!Py_IS_FINITE(x))
782 Py_RETURN_FALSE;
783 errno = 0;
784 PyFPE_START_PROTECT("is_integer", return NULL)
785 o = (floor(x) == x) ? Py_True : Py_False;
786 PyFPE_END_PROTECT(x)
787 if (errno != 0) {
788 PyErr_SetFromErrno(errno == ERANGE ? PyExc_OverflowError :
789 PyExc_ValueError);
790 return NULL;
792 Py_INCREF(o);
793 return o;
796 #if 0
797 static PyObject *
798 float_is_inf(PyObject *v)
800 double x = PyFloat_AsDouble(v);
801 if (x == -1.0 && PyErr_Occurred())
802 return NULL;
803 return PyBool_FromLong((long)Py_IS_INFINITY(x));
806 static PyObject *
807 float_is_nan(PyObject *v)
809 double x = PyFloat_AsDouble(v);
810 if (x == -1.0 && PyErr_Occurred())
811 return NULL;
812 return PyBool_FromLong((long)Py_IS_NAN(x));
815 static PyObject *
816 float_is_finite(PyObject *v)
818 double x = PyFloat_AsDouble(v);
819 if (x == -1.0 && PyErr_Occurred())
820 return NULL;
821 return PyBool_FromLong((long)Py_IS_FINITE(x));
823 #endif
825 static PyObject *
826 float_trunc(PyObject *v)
828 double x = PyFloat_AsDouble(v);
829 double wholepart; /* integral portion of x, rounded toward 0 */
831 (void)modf(x, &wholepart);
832 /* Try to get out cheap if this fits in a Python int. The attempt
833 * to cast to long must be protected, as C doesn't define what
834 * happens if the double is too big to fit in a long. Some rare
835 * systems raise an exception then (RISCOS was mentioned as one,
836 * and someone using a non-default option on Sun also bumped into
837 * that). Note that checking for >= and <= LONG_{MIN,MAX} would
838 * still be vulnerable: if a long has more bits of precision than
839 * a double, casting MIN/MAX to double may yield an approximation,
840 * and if that's rounded up, then, e.g., wholepart=LONG_MAX+1 would
841 * yield true from the C expression wholepart<=LONG_MAX, despite
842 * that wholepart is actually greater than LONG_MAX.
844 if (LONG_MIN < wholepart && wholepart < LONG_MAX) {
845 const long aslong = (long)wholepart;
846 return PyLong_FromLong(aslong);
848 return PyLong_FromDouble(wholepart);
851 /* double_round: rounds a finite double to the closest multiple of
852 10**-ndigits; here ndigits is within reasonable bounds (typically, -308 <=
853 ndigits <= 323). Returns a Python float, or sets a Python error and
854 returns NULL on failure (OverflowError and memory errors are possible). */
856 #ifndef PY_NO_SHORT_FLOAT_REPR
857 /* version of double_round that uses the correctly-rounded string<->double
858 conversions from Python/dtoa.c */
860 static PyObject *
861 double_round(double x, int ndigits) {
863 double rounded;
864 Py_ssize_t buflen, mybuflen=100;
865 char *buf, *buf_end, shortbuf[100], *mybuf=shortbuf;
866 int decpt, sign;
867 PyObject *result = NULL;
869 /* round to a decimal string */
870 buf = _Py_dg_dtoa(x, 3, ndigits, &decpt, &sign, &buf_end);
871 if (buf == NULL) {
872 PyErr_NoMemory();
873 return NULL;
876 /* Get new buffer if shortbuf is too small. Space needed <= buf_end -
877 buf + 8: (1 extra for '0', 1 for sign, 5 for exp, 1 for '\0'). */
878 buflen = buf_end - buf;
879 if (buflen + 8 > mybuflen) {
880 mybuflen = buflen+8;
881 mybuf = (char *)PyMem_Malloc(mybuflen);
882 if (mybuf == NULL) {
883 PyErr_NoMemory();
884 goto exit;
887 /* copy buf to mybuf, adding exponent, sign and leading 0 */
888 PyOS_snprintf(mybuf, mybuflen, "%s0%se%d", (sign ? "-" : ""),
889 buf, decpt - (int)buflen);
891 /* and convert the resulting string back to a double */
892 errno = 0;
893 rounded = _Py_dg_strtod(mybuf, NULL);
894 if (errno == ERANGE && fabs(rounded) >= 1.)
895 PyErr_SetString(PyExc_OverflowError,
896 "rounded value too large to represent");
897 else
898 result = PyFloat_FromDouble(rounded);
900 /* done computing value; now clean up */
901 if (mybuf != shortbuf)
902 PyMem_Free(mybuf);
903 exit:
904 _Py_dg_freedtoa(buf);
905 return result;
908 #else /* PY_NO_SHORT_FLOAT_REPR */
910 /* fallback version, to be used when correctly rounded binary<->decimal
911 conversions aren't available */
913 static PyObject *
914 double_round(double x, int ndigits) {
915 double pow1, pow2, y, z;
916 if (ndigits >= 0) {
917 if (ndigits > 22) {
918 /* pow1 and pow2 are each safe from overflow, but
919 pow1*pow2 ~= pow(10.0, ndigits) might overflow */
920 pow1 = pow(10.0, (double)(ndigits-22));
921 pow2 = 1e22;
923 else {
924 pow1 = pow(10.0, (double)ndigits);
925 pow2 = 1.0;
927 y = (x*pow1)*pow2;
928 /* if y overflows, then rounded value is exactly x */
929 if (!Py_IS_FINITE(y))
930 return PyFloat_FromDouble(x);
932 else {
933 pow1 = pow(10.0, (double)-ndigits);
934 pow2 = 1.0; /* unused; silences a gcc compiler warning */
935 y = x / pow1;
938 z = round(y);
939 if (fabs(y-z) == 0.5)
940 /* halfway between two integers; use round-half-even */
941 z = 2.0*round(y/2.0);
943 if (ndigits >= 0)
944 z = (z / pow2) / pow1;
945 else
946 z *= pow1;
948 /* if computation resulted in overflow, raise OverflowError */
949 if (!Py_IS_FINITE(z)) {
950 PyErr_SetString(PyExc_OverflowError,
951 "overflow occurred during round");
952 return NULL;
955 return PyFloat_FromDouble(z);
958 #endif /* PY_NO_SHORT_FLOAT_REPR */
960 /* round a Python float v to the closest multiple of 10**-ndigits */
962 static PyObject *
963 float_round(PyObject *v, PyObject *args)
965 double x, rounded;
966 PyObject *o_ndigits = NULL;
967 Py_ssize_t ndigits;
969 x = PyFloat_AsDouble(v);
970 if (!PyArg_ParseTuple(args, "|O", &o_ndigits))
971 return NULL;
972 if (o_ndigits == NULL) {
973 /* single-argument round: round to nearest integer */
974 rounded = round(x);
975 if (fabs(x-rounded) == 0.5)
976 /* halfway case: round to even */
977 rounded = 2.0*round(x/2.0);
978 return PyLong_FromDouble(rounded);
981 /* interpret second argument as a Py_ssize_t; clips on overflow */
982 ndigits = PyNumber_AsSsize_t(o_ndigits, NULL);
983 if (ndigits == -1 && PyErr_Occurred())
984 return NULL;
986 /* nans and infinities round to themselves */
987 if (!Py_IS_FINITE(x))
988 return PyFloat_FromDouble(x);
990 /* Deal with extreme values for ndigits. For ndigits > NDIGITS_MAX, x
991 always rounds to itself. For ndigits < NDIGITS_MIN, x always
992 rounds to +-0.0. Here 0.30103 is an upper bound for log10(2). */
993 #define NDIGITS_MAX ((int)((DBL_MANT_DIG-DBL_MIN_EXP) * 0.30103))
994 #define NDIGITS_MIN (-(int)((DBL_MAX_EXP + 1) * 0.30103))
995 if (ndigits > NDIGITS_MAX)
996 /* return x */
997 return PyFloat_FromDouble(x);
998 else if (ndigits < NDIGITS_MIN)
999 /* return 0.0, but with sign of x */
1000 return PyFloat_FromDouble(0.0*x);
1001 else
1002 /* finite x, and ndigits is not unreasonably large */
1003 return double_round(x, (int)ndigits);
1004 #undef NDIGITS_MAX
1005 #undef NDIGITS_MIN
1008 static PyObject *
1009 float_float(PyObject *v)
1011 if (PyFloat_CheckExact(v))
1012 Py_INCREF(v);
1013 else
1014 v = PyFloat_FromDouble(((PyFloatObject *)v)->ob_fval);
1015 return v;
1018 /* turn ASCII hex characters into integer values and vice versa */
1020 static char
1021 char_from_hex(int x)
1023 assert(0 <= x && x < 16);
1024 return "0123456789abcdef"[x];
1027 static int
1028 hex_from_char(char c) {
1029 int x;
1030 switch(c) {
1031 case '0':
1032 x = 0;
1033 break;
1034 case '1':
1035 x = 1;
1036 break;
1037 case '2':
1038 x = 2;
1039 break;
1040 case '3':
1041 x = 3;
1042 break;
1043 case '4':
1044 x = 4;
1045 break;
1046 case '5':
1047 x = 5;
1048 break;
1049 case '6':
1050 x = 6;
1051 break;
1052 case '7':
1053 x = 7;
1054 break;
1055 case '8':
1056 x = 8;
1057 break;
1058 case '9':
1059 x = 9;
1060 break;
1061 case 'a':
1062 case 'A':
1063 x = 10;
1064 break;
1065 case 'b':
1066 case 'B':
1067 x = 11;
1068 break;
1069 case 'c':
1070 case 'C':
1071 x = 12;
1072 break;
1073 case 'd':
1074 case 'D':
1075 x = 13;
1076 break;
1077 case 'e':
1078 case 'E':
1079 x = 14;
1080 break;
1081 case 'f':
1082 case 'F':
1083 x = 15;
1084 break;
1085 default:
1086 x = -1;
1087 break;
1089 return x;
1092 /* convert a float to a hexadecimal string */
1094 /* TOHEX_NBITS is DBL_MANT_DIG rounded up to the next integer
1095 of the form 4k+1. */
1096 #define TOHEX_NBITS DBL_MANT_DIG + 3 - (DBL_MANT_DIG+2)%4
1098 static PyObject *
1099 float_hex(PyObject *v)
1101 double x, m;
1102 int e, shift, i, si, esign;
1103 /* Space for 1+(TOHEX_NBITS-1)/4 digits, a decimal point, and the
1104 trailing NUL byte. */
1105 char s[(TOHEX_NBITS-1)/4+3];
1107 CONVERT_TO_DOUBLE(v, x);
1109 if (Py_IS_NAN(x) || Py_IS_INFINITY(x))
1110 return float_str((PyFloatObject *)v);
1112 if (x == 0.0) {
1113 if (copysign(1.0, x) == -1.0)
1114 return PyUnicode_FromString("-0x0.0p+0");
1115 else
1116 return PyUnicode_FromString("0x0.0p+0");
1119 m = frexp(fabs(x), &e);
1120 shift = 1 - MAX(DBL_MIN_EXP - e, 0);
1121 m = ldexp(m, shift);
1122 e -= shift;
1124 si = 0;
1125 s[si] = char_from_hex((int)m);
1126 si++;
1127 m -= (int)m;
1128 s[si] = '.';
1129 si++;
1130 for (i=0; i < (TOHEX_NBITS-1)/4; i++) {
1131 m *= 16.0;
1132 s[si] = char_from_hex((int)m);
1133 si++;
1134 m -= (int)m;
1136 s[si] = '\0';
1138 if (e < 0) {
1139 esign = (int)'-';
1140 e = -e;
1142 else
1143 esign = (int)'+';
1145 if (x < 0.0)
1146 return PyUnicode_FromFormat("-0x%sp%c%d", s, esign, e);
1147 else
1148 return PyUnicode_FromFormat("0x%sp%c%d", s, esign, e);
1151 PyDoc_STRVAR(float_hex_doc,
1152 "float.hex() -> string\n\
1154 Return a hexadecimal representation of a floating-point number.\n\
1155 >>> (-0.1).hex()\n\
1156 '-0x1.999999999999ap-4'\n\
1157 >>> 3.14159.hex()\n\
1158 '0x1.921f9f01b866ep+1'");
1160 /* Convert a hexadecimal string to a float. */
1162 static PyObject *
1163 float_fromhex(PyObject *cls, PyObject *arg)
1165 PyObject *result_as_float, *result;
1166 double x;
1167 long exp, top_exp, lsb, key_digit;
1168 char *s, *coeff_start, *s_store, *coeff_end, *exp_start, *s_end;
1169 int half_eps, digit, round_up, negate=0;
1170 Py_ssize_t length, ndigits, fdigits, i;
1173 * For the sake of simplicity and correctness, we impose an artificial
1174 * limit on ndigits, the total number of hex digits in the coefficient
1175 * The limit is chosen to ensure that, writing exp for the exponent,
1177 * (1) if exp > LONG_MAX/2 then the value of the hex string is
1178 * guaranteed to overflow (provided it's nonzero)
1180 * (2) if exp < LONG_MIN/2 then the value of the hex string is
1181 * guaranteed to underflow to 0.
1183 * (3) if LONG_MIN/2 <= exp <= LONG_MAX/2 then there's no danger of
1184 * overflow in the calculation of exp and top_exp below.
1186 * More specifically, ndigits is assumed to satisfy the following
1187 * inequalities:
1189 * 4*ndigits <= DBL_MIN_EXP - DBL_MANT_DIG - LONG_MIN/2
1190 * 4*ndigits <= LONG_MAX/2 + 1 - DBL_MAX_EXP
1192 * If either of these inequalities is not satisfied, a ValueError is
1193 * raised. Otherwise, write x for the value of the hex string, and
1194 * assume x is nonzero. Then
1196 * 2**(exp-4*ndigits) <= |x| < 2**(exp+4*ndigits).
1198 * Now if exp > LONG_MAX/2 then:
1200 * exp - 4*ndigits >= LONG_MAX/2 + 1 - (LONG_MAX/2 + 1 - DBL_MAX_EXP)
1201 * = DBL_MAX_EXP
1203 * so |x| >= 2**DBL_MAX_EXP, which is too large to be stored in C
1204 * double, so overflows. If exp < LONG_MIN/2, then
1206 * exp + 4*ndigits <= LONG_MIN/2 - 1 + (
1207 * DBL_MIN_EXP - DBL_MANT_DIG - LONG_MIN/2)
1208 * = DBL_MIN_EXP - DBL_MANT_DIG - 1
1210 * and so |x| < 2**(DBL_MIN_EXP-DBL_MANT_DIG-1), hence underflows to 0
1211 * when converted to a C double.
1213 * It's easy to show that if LONG_MIN/2 <= exp <= LONG_MAX/2 then both
1214 * exp+4*ndigits and exp-4*ndigits are within the range of a long.
1217 s = _PyUnicode_AsStringAndSize(arg, &length);
1218 if (s == NULL)
1219 return NULL;
1220 s_end = s + length;
1222 /********************
1223 * Parse the string *
1224 ********************/
1226 /* leading whitespace */
1227 while (Py_ISSPACE(*s))
1228 s++;
1230 /* infinities and nans */
1231 x = _Py_parse_inf_or_nan(s, &coeff_end);
1232 if (coeff_end != s) {
1233 s = coeff_end;
1234 goto finished;
1237 /* optional sign */
1238 if (*s == '-') {
1239 s++;
1240 negate = 1;
1242 else if (*s == '+')
1243 s++;
1245 /* [0x] */
1246 s_store = s;
1247 if (*s == '0') {
1248 s++;
1249 if (*s == 'x' || *s == 'X')
1250 s++;
1251 else
1252 s = s_store;
1255 /* coefficient: <integer> [. <fraction>] */
1256 coeff_start = s;
1257 while (hex_from_char(*s) >= 0)
1258 s++;
1259 s_store = s;
1260 if (*s == '.') {
1261 s++;
1262 while (hex_from_char(*s) >= 0)
1263 s++;
1264 coeff_end = s-1;
1266 else
1267 coeff_end = s;
1269 /* ndigits = total # of hex digits; fdigits = # after point */
1270 ndigits = coeff_end - coeff_start;
1271 fdigits = coeff_end - s_store;
1272 if (ndigits == 0)
1273 goto parse_error;
1274 if (ndigits > MIN(DBL_MIN_EXP - DBL_MANT_DIG - LONG_MIN/2,
1275 LONG_MAX/2 + 1 - DBL_MAX_EXP)/4)
1276 goto insane_length_error;
1278 /* [p <exponent>] */
1279 if (*s == 'p' || *s == 'P') {
1280 s++;
1281 exp_start = s;
1282 if (*s == '-' || *s == '+')
1283 s++;
1284 if (!('0' <= *s && *s <= '9'))
1285 goto parse_error;
1286 s++;
1287 while ('0' <= *s && *s <= '9')
1288 s++;
1289 exp = strtol(exp_start, NULL, 10);
1291 else
1292 exp = 0;
1294 /* for 0 <= j < ndigits, HEX_DIGIT(j) gives the jth most significant digit */
1295 #define HEX_DIGIT(j) hex_from_char(*((j) < fdigits ? \
1296 coeff_end-(j) : \
1297 coeff_end-1-(j)))
1299 /*******************************************
1300 * Compute rounded value of the hex string *
1301 *******************************************/
1303 /* Discard leading zeros, and catch extreme overflow and underflow */
1304 while (ndigits > 0 && HEX_DIGIT(ndigits-1) == 0)
1305 ndigits--;
1306 if (ndigits == 0 || exp < LONG_MIN/2) {
1307 x = 0.0;
1308 goto finished;
1310 if (exp > LONG_MAX/2)
1311 goto overflow_error;
1313 /* Adjust exponent for fractional part. */
1314 exp = exp - 4*((long)fdigits);
1316 /* top_exp = 1 more than exponent of most sig. bit of coefficient */
1317 top_exp = exp + 4*((long)ndigits - 1);
1318 for (digit = HEX_DIGIT(ndigits-1); digit != 0; digit /= 2)
1319 top_exp++;
1321 /* catch almost all nonextreme cases of overflow and underflow here */
1322 if (top_exp < DBL_MIN_EXP - DBL_MANT_DIG) {
1323 x = 0.0;
1324 goto finished;
1326 if (top_exp > DBL_MAX_EXP)
1327 goto overflow_error;
1329 /* lsb = exponent of least significant bit of the *rounded* value.
1330 This is top_exp - DBL_MANT_DIG unless result is subnormal. */
1331 lsb = MAX(top_exp, (long)DBL_MIN_EXP) - DBL_MANT_DIG;
1333 x = 0.0;
1334 if (exp >= lsb) {
1335 /* no rounding required */
1336 for (i = ndigits-1; i >= 0; i--)
1337 x = 16.0*x + HEX_DIGIT(i);
1338 x = ldexp(x, (int)(exp));
1339 goto finished;
1341 /* rounding required. key_digit is the index of the hex digit
1342 containing the first bit to be rounded away. */
1343 half_eps = 1 << (int)((lsb - exp - 1) % 4);
1344 key_digit = (lsb - exp - 1) / 4;
1345 for (i = ndigits-1; i > key_digit; i--)
1346 x = 16.0*x + HEX_DIGIT(i);
1347 digit = HEX_DIGIT(key_digit);
1348 x = 16.0*x + (double)(digit & (16-2*half_eps));
1350 /* round-half-even: round up if bit lsb-1 is 1 and at least one of
1351 bits lsb, lsb-2, lsb-3, lsb-4, ... is 1. */
1352 if ((digit & half_eps) != 0) {
1353 round_up = 0;
1354 if ((digit & (3*half_eps-1)) != 0 ||
1355 (half_eps == 8 && (HEX_DIGIT(key_digit+1) & 1) != 0))
1356 round_up = 1;
1357 else
1358 for (i = key_digit-1; i >= 0; i--)
1359 if (HEX_DIGIT(i) != 0) {
1360 round_up = 1;
1361 break;
1363 if (round_up == 1) {
1364 x += 2*half_eps;
1365 if (top_exp == DBL_MAX_EXP &&
1366 x == ldexp((double)(2*half_eps), DBL_MANT_DIG))
1367 /* overflow corner case: pre-rounded value <
1368 2**DBL_MAX_EXP; rounded=2**DBL_MAX_EXP. */
1369 goto overflow_error;
1372 x = ldexp(x, (int)(exp+4*key_digit));
1374 finished:
1375 /* optional trailing whitespace leading to the end of the string */
1376 while (Py_ISSPACE(*s))
1377 s++;
1378 if (s != s_end)
1379 goto parse_error;
1380 result_as_float = Py_BuildValue("(d)", negate ? -x : x);
1381 if (result_as_float == NULL)
1382 return NULL;
1383 result = PyObject_CallObject(cls, result_as_float);
1384 Py_DECREF(result_as_float);
1385 return result;
1387 overflow_error:
1388 PyErr_SetString(PyExc_OverflowError,
1389 "hexadecimal value too large to represent as a float");
1390 return NULL;
1392 parse_error:
1393 PyErr_SetString(PyExc_ValueError,
1394 "invalid hexadecimal floating-point string");
1395 return NULL;
1397 insane_length_error:
1398 PyErr_SetString(PyExc_ValueError,
1399 "hexadecimal string too long to convert");
1400 return NULL;
1403 PyDoc_STRVAR(float_fromhex_doc,
1404 "float.fromhex(string) -> float\n\
1406 Create a floating-point number from a hexadecimal string.\n\
1407 >>> float.fromhex('0x1.ffffp10')\n\
1408 2047.984375\n\
1409 >>> float.fromhex('-0x1p-1074')\n\
1410 -4.9406564584124654e-324");
1413 static PyObject *
1414 float_as_integer_ratio(PyObject *v, PyObject *unused)
1416 double self;
1417 double float_part;
1418 int exponent;
1419 int i;
1421 PyObject *prev;
1422 PyObject *py_exponent = NULL;
1423 PyObject *numerator = NULL;
1424 PyObject *denominator = NULL;
1425 PyObject *result_pair = NULL;
1426 PyNumberMethods *long_methods = PyLong_Type.tp_as_number;
1428 #define INPLACE_UPDATE(obj, call) \
1429 prev = obj; \
1430 obj = call; \
1431 Py_DECREF(prev); \
1433 CONVERT_TO_DOUBLE(v, self);
1435 if (Py_IS_INFINITY(self)) {
1436 PyErr_SetString(PyExc_OverflowError,
1437 "Cannot pass infinity to float.as_integer_ratio.");
1438 return NULL;
1440 #ifdef Py_NAN
1441 if (Py_IS_NAN(self)) {
1442 PyErr_SetString(PyExc_ValueError,
1443 "Cannot pass NaN to float.as_integer_ratio.");
1444 return NULL;
1446 #endif
1448 PyFPE_START_PROTECT("as_integer_ratio", goto error);
1449 float_part = frexp(self, &exponent); /* self == float_part * 2**exponent exactly */
1450 PyFPE_END_PROTECT(float_part);
1452 for (i=0; i<300 && float_part != floor(float_part) ; i++) {
1453 float_part *= 2.0;
1454 exponent--;
1456 /* self == float_part * 2**exponent exactly and float_part is integral.
1457 If FLT_RADIX != 2, the 300 steps may leave a tiny fractional part
1458 to be truncated by PyLong_FromDouble(). */
1460 numerator = PyLong_FromDouble(float_part);
1461 if (numerator == NULL) goto error;
1463 /* fold in 2**exponent */
1464 denominator = PyLong_FromLong(1);
1465 py_exponent = PyLong_FromLong(labs((long)exponent));
1466 if (py_exponent == NULL) goto error;
1467 INPLACE_UPDATE(py_exponent,
1468 long_methods->nb_lshift(denominator, py_exponent));
1469 if (py_exponent == NULL) goto error;
1470 if (exponent > 0) {
1471 INPLACE_UPDATE(numerator,
1472 long_methods->nb_multiply(numerator, py_exponent));
1473 if (numerator == NULL) goto error;
1475 else {
1476 Py_DECREF(denominator);
1477 denominator = py_exponent;
1478 py_exponent = NULL;
1481 result_pair = PyTuple_Pack(2, numerator, denominator);
1483 #undef INPLACE_UPDATE
1484 error:
1485 Py_XDECREF(py_exponent);
1486 Py_XDECREF(denominator);
1487 Py_XDECREF(numerator);
1488 return result_pair;
1491 PyDoc_STRVAR(float_as_integer_ratio_doc,
1492 "float.as_integer_ratio() -> (int, int)\n"
1493 "\n"
1494 "Returns a pair of integers, whose ratio is exactly equal to the original\n"
1495 "float and with a positive denominator.\n"
1496 "Raises OverflowError on infinities and a ValueError on NaNs.\n"
1497 "\n"
1498 ">>> (10.0).as_integer_ratio()\n"
1499 "(10, 1)\n"
1500 ">>> (0.0).as_integer_ratio()\n"
1501 "(0, 1)\n"
1502 ">>> (-.25).as_integer_ratio()\n"
1503 "(-1, 4)");
1506 static PyObject *
1507 float_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds);
1509 static PyObject *
1510 float_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
1512 PyObject *x = Py_False; /* Integer zero */
1513 static char *kwlist[] = {"x", 0};
1515 if (type != &PyFloat_Type)
1516 return float_subtype_new(type, args, kwds); /* Wimp out */
1517 if (!PyArg_ParseTupleAndKeywords(args, kwds, "|O:float", kwlist, &x))
1518 return NULL;
1519 /* If it's a string, but not a string subclass, use
1520 PyFloat_FromString. */
1521 if (PyUnicode_CheckExact(x))
1522 return PyFloat_FromString(x);
1523 return PyNumber_Float(x);
1526 /* Wimpy, slow approach to tp_new calls for subtypes of float:
1527 first create a regular float from whatever arguments we got,
1528 then allocate a subtype instance and initialize its ob_fval
1529 from the regular float. The regular float is then thrown away.
1531 static PyObject *
1532 float_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
1534 PyObject *tmp, *newobj;
1536 assert(PyType_IsSubtype(type, &PyFloat_Type));
1537 tmp = float_new(&PyFloat_Type, args, kwds);
1538 if (tmp == NULL)
1539 return NULL;
1540 assert(PyFloat_CheckExact(tmp));
1541 newobj = type->tp_alloc(type, 0);
1542 if (newobj == NULL) {
1543 Py_DECREF(tmp);
1544 return NULL;
1546 ((PyFloatObject *)newobj)->ob_fval = ((PyFloatObject *)tmp)->ob_fval;
1547 Py_DECREF(tmp);
1548 return newobj;
1551 static PyObject *
1552 float_getnewargs(PyFloatObject *v)
1554 return Py_BuildValue("(d)", v->ob_fval);
1557 /* this is for the benefit of the pack/unpack routines below */
1559 typedef enum {
1560 unknown_format, ieee_big_endian_format, ieee_little_endian_format
1561 } float_format_type;
1563 static float_format_type double_format, float_format;
1564 static float_format_type detected_double_format, detected_float_format;
1566 static PyObject *
1567 float_getformat(PyTypeObject *v, PyObject* arg)
1569 char* s;
1570 float_format_type r;
1572 if (!PyUnicode_Check(arg)) {
1573 PyErr_Format(PyExc_TypeError,
1574 "__getformat__() argument must be string, not %.500s",
1575 Py_TYPE(arg)->tp_name);
1576 return NULL;
1578 s = _PyUnicode_AsString(arg);
1579 if (s == NULL)
1580 return NULL;
1581 if (strcmp(s, "double") == 0) {
1582 r = double_format;
1584 else if (strcmp(s, "float") == 0) {
1585 r = float_format;
1587 else {
1588 PyErr_SetString(PyExc_ValueError,
1589 "__getformat__() argument 1 must be "
1590 "'double' or 'float'");
1591 return NULL;
1594 switch (r) {
1595 case unknown_format:
1596 return PyUnicode_FromString("unknown");
1597 case ieee_little_endian_format:
1598 return PyUnicode_FromString("IEEE, little-endian");
1599 case ieee_big_endian_format:
1600 return PyUnicode_FromString("IEEE, big-endian");
1601 default:
1602 Py_FatalError("insane float_format or double_format");
1603 return NULL;
1607 PyDoc_STRVAR(float_getformat_doc,
1608 "float.__getformat__(typestr) -> string\n"
1609 "\n"
1610 "You probably don't want to use this function. It exists mainly to be\n"
1611 "used in Python's test suite.\n"
1612 "\n"
1613 "typestr must be 'double' or 'float'. This function returns whichever of\n"
1614 "'unknown', 'IEEE, big-endian' or 'IEEE, little-endian' best describes the\n"
1615 "format of floating point numbers used by the C type named by typestr.");
1617 static PyObject *
1618 float_setformat(PyTypeObject *v, PyObject* args)
1620 char* typestr;
1621 char* format;
1622 float_format_type f;
1623 float_format_type detected;
1624 float_format_type *p;
1626 if (!PyArg_ParseTuple(args, "ss:__setformat__", &typestr, &format))
1627 return NULL;
1629 if (strcmp(typestr, "double") == 0) {
1630 p = &double_format;
1631 detected = detected_double_format;
1633 else if (strcmp(typestr, "float") == 0) {
1634 p = &float_format;
1635 detected = detected_float_format;
1637 else {
1638 PyErr_SetString(PyExc_ValueError,
1639 "__setformat__() argument 1 must "
1640 "be 'double' or 'float'");
1641 return NULL;
1644 if (strcmp(format, "unknown") == 0) {
1645 f = unknown_format;
1647 else if (strcmp(format, "IEEE, little-endian") == 0) {
1648 f = ieee_little_endian_format;
1650 else if (strcmp(format, "IEEE, big-endian") == 0) {
1651 f = ieee_big_endian_format;
1653 else {
1654 PyErr_SetString(PyExc_ValueError,
1655 "__setformat__() argument 2 must be "
1656 "'unknown', 'IEEE, little-endian' or "
1657 "'IEEE, big-endian'");
1658 return NULL;
1662 if (f != unknown_format && f != detected) {
1663 PyErr_Format(PyExc_ValueError,
1664 "can only set %s format to 'unknown' or the "
1665 "detected platform value", typestr);
1666 return NULL;
1669 *p = f;
1670 Py_RETURN_NONE;
1673 PyDoc_STRVAR(float_setformat_doc,
1674 "float.__setformat__(typestr, fmt) -> None\n"
1675 "\n"
1676 "You probably don't want to use this function. It exists mainly to be\n"
1677 "used in Python's test suite.\n"
1678 "\n"
1679 "typestr must be 'double' or 'float'. fmt must be one of 'unknown',\n"
1680 "'IEEE, big-endian' or 'IEEE, little-endian', and in addition can only be\n"
1681 "one of the latter two if it appears to match the underlying C reality.\n"
1682 "\n"
1683 "Overrides the automatic determination of C-level floating point type.\n"
1684 "This affects how floats are converted to and from binary strings.");
1686 static PyObject *
1687 float_getzero(PyObject *v, void *closure)
1689 return PyFloat_FromDouble(0.0);
1692 static PyObject *
1693 float__format__(PyObject *self, PyObject *args)
1695 PyObject *format_spec;
1697 if (!PyArg_ParseTuple(args, "U:__format__", &format_spec))
1698 return NULL;
1699 return _PyFloat_FormatAdvanced(self,
1700 PyUnicode_AS_UNICODE(format_spec),
1701 PyUnicode_GET_SIZE(format_spec));
1704 PyDoc_STRVAR(float__format__doc,
1705 "float.__format__(format_spec) -> string\n"
1706 "\n"
1707 "Formats the float according to format_spec.");
1710 static PyMethodDef float_methods[] = {
1711 {"conjugate", (PyCFunction)float_float, METH_NOARGS,
1712 "Returns self, the complex conjugate of any float."},
1713 {"__trunc__", (PyCFunction)float_trunc, METH_NOARGS,
1714 "Returns the Integral closest to x between 0 and x."},
1715 {"__round__", (PyCFunction)float_round, METH_VARARGS,
1716 "Returns the Integral closest to x, rounding half toward even.\n"
1717 "When an argument is passed, works like built-in round(x, ndigits)."},
1718 {"as_integer_ratio", (PyCFunction)float_as_integer_ratio, METH_NOARGS,
1719 float_as_integer_ratio_doc},
1720 {"fromhex", (PyCFunction)float_fromhex,
1721 METH_O|METH_CLASS, float_fromhex_doc},
1722 {"hex", (PyCFunction)float_hex,
1723 METH_NOARGS, float_hex_doc},
1724 {"is_integer", (PyCFunction)float_is_integer, METH_NOARGS,
1725 "Returns True if the float is an integer."},
1726 #if 0
1727 {"is_inf", (PyCFunction)float_is_inf, METH_NOARGS,
1728 "Returns True if the float is positive or negative infinite."},
1729 {"is_finite", (PyCFunction)float_is_finite, METH_NOARGS,
1730 "Returns True if the float is finite, neither infinite nor NaN."},
1731 {"is_nan", (PyCFunction)float_is_nan, METH_NOARGS,
1732 "Returns True if the float is not a number (NaN)."},
1733 #endif
1734 {"__getnewargs__", (PyCFunction)float_getnewargs, METH_NOARGS},
1735 {"__getformat__", (PyCFunction)float_getformat,
1736 METH_O|METH_CLASS, float_getformat_doc},
1737 {"__setformat__", (PyCFunction)float_setformat,
1738 METH_VARARGS|METH_CLASS, float_setformat_doc},
1739 {"__format__", (PyCFunction)float__format__,
1740 METH_VARARGS, float__format__doc},
1741 {NULL, NULL} /* sentinel */
1744 static PyGetSetDef float_getset[] = {
1745 {"real",
1746 (getter)float_float, (setter)NULL,
1747 "the real part of a complex number",
1748 NULL},
1749 {"imag",
1750 (getter)float_getzero, (setter)NULL,
1751 "the imaginary part of a complex number",
1752 NULL},
1753 {NULL} /* Sentinel */
1756 PyDoc_STRVAR(float_doc,
1757 "float(x) -> floating point number\n\
1759 Convert a string or number to a floating point number, if possible.");
1762 static PyNumberMethods float_as_number = {
1763 float_add, /*nb_add*/
1764 float_sub, /*nb_subtract*/
1765 float_mul, /*nb_multiply*/
1766 float_rem, /*nb_remainder*/
1767 float_divmod, /*nb_divmod*/
1768 float_pow, /*nb_power*/
1769 (unaryfunc)float_neg, /*nb_negative*/
1770 (unaryfunc)float_float, /*nb_positive*/
1771 (unaryfunc)float_abs, /*nb_absolute*/
1772 (inquiry)float_bool, /*nb_bool*/
1773 0, /*nb_invert*/
1774 0, /*nb_lshift*/
1775 0, /*nb_rshift*/
1776 0, /*nb_and*/
1777 0, /*nb_xor*/
1778 0, /*nb_or*/
1779 float_trunc, /*nb_int*/
1780 0, /*nb_reserved*/
1781 float_float, /*nb_float*/
1782 0, /* nb_inplace_add */
1783 0, /* nb_inplace_subtract */
1784 0, /* nb_inplace_multiply */
1785 0, /* nb_inplace_remainder */
1786 0, /* nb_inplace_power */
1787 0, /* nb_inplace_lshift */
1788 0, /* nb_inplace_rshift */
1789 0, /* nb_inplace_and */
1790 0, /* nb_inplace_xor */
1791 0, /* nb_inplace_or */
1792 float_floor_div, /* nb_floor_divide */
1793 float_div, /* nb_true_divide */
1794 0, /* nb_inplace_floor_divide */
1795 0, /* nb_inplace_true_divide */
1798 PyTypeObject PyFloat_Type = {
1799 PyVarObject_HEAD_INIT(&PyType_Type, 0)
1800 "float",
1801 sizeof(PyFloatObject),
1803 (destructor)float_dealloc, /* tp_dealloc */
1804 0, /* tp_print */
1805 0, /* tp_getattr */
1806 0, /* tp_setattr */
1807 0, /* tp_reserved */
1808 (reprfunc)float_repr, /* tp_repr */
1809 &float_as_number, /* tp_as_number */
1810 0, /* tp_as_sequence */
1811 0, /* tp_as_mapping */
1812 (hashfunc)float_hash, /* tp_hash */
1813 0, /* tp_call */
1814 (reprfunc)float_str, /* tp_str */
1815 PyObject_GenericGetAttr, /* tp_getattro */
1816 0, /* tp_setattro */
1817 0, /* tp_as_buffer */
1818 Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */
1819 float_doc, /* tp_doc */
1820 0, /* tp_traverse */
1821 0, /* tp_clear */
1822 float_richcompare, /* tp_richcompare */
1823 0, /* tp_weaklistoffset */
1824 0, /* tp_iter */
1825 0, /* tp_iternext */
1826 float_methods, /* tp_methods */
1827 0, /* tp_members */
1828 float_getset, /* tp_getset */
1829 0, /* tp_base */
1830 0, /* tp_dict */
1831 0, /* tp_descr_get */
1832 0, /* tp_descr_set */
1833 0, /* tp_dictoffset */
1834 0, /* tp_init */
1835 0, /* tp_alloc */
1836 float_new, /* tp_new */
1839 void
1840 _PyFloat_Init(void)
1842 /* We attempt to determine if this machine is using IEEE
1843 floating point formats by peering at the bits of some
1844 carefully chosen values. If it looks like we are on an
1845 IEEE platform, the float packing/unpacking routines can
1846 just copy bits, if not they resort to arithmetic & shifts
1847 and masks. The shifts & masks approach works on all finite
1848 values, but what happens to infinities, NaNs and signed
1849 zeroes on packing is an accident, and attempting to unpack
1850 a NaN or an infinity will raise an exception.
1852 Note that if we're on some whacked-out platform which uses
1853 IEEE formats but isn't strictly little-endian or big-
1854 endian, we will fall back to the portable shifts & masks
1855 method. */
1857 #if SIZEOF_DOUBLE == 8
1859 double x = 9006104071832581.0;
1860 if (memcmp(&x, "\x43\x3f\xff\x01\x02\x03\x04\x05", 8) == 0)
1861 detected_double_format = ieee_big_endian_format;
1862 else if (memcmp(&x, "\x05\x04\x03\x02\x01\xff\x3f\x43", 8) == 0)
1863 detected_double_format = ieee_little_endian_format;
1864 else
1865 detected_double_format = unknown_format;
1867 #else
1868 detected_double_format = unknown_format;
1869 #endif
1871 #if SIZEOF_FLOAT == 4
1873 float y = 16711938.0;
1874 if (memcmp(&y, "\x4b\x7f\x01\x02", 4) == 0)
1875 detected_float_format = ieee_big_endian_format;
1876 else if (memcmp(&y, "\x02\x01\x7f\x4b", 4) == 0)
1877 detected_float_format = ieee_little_endian_format;
1878 else
1879 detected_float_format = unknown_format;
1881 #else
1882 detected_float_format = unknown_format;
1883 #endif
1885 double_format = detected_double_format;
1886 float_format = detected_float_format;
1888 /* Init float info */
1889 if (FloatInfoType.tp_name == 0)
1890 PyStructSequence_InitType(&FloatInfoType, &floatinfo_desc);
1894 PyFloat_ClearFreeList(void)
1896 PyFloatObject *p;
1897 PyFloatBlock *list, *next;
1898 int i;
1899 int u; /* remaining unfreed floats per block */
1900 int freelist_size = 0;
1902 list = block_list;
1903 block_list = NULL;
1904 free_list = NULL;
1905 while (list != NULL) {
1906 u = 0;
1907 for (i = 0, p = &list->objects[0];
1908 i < N_FLOATOBJECTS;
1909 i++, p++) {
1910 if (PyFloat_CheckExact(p) && Py_REFCNT(p) != 0)
1911 u++;
1913 next = list->next;
1914 if (u) {
1915 list->next = block_list;
1916 block_list = list;
1917 for (i = 0, p = &list->objects[0];
1918 i < N_FLOATOBJECTS;
1919 i++, p++) {
1920 if (!PyFloat_CheckExact(p) ||
1921 Py_REFCNT(p) == 0) {
1922 Py_TYPE(p) = (struct _typeobject *)
1923 free_list;
1924 free_list = p;
1928 else {
1929 PyMem_FREE(list);
1931 freelist_size += u;
1932 list = next;
1934 return freelist_size;
1937 void
1938 PyFloat_Fini(void)
1940 PyFloatObject *p;
1941 PyFloatBlock *list;
1942 int i;
1943 int u; /* total unfreed floats per block */
1945 u = PyFloat_ClearFreeList();
1947 if (!Py_VerboseFlag)
1948 return;
1949 fprintf(stderr, "# cleanup floats");
1950 if (!u) {
1951 fprintf(stderr, "\n");
1953 else {
1954 fprintf(stderr,
1955 ": %d unfreed float%s\n",
1956 u, u == 1 ? "" : "s");
1958 if (Py_VerboseFlag > 1) {
1959 list = block_list;
1960 while (list != NULL) {
1961 for (i = 0, p = &list->objects[0];
1962 i < N_FLOATOBJECTS;
1963 i++, p++) {
1964 if (PyFloat_CheckExact(p) &&
1965 Py_REFCNT(p) != 0) {
1966 char *buf = PyOS_double_to_string(
1967 PyFloat_AS_DOUBLE(p), 'r',
1968 0, 0, NULL);
1969 if (buf) {
1970 /* XXX(twouters) cast
1971 refcount to long
1972 until %zd is
1973 universally
1974 available
1976 fprintf(stderr,
1977 "# <float at %p, refcnt=%ld, val=%s>\n",
1978 p, (long)Py_REFCNT(p), buf);
1979 PyMem_Free(buf);
1983 list = list->next;
1988 /*----------------------------------------------------------------------------
1989 * _PyFloat_{Pack,Unpack}{4,8}. See floatobject.h.
1992 _PyFloat_Pack4(double x, unsigned char *p, int le)
1994 if (float_format == unknown_format) {
1995 unsigned char sign;
1996 int e;
1997 double f;
1998 unsigned int fbits;
1999 int incr = 1;
2001 if (le) {
2002 p += 3;
2003 incr = -1;
2006 if (x < 0) {
2007 sign = 1;
2008 x = -x;
2010 else
2011 sign = 0;
2013 f = frexp(x, &e);
2015 /* Normalize f to be in the range [1.0, 2.0) */
2016 if (0.5 <= f && f < 1.0) {
2017 f *= 2.0;
2018 e--;
2020 else if (f == 0.0)
2021 e = 0;
2022 else {
2023 PyErr_SetString(PyExc_SystemError,
2024 "frexp() result out of range");
2025 return -1;
2028 if (e >= 128)
2029 goto Overflow;
2030 else if (e < -126) {
2031 /* Gradual underflow */
2032 f = ldexp(f, 126 + e);
2033 e = 0;
2035 else if (!(e == 0 && f == 0.0)) {
2036 e += 127;
2037 f -= 1.0; /* Get rid of leading 1 */
2040 f *= 8388608.0; /* 2**23 */
2041 fbits = (unsigned int)(f + 0.5); /* Round */
2042 assert(fbits <= 8388608);
2043 if (fbits >> 23) {
2044 /* The carry propagated out of a string of 23 1 bits. */
2045 fbits = 0;
2046 ++e;
2047 if (e >= 255)
2048 goto Overflow;
2051 /* First byte */
2052 *p = (sign << 7) | (e >> 1);
2053 p += incr;
2055 /* Second byte */
2056 *p = (char) (((e & 1) << 7) | (fbits >> 16));
2057 p += incr;
2059 /* Third byte */
2060 *p = (fbits >> 8) & 0xFF;
2061 p += incr;
2063 /* Fourth byte */
2064 *p = fbits & 0xFF;
2066 /* Done */
2067 return 0;
2070 else {
2071 float y = (float)x;
2072 const char *s = (char*)&y;
2073 int i, incr = 1;
2075 if (Py_IS_INFINITY(y) && !Py_IS_INFINITY(x))
2076 goto Overflow;
2078 if ((float_format == ieee_little_endian_format && !le)
2079 || (float_format == ieee_big_endian_format && le)) {
2080 p += 3;
2081 incr = -1;
2084 for (i = 0; i < 4; i++) {
2085 *p = *s++;
2086 p += incr;
2088 return 0;
2090 Overflow:
2091 PyErr_SetString(PyExc_OverflowError,
2092 "float too large to pack with f format");
2093 return -1;
2097 _PyFloat_Pack8(double x, unsigned char *p, int le)
2099 if (double_format == unknown_format) {
2100 unsigned char sign;
2101 int e;
2102 double f;
2103 unsigned int fhi, flo;
2104 int incr = 1;
2106 if (le) {
2107 p += 7;
2108 incr = -1;
2111 if (x < 0) {
2112 sign = 1;
2113 x = -x;
2115 else
2116 sign = 0;
2118 f = frexp(x, &e);
2120 /* Normalize f to be in the range [1.0, 2.0) */
2121 if (0.5 <= f && f < 1.0) {
2122 f *= 2.0;
2123 e--;
2125 else if (f == 0.0)
2126 e = 0;
2127 else {
2128 PyErr_SetString(PyExc_SystemError,
2129 "frexp() result out of range");
2130 return -1;
2133 if (e >= 1024)
2134 goto Overflow;
2135 else if (e < -1022) {
2136 /* Gradual underflow */
2137 f = ldexp(f, 1022 + e);
2138 e = 0;
2140 else if (!(e == 0 && f == 0.0)) {
2141 e += 1023;
2142 f -= 1.0; /* Get rid of leading 1 */
2145 /* fhi receives the high 28 bits; flo the low 24 bits (== 52 bits) */
2146 f *= 268435456.0; /* 2**28 */
2147 fhi = (unsigned int)f; /* Truncate */
2148 assert(fhi < 268435456);
2150 f -= (double)fhi;
2151 f *= 16777216.0; /* 2**24 */
2152 flo = (unsigned int)(f + 0.5); /* Round */
2153 assert(flo <= 16777216);
2154 if (flo >> 24) {
2155 /* The carry propagated out of a string of 24 1 bits. */
2156 flo = 0;
2157 ++fhi;
2158 if (fhi >> 28) {
2159 /* And it also progagated out of the next 28 bits. */
2160 fhi = 0;
2161 ++e;
2162 if (e >= 2047)
2163 goto Overflow;
2167 /* First byte */
2168 *p = (sign << 7) | (e >> 4);
2169 p += incr;
2171 /* Second byte */
2172 *p = (unsigned char) (((e & 0xF) << 4) | (fhi >> 24));
2173 p += incr;
2175 /* Third byte */
2176 *p = (fhi >> 16) & 0xFF;
2177 p += incr;
2179 /* Fourth byte */
2180 *p = (fhi >> 8) & 0xFF;
2181 p += incr;
2183 /* Fifth byte */
2184 *p = fhi & 0xFF;
2185 p += incr;
2187 /* Sixth byte */
2188 *p = (flo >> 16) & 0xFF;
2189 p += incr;
2191 /* Seventh byte */
2192 *p = (flo >> 8) & 0xFF;
2193 p += incr;
2195 /* Eighth byte */
2196 *p = flo & 0xFF;
2197 p += incr;
2199 /* Done */
2200 return 0;
2202 Overflow:
2203 PyErr_SetString(PyExc_OverflowError,
2204 "float too large to pack with d format");
2205 return -1;
2207 else {
2208 const char *s = (char*)&x;
2209 int i, incr = 1;
2211 if ((double_format == ieee_little_endian_format && !le)
2212 || (double_format == ieee_big_endian_format && le)) {
2213 p += 7;
2214 incr = -1;
2217 for (i = 0; i < 8; i++) {
2218 *p = *s++;
2219 p += incr;
2221 return 0;
2225 double
2226 _PyFloat_Unpack4(const unsigned char *p, int le)
2228 if (float_format == unknown_format) {
2229 unsigned char sign;
2230 int e;
2231 unsigned int f;
2232 double x;
2233 int incr = 1;
2235 if (le) {
2236 p += 3;
2237 incr = -1;
2240 /* First byte */
2241 sign = (*p >> 7) & 1;
2242 e = (*p & 0x7F) << 1;
2243 p += incr;
2245 /* Second byte */
2246 e |= (*p >> 7) & 1;
2247 f = (*p & 0x7F) << 16;
2248 p += incr;
2250 if (e == 255) {
2251 PyErr_SetString(
2252 PyExc_ValueError,
2253 "can't unpack IEEE 754 special value "
2254 "on non-IEEE platform");
2255 return -1;
2258 /* Third byte */
2259 f |= *p << 8;
2260 p += incr;
2262 /* Fourth byte */
2263 f |= *p;
2265 x = (double)f / 8388608.0;
2267 /* XXX This sadly ignores Inf/NaN issues */
2268 if (e == 0)
2269 e = -126;
2270 else {
2271 x += 1.0;
2272 e -= 127;
2274 x = ldexp(x, e);
2276 if (sign)
2277 x = -x;
2279 return x;
2281 else {
2282 float x;
2284 if ((float_format == ieee_little_endian_format && !le)
2285 || (float_format == ieee_big_endian_format && le)) {
2286 char buf[4];
2287 char *d = &buf[3];
2288 int i;
2290 for (i = 0; i < 4; i++) {
2291 *d-- = *p++;
2293 memcpy(&x, buf, 4);
2295 else {
2296 memcpy(&x, p, 4);
2299 return x;
2303 double
2304 _PyFloat_Unpack8(const unsigned char *p, int le)
2306 if (double_format == unknown_format) {
2307 unsigned char sign;
2308 int e;
2309 unsigned int fhi, flo;
2310 double x;
2311 int incr = 1;
2313 if (le) {
2314 p += 7;
2315 incr = -1;
2318 /* First byte */
2319 sign = (*p >> 7) & 1;
2320 e = (*p & 0x7F) << 4;
2322 p += incr;
2324 /* Second byte */
2325 e |= (*p >> 4) & 0xF;
2326 fhi = (*p & 0xF) << 24;
2327 p += incr;
2329 if (e == 2047) {
2330 PyErr_SetString(
2331 PyExc_ValueError,
2332 "can't unpack IEEE 754 special value "
2333 "on non-IEEE platform");
2334 return -1.0;
2337 /* Third byte */
2338 fhi |= *p << 16;
2339 p += incr;
2341 /* Fourth byte */
2342 fhi |= *p << 8;
2343 p += incr;
2345 /* Fifth byte */
2346 fhi |= *p;
2347 p += incr;
2349 /* Sixth byte */
2350 flo = *p << 16;
2351 p += incr;
2353 /* Seventh byte */
2354 flo |= *p << 8;
2355 p += incr;
2357 /* Eighth byte */
2358 flo |= *p;
2360 x = (double)fhi + (double)flo / 16777216.0; /* 2**24 */
2361 x /= 268435456.0; /* 2**28 */
2363 if (e == 0)
2364 e = -1022;
2365 else {
2366 x += 1.0;
2367 e -= 1023;
2369 x = ldexp(x, e);
2371 if (sign)
2372 x = -x;
2374 return x;
2376 else {
2377 double x;
2379 if ((double_format == ieee_little_endian_format && !le)
2380 || (double_format == ieee_big_endian_format && le)) {
2381 char buf[8];
2382 char *d = &buf[7];
2383 int i;
2385 for (i = 0; i < 8; i++) {
2386 *d-- = *p++;
2388 memcpy(&x, buf, 8);
2390 else {
2391 memcpy(&x, p, 8);
2394 return x;