2 /* Generic object operations; and implementation of None (NoObject) */
5 #include "sliceobject.h" /* For PyEllipsis_Type */
6 #include "frameobject.h"
13 Py_ssize_t _Py_RefTotal
;
19 Py_ssize_t total
= _Py_RefTotal
;
20 /* ignore the references to the dummy object of the dicts and sets
21 because they are not reliable and not useful (now that the
22 hash table code is well-tested) */
25 total
-= o
->ob_refcnt
;
28 total
-= o
->ob_refcnt
;
31 #endif /* Py_REF_DEBUG */
33 int Py_DivisionWarningFlag
;
35 /* Object allocation routines used by NEWOBJ and NEWVAROBJ macros.
36 These are used by the individual routines for object creation.
37 Do not call them otherwise, they do not initialize the object! */
40 /* Head of circular doubly-linked list of all objects. These are linked
41 * together via the _ob_prev and _ob_next members of a PyObject, which
42 * exist only in a Py_TRACE_REFS build.
44 static PyObject refchain
= {&refchain
, &refchain
};
46 /* Insert op at the front of the list of all objects. If force is true,
47 * op is added even if _ob_prev and _ob_next are non-NULL already. If
48 * force is false amd _ob_prev or _ob_next are non-NULL, do nothing.
49 * force should be true if and only if op points to freshly allocated,
50 * uninitialized memory, or you've unlinked op from the list and are
51 * relinking it into the front.
52 * Note that objects are normally added to the list via _Py_NewReference,
53 * which is called by PyObject_Init. Not all objects are initialized that
54 * way, though; exceptions include statically allocated type objects, and
55 * statically allocated singletons (like Py_True and Py_None).
58 _Py_AddToAllObjects(PyObject
*op
, int force
)
62 /* If it's initialized memory, op must be in or out of
63 * the list unambiguously.
65 assert((op
->_ob_prev
== NULL
) == (op
->_ob_next
== NULL
));
68 if (force
|| op
->_ob_prev
== NULL
) {
69 op
->_ob_next
= refchain
._ob_next
;
70 op
->_ob_prev
= &refchain
;
71 refchain
._ob_next
->_ob_prev
= op
;
72 refchain
._ob_next
= op
;
75 #endif /* Py_TRACE_REFS */
78 static PyTypeObject
*type_list
;
79 /* All types are added to type_list, at least when
80 they get one object created. That makes them
81 immortal, which unfortunately contributes to
82 garbage itself. If unlist_types_without_objects
83 is set, they will be removed from the type_list
84 once the last object is deallocated. */
85 static int unlist_types_without_objects
;
86 extern Py_ssize_t tuple_zero_allocs
, fast_tuple_allocs
;
87 extern Py_ssize_t quick_int_allocs
, quick_neg_int_allocs
;
88 extern Py_ssize_t null_strings
, one_strings
;
94 for (tp
= type_list
; tp
; tp
= tp
->tp_next
)
95 fprintf(f
, "%s alloc'd: %" PY_FORMAT_SIZE_T
"d, "
96 "freed: %" PY_FORMAT_SIZE_T
"d, "
97 "max in use: %" PY_FORMAT_SIZE_T
"d\n",
98 tp
->tp_name
, tp
->tp_allocs
, tp
->tp_frees
,
100 fprintf(f
, "fast tuple allocs: %" PY_FORMAT_SIZE_T
"d, "
101 "empty: %" PY_FORMAT_SIZE_T
"d\n",
102 fast_tuple_allocs
, tuple_zero_allocs
);
103 fprintf(f
, "fast int allocs: pos: %" PY_FORMAT_SIZE_T
"d, "
104 "neg: %" PY_FORMAT_SIZE_T
"d\n",
105 quick_int_allocs
, quick_neg_int_allocs
);
106 fprintf(f
, "null strings: %" PY_FORMAT_SIZE_T
"d, "
107 "1-strings: %" PY_FORMAT_SIZE_T
"d\n",
108 null_strings
, one_strings
);
118 result
= PyList_New(0);
121 for (tp
= type_list
; tp
; tp
= tp
->tp_next
) {
122 v
= Py_BuildValue("(snnn)", tp
->tp_name
, tp
->tp_allocs
,
123 tp
->tp_frees
, tp
->tp_maxalloc
);
128 if (PyList_Append(result
, v
) < 0) {
139 inc_count(PyTypeObject
*tp
)
141 if (tp
->tp_next
== NULL
&& tp
->tp_prev
== NULL
) {
142 /* first time; insert in linked list */
143 if (tp
->tp_next
!= NULL
) /* sanity check */
144 Py_FatalError("XXX inc_count sanity check");
146 type_list
->tp_prev
= tp
;
147 tp
->tp_next
= type_list
;
148 /* Note that as of Python 2.2, heap-allocated type objects
149 * can go away, but this code requires that they stay alive
150 * until program exit. That's why we're careful with
151 * refcounts here. type_list gets a new reference to tp,
152 * while ownership of the reference type_list used to hold
153 * (if any) was transferred to tp->tp_next in the line above.
154 * tp is thus effectively immortal after this.
159 /* Also insert in the doubly-linked list of all objects,
160 * if not already there.
162 _Py_AddToAllObjects((PyObject
*)tp
, 0);
166 if (tp
->tp_allocs
- tp
->tp_frees
> tp
->tp_maxalloc
)
167 tp
->tp_maxalloc
= tp
->tp_allocs
- tp
->tp_frees
;
170 void dec_count(PyTypeObject
*tp
)
173 if (unlist_types_without_objects
&&
174 tp
->tp_allocs
== tp
->tp_frees
) {
175 /* unlink the type from type_list */
177 tp
->tp_prev
->tp_next
= tp
->tp_next
;
179 type_list
= tp
->tp_next
;
181 tp
->tp_next
->tp_prev
= tp
->tp_prev
;
182 tp
->tp_next
= tp
->tp_prev
= NULL
;
190 /* Log a fatal error; doesn't return. */
192 _Py_NegativeRefcount(const char *fname
, int lineno
, PyObject
*op
)
196 PyOS_snprintf(buf
, sizeof(buf
),
197 "%s:%i object at %p has negative ref count "
198 "%" PY_FORMAT_SIZE_T
"d",
199 fname
, lineno
, op
, op
->ob_refcnt
);
203 #endif /* Py_REF_DEBUG */
206 Py_IncRef(PyObject
*o
)
212 Py_DecRef(PyObject
*o
)
218 PyObject_Init(PyObject
*op
, PyTypeObject
*tp
)
221 return PyErr_NoMemory();
222 /* Any changes should be reflected in PyObject_INIT (objimpl.h) */
224 _Py_NewReference(op
);
229 PyObject_InitVar(PyVarObject
*op
, PyTypeObject
*tp
, Py_ssize_t size
)
232 return (PyVarObject
*) PyErr_NoMemory();
233 /* Any changes should be reflected in PyObject_INIT_VAR */
236 _Py_NewReference((PyObject
*)op
);
241 _PyObject_New(PyTypeObject
*tp
)
244 op
= (PyObject
*) PyObject_MALLOC(_PyObject_SIZE(tp
));
246 return PyErr_NoMemory();
247 return PyObject_INIT(op
, tp
);
251 _PyObject_NewVar(PyTypeObject
*tp
, Py_ssize_t nitems
)
254 const size_t size
= _PyObject_VAR_SIZE(tp
, nitems
);
255 op
= (PyVarObject
*) PyObject_MALLOC(size
);
257 return (PyVarObject
*)PyErr_NoMemory();
258 return PyObject_INIT_VAR(op
, tp
, nitems
);
261 /* Implementation of PyObject_Print with recursion checking */
263 internal_print(PyObject
*op
, FILE *fp
, int flags
, int nesting
)
267 PyErr_SetString(PyExc_RuntimeError
, "print recursion");
270 if (PyErr_CheckSignals())
272 #ifdef USE_STACKCHECK
273 if (PyOS_CheckStack()) {
274 PyErr_SetString(PyExc_MemoryError
, "stack overflow");
278 clearerr(fp
); /* Clear any previous error condition */
280 Py_BEGIN_ALLOW_THREADS
281 fprintf(fp
, "<nil>");
285 if (op
->ob_refcnt
<= 0)
286 /* XXX(twouters) cast refcount to long until %zd is
287 universally available */
288 Py_BEGIN_ALLOW_THREADS
289 fprintf(fp
, "<refcnt %ld at %p>",
290 (long)op
->ob_refcnt
, op
);
294 if (flags
& Py_PRINT_RAW
)
295 s
= PyObject_Str(op
);
297 s
= PyObject_Repr(op
);
300 else if (PyBytes_Check(s
)) {
301 fwrite(PyBytes_AS_STRING(s
), 1,
302 PyBytes_GET_SIZE(s
), fp
);
304 else if (PyUnicode_Check(s
)) {
306 t
= _PyUnicode_AsDefaultEncodedString(s
, NULL
);
310 fwrite(PyBytes_AS_STRING(t
), 1,
311 PyBytes_GET_SIZE(t
), fp
);
315 PyErr_Format(PyExc_TypeError
,
316 "str() or repr() returned '%.100s'",
317 s
->ob_type
->tp_name
);
325 PyErr_SetFromErrno(PyExc_IOError
);
334 PyObject_Print(PyObject
*op
, FILE *fp
, int flags
)
336 return internal_print(op
, fp
, flags
, 0);
339 /* For debugging convenience. Set a breakpoint here and call it from your DLL */
346 /* For debugging convenience. See Misc/gdbinit for some useful gdb hooks */
348 _PyObject_Dump(PyObject
* op
)
351 fprintf(stderr
, "NULL\n");
354 PyGILState_STATE gil
;
356 fprintf(stderr
, "object : ");
358 gil
= PyGILState_Ensure();
360 (void)PyObject_Print(op
, stderr
, 0);
362 PyGILState_Release(gil
);
364 /* XXX(twouters) cast refcount to long until %zd is
365 universally available */
370 Py_TYPE(op
)==NULL
? "NULL" : Py_TYPE(op
)->tp_name
,
377 PyObject_Repr(PyObject
*v
)
380 if (PyErr_CheckSignals())
382 #ifdef USE_STACKCHECK
383 if (PyOS_CheckStack()) {
384 PyErr_SetString(PyExc_MemoryError
, "stack overflow");
389 return PyUnicode_FromString("<NULL>");
390 if (Py_TYPE(v
)->tp_repr
== NULL
)
391 return PyUnicode_FromFormat("<%s object at %p>",
392 v
->ob_type
->tp_name
, v
);
393 res
= (*v
->ob_type
->tp_repr
)(v
);
394 if (res
!= NULL
&& !PyUnicode_Check(res
)) {
395 PyErr_Format(PyExc_TypeError
,
396 "__repr__ returned non-string (type %.200s)",
397 res
->ob_type
->tp_name
);
405 PyObject_Str(PyObject
*v
)
408 if (PyErr_CheckSignals())
410 #ifdef USE_STACKCHECK
411 if (PyOS_CheckStack()) {
412 PyErr_SetString(PyExc_MemoryError
, "stack overflow");
417 return PyUnicode_FromString("<NULL>");
418 if (PyUnicode_CheckExact(v
)) {
422 if (Py_TYPE(v
)->tp_str
== NULL
)
423 return PyObject_Repr(v
);
425 /* It is possible for a type to have a tp_str representation that loops
427 if (Py_EnterRecursiveCall(" while getting the str of an object"))
429 res
= (*Py_TYPE(v
)->tp_str
)(v
);
430 Py_LeaveRecursiveCall();
433 if (!PyUnicode_Check(res
)) {
434 PyErr_Format(PyExc_TypeError
,
435 "__str__ returned non-string (type %.200s)",
436 Py_TYPE(res
)->tp_name
);
444 PyObject_ASCII(PyObject
*v
)
446 PyObject
*repr
, *ascii
, *res
;
448 repr
= PyObject_Repr(v
);
452 /* repr is guaranteed to be a PyUnicode object by PyObject_Repr */
453 ascii
= PyUnicode_EncodeASCII(
454 PyUnicode_AS_UNICODE(repr
),
455 PyUnicode_GET_SIZE(repr
),
462 res
= PyUnicode_DecodeASCII(
463 PyBytes_AS_STRING(ascii
),
464 PyBytes_GET_SIZE(ascii
),
472 PyObject_Bytes(PyObject
*v
)
474 PyObject
*result
, *func
;
475 static PyObject
*bytesstring
= NULL
;
478 return PyBytes_FromString("<NULL>");
480 if (PyBytes_CheckExact(v
)) {
485 func
= _PyObject_LookupSpecial(v
, "__bytes__", &bytesstring
);
487 result
= PyObject_CallFunctionObjArgs(func
, NULL
);
491 if (!PyBytes_Check(result
)) {
492 PyErr_Format(PyExc_TypeError
,
493 "__bytes__ returned non-bytes (type %.200s)",
494 Py_TYPE(result
)->tp_name
);
500 else if (PyErr_Occurred())
502 return PyBytes_FromObject(v
);
505 /* For Python 3.0.1 and later, the old three-way comparison has been
506 completely removed in favour of rich comparisons. PyObject_Compare() and
507 PyObject_Cmp() are gone, and the builtin cmp function no longer exists.
508 The old tp_compare slot has been renamed to tp_reserved, and should no
509 longer be used. Use tp_richcompare instead.
511 See (*) below for practical amendments.
513 tp_richcompare gets called with a first argument of the appropriate type
514 and a second object of an arbitrary type. We never do any kind of
517 The tp_richcompare slot should return an object, as follows:
519 NULL if an exception occurred
520 NotImplemented if the requested comparison is not implemented
521 any other false value if the requested comparison is false
522 any other true value if the requested comparison is true
524 The PyObject_RichCompare[Bool]() wrappers raise TypeError when they get
527 (*) Practical amendments:
529 - If rich comparison returns NotImplemented, == and != are decided by
530 comparing the object pointer (i.e. falling back to the base object
535 /* Map rich comparison operators to their swapped version, e.g. LT <--> GT */
536 int _Py_SwappedOp
[] = {Py_GT
, Py_GE
, Py_EQ
, Py_NE
, Py_LT
, Py_LE
};
538 static char *opstrings
[] = {"<", "<=", "==", "!=", ">", ">="};
540 /* Perform a rich comparison, raising TypeError when the requested comparison
541 operator is not supported. */
543 do_richcompare(PyObject
*v
, PyObject
*w
, int op
)
548 if (v
->ob_type
!= w
->ob_type
&&
549 PyType_IsSubtype(w
->ob_type
, v
->ob_type
) &&
550 (f
= w
->ob_type
->tp_richcompare
) != NULL
) {
551 res
= (*f
)(w
, v
, _Py_SwappedOp
[op
]);
552 if (res
!= Py_NotImplemented
)
556 if ((f
= v
->ob_type
->tp_richcompare
) != NULL
) {
557 res
= (*f
)(v
, w
, op
);
558 if (res
!= Py_NotImplemented
)
562 if ((f
= w
->ob_type
->tp_richcompare
) != NULL
) {
563 res
= (*f
)(w
, v
, _Py_SwappedOp
[op
]);
564 if (res
!= Py_NotImplemented
)
568 /* If neither object implements it, provide a sensible default
569 for == and !=, but raise an exception for ordering. */
572 res
= (v
== w
) ? Py_True
: Py_False
;
575 res
= (v
!= w
) ? Py_True
: Py_False
;
578 /* XXX Special-case None so it doesn't show as NoneType() */
579 PyErr_Format(PyExc_TypeError
,
580 "unorderable types: %.100s() %s %.100s()",
583 w
->ob_type
->tp_name
);
590 /* Perform a rich comparison with object result. This wraps do_richcompare()
591 with a check for NULL arguments and a recursion check. */
594 PyObject_RichCompare(PyObject
*v
, PyObject
*w
, int op
)
598 assert(Py_LT
<= op
&& op
<= Py_GE
);
599 if (v
== NULL
|| w
== NULL
) {
600 if (!PyErr_Occurred())
601 PyErr_BadInternalCall();
604 if (Py_EnterRecursiveCall(" in comparison"))
606 res
= do_richcompare(v
, w
, op
);
607 Py_LeaveRecursiveCall();
611 /* Perform a rich comparison with integer result. This wraps
612 PyObject_RichCompare(), returning -1 for error, 0 for false, 1 for true. */
614 PyObject_RichCompareBool(PyObject
*v
, PyObject
*w
, int op
)
619 /* Quick result when objects are the same.
620 Guarantees that identity implies equality. */
624 else if (op
== Py_NE
)
628 res
= PyObject_RichCompare(v
, w
, op
);
631 if (PyBool_Check(res
))
632 ok
= (res
== Py_True
);
634 ok
= PyObject_IsTrue(res
);
639 /* Set of hash utility functions to help maintaining the invariant that
640 if a==b then hash(a)==hash(b)
642 All the utility functions (_Py_Hash*()) return "-1" to signify an error.
646 _Py_HashDouble(double v
)
648 double intpart
, fractpart
;
651 long x
; /* the final hash value */
652 /* This is designed so that Python numbers of different types
653 * that compare equal hash to the same value; otherwise comparisons
654 * of mapping keys will turn out weird.
657 fractpart
= modf(v
, &intpart
);
658 if (fractpart
== 0.0) {
659 /* This must return the same hash as an equal int or long. */
660 if (intpart
> LONG_MAX
/2 || -intpart
> LONG_MAX
/2) {
661 /* Convert to long and use its hash. */
662 PyObject
*plong
; /* converted to Python long */
663 if (Py_IS_INFINITY(intpart
))
664 /* can't convert to long int -- arbitrary */
665 v
= v
< 0 ? -271828.0 : 314159.0;
666 plong
= PyLong_FromDouble(v
);
669 x
= PyObject_Hash(plong
);
673 /* Fits in a C long == a Python int, so is its own hash. */
679 /* The fractional part is non-zero, so we don't have to worry about
680 * making this match the hash of some other type.
681 * Use frexp to get at the bits in the double.
682 * Since the VAX D double format has 56 mantissa bits, which is the
683 * most of any double format in use, each of these parts may have as
684 * many as (but no more than) 56 significant bits.
685 * So, assuming sizeof(long) >= 4, each part can be broken into two
686 * longs; frexp and multiplication are used to do that.
687 * Also, since the Cray double format has 15 exponent bits, which is
688 * the most of any double format in use, shifting the exponent field
689 * left by 15 won't overflow a long (again assuming sizeof(long) >= 4).
692 v
*= 2147483648.0; /* 2**31 */
693 hipart
= (long)v
; /* take the top 32 bits */
694 v
= (v
- (double)hipart
) * 2147483648.0; /* get the next 32 bits */
695 x
= hipart
+ (long)v
+ (expo
<< 15);
702 _Py_HashPointer(void *p
)
705 size_t y
= (size_t)p
;
706 /* bottom 3 or 4 bits are likely to be 0; rotate y by 4 to avoid
707 excessive hash collisions for dicts and sets */
708 y
= (y
>> 4) | (y
<< (8 * SIZEOF_VOID_P
- 4));
716 PyObject_HashNotImplemented(PyObject
*v
)
718 PyErr_Format(PyExc_TypeError
, "unhashable type: '%.200s'",
719 Py_TYPE(v
)->tp_name
);
724 PyObject_Hash(PyObject
*v
)
726 PyTypeObject
*tp
= Py_TYPE(v
);
727 if (tp
->tp_hash
!= NULL
)
728 return (*tp
->tp_hash
)(v
);
729 /* To keep to the general practice that inheriting
730 * solely from object in C code should work without
731 * an explicit call to PyType_Ready, we implicitly call
732 * PyType_Ready here and then check the tp_hash slot again
734 if (tp
->tp_dict
== NULL
) {
735 if (PyType_Ready(tp
) < 0)
737 if (tp
->tp_hash
!= NULL
)
738 return (*tp
->tp_hash
)(v
);
740 /* Otherwise, the object can't be hashed */
741 return PyObject_HashNotImplemented(v
);
745 PyObject_GetAttrString(PyObject
*v
, const char *name
)
749 if (Py_TYPE(v
)->tp_getattr
!= NULL
)
750 return (*Py_TYPE(v
)->tp_getattr
)(v
, (char*)name
);
751 w
= PyUnicode_InternFromString(name
);
754 res
= PyObject_GetAttr(v
, w
);
760 PyObject_HasAttrString(PyObject
*v
, const char *name
)
762 PyObject
*res
= PyObject_GetAttrString(v
, name
);
772 PyObject_SetAttrString(PyObject
*v
, const char *name
, PyObject
*w
)
777 if (Py_TYPE(v
)->tp_setattr
!= NULL
)
778 return (*Py_TYPE(v
)->tp_setattr
)(v
, (char*)name
, w
);
779 s
= PyUnicode_InternFromString(name
);
782 res
= PyObject_SetAttr(v
, s
, w
);
788 PyObject_GetAttr(PyObject
*v
, PyObject
*name
)
790 PyTypeObject
*tp
= Py_TYPE(v
);
792 if (!PyUnicode_Check(name
)) {
793 PyErr_Format(PyExc_TypeError
,
794 "attribute name must be string, not '%.200s'",
795 name
->ob_type
->tp_name
);
798 if (tp
->tp_getattro
!= NULL
)
799 return (*tp
->tp_getattro
)(v
, name
);
800 if (tp
->tp_getattr
!= NULL
)
801 return (*tp
->tp_getattr
)(v
, _PyUnicode_AsString(name
));
802 PyErr_Format(PyExc_AttributeError
,
803 "'%.50s' object has no attribute '%U'",
809 PyObject_HasAttr(PyObject
*v
, PyObject
*name
)
811 PyObject
*res
= PyObject_GetAttr(v
, name
);
821 PyObject_SetAttr(PyObject
*v
, PyObject
*name
, PyObject
*value
)
823 PyTypeObject
*tp
= Py_TYPE(v
);
826 if (!PyUnicode_Check(name
)) {
827 PyErr_Format(PyExc_TypeError
,
828 "attribute name must be string, not '%.200s'",
829 name
->ob_type
->tp_name
);
834 PyUnicode_InternInPlace(&name
);
835 if (tp
->tp_setattro
!= NULL
) {
836 err
= (*tp
->tp_setattro
)(v
, name
, value
);
840 if (tp
->tp_setattr
!= NULL
) {
841 err
= (*tp
->tp_setattr
)(v
, _PyUnicode_AsString(name
), value
);
846 assert(name
->ob_refcnt
>= 1);
847 if (tp
->tp_getattr
== NULL
&& tp
->tp_getattro
== NULL
)
848 PyErr_Format(PyExc_TypeError
,
849 "'%.100s' object has no attributes "
852 value
==NULL
? "del" : "assign to",
855 PyErr_Format(PyExc_TypeError
,
856 "'%.100s' object has only read-only attributes "
859 value
==NULL
? "del" : "assign to",
864 /* Helper to get a pointer to an object's __dict__ slot, if any */
867 _PyObject_GetDictPtr(PyObject
*obj
)
869 Py_ssize_t dictoffset
;
870 PyTypeObject
*tp
= Py_TYPE(obj
);
872 dictoffset
= tp
->tp_dictoffset
;
875 if (dictoffset
< 0) {
879 tsize
= ((PyVarObject
*)obj
)->ob_size
;
882 size
= _PyObject_VAR_SIZE(tp
, tsize
);
884 dictoffset
+= (long)size
;
885 assert(dictoffset
> 0);
886 assert(dictoffset
% SIZEOF_VOID_P
== 0);
888 return (PyObject
**) ((char *)obj
+ dictoffset
);
892 PyObject_SelfIter(PyObject
*obj
)
898 /* Helper used when the __next__ method is removed from a type:
899 tp_iternext is never NULL and can be safely called without checking
904 _PyObject_NextNotImplemented(PyObject
*self
)
906 PyErr_Format(PyExc_TypeError
,
907 "'%.200s' object is not iterable",
908 Py_TYPE(self
)->tp_name
);
912 /* Generic GetAttr functions - put these in your tp_[gs]etattro slot */
915 PyObject_GenericGetAttr(PyObject
*obj
, PyObject
*name
)
917 PyTypeObject
*tp
= Py_TYPE(obj
);
918 PyObject
*descr
= NULL
;
919 PyObject
*res
= NULL
;
921 Py_ssize_t dictoffset
;
924 if (!PyUnicode_Check(name
)){
925 PyErr_Format(PyExc_TypeError
,
926 "attribute name must be string, not '%.200s'",
927 name
->ob_type
->tp_name
);
933 if (tp
->tp_dict
== NULL
) {
934 if (PyType_Ready(tp
) < 0)
938 #if 0 /* XXX this is not quite _PyType_Lookup anymore */
939 /* Inline _PyType_Lookup */
942 PyObject
*mro
, *base
, *dict
;
944 /* Look in tp_dict of types in MRO */
947 assert(PyTuple_Check(mro
));
948 n
= PyTuple_GET_SIZE(mro
);
949 for (i
= 0; i
< n
; i
++) {
950 base
= PyTuple_GET_ITEM(mro
, i
);
951 assert(PyType_Check(base
));
952 dict
= ((PyTypeObject
*)base
)->tp_dict
;
953 assert(dict
&& PyDict_Check(dict
));
954 descr
= PyDict_GetItem(dict
, name
);
960 descr
= _PyType_Lookup(tp
, name
);
967 f
= descr
->ob_type
->tp_descr_get
;
968 if (f
!= NULL
&& PyDescr_IsData(descr
)) {
969 res
= f(descr
, obj
, (PyObject
*)obj
->ob_type
);
975 /* Inline _PyObject_GetDictPtr */
976 dictoffset
= tp
->tp_dictoffset
;
977 if (dictoffset
!= 0) {
979 if (dictoffset
< 0) {
983 tsize
= ((PyVarObject
*)obj
)->ob_size
;
986 size
= _PyObject_VAR_SIZE(tp
, tsize
);
988 dictoffset
+= (long)size
;
989 assert(dictoffset
> 0);
990 assert(dictoffset
% SIZEOF_VOID_P
== 0);
992 dictptr
= (PyObject
**) ((char *)obj
+ dictoffset
);
996 res
= PyDict_GetItem(dict
, name
);
1008 res
= f(descr
, obj
, (PyObject
*)Py_TYPE(obj
));
1013 if (descr
!= NULL
) {
1015 /* descr was already increfed above */
1019 PyErr_Format(PyExc_AttributeError
,
1020 "'%.50s' object has no attribute '%.400s'",
1021 tp
->tp_name
, _PyUnicode_AsString(name
));
1028 PyObject_GenericSetAttr(PyObject
*obj
, PyObject
*name
, PyObject
*value
)
1030 PyTypeObject
*tp
= Py_TYPE(obj
);
1036 if (!PyUnicode_Check(name
)){
1037 PyErr_Format(PyExc_TypeError
,
1038 "attribute name must be string, not '%.200s'",
1039 name
->ob_type
->tp_name
);
1045 if (tp
->tp_dict
== NULL
) {
1046 if (PyType_Ready(tp
) < 0)
1050 descr
= _PyType_Lookup(tp
, name
);
1052 if (descr
!= NULL
) {
1053 f
= descr
->ob_type
->tp_descr_set
;
1054 if (f
!= NULL
&& PyDescr_IsData(descr
)) {
1055 res
= f(descr
, obj
, value
);
1060 dictptr
= _PyObject_GetDictPtr(obj
);
1061 if (dictptr
!= NULL
) {
1062 PyObject
*dict
= *dictptr
;
1063 if (dict
== NULL
&& value
!= NULL
) {
1064 dict
= PyDict_New();
1072 res
= PyDict_DelItem(dict
, name
);
1074 res
= PyDict_SetItem(dict
, name
, value
);
1075 if (res
< 0 && PyErr_ExceptionMatches(PyExc_KeyError
))
1076 PyErr_SetObject(PyExc_AttributeError
, name
);
1083 res
= f(descr
, obj
, value
);
1087 if (descr
== NULL
) {
1088 PyErr_Format(PyExc_AttributeError
,
1089 "'%.100s' object has no attribute '%U'",
1094 PyErr_Format(PyExc_AttributeError
,
1095 "'%.50s' object attribute '%U' is read-only",
1102 /* Test a value used as condition, e.g., in a for or if statement.
1103 Return -1 if an error occurred */
1106 PyObject_IsTrue(PyObject
*v
)
1115 else if (v
->ob_type
->tp_as_number
!= NULL
&&
1116 v
->ob_type
->tp_as_number
->nb_bool
!= NULL
)
1117 res
= (*v
->ob_type
->tp_as_number
->nb_bool
)(v
);
1118 else if (v
->ob_type
->tp_as_mapping
!= NULL
&&
1119 v
->ob_type
->tp_as_mapping
->mp_length
!= NULL
)
1120 res
= (*v
->ob_type
->tp_as_mapping
->mp_length
)(v
);
1121 else if (v
->ob_type
->tp_as_sequence
!= NULL
&&
1122 v
->ob_type
->tp_as_sequence
->sq_length
!= NULL
)
1123 res
= (*v
->ob_type
->tp_as_sequence
->sq_length
)(v
);
1126 /* if it is negative, it should be either -1 or -2 */
1127 return (res
> 0) ? 1 : Py_SAFE_DOWNCAST(res
, Py_ssize_t
, int);
1130 /* equivalent of 'not v'
1131 Return -1 if an error occurred */
1134 PyObject_Not(PyObject
*v
)
1137 res
= PyObject_IsTrue(v
);
1143 /* Test whether an object can be called */
1146 PyCallable_Check(PyObject
*x
)
1150 return x
->ob_type
->tp_call
!= NULL
;
1153 /* ------------------------- PyObject_Dir() helpers ------------------------- */
1155 /* Helper for PyObject_Dir.
1156 Merge the __dict__ of aclass into dict, and recursively also all
1157 the __dict__s of aclass's base classes. The order of merging isn't
1158 defined, as it's expected that only the final set of dict keys is
1160 Return 0 on success, -1 on error.
1164 merge_class_dict(PyObject
* dict
, PyObject
* aclass
)
1166 PyObject
*classdict
;
1169 assert(PyDict_Check(dict
));
1172 /* Merge in the type's dict (if any). */
1173 classdict
= PyObject_GetAttrString(aclass
, "__dict__");
1174 if (classdict
== NULL
)
1177 int status
= PyDict_Update(dict
, classdict
);
1178 Py_DECREF(classdict
);
1183 /* Recursively merge in the base types' (if any) dicts. */
1184 bases
= PyObject_GetAttrString(aclass
, "__bases__");
1188 /* We have no guarantee that bases is a real tuple */
1190 n
= PySequence_Size(bases
); /* This better be right */
1194 for (i
= 0; i
< n
; i
++) {
1196 PyObject
*base
= PySequence_GetItem(bases
, i
);
1201 status
= merge_class_dict(dict
, base
);
1214 /* Helper for PyObject_Dir without arguments: returns the local scope. */
1219 PyObject
*locals
= PyEval_GetLocals();
1221 if (locals
== NULL
) {
1222 PyErr_SetString(PyExc_SystemError
, "frame does not exist");
1226 names
= PyMapping_Keys(locals
);
1229 if (!PyList_Check(names
)) {
1230 PyErr_Format(PyExc_TypeError
,
1231 "dir(): expected keys() of locals to be a list, "
1232 "not '%.200s'", Py_TYPE(names
)->tp_name
);
1236 /* the locals don't need to be DECREF'd */
1240 /* Helper for PyObject_Dir of type objects: returns __dict__ and __bases__.
1241 We deliberately don't suck up its __class__, as methods belonging to the
1242 metaclass would probably be more confusing than helpful.
1245 _specialized_dir_type(PyObject
*obj
)
1247 PyObject
*result
= NULL
;
1248 PyObject
*dict
= PyDict_New();
1250 if (dict
!= NULL
&& merge_class_dict(dict
, obj
) == 0)
1251 result
= PyDict_Keys(dict
);
1257 /* Helper for PyObject_Dir of module objects: returns the module's __dict__. */
1259 _specialized_dir_module(PyObject
*obj
)
1261 PyObject
*result
= NULL
;
1262 PyObject
*dict
= PyObject_GetAttrString(obj
, "__dict__");
1265 if (PyDict_Check(dict
))
1266 result
= PyDict_Keys(dict
);
1268 const char *name
= PyModule_GetName(obj
);
1270 PyErr_Format(PyExc_TypeError
,
1271 "%.200s.__dict__ is not a dictionary",
1280 /* Helper for PyObject_Dir of generic objects: returns __dict__, __class__,
1281 and recursively up the __class__.__bases__ chain.
1284 _generic_dir(PyObject
*obj
)
1286 PyObject
*result
= NULL
;
1287 PyObject
*dict
= NULL
;
1288 PyObject
*itsclass
= NULL
;
1290 /* Get __dict__ (which may or may not be a real dict...) */
1291 dict
= PyObject_GetAttrString(obj
, "__dict__");
1294 dict
= PyDict_New();
1296 else if (!PyDict_Check(dict
)) {
1298 dict
= PyDict_New();
1301 /* Copy __dict__ to avoid mutating it. */
1302 PyObject
*temp
= PyDict_Copy(dict
);
1310 /* Merge in attrs reachable from its class. */
1311 itsclass
= PyObject_GetAttrString(obj
, "__class__");
1312 if (itsclass
== NULL
)
1313 /* XXX(tomer): Perhaps fall back to obj->ob_type if no
1314 __class__ exists? */
1317 if (merge_class_dict(dict
, itsclass
) != 0)
1321 result
= PyDict_Keys(dict
);
1324 Py_XDECREF(itsclass
);
1329 /* Helper for PyObject_Dir: object introspection.
1330 This calls one of the above specialized versions if no __dir__ method
1333 _dir_object(PyObject
*obj
)
1335 PyObject
* result
= NULL
;
1336 PyObject
* dirfunc
= PyObject_GetAttrString((PyObject
*)obj
->ob_type
,
1340 if (dirfunc
== NULL
) {
1341 /* use default implementation */
1343 if (PyModule_Check(obj
))
1344 result
= _specialized_dir_module(obj
);
1345 else if (PyType_Check(obj
))
1346 result
= _specialized_dir_type(obj
);
1348 result
= _generic_dir(obj
);
1352 result
= PyObject_CallFunctionObjArgs(dirfunc
, obj
, NULL
);
1357 /* result must be a list */
1358 /* XXX(gbrandl): could also check if all items are strings */
1359 if (!PyList_Check(result
)) {
1360 PyErr_Format(PyExc_TypeError
,
1361 "__dir__() must return a list, not %.200s",
1362 Py_TYPE(result
)->tp_name
);
1371 /* Implementation of dir() -- if obj is NULL, returns the names in the current
1372 (local) scope. Otherwise, performs introspection of the object: returns a
1373 sorted list of attribute names (supposedly) accessible from the object
1376 PyObject_Dir(PyObject
*obj
)
1381 /* no object -- introspect the locals */
1382 result
= _dir_locals();
1384 /* object -- introspect the object */
1385 result
= _dir_object(obj
);
1387 assert(result
== NULL
|| PyList_Check(result
));
1389 if (result
!= NULL
&& PyList_Sort(result
) != 0) {
1390 /* sorting the list failed */
1399 NoObject is usable as a non-NULL undefined value, used by the macro None.
1400 There is (and should be!) no way to create other objects of this type,
1401 so there is exactly one (which is indestructible, by the way).
1402 (XXX This type and the type of NotImplemented below should be unified.)
1407 none_repr(PyObject
*op
)
1409 return PyUnicode_FromString("None");
1414 none_dealloc(PyObject
* ignore
)
1416 /* This should never get called, but we also don't want to SEGV if
1417 * we accidentally decref None out of existence.
1419 Py_FatalError("deallocating None");
1423 static PyTypeObject PyNone_Type
= {
1424 PyVarObject_HEAD_INIT(&PyType_Type
, 0)
1428 none_dealloc
, /*tp_dealloc*/ /*never called*/
1433 none_repr
, /*tp_repr*/
1435 0, /*tp_as_sequence*/
1436 0, /*tp_as_mapping*/
1440 PyObject _Py_NoneStruct
= {
1441 _PyObject_EXTRA_INIT
1445 /* NotImplemented is an object that can be used to signal that an
1446 operation is not implemented for the given type combination. */
1449 NotImplemented_repr(PyObject
*op
)
1451 return PyUnicode_FromString("NotImplemented");
1454 static PyTypeObject PyNotImplemented_Type
= {
1455 PyVarObject_HEAD_INIT(&PyType_Type
, 0)
1456 "NotImplementedType",
1459 none_dealloc
, /*tp_dealloc*/ /*never called*/
1464 NotImplemented_repr
, /*tp_repr*/
1466 0, /*tp_as_sequence*/
1467 0, /*tp_as_mapping*/
1471 PyObject _Py_NotImplementedStruct
= {
1472 _PyObject_EXTRA_INIT
1473 1, &PyNotImplemented_Type
1477 _Py_ReadyTypes(void)
1479 if (PyType_Ready(&PyType_Type
) < 0)
1480 Py_FatalError("Can't initialize type type");
1482 if (PyType_Ready(&_PyWeakref_RefType
) < 0)
1483 Py_FatalError("Can't initialize weakref type");
1485 if (PyType_Ready(&_PyWeakref_CallableProxyType
) < 0)
1486 Py_FatalError("Can't initialize callable weakref proxy type");
1488 if (PyType_Ready(&_PyWeakref_ProxyType
) < 0)
1489 Py_FatalError("Can't initialize weakref proxy type");
1491 if (PyType_Ready(&PyBool_Type
) < 0)
1492 Py_FatalError("Can't initialize bool type");
1494 if (PyType_Ready(&PyByteArray_Type
) < 0)
1495 Py_FatalError("Can't initialize bytearray type");
1497 if (PyType_Ready(&PyBytes_Type
) < 0)
1498 Py_FatalError("Can't initialize 'str'");
1500 if (PyType_Ready(&PyList_Type
) < 0)
1501 Py_FatalError("Can't initialize list type");
1503 if (PyType_Ready(&PyNone_Type
) < 0)
1504 Py_FatalError("Can't initialize None type");
1506 if (PyType_Ready(Py_Ellipsis
->ob_type
) < 0)
1507 Py_FatalError("Can't initialize type(Ellipsis)");
1509 if (PyType_Ready(&PyNotImplemented_Type
) < 0)
1510 Py_FatalError("Can't initialize NotImplemented type");
1512 if (PyType_Ready(&PyTraceBack_Type
) < 0)
1513 Py_FatalError("Can't initialize traceback type");
1515 if (PyType_Ready(&PySuper_Type
) < 0)
1516 Py_FatalError("Can't initialize super type");
1518 if (PyType_Ready(&PyBaseObject_Type
) < 0)
1519 Py_FatalError("Can't initialize object type");
1521 if (PyType_Ready(&PyRange_Type
) < 0)
1522 Py_FatalError("Can't initialize range type");
1524 if (PyType_Ready(&PyDict_Type
) < 0)
1525 Py_FatalError("Can't initialize dict type");
1527 if (PyType_Ready(&PySet_Type
) < 0)
1528 Py_FatalError("Can't initialize set type");
1530 if (PyType_Ready(&PyUnicode_Type
) < 0)
1531 Py_FatalError("Can't initialize str type");
1533 if (PyType_Ready(&PySlice_Type
) < 0)
1534 Py_FatalError("Can't initialize slice type");
1536 if (PyType_Ready(&PyStaticMethod_Type
) < 0)
1537 Py_FatalError("Can't initialize static method type");
1539 #ifndef WITHOUT_COMPLEX
1540 if (PyType_Ready(&PyComplex_Type
) < 0)
1541 Py_FatalError("Can't initialize complex type");
1543 if (PyType_Ready(&PyFloat_Type
) < 0)
1544 Py_FatalError("Can't initialize float type");
1546 if (PyType_Ready(&PyLong_Type
) < 0)
1547 Py_FatalError("Can't initialize int type");
1549 if (PyType_Ready(&PyFrozenSet_Type
) < 0)
1550 Py_FatalError("Can't initialize frozenset type");
1552 if (PyType_Ready(&PyProperty_Type
) < 0)
1553 Py_FatalError("Can't initialize property type");
1555 if (PyType_Ready(&PyMemoryView_Type
) < 0)
1556 Py_FatalError("Can't initialize memoryview type");
1558 if (PyType_Ready(&PyTuple_Type
) < 0)
1559 Py_FatalError("Can't initialize tuple type");
1561 if (PyType_Ready(&PyEnum_Type
) < 0)
1562 Py_FatalError("Can't initialize enumerate type");
1564 if (PyType_Ready(&PyReversed_Type
) < 0)
1565 Py_FatalError("Can't initialize reversed type");
1567 if (PyType_Ready(&PyStdPrinter_Type
) < 0)
1568 Py_FatalError("Can't initialize StdPrinter");
1570 if (PyType_Ready(&PyCode_Type
) < 0)
1571 Py_FatalError("Can't initialize code type");
1573 if (PyType_Ready(&PyFrame_Type
) < 0)
1574 Py_FatalError("Can't initialize frame type");
1576 if (PyType_Ready(&PyCFunction_Type
) < 0)
1577 Py_FatalError("Can't initialize builtin function type");
1579 if (PyType_Ready(&PyMethod_Type
) < 0)
1580 Py_FatalError("Can't initialize method type");
1582 if (PyType_Ready(&PyFunction_Type
) < 0)
1583 Py_FatalError("Can't initialize function type");
1585 if (PyType_Ready(&PyDictProxy_Type
) < 0)
1586 Py_FatalError("Can't initialize dict proxy type");
1588 if (PyType_Ready(&PyGen_Type
) < 0)
1589 Py_FatalError("Can't initialize generator type");
1591 if (PyType_Ready(&PyGetSetDescr_Type
) < 0)
1592 Py_FatalError("Can't initialize get-set descriptor type");
1594 if (PyType_Ready(&PyWrapperDescr_Type
) < 0)
1595 Py_FatalError("Can't initialize wrapper type");
1597 if (PyType_Ready(&PyEllipsis_Type
) < 0)
1598 Py_FatalError("Can't initialize ellipsis type");
1600 if (PyType_Ready(&PyMemberDescr_Type
) < 0)
1601 Py_FatalError("Can't initialize member descriptor type");
1603 if (PyType_Ready(&PyFilter_Type
) < 0)
1604 Py_FatalError("Can't initialize filter type");
1606 if (PyType_Ready(&PyMap_Type
) < 0)
1607 Py_FatalError("Can't initialize map type");
1609 if (PyType_Ready(&PyZip_Type
) < 0)
1610 Py_FatalError("Can't initialize zip type");
1614 #ifdef Py_TRACE_REFS
1617 _Py_NewReference(PyObject
*op
)
1621 _Py_AddToAllObjects(op
, 1);
1622 _Py_INC_TPALLOCS(op
);
1626 _Py_ForgetReference(register PyObject
*op
)
1628 #ifdef SLOW_UNREF_CHECK
1629 register PyObject
*p
;
1631 if (op
->ob_refcnt
< 0)
1632 Py_FatalError("UNREF negative refcnt");
1633 if (op
== &refchain
||
1634 op
->_ob_prev
->_ob_next
!= op
|| op
->_ob_next
->_ob_prev
!= op
) {
1635 fprintf(stderr
, "* ob\n");
1637 fprintf(stderr
, "* op->_ob_prev->_ob_next\n");
1638 _PyObject_Dump(op
->_ob_prev
->_ob_next
);
1639 fprintf(stderr
, "* op->_ob_next->_ob_prev\n");
1640 _PyObject_Dump(op
->_ob_next
->_ob_prev
);
1641 Py_FatalError("UNREF invalid object");
1643 #ifdef SLOW_UNREF_CHECK
1644 for (p
= refchain
._ob_next
; p
!= &refchain
; p
= p
->_ob_next
) {
1648 if (p
== &refchain
) /* Not found */
1649 Py_FatalError("UNREF unknown object");
1651 op
->_ob_next
->_ob_prev
= op
->_ob_prev
;
1652 op
->_ob_prev
->_ob_next
= op
->_ob_next
;
1653 op
->_ob_next
= op
->_ob_prev
= NULL
;
1654 _Py_INC_TPFREES(op
);
1658 _Py_Dealloc(PyObject
*op
)
1660 destructor dealloc
= Py_TYPE(op
)->tp_dealloc
;
1661 _Py_ForgetReference(op
);
1665 /* Print all live objects. Because PyObject_Print is called, the
1666 * interpreter must be in a healthy state.
1669 _Py_PrintReferences(FILE *fp
)
1672 fprintf(fp
, "Remaining objects:\n");
1673 for (op
= refchain
._ob_next
; op
!= &refchain
; op
= op
->_ob_next
) {
1674 fprintf(fp
, "%p [%" PY_FORMAT_SIZE_T
"d] ", op
, op
->ob_refcnt
);
1675 if (PyObject_Print(op
, fp
, 0) != 0)
1681 /* Print the addresses of all live objects. Unlike _Py_PrintReferences, this
1682 * doesn't make any calls to the Python C API, so is always safe to call.
1685 _Py_PrintReferenceAddresses(FILE *fp
)
1688 fprintf(fp
, "Remaining object addresses:\n");
1689 for (op
= refchain
._ob_next
; op
!= &refchain
; op
= op
->_ob_next
)
1690 fprintf(fp
, "%p [%" PY_FORMAT_SIZE_T
"d] %s\n", op
,
1691 op
->ob_refcnt
, Py_TYPE(op
)->tp_name
);
1695 _Py_GetObjects(PyObject
*self
, PyObject
*args
)
1701 if (!PyArg_ParseTuple(args
, "i|O", &n
, &t
))
1703 op
= refchain
._ob_next
;
1704 res
= PyList_New(0);
1707 for (i
= 0; (n
== 0 || i
< n
) && op
!= &refchain
; i
++) {
1708 while (op
== self
|| op
== args
|| op
== res
|| op
== t
||
1709 (t
!= NULL
&& Py_TYPE(op
) != (PyTypeObject
*) t
)) {
1711 if (op
== &refchain
)
1714 if (PyList_Append(res
, op
) < 0) {
1725 /* Hack to force loading of cobject.o */
1726 PyTypeObject
*_Py_cobject_hack
= &PyCObject_Type
;
1729 /* Hack to force loading of pycapsule.o */
1730 PyTypeObject
*_PyCapsule_hack
= &PyCapsule_Type
;
1733 /* Hack to force loading of abstract.o */
1734 Py_ssize_t (*_Py_abstract_hack
)(PyObject
*) = PyObject_Size
;
1737 /* Python's malloc wrappers (see pymem.h) */
1740 PyMem_Malloc(size_t nbytes
)
1742 return PyMem_MALLOC(nbytes
);
1746 PyMem_Realloc(void *p
, size_t nbytes
)
1748 return PyMem_REALLOC(p
, nbytes
);
1758 /* These methods are used to control infinite recursion in repr, str, print,
1759 etc. Container objects that may recursively contain themselves,
1760 e.g. builtin dictionaries and lists, should used Py_ReprEnter() and
1761 Py_ReprLeave() to avoid infinite recursion.
1763 Py_ReprEnter() returns 0 the first time it is called for a particular
1764 object and 1 every time thereafter. It returns -1 if an exception
1765 occurred. Py_ReprLeave() has no return value.
1767 See dictobject.c and listobject.c for examples of use.
1770 #define KEY "Py_Repr"
1773 Py_ReprEnter(PyObject
*obj
)
1779 dict
= PyThreadState_GetDict();
1782 list
= PyDict_GetItemString(dict
, KEY
);
1784 list
= PyList_New(0);
1787 if (PyDict_SetItemString(dict
, KEY
, list
) < 0)
1791 i
= PyList_GET_SIZE(list
);
1793 if (PyList_GET_ITEM(list
, i
) == obj
)
1796 PyList_Append(list
, obj
);
1801 Py_ReprLeave(PyObject
*obj
)
1807 dict
= PyThreadState_GetDict();
1810 list
= PyDict_GetItemString(dict
, KEY
);
1811 if (list
== NULL
|| !PyList_Check(list
))
1813 i
= PyList_GET_SIZE(list
);
1814 /* Count backwards because we always expect obj to be list[-1] */
1816 if (PyList_GET_ITEM(list
, i
) == obj
) {
1817 PyList_SetSlice(list
, i
, i
+ 1, NULL
);
1823 /* Trashcan support. */
1825 /* Current call-stack depth of tp_dealloc calls. */
1826 int _PyTrash_delete_nesting
= 0;
1828 /* List of objects that still need to be cleaned up, singly linked via their
1829 * gc headers' gc_prev pointers.
1831 PyObject
*_PyTrash_delete_later
= NULL
;
1833 /* Add op to the _PyTrash_delete_later list. Called when the current
1834 * call-stack depth gets large. op must be a currently untracked gc'ed
1835 * object, with refcount 0. Py_DECREF must already have been called on it.
1838 _PyTrash_deposit_object(PyObject
*op
)
1840 assert(PyObject_IS_GC(op
));
1841 assert(_Py_AS_GC(op
)->gc
.gc_refs
== _PyGC_REFS_UNTRACKED
);
1842 assert(op
->ob_refcnt
== 0);
1843 _Py_AS_GC(op
)->gc
.gc_prev
= (PyGC_Head
*)_PyTrash_delete_later
;
1844 _PyTrash_delete_later
= op
;
1847 /* Dealloccate all the objects in the _PyTrash_delete_later list. Called when
1848 * the call-stack unwinds again.
1851 _PyTrash_destroy_chain(void)
1853 while (_PyTrash_delete_later
) {
1854 PyObject
*op
= _PyTrash_delete_later
;
1855 destructor dealloc
= Py_TYPE(op
)->tp_dealloc
;
1857 _PyTrash_delete_later
=
1858 (PyObject
*) _Py_AS_GC(op
)->gc
.gc_prev
;
1860 /* Call the deallocator directly. This used to try to
1861 * fool Py_DECREF into calling it indirectly, but
1862 * Py_DECREF was already called on this object, and in
1863 * assorted non-release builds calling Py_DECREF again ends
1864 * up distorting allocation statistics.
1866 assert(op
->ob_refcnt
== 0);
1867 ++_PyTrash_delete_nesting
;
1869 --_PyTrash_delete_nesting
;