Merged revisions 78818 via svnmerge from
[python/dscho.git] / Objects / frameobject.c
blob664dc2b1cd9ca7b6f427d6958f668d081fe87f3e
1 /* Frame object implementation */
3 #include "Python.h"
5 #include "code.h"
6 #include "frameobject.h"
7 #include "opcode.h"
8 #include "structmember.h"
10 #undef MIN
11 #undef MAX
12 #define MIN(a, b) ((a) < (b) ? (a) : (b))
13 #define MAX(a, b) ((a) > (b) ? (a) : (b))
15 #define OFF(x) offsetof(PyFrameObject, x)
17 static PyMemberDef frame_memberlist[] = {
18 {"f_back", T_OBJECT, OFF(f_back), READONLY},
19 {"f_code", T_OBJECT, OFF(f_code), READONLY},
20 {"f_builtins", T_OBJECT, OFF(f_builtins),READONLY},
21 {"f_globals", T_OBJECT, OFF(f_globals), READONLY},
22 {"f_lasti", T_INT, OFF(f_lasti), READONLY},
23 {NULL} /* Sentinel */
26 static PyObject *
27 frame_getlocals(PyFrameObject *f, void *closure)
29 PyFrame_FastToLocals(f);
30 Py_INCREF(f->f_locals);
31 return f->f_locals;
34 static PyObject *
35 frame_getlineno(PyFrameObject *f, void *closure)
37 int lineno;
39 if (f->f_trace)
40 lineno = f->f_lineno;
41 else
42 lineno = PyCode_Addr2Line(f->f_code, f->f_lasti);
44 return PyLong_FromLong(lineno);
47 /* Setter for f_lineno - you can set f_lineno from within a trace function in
48 * order to jump to a given line of code, subject to some restrictions. Most
49 * lines are OK to jump to because they don't make any assumptions about the
50 * state of the stack (obvious because you could remove the line and the code
51 * would still work without any stack errors), but there are some constructs
52 * that limit jumping:
54 * o Lines with an 'except' statement on them can't be jumped to, because
55 * they expect an exception to be on the top of the stack.
56 * o Lines that live in a 'finally' block can't be jumped from or to, since
57 * the END_FINALLY expects to clean up the stack after the 'try' block.
58 * o 'try'/'for'/'while' blocks can't be jumped into because the blockstack
59 * needs to be set up before their code runs, and for 'for' loops the
60 * iterator needs to be on the stack.
62 static int
63 frame_setlineno(PyFrameObject *f, PyObject* p_new_lineno)
65 int new_lineno = 0; /* The new value of f_lineno */
66 long l_new_lineno;
67 int overflow;
68 int new_lasti = 0; /* The new value of f_lasti */
69 int new_iblock = 0; /* The new value of f_iblock */
70 unsigned char *code = NULL; /* The bytecode for the frame... */
71 Py_ssize_t code_len = 0; /* ...and its length */
72 unsigned char *lnotab = NULL; /* Iterating over co_lnotab */
73 Py_ssize_t lnotab_len = 0; /* (ditto) */
74 int offset = 0; /* (ditto) */
75 int line = 0; /* (ditto) */
76 int addr = 0; /* (ditto) */
77 int min_addr = 0; /* Scanning the SETUPs and POPs */
78 int max_addr = 0; /* (ditto) */
79 int delta_iblock = 0; /* (ditto) */
80 int min_delta_iblock = 0; /* (ditto) */
81 int min_iblock = 0; /* (ditto) */
82 int f_lasti_setup_addr = 0; /* Policing no-jump-into-finally */
83 int new_lasti_setup_addr = 0; /* (ditto) */
84 int blockstack[CO_MAXBLOCKS]; /* Walking the 'finally' blocks */
85 int in_finally[CO_MAXBLOCKS]; /* (ditto) */
86 int blockstack_top = 0; /* (ditto) */
87 unsigned char setup_op = 0; /* (ditto) */
89 /* f_lineno must be an integer. */
90 if (!PyLong_CheckExact(p_new_lineno)) {
91 PyErr_SetString(PyExc_ValueError,
92 "lineno must be an integer");
93 return -1;
96 /* You can only do this from within a trace function, not via
97 * _getframe or similar hackery. */
98 if (!f->f_trace)
100 PyErr_Format(PyExc_ValueError,
101 "f_lineno can only be set by a"
102 " line trace function");
103 return -1;
106 /* Fail if the line comes before the start of the code block. */
107 l_new_lineno = PyLong_AsLongAndOverflow(p_new_lineno, &overflow);
108 if (overflow
109 #if SIZEOF_LONG > SIZEOF_INT
110 || l_new_lineno > INT_MAX
111 || l_new_lineno < INT_MIN
112 #endif
114 PyErr_SetString(PyExc_ValueError,
115 "lineno out of range");
116 return -1;
118 new_lineno = (int)l_new_lineno;
120 if (new_lineno < f->f_code->co_firstlineno) {
121 PyErr_Format(PyExc_ValueError,
122 "line %d comes before the current code block",
123 new_lineno);
124 return -1;
126 else if (new_lineno == f->f_code->co_firstlineno) {
127 new_lasti = 0;
128 new_lineno = f->f_code->co_firstlineno;
130 else {
131 /* Find the bytecode offset for the start of the given
132 * line, or the first code-owning line after it. */
133 char *tmp;
134 PyBytes_AsStringAndSize(f->f_code->co_lnotab,
135 &tmp, &lnotab_len);
136 lnotab = (unsigned char *) tmp;
137 addr = 0;
138 line = f->f_code->co_firstlineno;
139 new_lasti = -1;
140 for (offset = 0; offset < lnotab_len; offset += 2) {
141 addr += lnotab[offset];
142 line += lnotab[offset+1];
143 if (line >= new_lineno) {
144 new_lasti = addr;
145 new_lineno = line;
146 break;
151 /* If we didn't reach the requested line, return an error. */
152 if (new_lasti == -1) {
153 PyErr_Format(PyExc_ValueError,
154 "line %d comes after the current code block",
155 new_lineno);
156 return -1;
159 /* We're now ready to look at the bytecode. */
160 PyBytes_AsStringAndSize(f->f_code->co_code, (char **)&code, &code_len);
161 min_addr = MIN(new_lasti, f->f_lasti);
162 max_addr = MAX(new_lasti, f->f_lasti);
164 /* You can't jump onto a line with an 'except' statement on it -
165 * they expect to have an exception on the top of the stack, which
166 * won't be true if you jump to them. They always start with code
167 * that either pops the exception using POP_TOP (plain 'except:'
168 * lines do this) or duplicates the exception on the stack using
169 * DUP_TOP (if there's an exception type specified). See compile.c,
170 * 'com_try_except' for the full details. There aren't any other
171 * cases (AFAIK) where a line's code can start with DUP_TOP or
172 * POP_TOP, but if any ever appear, they'll be subject to the same
173 * restriction (but with a different error message). */
174 if (code[new_lasti] == DUP_TOP || code[new_lasti] == POP_TOP) {
175 PyErr_SetString(PyExc_ValueError,
176 "can't jump to 'except' line as there's no exception");
177 return -1;
180 /* You can't jump into or out of a 'finally' block because the 'try'
181 * block leaves something on the stack for the END_FINALLY to clean
182 * up. So we walk the bytecode, maintaining a simulated blockstack.
183 * When we reach the old or new address and it's in a 'finally' block
184 * we note the address of the corresponding SETUP_FINALLY. The jump
185 * is only legal if neither address is in a 'finally' block or
186 * they're both in the same one. 'blockstack' is a stack of the
187 * bytecode addresses of the SETUP_X opcodes, and 'in_finally' tracks
188 * whether we're in a 'finally' block at each blockstack level. */
189 f_lasti_setup_addr = -1;
190 new_lasti_setup_addr = -1;
191 memset(blockstack, '\0', sizeof(blockstack));
192 memset(in_finally, '\0', sizeof(in_finally));
193 blockstack_top = 0;
194 for (addr = 0; addr < code_len; addr++) {
195 unsigned char op = code[addr];
196 switch (op) {
197 case SETUP_LOOP:
198 case SETUP_EXCEPT:
199 case SETUP_FINALLY:
200 blockstack[blockstack_top++] = addr;
201 in_finally[blockstack_top-1] = 0;
202 break;
204 case POP_BLOCK:
205 assert(blockstack_top > 0);
206 setup_op = code[blockstack[blockstack_top-1]];
207 if (setup_op == SETUP_FINALLY) {
208 in_finally[blockstack_top-1] = 1;
210 else {
211 blockstack_top--;
213 break;
215 case END_FINALLY:
216 /* Ignore END_FINALLYs for SETUP_EXCEPTs - they exist
217 * in the bytecode but don't correspond to an actual
218 * 'finally' block. (If blockstack_top is 0, we must
219 * be seeing such an END_FINALLY.) */
220 if (blockstack_top > 0) {
221 setup_op = code[blockstack[blockstack_top-1]];
222 if (setup_op == SETUP_FINALLY) {
223 blockstack_top--;
226 break;
229 /* For the addresses we're interested in, see whether they're
230 * within a 'finally' block and if so, remember the address
231 * of the SETUP_FINALLY. */
232 if (addr == new_lasti || addr == f->f_lasti) {
233 int i = 0;
234 int setup_addr = -1;
235 for (i = blockstack_top-1; i >= 0; i--) {
236 if (in_finally[i]) {
237 setup_addr = blockstack[i];
238 break;
242 if (setup_addr != -1) {
243 if (addr == new_lasti) {
244 new_lasti_setup_addr = setup_addr;
247 if (addr == f->f_lasti) {
248 f_lasti_setup_addr = setup_addr;
253 if (op >= HAVE_ARGUMENT) {
254 addr += 2;
258 /* Verify that the blockstack tracking code didn't get lost. */
259 assert(blockstack_top == 0);
261 /* After all that, are we jumping into / out of a 'finally' block? */
262 if (new_lasti_setup_addr != f_lasti_setup_addr) {
263 PyErr_SetString(PyExc_ValueError,
264 "can't jump into or out of a 'finally' block");
265 return -1;
269 /* Police block-jumping (you can't jump into the middle of a block)
270 * and ensure that the blockstack finishes up in a sensible state (by
271 * popping any blocks we're jumping out of). We look at all the
272 * blockstack operations between the current position and the new
273 * one, and keep track of how many blocks we drop out of on the way.
274 * By also keeping track of the lowest blockstack position we see, we
275 * can tell whether the jump goes into any blocks without coming out
276 * again - in that case we raise an exception below. */
277 delta_iblock = 0;
278 for (addr = min_addr; addr < max_addr; addr++) {
279 unsigned char op = code[addr];
280 switch (op) {
281 case SETUP_LOOP:
282 case SETUP_EXCEPT:
283 case SETUP_FINALLY:
284 delta_iblock++;
285 break;
287 case POP_BLOCK:
288 delta_iblock--;
289 break;
292 min_delta_iblock = MIN(min_delta_iblock, delta_iblock);
294 if (op >= HAVE_ARGUMENT) {
295 addr += 2;
299 /* Derive the absolute iblock values from the deltas. */
300 min_iblock = f->f_iblock + min_delta_iblock;
301 if (new_lasti > f->f_lasti) {
302 /* Forwards jump. */
303 new_iblock = f->f_iblock + delta_iblock;
305 else {
306 /* Backwards jump. */
307 new_iblock = f->f_iblock - delta_iblock;
310 /* Are we jumping into a block? */
311 if (new_iblock > min_iblock) {
312 PyErr_SetString(PyExc_ValueError,
313 "can't jump into the middle of a block");
314 return -1;
317 /* Pop any blocks that we're jumping out of. */
318 while (f->f_iblock > new_iblock) {
319 PyTryBlock *b = &f->f_blockstack[--f->f_iblock];
320 while ((f->f_stacktop - f->f_valuestack) > b->b_level) {
321 PyObject *v = (*--f->f_stacktop);
322 Py_DECREF(v);
326 /* Finally set the new f_lineno and f_lasti and return OK. */
327 f->f_lineno = new_lineno;
328 f->f_lasti = new_lasti;
329 return 0;
332 static PyObject *
333 frame_gettrace(PyFrameObject *f, void *closure)
335 PyObject* trace = f->f_trace;
337 if (trace == NULL)
338 trace = Py_None;
340 Py_INCREF(trace);
342 return trace;
345 static int
346 frame_settrace(PyFrameObject *f, PyObject* v, void *closure)
348 /* We rely on f_lineno being accurate when f_trace is set. */
350 PyObject* old_value = f->f_trace;
352 Py_XINCREF(v);
353 f->f_trace = v;
355 if (v != NULL)
356 f->f_lineno = PyCode_Addr2Line(f->f_code, f->f_lasti);
358 Py_XDECREF(old_value);
360 return 0;
364 static PyGetSetDef frame_getsetlist[] = {
365 {"f_locals", (getter)frame_getlocals, NULL, NULL},
366 {"f_lineno", (getter)frame_getlineno,
367 (setter)frame_setlineno, NULL},
368 {"f_trace", (getter)frame_gettrace, (setter)frame_settrace, NULL},
372 /* Stack frames are allocated and deallocated at a considerable rate.
373 In an attempt to improve the speed of function calls, we:
375 1. Hold a single "zombie" frame on each code object. This retains
376 the allocated and initialised frame object from an invocation of
377 the code object. The zombie is reanimated the next time we need a
378 frame object for that code object. Doing this saves the malloc/
379 realloc required when using a free_list frame that isn't the
380 correct size. It also saves some field initialisation.
382 In zombie mode, no field of PyFrameObject holds a reference, but
383 the following fields are still valid:
385 * ob_type, ob_size, f_code, f_valuestack;
387 * f_locals, f_trace,
388 f_exc_type, f_exc_value, f_exc_traceback are NULL;
390 * f_localsplus does not require re-allocation and
391 the local variables in f_localsplus are NULL.
393 2. We also maintain a separate free list of stack frames (just like
394 integers are allocated in a special way -- see intobject.c). When
395 a stack frame is on the free list, only the following members have
396 a meaning:
397 ob_type == &Frametype
398 f_back next item on free list, or NULL
399 f_stacksize size of value stack
400 ob_size size of localsplus
401 Note that the value and block stacks are preserved -- this can save
402 another malloc() call or two (and two free() calls as well!).
403 Also note that, unlike for integers, each frame object is a
404 malloc'ed object in its own right -- it is only the actual calls to
405 malloc() that we are trying to save here, not the administration.
406 After all, while a typical program may make millions of calls, a
407 call depth of more than 20 or 30 is probably already exceptional
408 unless the program contains run-away recursion. I hope.
410 Later, PyFrame_MAXFREELIST was added to bound the # of frames saved on
411 free_list. Else programs creating lots of cyclic trash involving
412 frames could provoke free_list into growing without bound.
415 static PyFrameObject *free_list = NULL;
416 static int numfree = 0; /* number of frames currently in free_list */
417 /* max value for numfree */
418 #define PyFrame_MAXFREELIST 200
420 static void
421 frame_dealloc(PyFrameObject *f)
423 PyObject **p, **valuestack;
424 PyCodeObject *co;
426 PyObject_GC_UnTrack(f);
427 Py_TRASHCAN_SAFE_BEGIN(f)
428 /* Kill all local variables */
429 valuestack = f->f_valuestack;
430 for (p = f->f_localsplus; p < valuestack; p++)
431 Py_CLEAR(*p);
433 /* Free stack */
434 if (f->f_stacktop != NULL) {
435 for (p = valuestack; p < f->f_stacktop; p++)
436 Py_XDECREF(*p);
439 Py_XDECREF(f->f_back);
440 Py_DECREF(f->f_builtins);
441 Py_DECREF(f->f_globals);
442 Py_CLEAR(f->f_locals);
443 Py_CLEAR(f->f_trace);
444 Py_CLEAR(f->f_exc_type);
445 Py_CLEAR(f->f_exc_value);
446 Py_CLEAR(f->f_exc_traceback);
448 co = f->f_code;
449 if (co->co_zombieframe == NULL)
450 co->co_zombieframe = f;
451 else if (numfree < PyFrame_MAXFREELIST) {
452 ++numfree;
453 f->f_back = free_list;
454 free_list = f;
456 else
457 PyObject_GC_Del(f);
459 Py_DECREF(co);
460 Py_TRASHCAN_SAFE_END(f)
463 static int
464 frame_traverse(PyFrameObject *f, visitproc visit, void *arg)
466 PyObject **fastlocals, **p;
467 int i, slots;
469 Py_VISIT(f->f_back);
470 Py_VISIT(f->f_code);
471 Py_VISIT(f->f_builtins);
472 Py_VISIT(f->f_globals);
473 Py_VISIT(f->f_locals);
474 Py_VISIT(f->f_trace);
475 Py_VISIT(f->f_exc_type);
476 Py_VISIT(f->f_exc_value);
477 Py_VISIT(f->f_exc_traceback);
479 /* locals */
480 slots = f->f_code->co_nlocals + PyTuple_GET_SIZE(f->f_code->co_cellvars) + PyTuple_GET_SIZE(f->f_code->co_freevars);
481 fastlocals = f->f_localsplus;
482 for (i = slots; --i >= 0; ++fastlocals)
483 Py_VISIT(*fastlocals);
485 /* stack */
486 if (f->f_stacktop != NULL) {
487 for (p = f->f_valuestack; p < f->f_stacktop; p++)
488 Py_VISIT(*p);
490 return 0;
493 static void
494 frame_clear(PyFrameObject *f)
496 PyObject **fastlocals, **p, **oldtop;
497 int i, slots;
499 /* Before anything else, make sure that this frame is clearly marked
500 * as being defunct! Else, e.g., a generator reachable from this
501 * frame may also point to this frame, believe itself to still be
502 * active, and try cleaning up this frame again.
504 oldtop = f->f_stacktop;
505 f->f_stacktop = NULL;
507 Py_CLEAR(f->f_exc_type);
508 Py_CLEAR(f->f_exc_value);
509 Py_CLEAR(f->f_exc_traceback);
510 Py_CLEAR(f->f_trace);
512 /* locals */
513 slots = f->f_code->co_nlocals + PyTuple_GET_SIZE(f->f_code->co_cellvars) + PyTuple_GET_SIZE(f->f_code->co_freevars);
514 fastlocals = f->f_localsplus;
515 for (i = slots; --i >= 0; ++fastlocals)
516 Py_CLEAR(*fastlocals);
518 /* stack */
519 if (oldtop != NULL) {
520 for (p = f->f_valuestack; p < oldtop; p++)
521 Py_CLEAR(*p);
525 static PyObject *
526 frame_sizeof(PyFrameObject *f)
528 Py_ssize_t res, extras, ncells, nfrees;
530 ncells = PyTuple_GET_SIZE(f->f_code->co_cellvars);
531 nfrees = PyTuple_GET_SIZE(f->f_code->co_freevars);
532 extras = f->f_code->co_stacksize + f->f_code->co_nlocals +
533 ncells + nfrees;
534 /* subtract one as it is already included in PyFrameObject */
535 res = sizeof(PyFrameObject) + (extras-1) * sizeof(PyObject *);
537 return PyLong_FromSsize_t(res);
540 PyDoc_STRVAR(sizeof__doc__,
541 "F.__sizeof__() -> size of F in memory, in bytes");
543 static PyMethodDef frame_methods[] = {
544 {"__sizeof__", (PyCFunction)frame_sizeof, METH_NOARGS,
545 sizeof__doc__},
546 {NULL, NULL} /* sentinel */
549 PyTypeObject PyFrame_Type = {
550 PyVarObject_HEAD_INIT(&PyType_Type, 0)
551 "frame",
552 sizeof(PyFrameObject),
553 sizeof(PyObject *),
554 (destructor)frame_dealloc, /* tp_dealloc */
555 0, /* tp_print */
556 0, /* tp_getattr */
557 0, /* tp_setattr */
558 0, /* tp_reserved */
559 0, /* tp_repr */
560 0, /* tp_as_number */
561 0, /* tp_as_sequence */
562 0, /* tp_as_mapping */
563 0, /* tp_hash */
564 0, /* tp_call */
565 0, /* tp_str */
566 PyObject_GenericGetAttr, /* tp_getattro */
567 PyObject_GenericSetAttr, /* tp_setattro */
568 0, /* tp_as_buffer */
569 Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,/* tp_flags */
570 0, /* tp_doc */
571 (traverseproc)frame_traverse, /* tp_traverse */
572 (inquiry)frame_clear, /* tp_clear */
573 0, /* tp_richcompare */
574 0, /* tp_weaklistoffset */
575 0, /* tp_iter */
576 0, /* tp_iternext */
577 frame_methods, /* tp_methods */
578 frame_memberlist, /* tp_members */
579 frame_getsetlist, /* tp_getset */
580 0, /* tp_base */
581 0, /* tp_dict */
584 static PyObject *builtin_object;
586 int _PyFrame_Init()
588 builtin_object = PyUnicode_InternFromString("__builtins__");
589 if (builtin_object == NULL)
590 return 0;
591 return 1;
594 PyFrameObject *
595 PyFrame_New(PyThreadState *tstate, PyCodeObject *code, PyObject *globals,
596 PyObject *locals)
598 PyFrameObject *back = tstate->frame;
599 PyFrameObject *f;
600 PyObject *builtins;
601 Py_ssize_t i;
603 #ifdef Py_DEBUG
604 if (code == NULL || globals == NULL || !PyDict_Check(globals) ||
605 (locals != NULL && !PyMapping_Check(locals))) {
606 PyErr_BadInternalCall();
607 return NULL;
609 #endif
610 if (back == NULL || back->f_globals != globals) {
611 builtins = PyDict_GetItem(globals, builtin_object);
612 if (builtins) {
613 if (PyModule_Check(builtins)) {
614 builtins = PyModule_GetDict(builtins);
615 assert(!builtins || PyDict_Check(builtins));
617 else if (!PyDict_Check(builtins))
618 builtins = NULL;
620 if (builtins == NULL) {
621 /* No builtins! Make up a minimal one
622 Give them 'None', at least. */
623 builtins = PyDict_New();
624 if (builtins == NULL ||
625 PyDict_SetItemString(
626 builtins, "None", Py_None) < 0)
627 return NULL;
629 else
630 Py_INCREF(builtins);
633 else {
634 /* If we share the globals, we share the builtins.
635 Save a lookup and a call. */
636 builtins = back->f_builtins;
637 assert(builtins != NULL && PyDict_Check(builtins));
638 Py_INCREF(builtins);
640 if (code->co_zombieframe != NULL) {
641 f = code->co_zombieframe;
642 code->co_zombieframe = NULL;
643 _Py_NewReference((PyObject *)f);
644 assert(f->f_code == code);
646 else {
647 Py_ssize_t extras, ncells, nfrees;
648 ncells = PyTuple_GET_SIZE(code->co_cellvars);
649 nfrees = PyTuple_GET_SIZE(code->co_freevars);
650 extras = code->co_stacksize + code->co_nlocals + ncells +
651 nfrees;
652 if (free_list == NULL) {
653 f = PyObject_GC_NewVar(PyFrameObject, &PyFrame_Type,
654 extras);
655 if (f == NULL) {
656 Py_DECREF(builtins);
657 return NULL;
660 else {
661 assert(numfree > 0);
662 --numfree;
663 f = free_list;
664 free_list = free_list->f_back;
665 if (Py_SIZE(f) < extras) {
666 f = PyObject_GC_Resize(PyFrameObject, f, extras);
667 if (f == NULL) {
668 Py_DECREF(builtins);
669 return NULL;
672 _Py_NewReference((PyObject *)f);
675 f->f_code = code;
676 extras = code->co_nlocals + ncells + nfrees;
677 f->f_valuestack = f->f_localsplus + extras;
678 for (i=0; i<extras; i++)
679 f->f_localsplus[i] = NULL;
680 f->f_locals = NULL;
681 f->f_trace = NULL;
682 f->f_exc_type = f->f_exc_value = f->f_exc_traceback = NULL;
684 f->f_stacktop = f->f_valuestack;
685 f->f_builtins = builtins;
686 Py_XINCREF(back);
687 f->f_back = back;
688 Py_INCREF(code);
689 Py_INCREF(globals);
690 f->f_globals = globals;
691 /* Most functions have CO_NEWLOCALS and CO_OPTIMIZED set. */
692 if ((code->co_flags & (CO_NEWLOCALS | CO_OPTIMIZED)) ==
693 (CO_NEWLOCALS | CO_OPTIMIZED))
694 ; /* f_locals = NULL; will be set by PyFrame_FastToLocals() */
695 else if (code->co_flags & CO_NEWLOCALS) {
696 locals = PyDict_New();
697 if (locals == NULL) {
698 Py_DECREF(f);
699 return NULL;
701 f->f_locals = locals;
703 else {
704 if (locals == NULL)
705 locals = globals;
706 Py_INCREF(locals);
707 f->f_locals = locals;
709 f->f_tstate = tstate;
711 f->f_lasti = -1;
712 f->f_lineno = code->co_firstlineno;
713 f->f_iblock = 0;
715 _PyObject_GC_TRACK(f);
716 return f;
719 /* Block management */
721 void
722 PyFrame_BlockSetup(PyFrameObject *f, int type, int handler, int level)
724 PyTryBlock *b;
725 if (f->f_iblock >= CO_MAXBLOCKS)
726 Py_FatalError("XXX block stack overflow");
727 b = &f->f_blockstack[f->f_iblock++];
728 b->b_type = type;
729 b->b_level = level;
730 b->b_handler = handler;
733 PyTryBlock *
734 PyFrame_BlockPop(PyFrameObject *f)
736 PyTryBlock *b;
737 if (f->f_iblock <= 0)
738 Py_FatalError("XXX block stack underflow");
739 b = &f->f_blockstack[--f->f_iblock];
740 return b;
743 /* Convert between "fast" version of locals and dictionary version.
745 map and values are input arguments. map is a tuple of strings.
746 values is an array of PyObject*. At index i, map[i] is the name of
747 the variable with value values[i]. The function copies the first
748 nmap variable from map/values into dict. If values[i] is NULL,
749 the variable is deleted from dict.
751 If deref is true, then the values being copied are cell variables
752 and the value is extracted from the cell variable before being put
753 in dict.
755 Exceptions raised while modifying the dict are silently ignored,
756 because there is no good way to report them.
759 static void
760 map_to_dict(PyObject *map, Py_ssize_t nmap, PyObject *dict, PyObject **values,
761 int deref)
763 Py_ssize_t j;
764 assert(PyTuple_Check(map));
765 assert(PyDict_Check(dict));
766 assert(PyTuple_Size(map) >= nmap);
767 for (j = nmap; --j >= 0; ) {
768 PyObject *key = PyTuple_GET_ITEM(map, j);
769 PyObject *value = values[j];
770 assert(PyUnicode_Check(key));
771 if (deref) {
772 assert(PyCell_Check(value));
773 value = PyCell_GET(value);
775 if (value == NULL) {
776 if (PyObject_DelItem(dict, key) != 0)
777 PyErr_Clear();
779 else {
780 if (PyObject_SetItem(dict, key, value) != 0)
781 PyErr_Clear();
786 /* Copy values from the "locals" dict into the fast locals.
788 dict is an input argument containing string keys representing
789 variables names and arbitrary PyObject* as values.
791 map and values are input arguments. map is a tuple of strings.
792 values is an array of PyObject*. At index i, map[i] is the name of
793 the variable with value values[i]. The function copies the first
794 nmap variable from map/values into dict. If values[i] is NULL,
795 the variable is deleted from dict.
797 If deref is true, then the values being copied are cell variables
798 and the value is extracted from the cell variable before being put
799 in dict. If clear is true, then variables in map but not in dict
800 are set to NULL in map; if clear is false, variables missing in
801 dict are ignored.
803 Exceptions raised while modifying the dict are silently ignored,
804 because there is no good way to report them.
807 static void
808 dict_to_map(PyObject *map, Py_ssize_t nmap, PyObject *dict, PyObject **values,
809 int deref, int clear)
811 Py_ssize_t j;
812 assert(PyTuple_Check(map));
813 assert(PyDict_Check(dict));
814 assert(PyTuple_Size(map) >= nmap);
815 for (j = nmap; --j >= 0; ) {
816 PyObject *key = PyTuple_GET_ITEM(map, j);
817 PyObject *value = PyObject_GetItem(dict, key);
818 assert(PyUnicode_Check(key));
819 /* We only care about NULLs if clear is true. */
820 if (value == NULL) {
821 PyErr_Clear();
822 if (!clear)
823 continue;
825 if (deref) {
826 assert(PyCell_Check(values[j]));
827 if (PyCell_GET(values[j]) != value) {
828 if (PyCell_Set(values[j], value) < 0)
829 PyErr_Clear();
831 } else if (values[j] != value) {
832 Py_XINCREF(value);
833 Py_XDECREF(values[j]);
834 values[j] = value;
836 Py_XDECREF(value);
840 void
841 PyFrame_FastToLocals(PyFrameObject *f)
843 /* Merge fast locals into f->f_locals */
844 PyObject *locals, *map;
845 PyObject **fast;
846 PyObject *error_type, *error_value, *error_traceback;
847 PyCodeObject *co;
848 Py_ssize_t j;
849 int ncells, nfreevars;
850 if (f == NULL)
851 return;
852 locals = f->f_locals;
853 if (locals == NULL) {
854 locals = f->f_locals = PyDict_New();
855 if (locals == NULL) {
856 PyErr_Clear(); /* Can't report it :-( */
857 return;
860 co = f->f_code;
861 map = co->co_varnames;
862 if (!PyTuple_Check(map))
863 return;
864 PyErr_Fetch(&error_type, &error_value, &error_traceback);
865 fast = f->f_localsplus;
866 j = PyTuple_GET_SIZE(map);
867 if (j > co->co_nlocals)
868 j = co->co_nlocals;
869 if (co->co_nlocals)
870 map_to_dict(map, j, locals, fast, 0);
871 ncells = PyTuple_GET_SIZE(co->co_cellvars);
872 nfreevars = PyTuple_GET_SIZE(co->co_freevars);
873 if (ncells || nfreevars) {
874 map_to_dict(co->co_cellvars, ncells,
875 locals, fast + co->co_nlocals, 1);
876 /* If the namespace is unoptimized, then one of the
877 following cases applies:
878 1. It does not contain free variables, because it
879 uses import * or is a top-level namespace.
880 2. It is a class namespace.
881 We don't want to accidentally copy free variables
882 into the locals dict used by the class.
884 if (co->co_flags & CO_OPTIMIZED) {
885 map_to_dict(co->co_freevars, nfreevars,
886 locals, fast + co->co_nlocals + ncells, 1);
889 PyErr_Restore(error_type, error_value, error_traceback);
892 void
893 PyFrame_LocalsToFast(PyFrameObject *f, int clear)
895 /* Merge f->f_locals into fast locals */
896 PyObject *locals, *map;
897 PyObject **fast;
898 PyObject *error_type, *error_value, *error_traceback;
899 PyCodeObject *co;
900 Py_ssize_t j;
901 int ncells, nfreevars;
902 if (f == NULL)
903 return;
904 locals = f->f_locals;
905 co = f->f_code;
906 map = co->co_varnames;
907 if (locals == NULL)
908 return;
909 if (!PyTuple_Check(map))
910 return;
911 PyErr_Fetch(&error_type, &error_value, &error_traceback);
912 fast = f->f_localsplus;
913 j = PyTuple_GET_SIZE(map);
914 if (j > co->co_nlocals)
915 j = co->co_nlocals;
916 if (co->co_nlocals)
917 dict_to_map(co->co_varnames, j, locals, fast, 0, clear);
918 ncells = PyTuple_GET_SIZE(co->co_cellvars);
919 nfreevars = PyTuple_GET_SIZE(co->co_freevars);
920 if (ncells || nfreevars) {
921 dict_to_map(co->co_cellvars, ncells,
922 locals, fast + co->co_nlocals, 1, clear);
923 /* Same test as in PyFrame_FastToLocals() above. */
924 if (co->co_flags & CO_OPTIMIZED) {
925 dict_to_map(co->co_freevars, nfreevars,
926 locals, fast + co->co_nlocals + ncells, 1,
927 clear);
930 PyErr_Restore(error_type, error_value, error_traceback);
933 /* Clear out the free list */
935 PyFrame_ClearFreeList(void)
937 int freelist_size = numfree;
939 while (free_list != NULL) {
940 PyFrameObject *f = free_list;
941 free_list = free_list->f_back;
942 PyObject_GC_Del(f);
943 --numfree;
945 assert(numfree == 0);
946 return freelist_size;
949 void
950 PyFrame_Fini(void)
952 (void)PyFrame_ClearFreeList();
953 Py_XDECREF(builtin_object);
954 builtin_object = NULL;