Merged revisions 81782 via svnmerge from
[python/dscho.git] / Modules / audioop.c
blob07b41d49d0a84f5f5b4a1869128401e98566b599
2 /* audioopmodule - Module to detect peak values in arrays */
4 #include "Python.h"
6 #if SIZEOF_INT == 4
7 typedef int Py_Int32;
8 typedef unsigned int Py_UInt32;
9 #else
10 #if SIZEOF_LONG == 4
11 typedef long Py_Int32;
12 typedef unsigned long Py_UInt32;
13 #else
14 #error "No 4-byte integral type"
15 #endif
16 #endif
18 typedef short PyInt16;
20 #if defined(__CHAR_UNSIGNED__)
21 #if defined(signed)
22 /* This module currently does not work on systems where only unsigned
23 characters are available. Take it out of Setup. Sorry. */
24 #endif
25 #endif
27 /* Code shamelessly stolen from sox, 12.17.7, g711.c
28 ** (c) Craig Reese, Joe Campbell and Jeff Poskanzer 1989 */
30 /* From g711.c:
32 * December 30, 1994:
33 * Functions linear2alaw, linear2ulaw have been updated to correctly
34 * convert unquantized 16 bit values.
35 * Tables for direct u- to A-law and A- to u-law conversions have been
36 * corrected.
37 * Borge Lindberg, Center for PersonKommunikation, Aalborg University.
38 * bli@cpk.auc.dk
41 #define BIAS 0x84 /* define the add-in bias for 16 bit samples */
42 #define CLIP 32635
43 #define SIGN_BIT (0x80) /* Sign bit for a A-law byte. */
44 #define QUANT_MASK (0xf) /* Quantization field mask. */
45 #define SEG_SHIFT (4) /* Left shift for segment number. */
46 #define SEG_MASK (0x70) /* Segment field mask. */
48 static PyInt16 seg_aend[8] = {0x1F, 0x3F, 0x7F, 0xFF,
49 0x1FF, 0x3FF, 0x7FF, 0xFFF};
50 static PyInt16 seg_uend[8] = {0x3F, 0x7F, 0xFF, 0x1FF,
51 0x3FF, 0x7FF, 0xFFF, 0x1FFF};
53 static PyInt16
54 search(PyInt16 val, PyInt16 *table, int size)
56 int i;
58 for (i = 0; i < size; i++) {
59 if (val <= *table++)
60 return (i);
62 return (size);
64 #define st_ulaw2linear16(uc) (_st_ulaw2linear16[uc])
65 #define st_alaw2linear16(uc) (_st_alaw2linear16[uc])
67 static PyInt16 _st_ulaw2linear16[256] = {
68 -32124, -31100, -30076, -29052, -28028, -27004, -25980,
69 -24956, -23932, -22908, -21884, -20860, -19836, -18812,
70 -17788, -16764, -15996, -15484, -14972, -14460, -13948,
71 -13436, -12924, -12412, -11900, -11388, -10876, -10364,
72 -9852, -9340, -8828, -8316, -7932, -7676, -7420,
73 -7164, -6908, -6652, -6396, -6140, -5884, -5628,
74 -5372, -5116, -4860, -4604, -4348, -4092, -3900,
75 -3772, -3644, -3516, -3388, -3260, -3132, -3004,
76 -2876, -2748, -2620, -2492, -2364, -2236, -2108,
77 -1980, -1884, -1820, -1756, -1692, -1628, -1564,
78 -1500, -1436, -1372, -1308, -1244, -1180, -1116,
79 -1052, -988, -924, -876, -844, -812, -780,
80 -748, -716, -684, -652, -620, -588, -556,
81 -524, -492, -460, -428, -396, -372, -356,
82 -340, -324, -308, -292, -276, -260, -244,
83 -228, -212, -196, -180, -164, -148, -132,
84 -120, -112, -104, -96, -88, -80, -72,
85 -64, -56, -48, -40, -32, -24, -16,
86 -8, 0, 32124, 31100, 30076, 29052, 28028,
87 27004, 25980, 24956, 23932, 22908, 21884, 20860,
88 19836, 18812, 17788, 16764, 15996, 15484, 14972,
89 14460, 13948, 13436, 12924, 12412, 11900, 11388,
90 10876, 10364, 9852, 9340, 8828, 8316, 7932,
91 7676, 7420, 7164, 6908, 6652, 6396, 6140,
92 5884, 5628, 5372, 5116, 4860, 4604, 4348,
93 4092, 3900, 3772, 3644, 3516, 3388, 3260,
94 3132, 3004, 2876, 2748, 2620, 2492, 2364,
95 2236, 2108, 1980, 1884, 1820, 1756, 1692,
96 1628, 1564, 1500, 1436, 1372, 1308, 1244,
97 1180, 1116, 1052, 988, 924, 876, 844,
98 812, 780, 748, 716, 684, 652, 620,
99 588, 556, 524, 492, 460, 428, 396,
100 372, 356, 340, 324, 308, 292, 276,
101 260, 244, 228, 212, 196, 180, 164,
102 148, 132, 120, 112, 104, 96, 88,
103 80, 72, 64, 56, 48, 40, 32,
104 24, 16, 8, 0
108 * linear2ulaw() accepts a 14-bit signed integer and encodes it as u-law data
109 * stored in a unsigned char. This function should only be called with
110 * the data shifted such that it only contains information in the lower
111 * 14-bits.
113 * In order to simplify the encoding process, the original linear magnitude
114 * is biased by adding 33 which shifts the encoding range from (0 - 8158) to
115 * (33 - 8191). The result can be seen in the following encoding table:
117 * Biased Linear Input Code Compressed Code
118 * ------------------------ ---------------
119 * 00000001wxyza 000wxyz
120 * 0000001wxyzab 001wxyz
121 * 000001wxyzabc 010wxyz
122 * 00001wxyzabcd 011wxyz
123 * 0001wxyzabcde 100wxyz
124 * 001wxyzabcdef 101wxyz
125 * 01wxyzabcdefg 110wxyz
126 * 1wxyzabcdefgh 111wxyz
128 * Each biased linear code has a leading 1 which identifies the segment
129 * number. The value of the segment number is equal to 7 minus the number
130 * of leading 0's. The quantization interval is directly available as the
131 * four bits wxyz. * The trailing bits (a - h) are ignored.
133 * Ordinarily the complement of the resulting code word is used for
134 * transmission, and so the code word is complemented before it is returned.
136 * For further information see John C. Bellamy's Digital Telephony, 1982,
137 * John Wiley & Sons, pps 98-111 and 472-476.
139 static unsigned char
140 st_14linear2ulaw(PyInt16 pcm_val) /* 2's complement (14-bit range) */
142 PyInt16 mask;
143 PyInt16 seg;
144 unsigned char uval;
146 /* The original sox code does this in the calling function, not here */
147 pcm_val = pcm_val >> 2;
149 /* u-law inverts all bits */
150 /* Get the sign and the magnitude of the value. */
151 if (pcm_val < 0) {
152 pcm_val = -pcm_val;
153 mask = 0x7F;
154 } else {
155 mask = 0xFF;
157 if ( pcm_val > CLIP ) pcm_val = CLIP; /* clip the magnitude */
158 pcm_val += (BIAS >> 2);
160 /* Convert the scaled magnitude to segment number. */
161 seg = search(pcm_val, seg_uend, 8);
164 * Combine the sign, segment, quantization bits;
165 * and complement the code word.
167 if (seg >= 8) /* out of range, return maximum value. */
168 return (unsigned char) (0x7F ^ mask);
169 else {
170 uval = (unsigned char) (seg << 4) | ((pcm_val >> (seg + 1)) & 0xF);
171 return (uval ^ mask);
176 static PyInt16 _st_alaw2linear16[256] = {
177 -5504, -5248, -6016, -5760, -4480, -4224, -4992,
178 -4736, -7552, -7296, -8064, -7808, -6528, -6272,
179 -7040, -6784, -2752, -2624, -3008, -2880, -2240,
180 -2112, -2496, -2368, -3776, -3648, -4032, -3904,
181 -3264, -3136, -3520, -3392, -22016, -20992, -24064,
182 -23040, -17920, -16896, -19968, -18944, -30208, -29184,
183 -32256, -31232, -26112, -25088, -28160, -27136, -11008,
184 -10496, -12032, -11520, -8960, -8448, -9984, -9472,
185 -15104, -14592, -16128, -15616, -13056, -12544, -14080,
186 -13568, -344, -328, -376, -360, -280, -264,
187 -312, -296, -472, -456, -504, -488, -408,
188 -392, -440, -424, -88, -72, -120, -104,
189 -24, -8, -56, -40, -216, -200, -248,
190 -232, -152, -136, -184, -168, -1376, -1312,
191 -1504, -1440, -1120, -1056, -1248, -1184, -1888,
192 -1824, -2016, -1952, -1632, -1568, -1760, -1696,
193 -688, -656, -752, -720, -560, -528, -624,
194 -592, -944, -912, -1008, -976, -816, -784,
195 -880, -848, 5504, 5248, 6016, 5760, 4480,
196 4224, 4992, 4736, 7552, 7296, 8064, 7808,
197 6528, 6272, 7040, 6784, 2752, 2624, 3008,
198 2880, 2240, 2112, 2496, 2368, 3776, 3648,
199 4032, 3904, 3264, 3136, 3520, 3392, 22016,
200 20992, 24064, 23040, 17920, 16896, 19968, 18944,
201 30208, 29184, 32256, 31232, 26112, 25088, 28160,
202 27136, 11008, 10496, 12032, 11520, 8960, 8448,
203 9984, 9472, 15104, 14592, 16128, 15616, 13056,
204 12544, 14080, 13568, 344, 328, 376, 360,
205 280, 264, 312, 296, 472, 456, 504,
206 488, 408, 392, 440, 424, 88, 72,
207 120, 104, 24, 8, 56, 40, 216,
208 200, 248, 232, 152, 136, 184, 168,
209 1376, 1312, 1504, 1440, 1120, 1056, 1248,
210 1184, 1888, 1824, 2016, 1952, 1632, 1568,
211 1760, 1696, 688, 656, 752, 720, 560,
212 528, 624, 592, 944, 912, 1008, 976,
213 816, 784, 880, 848
217 * linear2alaw() accepts an 13-bit signed integer and encodes it as A-law data
218 * stored in a unsigned char. This function should only be called with
219 * the data shifted such that it only contains information in the lower
220 * 13-bits.
222 * Linear Input Code Compressed Code
223 * ------------------------ ---------------
224 * 0000000wxyza 000wxyz
225 * 0000001wxyza 001wxyz
226 * 000001wxyzab 010wxyz
227 * 00001wxyzabc 011wxyz
228 * 0001wxyzabcd 100wxyz
229 * 001wxyzabcde 101wxyz
230 * 01wxyzabcdef 110wxyz
231 * 1wxyzabcdefg 111wxyz
233 * For further information see John C. Bellamy's Digital Telephony, 1982,
234 * John Wiley & Sons, pps 98-111 and 472-476.
236 static unsigned char
237 st_linear2alaw(PyInt16 pcm_val) /* 2's complement (13-bit range) */
239 PyInt16 mask;
240 short seg;
241 unsigned char aval;
243 /* The original sox code does this in the calling function, not here */
244 pcm_val = pcm_val >> 3;
246 /* A-law using even bit inversion */
247 if (pcm_val >= 0) {
248 mask = 0xD5; /* sign (7th) bit = 1 */
249 } else {
250 mask = 0x55; /* sign bit = 0 */
251 pcm_val = -pcm_val - 1;
254 /* Convert the scaled magnitude to segment number. */
255 seg = search(pcm_val, seg_aend, 8);
257 /* Combine the sign, segment, and quantization bits. */
259 if (seg >= 8) /* out of range, return maximum value. */
260 return (unsigned char) (0x7F ^ mask);
261 else {
262 aval = (unsigned char) seg << SEG_SHIFT;
263 if (seg < 2)
264 aval |= (pcm_val >> 1) & QUANT_MASK;
265 else
266 aval |= (pcm_val >> seg) & QUANT_MASK;
267 return (aval ^ mask);
270 /* End of code taken from sox */
272 /* Intel ADPCM step variation table */
273 static int indexTable[16] = {
274 -1, -1, -1, -1, 2, 4, 6, 8,
275 -1, -1, -1, -1, 2, 4, 6, 8,
278 static int stepsizeTable[89] = {
279 7, 8, 9, 10, 11, 12, 13, 14, 16, 17,
280 19, 21, 23, 25, 28, 31, 34, 37, 41, 45,
281 50, 55, 60, 66, 73, 80, 88, 97, 107, 118,
282 130, 143, 157, 173, 190, 209, 230, 253, 279, 307,
283 337, 371, 408, 449, 494, 544, 598, 658, 724, 796,
284 876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066,
285 2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358,
286 5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899,
287 15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767
290 #define CHARP(cp, i) ((signed char *)(cp+i))
291 #define SHORTP(cp, i) ((short *)(cp+i))
292 #define LONGP(cp, i) ((Py_Int32 *)(cp+i))
296 static PyObject *AudioopError;
298 static PyObject *
299 audioop_getsample(PyObject *self, PyObject *args)
301 signed char *cp;
302 int len, size, val = 0;
303 int i;
305 if ( !PyArg_ParseTuple(args, "s#ii:getsample", &cp, &len, &size, &i) )
306 return 0;
307 if ( size != 1 && size != 2 && size != 4 ) {
308 PyErr_SetString(AudioopError, "Size should be 1, 2 or 4");
309 return 0;
311 if ( i < 0 || i >= len/size ) {
312 PyErr_SetString(AudioopError, "Index out of range");
313 return 0;
315 if ( size == 1 ) val = (int)*CHARP(cp, i);
316 else if ( size == 2 ) val = (int)*SHORTP(cp, i*2);
317 else if ( size == 4 ) val = (int)*LONGP(cp, i*4);
318 return PyLong_FromLong(val);
321 static PyObject *
322 audioop_max(PyObject *self, PyObject *args)
324 signed char *cp;
325 int len, size, val = 0;
326 int i;
327 int max = 0;
329 if ( !PyArg_ParseTuple(args, "s#i:max", &cp, &len, &size) )
330 return 0;
331 if ( size != 1 && size != 2 && size != 4 ) {
332 PyErr_SetString(AudioopError, "Size should be 1, 2 or 4");
333 return 0;
335 for ( i=0; i<len; i+= size) {
336 if ( size == 1 ) val = (int)*CHARP(cp, i);
337 else if ( size == 2 ) val = (int)*SHORTP(cp, i);
338 else if ( size == 4 ) val = (int)*LONGP(cp, i);
339 if ( val < 0 ) val = (-val);
340 if ( val > max ) max = val;
342 return PyLong_FromLong(max);
345 static PyObject *
346 audioop_minmax(PyObject *self, PyObject *args)
348 signed char *cp;
349 int len, size, val = 0;
350 int i;
351 int min = 0x7fffffff, max = -0x7fffffff;
353 if (!PyArg_ParseTuple(args, "s#i:minmax", &cp, &len, &size))
354 return NULL;
355 if (size != 1 && size != 2 && size != 4) {
356 PyErr_SetString(AudioopError, "Size should be 1, 2 or 4");
357 return NULL;
359 for (i = 0; i < len; i += size) {
360 if (size == 1) val = (int) *CHARP(cp, i);
361 else if (size == 2) val = (int) *SHORTP(cp, i);
362 else if (size == 4) val = (int) *LONGP(cp, i);
363 if (val > max) max = val;
364 if (val < min) min = val;
366 return Py_BuildValue("(ii)", min, max);
369 static PyObject *
370 audioop_avg(PyObject *self, PyObject *args)
372 signed char *cp;
373 int len, size, val = 0;
374 int i;
375 double avg = 0.0;
377 if ( !PyArg_ParseTuple(args, "s#i:avg", &cp, &len, &size) )
378 return 0;
379 if ( size != 1 && size != 2 && size != 4 ) {
380 PyErr_SetString(AudioopError, "Size should be 1, 2 or 4");
381 return 0;
383 for ( i=0; i<len; i+= size) {
384 if ( size == 1 ) val = (int)*CHARP(cp, i);
385 else if ( size == 2 ) val = (int)*SHORTP(cp, i);
386 else if ( size == 4 ) val = (int)*LONGP(cp, i);
387 avg += val;
389 if ( len == 0 )
390 val = 0;
391 else
392 val = (int)(avg / (double)(len/size));
393 return PyLong_FromLong(val);
396 static PyObject *
397 audioop_rms(PyObject *self, PyObject *args)
399 signed char *cp;
400 int len, size, val = 0;
401 int i;
402 double sum_squares = 0.0;
404 if ( !PyArg_ParseTuple(args, "s#i:rms", &cp, &len, &size) )
405 return 0;
406 if ( size != 1 && size != 2 && size != 4 ) {
407 PyErr_SetString(AudioopError, "Size should be 1, 2 or 4");
408 return 0;
410 for ( i=0; i<len; i+= size) {
411 if ( size == 1 ) val = (int)*CHARP(cp, i);
412 else if ( size == 2 ) val = (int)*SHORTP(cp, i);
413 else if ( size == 4 ) val = (int)*LONGP(cp, i);
414 sum_squares += (double)val*(double)val;
416 if ( len == 0 )
417 val = 0;
418 else
419 val = (int)sqrt(sum_squares / (double)(len/size));
420 return PyLong_FromLong(val);
423 static double _sum2(short *a, short *b, int len)
425 int i;
426 double sum = 0.0;
428 for( i=0; i<len; i++) {
429 sum = sum + (double)a[i]*(double)b[i];
431 return sum;
435 ** Findfit tries to locate a sample within another sample. Its main use
436 ** is in echo-cancellation (to find the feedback of the output signal in
437 ** the input signal).
438 ** The method used is as follows:
440 ** let R be the reference signal (length n) and A the input signal (length N)
441 ** with N > n, and let all sums be over i from 0 to n-1.
443 ** Now, for each j in {0..N-n} we compute a factor fj so that -fj*R matches A
444 ** as good as possible, i.e. sum( (A[j+i]+fj*R[i])^2 ) is minimal. This
445 ** equation gives fj = sum( A[j+i]R[i] ) / sum(R[i]^2).
447 ** Next, we compute the relative distance between the original signal and
448 ** the modified signal and minimize that over j:
449 ** vj = sum( (A[j+i]-fj*R[i])^2 ) / sum( A[j+i]^2 ) =>
450 ** vj = ( sum(A[j+i]^2)*sum(R[i]^2) - sum(A[j+i]R[i])^2 ) / sum( A[j+i]^2 )
452 ** In the code variables correspond as follows:
453 ** cp1 A
454 ** cp2 R
455 ** len1 N
456 ** len2 n
457 ** aj_m1 A[j-1]
458 ** aj_lm1 A[j+n-1]
459 ** sum_ri_2 sum(R[i]^2)
460 ** sum_aij_2 sum(A[i+j]^2)
461 ** sum_aij_ri sum(A[i+j]R[i])
463 ** sum_ri is calculated once, sum_aij_2 is updated each step and sum_aij_ri
464 ** is completely recalculated each step.
466 static PyObject *
467 audioop_findfit(PyObject *self, PyObject *args)
469 short *cp1, *cp2;
470 int len1, len2;
471 int j, best_j;
472 double aj_m1, aj_lm1;
473 double sum_ri_2, sum_aij_2, sum_aij_ri, result, best_result, factor;
475 /* Passing a short** for an 's' argument is correct only
476 if the string contents is aligned for interpretation
477 as short[]. Due to the definition of PyBytesObject,
478 this is currently (Python 2.6) the case. */
479 if ( !PyArg_ParseTuple(args, "s#s#:findfit",
480 (char**)&cp1, &len1, (char**)&cp2, &len2) )
481 return 0;
482 if ( len1 & 1 || len2 & 1 ) {
483 PyErr_SetString(AudioopError, "Strings should be even-sized");
484 return 0;
486 len1 >>= 1;
487 len2 >>= 1;
489 if ( len1 < len2 ) {
490 PyErr_SetString(AudioopError, "First sample should be longer");
491 return 0;
493 sum_ri_2 = _sum2(cp2, cp2, len2);
494 sum_aij_2 = _sum2(cp1, cp1, len2);
495 sum_aij_ri = _sum2(cp1, cp2, len2);
497 result = (sum_ri_2*sum_aij_2 - sum_aij_ri*sum_aij_ri) / sum_aij_2;
499 best_result = result;
500 best_j = 0;
501 j = 0;
503 for ( j=1; j<=len1-len2; j++) {
504 aj_m1 = (double)cp1[j-1];
505 aj_lm1 = (double)cp1[j+len2-1];
507 sum_aij_2 = sum_aij_2 + aj_lm1*aj_lm1 - aj_m1*aj_m1;
508 sum_aij_ri = _sum2(cp1+j, cp2, len2);
510 result = (sum_ri_2*sum_aij_2 - sum_aij_ri*sum_aij_ri)
511 / sum_aij_2;
513 if ( result < best_result ) {
514 best_result = result;
515 best_j = j;
520 factor = _sum2(cp1+best_j, cp2, len2) / sum_ri_2;
522 return Py_BuildValue("(if)", best_j, factor);
526 ** findfactor finds a factor f so that the energy in A-fB is minimal.
527 ** See the comment for findfit for details.
529 static PyObject *
530 audioop_findfactor(PyObject *self, PyObject *args)
532 short *cp1, *cp2;
533 int len1, len2;
534 double sum_ri_2, sum_aij_ri, result;
536 if ( !PyArg_ParseTuple(args, "s#s#:findfactor",
537 (char**)&cp1, &len1, (char**)&cp2, &len2) )
538 return 0;
539 if ( len1 & 1 || len2 & 1 ) {
540 PyErr_SetString(AudioopError, "Strings should be even-sized");
541 return 0;
543 if ( len1 != len2 ) {
544 PyErr_SetString(AudioopError, "Samples should be same size");
545 return 0;
547 len2 >>= 1;
548 sum_ri_2 = _sum2(cp2, cp2, len2);
549 sum_aij_ri = _sum2(cp1, cp2, len2);
551 result = sum_aij_ri / sum_ri_2;
553 return PyFloat_FromDouble(result);
557 ** findmax returns the index of the n-sized segment of the input sample
558 ** that contains the most energy.
560 static PyObject *
561 audioop_findmax(PyObject *self, PyObject *args)
563 short *cp1;
564 int len1, len2;
565 int j, best_j;
566 double aj_m1, aj_lm1;
567 double result, best_result;
569 if ( !PyArg_ParseTuple(args, "s#i:findmax",
570 (char**)&cp1, &len1, &len2) )
571 return 0;
572 if ( len1 & 1 ) {
573 PyErr_SetString(AudioopError, "Strings should be even-sized");
574 return 0;
576 len1 >>= 1;
578 if ( len2 < 0 || len1 < len2 ) {
579 PyErr_SetString(AudioopError, "Input sample should be longer");
580 return 0;
583 result = _sum2(cp1, cp1, len2);
585 best_result = result;
586 best_j = 0;
587 j = 0;
589 for ( j=1; j<=len1-len2; j++) {
590 aj_m1 = (double)cp1[j-1];
591 aj_lm1 = (double)cp1[j+len2-1];
593 result = result + aj_lm1*aj_lm1 - aj_m1*aj_m1;
595 if ( result > best_result ) {
596 best_result = result;
597 best_j = j;
602 return PyLong_FromLong(best_j);
605 static PyObject *
606 audioop_avgpp(PyObject *self, PyObject *args)
608 signed char *cp;
609 int len, size, val = 0, prevval = 0, prevextremevalid = 0,
610 prevextreme = 0;
611 int i;
612 double avg = 0.0;
613 int diff, prevdiff, extremediff, nextreme = 0;
615 if ( !PyArg_ParseTuple(args, "s#i:avgpp", &cp, &len, &size) )
616 return 0;
617 if ( size != 1 && size != 2 && size != 4 ) {
618 PyErr_SetString(AudioopError, "Size should be 1, 2 or 4");
619 return 0;
621 /* Compute first delta value ahead. Also automatically makes us
622 ** skip the first extreme value
624 if ( size == 1 ) prevval = (int)*CHARP(cp, 0);
625 else if ( size == 2 ) prevval = (int)*SHORTP(cp, 0);
626 else if ( size == 4 ) prevval = (int)*LONGP(cp, 0);
627 if ( size == 1 ) val = (int)*CHARP(cp, size);
628 else if ( size == 2 ) val = (int)*SHORTP(cp, size);
629 else if ( size == 4 ) val = (int)*LONGP(cp, size);
630 prevdiff = val - prevval;
632 for ( i=size; i<len; i+= size) {
633 if ( size == 1 ) val = (int)*CHARP(cp, i);
634 else if ( size == 2 ) val = (int)*SHORTP(cp, i);
635 else if ( size == 4 ) val = (int)*LONGP(cp, i);
636 diff = val - prevval;
637 if ( diff*prevdiff < 0 ) {
638 /* Derivative changed sign. Compute difference to last
639 ** extreme value and remember.
641 if ( prevextremevalid ) {
642 extremediff = prevval - prevextreme;
643 if ( extremediff < 0 )
644 extremediff = -extremediff;
645 avg += extremediff;
646 nextreme++;
648 prevextremevalid = 1;
649 prevextreme = prevval;
651 prevval = val;
652 if ( diff != 0 )
653 prevdiff = diff;
655 if ( nextreme == 0 )
656 val = 0;
657 else
658 val = (int)(avg / (double)nextreme);
659 return PyLong_FromLong(val);
662 static PyObject *
663 audioop_maxpp(PyObject *self, PyObject *args)
665 signed char *cp;
666 int len, size, val = 0, prevval = 0, prevextremevalid = 0,
667 prevextreme = 0;
668 int i;
669 int max = 0;
670 int diff, prevdiff, extremediff;
672 if ( !PyArg_ParseTuple(args, "s#i:maxpp", &cp, &len, &size) )
673 return 0;
674 if ( size != 1 && size != 2 && size != 4 ) {
675 PyErr_SetString(AudioopError, "Size should be 1, 2 or 4");
676 return 0;
678 /* Compute first delta value ahead. Also automatically makes us
679 ** skip the first extreme value
681 if ( size == 1 ) prevval = (int)*CHARP(cp, 0);
682 else if ( size == 2 ) prevval = (int)*SHORTP(cp, 0);
683 else if ( size == 4 ) prevval = (int)*LONGP(cp, 0);
684 if ( size == 1 ) val = (int)*CHARP(cp, size);
685 else if ( size == 2 ) val = (int)*SHORTP(cp, size);
686 else if ( size == 4 ) val = (int)*LONGP(cp, size);
687 prevdiff = val - prevval;
689 for ( i=size; i<len; i+= size) {
690 if ( size == 1 ) val = (int)*CHARP(cp, i);
691 else if ( size == 2 ) val = (int)*SHORTP(cp, i);
692 else if ( size == 4 ) val = (int)*LONGP(cp, i);
693 diff = val - prevval;
694 if ( diff*prevdiff < 0 ) {
695 /* Derivative changed sign. Compute difference to
696 ** last extreme value and remember.
698 if ( prevextremevalid ) {
699 extremediff = prevval - prevextreme;
700 if ( extremediff < 0 )
701 extremediff = -extremediff;
702 if ( extremediff > max )
703 max = extremediff;
705 prevextremevalid = 1;
706 prevextreme = prevval;
708 prevval = val;
709 if ( diff != 0 )
710 prevdiff = diff;
712 return PyLong_FromLong(max);
715 static PyObject *
716 audioop_cross(PyObject *self, PyObject *args)
718 signed char *cp;
719 int len, size, val = 0;
720 int i;
721 int prevval, ncross;
723 if ( !PyArg_ParseTuple(args, "s#i:cross", &cp, &len, &size) )
724 return 0;
725 if ( size != 1 && size != 2 && size != 4 ) {
726 PyErr_SetString(AudioopError, "Size should be 1, 2 or 4");
727 return 0;
729 ncross = -1;
730 prevval = 17; /* Anything <> 0,1 */
731 for ( i=0; i<len; i+= size) {
732 if ( size == 1 ) val = ((int)*CHARP(cp, i)) >> 7;
733 else if ( size == 2 ) val = ((int)*SHORTP(cp, i)) >> 15;
734 else if ( size == 4 ) val = ((int)*LONGP(cp, i)) >> 31;
735 val = val & 1;
736 if ( val != prevval ) ncross++;
737 prevval = val;
739 return PyLong_FromLong(ncross);
742 static PyObject *
743 audioop_mul(PyObject *self, PyObject *args)
745 signed char *cp, *ncp;
746 int len, size, val = 0;
747 double factor, fval, maxval;
748 PyObject *rv;
749 int i;
751 if ( !PyArg_ParseTuple(args, "s#id:mul", &cp, &len, &size, &factor ) )
752 return 0;
754 if ( size == 1 ) maxval = (double) 0x7f;
755 else if ( size == 2 ) maxval = (double) 0x7fff;
756 else if ( size == 4 ) maxval = (double) 0x7fffffff;
757 else {
758 PyErr_SetString(AudioopError, "Size should be 1, 2 or 4");
759 return 0;
762 rv = PyBytes_FromStringAndSize(NULL, len);
763 if ( rv == 0 )
764 return 0;
765 ncp = (signed char *)PyBytes_AsString(rv);
768 for ( i=0; i < len; i += size ) {
769 if ( size == 1 ) val = (int)*CHARP(cp, i);
770 else if ( size == 2 ) val = (int)*SHORTP(cp, i);
771 else if ( size == 4 ) val = (int)*LONGP(cp, i);
772 fval = (double)val*factor;
773 if ( fval > maxval ) fval = maxval;
774 else if ( fval < -maxval ) fval = -maxval;
775 val = (int)fval;
776 if ( size == 1 ) *CHARP(ncp, i) = (signed char)val;
777 else if ( size == 2 ) *SHORTP(ncp, i) = (short)val;
778 else if ( size == 4 ) *LONGP(ncp, i) = (Py_Int32)val;
780 return rv;
783 static PyObject *
784 audioop_tomono(PyObject *self, PyObject *args)
786 Py_buffer pcp;
787 signed char *cp, *ncp;
788 int len, size, val1 = 0, val2 = 0;
789 double fac1, fac2, fval, maxval;
790 PyObject *rv;
791 int i;
793 if ( !PyArg_ParseTuple(args, "s*idd:tomono",
794 &pcp, &size, &fac1, &fac2 ) )
795 return 0;
796 cp = pcp.buf;
797 len = pcp.len;
799 if ( size == 1 ) maxval = (double) 0x7f;
800 else if ( size == 2 ) maxval = (double) 0x7fff;
801 else if ( size == 4 ) maxval = (double) 0x7fffffff;
802 else {
803 PyBuffer_Release(&pcp);
804 PyErr_SetString(AudioopError, "Size should be 1, 2 or 4");
805 return 0;
808 rv = PyBytes_FromStringAndSize(NULL, len/2);
809 if ( rv == 0 )
810 return 0;
811 ncp = (signed char *)PyBytes_AsString(rv);
814 for ( i=0; i < len; i += size*2 ) {
815 if ( size == 1 ) val1 = (int)*CHARP(cp, i);
816 else if ( size == 2 ) val1 = (int)*SHORTP(cp, i);
817 else if ( size == 4 ) val1 = (int)*LONGP(cp, i);
818 if ( size == 1 ) val2 = (int)*CHARP(cp, i+1);
819 else if ( size == 2 ) val2 = (int)*SHORTP(cp, i+2);
820 else if ( size == 4 ) val2 = (int)*LONGP(cp, i+4);
821 fval = (double)val1*fac1 + (double)val2*fac2;
822 if ( fval > maxval ) fval = maxval;
823 else if ( fval < -maxval ) fval = -maxval;
824 val1 = (int)fval;
825 if ( size == 1 ) *CHARP(ncp, i/2) = (signed char)val1;
826 else if ( size == 2 ) *SHORTP(ncp, i/2) = (short)val1;
827 else if ( size == 4 ) *LONGP(ncp, i/2)= (Py_Int32)val1;
829 PyBuffer_Release(&pcp);
830 return rv;
833 static PyObject *
834 audioop_tostereo(PyObject *self, PyObject *args)
836 signed char *cp, *ncp;
837 int len, size, val1, val2, val = 0;
838 double fac1, fac2, fval, maxval;
839 PyObject *rv;
840 int i;
842 if ( !PyArg_ParseTuple(args, "s#idd:tostereo",
843 &cp, &len, &size, &fac1, &fac2 ) )
844 return 0;
846 if ( size == 1 ) maxval = (double) 0x7f;
847 else if ( size == 2 ) maxval = (double) 0x7fff;
848 else if ( size == 4 ) maxval = (double) 0x7fffffff;
849 else {
850 PyErr_SetString(AudioopError, "Size should be 1, 2 or 4");
851 return 0;
854 if (len > INT_MAX/2) {
855 PyErr_SetString(PyExc_MemoryError,
856 "not enough memory for output buffer");
857 return 0;
860 rv = PyBytes_FromStringAndSize(NULL, len*2);
861 if ( rv == 0 )
862 return 0;
863 ncp = (signed char *)PyBytes_AsString(rv);
866 for ( i=0; i < len; i += size ) {
867 if ( size == 1 ) val = (int)*CHARP(cp, i);
868 else if ( size == 2 ) val = (int)*SHORTP(cp, i);
869 else if ( size == 4 ) val = (int)*LONGP(cp, i);
871 fval = (double)val*fac1;
872 if ( fval > maxval ) fval = maxval;
873 else if ( fval < -maxval ) fval = -maxval;
874 val1 = (int)fval;
876 fval = (double)val*fac2;
877 if ( fval > maxval ) fval = maxval;
878 else if ( fval < -maxval ) fval = -maxval;
879 val2 = (int)fval;
881 if ( size == 1 ) *CHARP(ncp, i*2) = (signed char)val1;
882 else if ( size == 2 ) *SHORTP(ncp, i*2) = (short)val1;
883 else if ( size == 4 ) *LONGP(ncp, i*2) = (Py_Int32)val1;
885 if ( size == 1 ) *CHARP(ncp, i*2+1) = (signed char)val2;
886 else if ( size == 2 ) *SHORTP(ncp, i*2+2) = (short)val2;
887 else if ( size == 4 ) *LONGP(ncp, i*2+4) = (Py_Int32)val2;
889 return rv;
892 static PyObject *
893 audioop_add(PyObject *self, PyObject *args)
895 signed char *cp1, *cp2, *ncp;
896 int len1, len2, size, val1 = 0, val2 = 0, maxval, newval;
897 PyObject *rv;
898 int i;
900 if ( !PyArg_ParseTuple(args, "s#s#i:add",
901 &cp1, &len1, &cp2, &len2, &size ) )
902 return 0;
904 if ( len1 != len2 ) {
905 PyErr_SetString(AudioopError, "Lengths should be the same");
906 return 0;
909 if ( size == 1 ) maxval = 0x7f;
910 else if ( size == 2 ) maxval = 0x7fff;
911 else if ( size == 4 ) maxval = 0x7fffffff;
912 else {
913 PyErr_SetString(AudioopError, "Size should be 1, 2 or 4");
914 return 0;
917 rv = PyBytes_FromStringAndSize(NULL, len1);
918 if ( rv == 0 )
919 return 0;
920 ncp = (signed char *)PyBytes_AsString(rv);
922 for ( i=0; i < len1; i += size ) {
923 if ( size == 1 ) val1 = (int)*CHARP(cp1, i);
924 else if ( size == 2 ) val1 = (int)*SHORTP(cp1, i);
925 else if ( size == 4 ) val1 = (int)*LONGP(cp1, i);
927 if ( size == 1 ) val2 = (int)*CHARP(cp2, i);
928 else if ( size == 2 ) val2 = (int)*SHORTP(cp2, i);
929 else if ( size == 4 ) val2 = (int)*LONGP(cp2, i);
931 newval = val1 + val2;
932 /* truncate in case of overflow */
933 if (newval > maxval) newval = maxval;
934 else if (newval < -maxval) newval = -maxval;
935 else if (size == 4 && (newval^val1) < 0 && (newval^val2) < 0)
936 newval = val1 > 0 ? maxval : - maxval;
938 if ( size == 1 ) *CHARP(ncp, i) = (signed char)newval;
939 else if ( size == 2 ) *SHORTP(ncp, i) = (short)newval;
940 else if ( size == 4 ) *LONGP(ncp, i) = (Py_Int32)newval;
942 return rv;
945 static PyObject *
946 audioop_bias(PyObject *self, PyObject *args)
948 signed char *cp, *ncp;
949 int len, size, val = 0;
950 PyObject *rv;
951 int i;
952 int bias;
954 if ( !PyArg_ParseTuple(args, "s#ii:bias",
955 &cp, &len, &size , &bias) )
956 return 0;
958 if ( size != 1 && size != 2 && size != 4) {
959 PyErr_SetString(AudioopError, "Size should be 1, 2 or 4");
960 return 0;
963 rv = PyBytes_FromStringAndSize(NULL, len);
964 if ( rv == 0 )
965 return 0;
966 ncp = (signed char *)PyBytes_AsString(rv);
969 for ( i=0; i < len; i += size ) {
970 if ( size == 1 ) val = (int)*CHARP(cp, i);
971 else if ( size == 2 ) val = (int)*SHORTP(cp, i);
972 else if ( size == 4 ) val = (int)*LONGP(cp, i);
974 if ( size == 1 ) *CHARP(ncp, i) = (signed char)(val+bias);
975 else if ( size == 2 ) *SHORTP(ncp, i) = (short)(val+bias);
976 else if ( size == 4 ) *LONGP(ncp, i) = (Py_Int32)(val+bias);
978 return rv;
981 static PyObject *
982 audioop_reverse(PyObject *self, PyObject *args)
984 signed char *cp;
985 unsigned char *ncp;
986 int len, size, val = 0;
987 PyObject *rv;
988 int i, j;
990 if ( !PyArg_ParseTuple(args, "s#i:reverse",
991 &cp, &len, &size) )
992 return 0;
994 if ( size != 1 && size != 2 && size != 4 ) {
995 PyErr_SetString(AudioopError, "Size should be 1, 2 or 4");
996 return 0;
999 rv = PyBytes_FromStringAndSize(NULL, len);
1000 if ( rv == 0 )
1001 return 0;
1002 ncp = (unsigned char *)PyBytes_AsString(rv);
1004 for ( i=0; i < len; i += size ) {
1005 if ( size == 1 ) val = ((int)*CHARP(cp, i)) << 8;
1006 else if ( size == 2 ) val = (int)*SHORTP(cp, i);
1007 else if ( size == 4 ) val = ((int)*LONGP(cp, i)) >> 16;
1009 j = len - i - size;
1011 if ( size == 1 ) *CHARP(ncp, j) = (signed char)(val >> 8);
1012 else if ( size == 2 ) *SHORTP(ncp, j) = (short)(val);
1013 else if ( size == 4 ) *LONGP(ncp, j) = (Py_Int32)(val<<16);
1015 return rv;
1018 static PyObject *
1019 audioop_lin2lin(PyObject *self, PyObject *args)
1021 signed char *cp;
1022 unsigned char *ncp;
1023 int len, size, size2, val = 0;
1024 PyObject *rv;
1025 int i, j;
1027 if ( !PyArg_ParseTuple(args, "s#ii:lin2lin",
1028 &cp, &len, &size, &size2) )
1029 return 0;
1031 if ( (size != 1 && size != 2 && size != 4) ||
1032 (size2 != 1 && size2 != 2 && size2 != 4)) {
1033 PyErr_SetString(AudioopError, "Size should be 1, 2 or 4");
1034 return 0;
1037 if (len/size > INT_MAX/size2) {
1038 PyErr_SetString(PyExc_MemoryError,
1039 "not enough memory for output buffer");
1040 return 0;
1042 rv = PyBytes_FromStringAndSize(NULL, (len/size)*size2);
1043 if ( rv == 0 )
1044 return 0;
1045 ncp = (unsigned char *)PyBytes_AsString(rv);
1047 for ( i=0, j=0; i < len; i += size, j += size2 ) {
1048 if ( size == 1 ) val = ((int)*CHARP(cp, i)) << 8;
1049 else if ( size == 2 ) val = (int)*SHORTP(cp, i);
1050 else if ( size == 4 ) val = ((int)*LONGP(cp, i)) >> 16;
1052 if ( size2 == 1 ) *CHARP(ncp, j) = (signed char)(val >> 8);
1053 else if ( size2 == 2 ) *SHORTP(ncp, j) = (short)(val);
1054 else if ( size2 == 4 ) *LONGP(ncp, j) = (Py_Int32)(val<<16);
1056 return rv;
1059 static int
1060 gcd(int a, int b)
1062 while (b > 0) {
1063 int tmp = a % b;
1064 a = b;
1065 b = tmp;
1067 return a;
1070 static PyObject *
1071 audioop_ratecv(PyObject *self, PyObject *args)
1073 char *cp, *ncp;
1074 int len, size, nchannels, inrate, outrate, weightA, weightB;
1075 int chan, d, *prev_i, *cur_i, cur_o;
1076 PyObject *state, *samps, *str, *rv = NULL;
1077 int bytes_per_frame;
1079 weightA = 1;
1080 weightB = 0;
1081 if (!PyArg_ParseTuple(args, "s#iiiiO|ii:ratecv", &cp, &len, &size,
1082 &nchannels, &inrate, &outrate, &state,
1083 &weightA, &weightB))
1084 return NULL;
1085 if (size != 1 && size != 2 && size != 4) {
1086 PyErr_SetString(AudioopError, "Size should be 1, 2 or 4");
1087 return NULL;
1089 if (nchannels < 1) {
1090 PyErr_SetString(AudioopError, "# of channels should be >= 1");
1091 return NULL;
1093 bytes_per_frame = size * nchannels;
1094 if (bytes_per_frame / nchannels != size) {
1095 /* This overflow test is rigorously correct because
1096 both multiplicands are >= 1. Use the argument names
1097 from the docs for the error msg. */
1098 PyErr_SetString(PyExc_OverflowError,
1099 "width * nchannels too big for a C int");
1100 return NULL;
1102 if (weightA < 1 || weightB < 0) {
1103 PyErr_SetString(AudioopError,
1104 "weightA should be >= 1, weightB should be >= 0");
1105 return NULL;
1107 if (len % bytes_per_frame != 0) {
1108 PyErr_SetString(AudioopError, "not a whole number of frames");
1109 return NULL;
1111 if (inrate <= 0 || outrate <= 0) {
1112 PyErr_SetString(AudioopError, "sampling rate not > 0");
1113 return NULL;
1115 /* divide inrate and outrate by their greatest common divisor */
1116 d = gcd(inrate, outrate);
1117 inrate /= d;
1118 outrate /= d;
1120 if ((size_t)nchannels > PY_SIZE_MAX/sizeof(int)) {
1121 PyErr_SetString(PyExc_MemoryError,
1122 "not enough memory for output buffer");
1123 return 0;
1125 prev_i = (int *) malloc(nchannels * sizeof(int));
1126 cur_i = (int *) malloc(nchannels * sizeof(int));
1127 if (prev_i == NULL || cur_i == NULL) {
1128 (void) PyErr_NoMemory();
1129 goto exit;
1132 len /= bytes_per_frame; /* # of frames */
1134 if (state == Py_None) {
1135 d = -outrate;
1136 for (chan = 0; chan < nchannels; chan++)
1137 prev_i[chan] = cur_i[chan] = 0;
1139 else {
1140 if (!PyArg_ParseTuple(state,
1141 "iO!;audioop.ratecv: illegal state argument",
1142 &d, &PyTuple_Type, &samps))
1143 goto exit;
1144 if (PyTuple_Size(samps) != nchannels) {
1145 PyErr_SetString(AudioopError,
1146 "illegal state argument");
1147 goto exit;
1149 for (chan = 0; chan < nchannels; chan++) {
1150 if (!PyArg_ParseTuple(PyTuple_GetItem(samps, chan),
1151 "ii:ratecv", &prev_i[chan],
1152 &cur_i[chan]))
1153 goto exit;
1157 /* str <- Space for the output buffer. */
1159 /* There are len input frames, so we need (mathematically)
1160 ceiling(len*outrate/inrate) output frames, and each frame
1161 requires bytes_per_frame bytes. Computing this
1162 without spurious overflow is the challenge; we can
1163 settle for a reasonable upper bound, though, in this
1164 case ceiling(len/inrate) * outrate. */
1166 /* compute ceiling(len/inrate) without overflow */
1167 int q = len > 0 ? 1 + (len - 1) / inrate : 0;
1168 if (outrate > INT_MAX / q / bytes_per_frame)
1169 str = NULL;
1170 else
1171 str = PyBytes_FromStringAndSize(NULL,
1172 q * outrate * bytes_per_frame);
1174 if (str == NULL) {
1175 PyErr_SetString(PyExc_MemoryError,
1176 "not enough memory for output buffer");
1177 goto exit;
1180 ncp = PyBytes_AsString(str);
1182 for (;;) {
1183 while (d < 0) {
1184 if (len == 0) {
1185 samps = PyTuple_New(nchannels);
1186 if (samps == NULL)
1187 goto exit;
1188 for (chan = 0; chan < nchannels; chan++)
1189 PyTuple_SetItem(samps, chan,
1190 Py_BuildValue("(ii)",
1191 prev_i[chan],
1192 cur_i[chan]));
1193 if (PyErr_Occurred())
1194 goto exit;
1195 /* We have checked before that the length
1196 * of the string fits into int. */
1197 len = (int)(ncp - PyBytes_AsString(str));
1198 rv = PyBytes_FromStringAndSize
1199 (PyBytes_AsString(str), len);
1200 Py_DECREF(str);
1201 str = rv;
1202 if (str == NULL)
1203 goto exit;
1204 rv = Py_BuildValue("(O(iO))", str, d, samps);
1205 Py_DECREF(samps);
1206 Py_DECREF(str);
1207 goto exit; /* return rv */
1209 for (chan = 0; chan < nchannels; chan++) {
1210 prev_i[chan] = cur_i[chan];
1211 if (size == 1)
1212 cur_i[chan] = ((int)*CHARP(cp, 0)) << 8;
1213 else if (size == 2)
1214 cur_i[chan] = (int)*SHORTP(cp, 0);
1215 else if (size == 4)
1216 cur_i[chan] = ((int)*LONGP(cp, 0)) >> 16;
1217 cp += size;
1218 /* implements a simple digital filter */
1219 cur_i[chan] =
1220 (weightA * cur_i[chan] +
1221 weightB * prev_i[chan]) /
1222 (weightA + weightB);
1224 len--;
1225 d += outrate;
1227 while (d >= 0) {
1228 for (chan = 0; chan < nchannels; chan++) {
1229 cur_o = (prev_i[chan] * d +
1230 cur_i[chan] * (outrate - d)) /
1231 outrate;
1232 if (size == 1)
1233 *CHARP(ncp, 0) = (signed char)(cur_o >> 8);
1234 else if (size == 2)
1235 *SHORTP(ncp, 0) = (short)(cur_o);
1236 else if (size == 4)
1237 *LONGP(ncp, 0) = (Py_Int32)(cur_o<<16);
1238 ncp += size;
1240 d -= inrate;
1243 exit:
1244 if (prev_i != NULL)
1245 free(prev_i);
1246 if (cur_i != NULL)
1247 free(cur_i);
1248 return rv;
1251 static PyObject *
1252 audioop_lin2ulaw(PyObject *self, PyObject *args)
1254 signed char *cp;
1255 unsigned char *ncp;
1256 int len, size, val = 0;
1257 PyObject *rv;
1258 int i;
1260 if ( !PyArg_ParseTuple(args, "s#i:lin2ulaw",
1261 &cp, &len, &size) )
1262 return 0 ;
1264 if ( size != 1 && size != 2 && size != 4) {
1265 PyErr_SetString(AudioopError, "Size should be 1, 2 or 4");
1266 return 0;
1269 rv = PyBytes_FromStringAndSize(NULL, len/size);
1270 if ( rv == 0 )
1271 return 0;
1272 ncp = (unsigned char *)PyBytes_AsString(rv);
1274 for ( i=0; i < len; i += size ) {
1275 if ( size == 1 ) val = ((int)*CHARP(cp, i)) << 8;
1276 else if ( size == 2 ) val = (int)*SHORTP(cp, i);
1277 else if ( size == 4 ) val = ((int)*LONGP(cp, i)) >> 16;
1279 *ncp++ = st_14linear2ulaw(val);
1281 return rv;
1284 static PyObject *
1285 audioop_ulaw2lin(PyObject *self, PyObject *args)
1287 unsigned char *cp;
1288 unsigned char cval;
1289 signed char *ncp;
1290 int len, size, val;
1291 PyObject *rv;
1292 int i;
1294 if ( !PyArg_ParseTuple(args, "s#i:ulaw2lin",
1295 &cp, &len, &size) )
1296 return 0;
1298 if ( size != 1 && size != 2 && size != 4) {
1299 PyErr_SetString(AudioopError, "Size should be 1, 2 or 4");
1300 return 0;
1303 if (len > INT_MAX/size) {
1304 PyErr_SetString(PyExc_MemoryError,
1305 "not enough memory for output buffer");
1306 return 0;
1308 rv = PyBytes_FromStringAndSize(NULL, len*size);
1309 if ( rv == 0 )
1310 return 0;
1311 ncp = (signed char *)PyBytes_AsString(rv);
1313 for ( i=0; i < len*size; i += size ) {
1314 cval = *cp++;
1315 val = st_ulaw2linear16(cval);
1317 if ( size == 1 ) *CHARP(ncp, i) = (signed char)(val >> 8);
1318 else if ( size == 2 ) *SHORTP(ncp, i) = (short)(val);
1319 else if ( size == 4 ) *LONGP(ncp, i) = (Py_Int32)(val<<16);
1321 return rv;
1324 static PyObject *
1325 audioop_lin2alaw(PyObject *self, PyObject *args)
1327 signed char *cp;
1328 unsigned char *ncp;
1329 int len, size, val = 0;
1330 PyObject *rv;
1331 int i;
1333 if ( !PyArg_ParseTuple(args, "s#i:lin2alaw",
1334 &cp, &len, &size) )
1335 return 0;
1337 if ( size != 1 && size != 2 && size != 4) {
1338 PyErr_SetString(AudioopError, "Size should be 1, 2 or 4");
1339 return 0;
1342 rv = PyBytes_FromStringAndSize(NULL, len/size);
1343 if ( rv == 0 )
1344 return 0;
1345 ncp = (unsigned char *)PyBytes_AsString(rv);
1347 for ( i=0; i < len; i += size ) {
1348 if ( size == 1 ) val = ((int)*CHARP(cp, i)) << 8;
1349 else if ( size == 2 ) val = (int)*SHORTP(cp, i);
1350 else if ( size == 4 ) val = ((int)*LONGP(cp, i)) >> 16;
1352 *ncp++ = st_linear2alaw(val);
1354 return rv;
1357 static PyObject *
1358 audioop_alaw2lin(PyObject *self, PyObject *args)
1360 unsigned char *cp;
1361 unsigned char cval;
1362 signed char *ncp;
1363 int len, size, val;
1364 PyObject *rv;
1365 int i;
1367 if ( !PyArg_ParseTuple(args, "s#i:alaw2lin",
1368 &cp, &len, &size) )
1369 return 0;
1371 if ( size != 1 && size != 2 && size != 4) {
1372 PyErr_SetString(AudioopError, "Size should be 1, 2 or 4");
1373 return 0;
1376 if (len > INT_MAX/size) {
1377 PyErr_SetString(PyExc_MemoryError,
1378 "not enough memory for output buffer");
1379 return 0;
1381 rv = PyBytes_FromStringAndSize(NULL, len*size);
1382 if ( rv == 0 )
1383 return 0;
1384 ncp = (signed char *)PyBytes_AsString(rv);
1386 for ( i=0; i < len*size; i += size ) {
1387 cval = *cp++;
1388 val = st_alaw2linear16(cval);
1390 if ( size == 1 ) *CHARP(ncp, i) = (signed char)(val >> 8);
1391 else if ( size == 2 ) *SHORTP(ncp, i) = (short)(val);
1392 else if ( size == 4 ) *LONGP(ncp, i) = (Py_Int32)(val<<16);
1394 return rv;
1397 static PyObject *
1398 audioop_lin2adpcm(PyObject *self, PyObject *args)
1400 signed char *cp;
1401 signed char *ncp;
1402 int len, size, val = 0, step, valpred, delta,
1403 index, sign, vpdiff, diff;
1404 PyObject *rv, *state, *str;
1405 int i, outputbuffer = 0, bufferstep;
1407 if ( !PyArg_ParseTuple(args, "s#iO:lin2adpcm",
1408 &cp, &len, &size, &state) )
1409 return 0;
1412 if ( size != 1 && size != 2 && size != 4) {
1413 PyErr_SetString(AudioopError, "Size should be 1, 2 or 4");
1414 return 0;
1417 str = PyBytes_FromStringAndSize(NULL, len/(size*2));
1418 if ( str == 0 )
1419 return 0;
1420 ncp = (signed char *)PyBytes_AsString(str);
1422 /* Decode state, should have (value, step) */
1423 if ( state == Py_None ) {
1424 /* First time, it seems. Set defaults */
1425 valpred = 0;
1426 step = 7;
1427 index = 0;
1428 } else if ( !PyArg_ParseTuple(state, "ii", &valpred, &index) )
1429 return 0;
1431 step = stepsizeTable[index];
1432 bufferstep = 1;
1434 for ( i=0; i < len; i += size ) {
1435 if ( size == 1 ) val = ((int)*CHARP(cp, i)) << 8;
1436 else if ( size == 2 ) val = (int)*SHORTP(cp, i);
1437 else if ( size == 4 ) val = ((int)*LONGP(cp, i)) >> 16;
1439 /* Step 1 - compute difference with previous value */
1440 diff = val - valpred;
1441 sign = (diff < 0) ? 8 : 0;
1442 if ( sign ) diff = (-diff);
1444 /* Step 2 - Divide and clamp */
1445 /* Note:
1446 ** This code *approximately* computes:
1447 ** delta = diff*4/step;
1448 ** vpdiff = (delta+0.5)*step/4;
1449 ** but in shift step bits are dropped. The net result of this
1450 ** is that even if you have fast mul/div hardware you cannot
1451 ** put it to good use since the fixup would be too expensive.
1453 delta = 0;
1454 vpdiff = (step >> 3);
1456 if ( diff >= step ) {
1457 delta = 4;
1458 diff -= step;
1459 vpdiff += step;
1461 step >>= 1;
1462 if ( diff >= step ) {
1463 delta |= 2;
1464 diff -= step;
1465 vpdiff += step;
1467 step >>= 1;
1468 if ( diff >= step ) {
1469 delta |= 1;
1470 vpdiff += step;
1473 /* Step 3 - Update previous value */
1474 if ( sign )
1475 valpred -= vpdiff;
1476 else
1477 valpred += vpdiff;
1479 /* Step 4 - Clamp previous value to 16 bits */
1480 if ( valpred > 32767 )
1481 valpred = 32767;
1482 else if ( valpred < -32768 )
1483 valpred = -32768;
1485 /* Step 5 - Assemble value, update index and step values */
1486 delta |= sign;
1488 index += indexTable[delta];
1489 if ( index < 0 ) index = 0;
1490 if ( index > 88 ) index = 88;
1491 step = stepsizeTable[index];
1493 /* Step 6 - Output value */
1494 if ( bufferstep ) {
1495 outputbuffer = (delta << 4) & 0xf0;
1496 } else {
1497 *ncp++ = (delta & 0x0f) | outputbuffer;
1499 bufferstep = !bufferstep;
1501 rv = Py_BuildValue("(O(ii))", str, valpred, index);
1502 Py_DECREF(str);
1503 return rv;
1506 static PyObject *
1507 audioop_adpcm2lin(PyObject *self, PyObject *args)
1509 signed char *cp;
1510 signed char *ncp;
1511 int len, size, valpred, step, delta, index, sign, vpdiff;
1512 PyObject *rv, *str, *state;
1513 int i, inputbuffer = 0, bufferstep;
1515 if ( !PyArg_ParseTuple(args, "s#iO:adpcm2lin",
1516 &cp, &len, &size, &state) )
1517 return 0;
1519 if ( size != 1 && size != 2 && size != 4) {
1520 PyErr_SetString(AudioopError, "Size should be 1, 2 or 4");
1521 return 0;
1524 /* Decode state, should have (value, step) */
1525 if ( state == Py_None ) {
1526 /* First time, it seems. Set defaults */
1527 valpred = 0;
1528 step = 7;
1529 index = 0;
1530 } else if ( !PyArg_ParseTuple(state, "ii", &valpred, &index) )
1531 return 0;
1533 if (len > (INT_MAX/2)/size) {
1534 PyErr_SetString(PyExc_MemoryError,
1535 "not enough memory for output buffer");
1536 return 0;
1538 str = PyBytes_FromStringAndSize(NULL, len*size*2);
1539 if ( str == 0 )
1540 return 0;
1541 ncp = (signed char *)PyBytes_AsString(str);
1543 step = stepsizeTable[index];
1544 bufferstep = 0;
1546 for ( i=0; i < len*size*2; i += size ) {
1547 /* Step 1 - get the delta value and compute next index */
1548 if ( bufferstep ) {
1549 delta = inputbuffer & 0xf;
1550 } else {
1551 inputbuffer = *cp++;
1552 delta = (inputbuffer >> 4) & 0xf;
1555 bufferstep = !bufferstep;
1557 /* Step 2 - Find new index value (for later) */
1558 index += indexTable[delta];
1559 if ( index < 0 ) index = 0;
1560 if ( index > 88 ) index = 88;
1562 /* Step 3 - Separate sign and magnitude */
1563 sign = delta & 8;
1564 delta = delta & 7;
1566 /* Step 4 - Compute difference and new predicted value */
1568 ** Computes 'vpdiff = (delta+0.5)*step/4', but see comment
1569 ** in adpcm_coder.
1571 vpdiff = step >> 3;
1572 if ( delta & 4 ) vpdiff += step;
1573 if ( delta & 2 ) vpdiff += step>>1;
1574 if ( delta & 1 ) vpdiff += step>>2;
1576 if ( sign )
1577 valpred -= vpdiff;
1578 else
1579 valpred += vpdiff;
1581 /* Step 5 - clamp output value */
1582 if ( valpred > 32767 )
1583 valpred = 32767;
1584 else if ( valpred < -32768 )
1585 valpred = -32768;
1587 /* Step 6 - Update step value */
1588 step = stepsizeTable[index];
1590 /* Step 6 - Output value */
1591 if ( size == 1 ) *CHARP(ncp, i) = (signed char)(valpred >> 8);
1592 else if ( size == 2 ) *SHORTP(ncp, i) = (short)(valpred);
1593 else if ( size == 4 ) *LONGP(ncp, i) = (Py_Int32)(valpred<<16);
1596 rv = Py_BuildValue("(O(ii))", str, valpred, index);
1597 Py_DECREF(str);
1598 return rv;
1601 static PyMethodDef audioop_methods[] = {
1602 { "max", audioop_max, METH_VARARGS },
1603 { "minmax", audioop_minmax, METH_VARARGS },
1604 { "avg", audioop_avg, METH_VARARGS },
1605 { "maxpp", audioop_maxpp, METH_VARARGS },
1606 { "avgpp", audioop_avgpp, METH_VARARGS },
1607 { "rms", audioop_rms, METH_VARARGS },
1608 { "findfit", audioop_findfit, METH_VARARGS },
1609 { "findmax", audioop_findmax, METH_VARARGS },
1610 { "findfactor", audioop_findfactor, METH_VARARGS },
1611 { "cross", audioop_cross, METH_VARARGS },
1612 { "mul", audioop_mul, METH_VARARGS },
1613 { "add", audioop_add, METH_VARARGS },
1614 { "bias", audioop_bias, METH_VARARGS },
1615 { "ulaw2lin", audioop_ulaw2lin, METH_VARARGS },
1616 { "lin2ulaw", audioop_lin2ulaw, METH_VARARGS },
1617 { "alaw2lin", audioop_alaw2lin, METH_VARARGS },
1618 { "lin2alaw", audioop_lin2alaw, METH_VARARGS },
1619 { "lin2lin", audioop_lin2lin, METH_VARARGS },
1620 { "adpcm2lin", audioop_adpcm2lin, METH_VARARGS },
1621 { "lin2adpcm", audioop_lin2adpcm, METH_VARARGS },
1622 { "tomono", audioop_tomono, METH_VARARGS },
1623 { "tostereo", audioop_tostereo, METH_VARARGS },
1624 { "getsample", audioop_getsample, METH_VARARGS },
1625 { "reverse", audioop_reverse, METH_VARARGS },
1626 { "ratecv", audioop_ratecv, METH_VARARGS },
1627 { 0, 0 }
1631 static struct PyModuleDef audioopmodule = {
1632 PyModuleDef_HEAD_INIT,
1633 "audioop",
1634 NULL,
1636 audioop_methods,
1637 NULL,
1638 NULL,
1639 NULL,
1640 NULL
1643 PyMODINIT_FUNC
1644 PyInit_audioop(void)
1646 PyObject *m, *d;
1647 m = PyModule_Create(&audioopmodule);
1648 if (m == NULL)
1649 return NULL;
1650 d = PyModule_GetDict(m);
1651 if (d == NULL)
1652 return NULL;
1653 AudioopError = PyErr_NewException("audioop.error", NULL, NULL);
1654 if (AudioopError != NULL)
1655 PyDict_SetItemString(d,"error",AudioopError);
1656 return m;