3 /* This module provides an interface to NIST's SHA-256 and SHA-224 Algorithms */
5 /* See below for information about the original code this module was
6 based upon. Additional work performed by:
8 Andrew Kuchling (amk@amk.ca)
9 Greg Stein (gstein@lyra.org)
10 Trevor Perrin (trevp@trevp.net)
12 Copyright (C) 2005-2007 Gregory P. Smith (greg@krypto.org)
13 Licensed to PSF under a Contributor Agreement.
20 #include "structmember.h"
24 /* Endianness testing and definitions */
25 #define TestEndianness(variable) {int i=1; variable=PCT_BIG_ENDIAN;\
26 if (*((char*)&i)==1) variable=PCT_LITTLE_ENDIAN;}
28 #define PCT_LITTLE_ENDIAN 1
29 #define PCT_BIG_ENDIAN 0
31 /* Some useful types */
33 typedef unsigned char SHA_BYTE
;
36 typedef unsigned int SHA_INT32
; /* 32-bit integer */
38 /* not defined. compilation will die. */
41 /* The SHA block size and message digest sizes, in bytes */
43 #define SHA_BLOCKSIZE 64
44 #define SHA_DIGESTSIZE 32
46 /* The structure for storing SHA info */
50 SHA_INT32 digest
[8]; /* Message digest */
51 SHA_INT32 count_lo
, count_hi
; /* 64-bit bit count */
52 SHA_BYTE data
[SHA_BLOCKSIZE
]; /* SHA data buffer */
54 int local
; /* unprocessed amount in data */
58 /* When run on a little-endian CPU we need to perform byte reversal on an
59 array of longwords. */
61 static void longReverse(SHA_INT32
*buffer
, int byteCount
, int Endianness
)
65 if ( Endianness
== PCT_BIG_ENDIAN
)
68 byteCount
/= sizeof(*buffer
);
71 value
= ( ( value
& 0xFF00FF00L
) >> 8 ) | \
72 ( ( value
& 0x00FF00FFL
) << 8 );
73 *buffer
++ = ( value
<< 16 ) | ( value
>> 16 );
77 static void SHAcopy(SHAobject
*src
, SHAobject
*dest
)
79 dest
->Endianness
= src
->Endianness
;
80 dest
->local
= src
->local
;
81 dest
->digestsize
= src
->digestsize
;
82 dest
->count_lo
= src
->count_lo
;
83 dest
->count_hi
= src
->count_hi
;
84 memcpy(dest
->digest
, src
->digest
, sizeof(src
->digest
));
85 memcpy(dest
->data
, src
->data
, sizeof(src
->data
));
89 /* ------------------------------------------------------------------------
91 * This code for the SHA-256 algorithm was noted as public domain. The
92 * original headers are pasted below.
94 * Several changes have been made to make it more compatible with the
95 * Python environment and desired interface.
99 /* LibTomCrypt, modular cryptographic library -- Tom St Denis
101 * LibTomCrypt is a library that provides various cryptographic
102 * algorithms in a highly modular and flexible manner.
104 * The library is free for all purposes without any express
107 * Tom St Denis, tomstdenis@iahu.ca, http://libtom.org
111 /* SHA256 by Tom St Denis */
113 /* Various logical functions */
115 ( ((((unsigned long)(x)&0xFFFFFFFFUL)>>(unsigned long)((y)&31)) | \
116 ((unsigned long)(x)<<(unsigned long)(32-((y)&31)))) & 0xFFFFFFFFUL)
117 #define Ch(x,y,z) (z ^ (x & (y ^ z)))
118 #define Maj(x,y,z) (((x | y) & z) | (x & y))
119 #define S(x, n) ROR((x),(n))
120 #define R(x, n) (((x)&0xFFFFFFFFUL)>>(n))
121 #define Sigma0(x) (S(x, 2) ^ S(x, 13) ^ S(x, 22))
122 #define Sigma1(x) (S(x, 6) ^ S(x, 11) ^ S(x, 25))
123 #define Gamma0(x) (S(x, 7) ^ S(x, 18) ^ R(x, 3))
124 #define Gamma1(x) (S(x, 17) ^ S(x, 19) ^ R(x, 10))
128 sha_transform(SHAobject
*sha_info
)
131 SHA_INT32 S
[8], W
[64], t0
, t1
;
133 memcpy(W
, sha_info
->data
, sizeof(sha_info
->data
));
134 longReverse(W
, (int)sizeof(sha_info
->data
), sha_info
->Endianness
);
136 for (i
= 16; i
< 64; ++i
) {
137 W
[i
] = Gamma1(W
[i
- 2]) + W
[i
- 7] + Gamma0(W
[i
- 15]) + W
[i
- 16];
139 for (i
= 0; i
< 8; ++i
) {
140 S
[i
] = sha_info
->digest
[i
];
144 #define RND(a,b,c,d,e,f,g,h,i,ki) \
145 t0 = h + Sigma1(e) + Ch(e, f, g) + ki + W[i]; \
146 t1 = Sigma0(a) + Maj(a, b, c); \
150 RND(S
[0],S
[1],S
[2],S
[3],S
[4],S
[5],S
[6],S
[7],0,0x428a2f98);
151 RND(S
[7],S
[0],S
[1],S
[2],S
[3],S
[4],S
[5],S
[6],1,0x71374491);
152 RND(S
[6],S
[7],S
[0],S
[1],S
[2],S
[3],S
[4],S
[5],2,0xb5c0fbcf);
153 RND(S
[5],S
[6],S
[7],S
[0],S
[1],S
[2],S
[3],S
[4],3,0xe9b5dba5);
154 RND(S
[4],S
[5],S
[6],S
[7],S
[0],S
[1],S
[2],S
[3],4,0x3956c25b);
155 RND(S
[3],S
[4],S
[5],S
[6],S
[7],S
[0],S
[1],S
[2],5,0x59f111f1);
156 RND(S
[2],S
[3],S
[4],S
[5],S
[6],S
[7],S
[0],S
[1],6,0x923f82a4);
157 RND(S
[1],S
[2],S
[3],S
[4],S
[5],S
[6],S
[7],S
[0],7,0xab1c5ed5);
158 RND(S
[0],S
[1],S
[2],S
[3],S
[4],S
[5],S
[6],S
[7],8,0xd807aa98);
159 RND(S
[7],S
[0],S
[1],S
[2],S
[3],S
[4],S
[5],S
[6],9,0x12835b01);
160 RND(S
[6],S
[7],S
[0],S
[1],S
[2],S
[3],S
[4],S
[5],10,0x243185be);
161 RND(S
[5],S
[6],S
[7],S
[0],S
[1],S
[2],S
[3],S
[4],11,0x550c7dc3);
162 RND(S
[4],S
[5],S
[6],S
[7],S
[0],S
[1],S
[2],S
[3],12,0x72be5d74);
163 RND(S
[3],S
[4],S
[5],S
[6],S
[7],S
[0],S
[1],S
[2],13,0x80deb1fe);
164 RND(S
[2],S
[3],S
[4],S
[5],S
[6],S
[7],S
[0],S
[1],14,0x9bdc06a7);
165 RND(S
[1],S
[2],S
[3],S
[4],S
[5],S
[6],S
[7],S
[0],15,0xc19bf174);
166 RND(S
[0],S
[1],S
[2],S
[3],S
[4],S
[5],S
[6],S
[7],16,0xe49b69c1);
167 RND(S
[7],S
[0],S
[1],S
[2],S
[3],S
[4],S
[5],S
[6],17,0xefbe4786);
168 RND(S
[6],S
[7],S
[0],S
[1],S
[2],S
[3],S
[4],S
[5],18,0x0fc19dc6);
169 RND(S
[5],S
[6],S
[7],S
[0],S
[1],S
[2],S
[3],S
[4],19,0x240ca1cc);
170 RND(S
[4],S
[5],S
[6],S
[7],S
[0],S
[1],S
[2],S
[3],20,0x2de92c6f);
171 RND(S
[3],S
[4],S
[5],S
[6],S
[7],S
[0],S
[1],S
[2],21,0x4a7484aa);
172 RND(S
[2],S
[3],S
[4],S
[5],S
[6],S
[7],S
[0],S
[1],22,0x5cb0a9dc);
173 RND(S
[1],S
[2],S
[3],S
[4],S
[5],S
[6],S
[7],S
[0],23,0x76f988da);
174 RND(S
[0],S
[1],S
[2],S
[3],S
[4],S
[5],S
[6],S
[7],24,0x983e5152);
175 RND(S
[7],S
[0],S
[1],S
[2],S
[3],S
[4],S
[5],S
[6],25,0xa831c66d);
176 RND(S
[6],S
[7],S
[0],S
[1],S
[2],S
[3],S
[4],S
[5],26,0xb00327c8);
177 RND(S
[5],S
[6],S
[7],S
[0],S
[1],S
[2],S
[3],S
[4],27,0xbf597fc7);
178 RND(S
[4],S
[5],S
[6],S
[7],S
[0],S
[1],S
[2],S
[3],28,0xc6e00bf3);
179 RND(S
[3],S
[4],S
[5],S
[6],S
[7],S
[0],S
[1],S
[2],29,0xd5a79147);
180 RND(S
[2],S
[3],S
[4],S
[5],S
[6],S
[7],S
[0],S
[1],30,0x06ca6351);
181 RND(S
[1],S
[2],S
[3],S
[4],S
[5],S
[6],S
[7],S
[0],31,0x14292967);
182 RND(S
[0],S
[1],S
[2],S
[3],S
[4],S
[5],S
[6],S
[7],32,0x27b70a85);
183 RND(S
[7],S
[0],S
[1],S
[2],S
[3],S
[4],S
[5],S
[6],33,0x2e1b2138);
184 RND(S
[6],S
[7],S
[0],S
[1],S
[2],S
[3],S
[4],S
[5],34,0x4d2c6dfc);
185 RND(S
[5],S
[6],S
[7],S
[0],S
[1],S
[2],S
[3],S
[4],35,0x53380d13);
186 RND(S
[4],S
[5],S
[6],S
[7],S
[0],S
[1],S
[2],S
[3],36,0x650a7354);
187 RND(S
[3],S
[4],S
[5],S
[6],S
[7],S
[0],S
[1],S
[2],37,0x766a0abb);
188 RND(S
[2],S
[3],S
[4],S
[5],S
[6],S
[7],S
[0],S
[1],38,0x81c2c92e);
189 RND(S
[1],S
[2],S
[3],S
[4],S
[5],S
[6],S
[7],S
[0],39,0x92722c85);
190 RND(S
[0],S
[1],S
[2],S
[3],S
[4],S
[5],S
[6],S
[7],40,0xa2bfe8a1);
191 RND(S
[7],S
[0],S
[1],S
[2],S
[3],S
[4],S
[5],S
[6],41,0xa81a664b);
192 RND(S
[6],S
[7],S
[0],S
[1],S
[2],S
[3],S
[4],S
[5],42,0xc24b8b70);
193 RND(S
[5],S
[6],S
[7],S
[0],S
[1],S
[2],S
[3],S
[4],43,0xc76c51a3);
194 RND(S
[4],S
[5],S
[6],S
[7],S
[0],S
[1],S
[2],S
[3],44,0xd192e819);
195 RND(S
[3],S
[4],S
[5],S
[6],S
[7],S
[0],S
[1],S
[2],45,0xd6990624);
196 RND(S
[2],S
[3],S
[4],S
[5],S
[6],S
[7],S
[0],S
[1],46,0xf40e3585);
197 RND(S
[1],S
[2],S
[3],S
[4],S
[5],S
[6],S
[7],S
[0],47,0x106aa070);
198 RND(S
[0],S
[1],S
[2],S
[3],S
[4],S
[5],S
[6],S
[7],48,0x19a4c116);
199 RND(S
[7],S
[0],S
[1],S
[2],S
[3],S
[4],S
[5],S
[6],49,0x1e376c08);
200 RND(S
[6],S
[7],S
[0],S
[1],S
[2],S
[3],S
[4],S
[5],50,0x2748774c);
201 RND(S
[5],S
[6],S
[7],S
[0],S
[1],S
[2],S
[3],S
[4],51,0x34b0bcb5);
202 RND(S
[4],S
[5],S
[6],S
[7],S
[0],S
[1],S
[2],S
[3],52,0x391c0cb3);
203 RND(S
[3],S
[4],S
[5],S
[6],S
[7],S
[0],S
[1],S
[2],53,0x4ed8aa4a);
204 RND(S
[2],S
[3],S
[4],S
[5],S
[6],S
[7],S
[0],S
[1],54,0x5b9cca4f);
205 RND(S
[1],S
[2],S
[3],S
[4],S
[5],S
[6],S
[7],S
[0],55,0x682e6ff3);
206 RND(S
[0],S
[1],S
[2],S
[3],S
[4],S
[5],S
[6],S
[7],56,0x748f82ee);
207 RND(S
[7],S
[0],S
[1],S
[2],S
[3],S
[4],S
[5],S
[6],57,0x78a5636f);
208 RND(S
[6],S
[7],S
[0],S
[1],S
[2],S
[3],S
[4],S
[5],58,0x84c87814);
209 RND(S
[5],S
[6],S
[7],S
[0],S
[1],S
[2],S
[3],S
[4],59,0x8cc70208);
210 RND(S
[4],S
[5],S
[6],S
[7],S
[0],S
[1],S
[2],S
[3],60,0x90befffa);
211 RND(S
[3],S
[4],S
[5],S
[6],S
[7],S
[0],S
[1],S
[2],61,0xa4506ceb);
212 RND(S
[2],S
[3],S
[4],S
[5],S
[6],S
[7],S
[0],S
[1],62,0xbef9a3f7);
213 RND(S
[1],S
[2],S
[3],S
[4],S
[5],S
[6],S
[7],S
[0],63,0xc67178f2);
218 for (i
= 0; i
< 8; i
++) {
219 sha_info
->digest
[i
] = sha_info
->digest
[i
] + S
[i
];
226 /* initialize the SHA digest */
229 sha_init(SHAobject
*sha_info
)
231 TestEndianness(sha_info
->Endianness
)
232 sha_info
->digest
[0] = 0x6A09E667L
;
233 sha_info
->digest
[1] = 0xBB67AE85L
;
234 sha_info
->digest
[2] = 0x3C6EF372L
;
235 sha_info
->digest
[3] = 0xA54FF53AL
;
236 sha_info
->digest
[4] = 0x510E527FL
;
237 sha_info
->digest
[5] = 0x9B05688CL
;
238 sha_info
->digest
[6] = 0x1F83D9ABL
;
239 sha_info
->digest
[7] = 0x5BE0CD19L
;
240 sha_info
->count_lo
= 0L;
241 sha_info
->count_hi
= 0L;
243 sha_info
->digestsize
= 32;
247 sha224_init(SHAobject
*sha_info
)
249 TestEndianness(sha_info
->Endianness
)
250 sha_info
->digest
[0] = 0xc1059ed8L
;
251 sha_info
->digest
[1] = 0x367cd507L
;
252 sha_info
->digest
[2] = 0x3070dd17L
;
253 sha_info
->digest
[3] = 0xf70e5939L
;
254 sha_info
->digest
[4] = 0xffc00b31L
;
255 sha_info
->digest
[5] = 0x68581511L
;
256 sha_info
->digest
[6] = 0x64f98fa7L
;
257 sha_info
->digest
[7] = 0xbefa4fa4L
;
258 sha_info
->count_lo
= 0L;
259 sha_info
->count_hi
= 0L;
261 sha_info
->digestsize
= 28;
265 /* update the SHA digest */
268 sha_update(SHAobject
*sha_info
, SHA_BYTE
*buffer
, int count
)
273 clo
= sha_info
->count_lo
+ ((SHA_INT32
) count
<< 3);
274 if (clo
< sha_info
->count_lo
) {
275 ++sha_info
->count_hi
;
277 sha_info
->count_lo
= clo
;
278 sha_info
->count_hi
+= (SHA_INT32
) count
>> 29;
279 if (sha_info
->local
) {
280 i
= SHA_BLOCKSIZE
- sha_info
->local
;
284 memcpy(((SHA_BYTE
*) sha_info
->data
) + sha_info
->local
, buffer
, i
);
287 sha_info
->local
+= i
;
288 if (sha_info
->local
== SHA_BLOCKSIZE
) {
289 sha_transform(sha_info
);
295 while (count
>= SHA_BLOCKSIZE
) {
296 memcpy(sha_info
->data
, buffer
, SHA_BLOCKSIZE
);
297 buffer
+= SHA_BLOCKSIZE
;
298 count
-= SHA_BLOCKSIZE
;
299 sha_transform(sha_info
);
301 memcpy(sha_info
->data
, buffer
, count
);
302 sha_info
->local
= count
;
305 /* finish computing the SHA digest */
308 sha_final(unsigned char digest
[SHA_DIGESTSIZE
], SHAobject
*sha_info
)
311 SHA_INT32 lo_bit_count
, hi_bit_count
;
313 lo_bit_count
= sha_info
->count_lo
;
314 hi_bit_count
= sha_info
->count_hi
;
315 count
= (int) ((lo_bit_count
>> 3) & 0x3f);
316 ((SHA_BYTE
*) sha_info
->data
)[count
++] = 0x80;
317 if (count
> SHA_BLOCKSIZE
- 8) {
318 memset(((SHA_BYTE
*) sha_info
->data
) + count
, 0,
319 SHA_BLOCKSIZE
- count
);
320 sha_transform(sha_info
);
321 memset((SHA_BYTE
*) sha_info
->data
, 0, SHA_BLOCKSIZE
- 8);
324 memset(((SHA_BYTE
*) sha_info
->data
) + count
, 0,
325 SHA_BLOCKSIZE
- 8 - count
);
328 /* GJS: note that we add the hi/lo in big-endian. sha_transform will
329 swap these values into host-order. */
330 sha_info
->data
[56] = (hi_bit_count
>> 24) & 0xff;
331 sha_info
->data
[57] = (hi_bit_count
>> 16) & 0xff;
332 sha_info
->data
[58] = (hi_bit_count
>> 8) & 0xff;
333 sha_info
->data
[59] = (hi_bit_count
>> 0) & 0xff;
334 sha_info
->data
[60] = (lo_bit_count
>> 24) & 0xff;
335 sha_info
->data
[61] = (lo_bit_count
>> 16) & 0xff;
336 sha_info
->data
[62] = (lo_bit_count
>> 8) & 0xff;
337 sha_info
->data
[63] = (lo_bit_count
>> 0) & 0xff;
338 sha_transform(sha_info
);
339 digest
[ 0] = (unsigned char) ((sha_info
->digest
[0] >> 24) & 0xff);
340 digest
[ 1] = (unsigned char) ((sha_info
->digest
[0] >> 16) & 0xff);
341 digest
[ 2] = (unsigned char) ((sha_info
->digest
[0] >> 8) & 0xff);
342 digest
[ 3] = (unsigned char) ((sha_info
->digest
[0] ) & 0xff);
343 digest
[ 4] = (unsigned char) ((sha_info
->digest
[1] >> 24) & 0xff);
344 digest
[ 5] = (unsigned char) ((sha_info
->digest
[1] >> 16) & 0xff);
345 digest
[ 6] = (unsigned char) ((sha_info
->digest
[1] >> 8) & 0xff);
346 digest
[ 7] = (unsigned char) ((sha_info
->digest
[1] ) & 0xff);
347 digest
[ 8] = (unsigned char) ((sha_info
->digest
[2] >> 24) & 0xff);
348 digest
[ 9] = (unsigned char) ((sha_info
->digest
[2] >> 16) & 0xff);
349 digest
[10] = (unsigned char) ((sha_info
->digest
[2] >> 8) & 0xff);
350 digest
[11] = (unsigned char) ((sha_info
->digest
[2] ) & 0xff);
351 digest
[12] = (unsigned char) ((sha_info
->digest
[3] >> 24) & 0xff);
352 digest
[13] = (unsigned char) ((sha_info
->digest
[3] >> 16) & 0xff);
353 digest
[14] = (unsigned char) ((sha_info
->digest
[3] >> 8) & 0xff);
354 digest
[15] = (unsigned char) ((sha_info
->digest
[3] ) & 0xff);
355 digest
[16] = (unsigned char) ((sha_info
->digest
[4] >> 24) & 0xff);
356 digest
[17] = (unsigned char) ((sha_info
->digest
[4] >> 16) & 0xff);
357 digest
[18] = (unsigned char) ((sha_info
->digest
[4] >> 8) & 0xff);
358 digest
[19] = (unsigned char) ((sha_info
->digest
[4] ) & 0xff);
359 digest
[20] = (unsigned char) ((sha_info
->digest
[5] >> 24) & 0xff);
360 digest
[21] = (unsigned char) ((sha_info
->digest
[5] >> 16) & 0xff);
361 digest
[22] = (unsigned char) ((sha_info
->digest
[5] >> 8) & 0xff);
362 digest
[23] = (unsigned char) ((sha_info
->digest
[5] ) & 0xff);
363 digest
[24] = (unsigned char) ((sha_info
->digest
[6] >> 24) & 0xff);
364 digest
[25] = (unsigned char) ((sha_info
->digest
[6] >> 16) & 0xff);
365 digest
[26] = (unsigned char) ((sha_info
->digest
[6] >> 8) & 0xff);
366 digest
[27] = (unsigned char) ((sha_info
->digest
[6] ) & 0xff);
367 digest
[28] = (unsigned char) ((sha_info
->digest
[7] >> 24) & 0xff);
368 digest
[29] = (unsigned char) ((sha_info
->digest
[7] >> 16) & 0xff);
369 digest
[30] = (unsigned char) ((sha_info
->digest
[7] >> 8) & 0xff);
370 digest
[31] = (unsigned char) ((sha_info
->digest
[7] ) & 0xff);
374 * End of copied SHA code.
376 * ------------------------------------------------------------------------
379 static PyTypeObject SHA224type
;
380 static PyTypeObject SHA256type
;
384 newSHA224object(void)
386 return (SHAobject
*)PyObject_New(SHAobject
, &SHA224type
);
390 newSHA256object(void)
392 return (SHAobject
*)PyObject_New(SHAobject
, &SHA256type
);
395 /* Internal methods for a hash object */
398 SHA_dealloc(PyObject
*ptr
)
404 /* External methods for a hash object */
406 PyDoc_STRVAR(SHA256_copy__doc__
, "Return a copy of the hash object.");
409 SHA256_copy(SHAobject
*self
, PyObject
*unused
)
413 if (Py_TYPE(self
) == &SHA256type
) {
414 if ( (newobj
= newSHA256object())==NULL
)
417 if ( (newobj
= newSHA224object())==NULL
)
421 SHAcopy(self
, newobj
);
422 return (PyObject
*)newobj
;
425 PyDoc_STRVAR(SHA256_digest__doc__
,
426 "Return the digest value as a string of binary data.");
429 SHA256_digest(SHAobject
*self
, PyObject
*unused
)
431 unsigned char digest
[SHA_DIGESTSIZE
];
434 SHAcopy(self
, &temp
);
435 sha_final(digest
, &temp
);
436 return PyBytes_FromStringAndSize((const char *)digest
, self
->digestsize
);
439 PyDoc_STRVAR(SHA256_hexdigest__doc__
,
440 "Return the digest value as a string of hexadecimal digits.");
443 SHA256_hexdigest(SHAobject
*self
, PyObject
*unused
)
445 unsigned char digest
[SHA_DIGESTSIZE
];
448 Py_UNICODE
*hex_digest
;
451 /* Get the raw (binary) digest value */
452 SHAcopy(self
, &temp
);
453 sha_final(digest
, &temp
);
455 /* Create a new string */
456 retval
= PyUnicode_FromStringAndSize(NULL
, self
->digestsize
* 2);
459 hex_digest
= PyUnicode_AS_UNICODE(retval
);
465 /* Make hex version of the digest */
466 for(i
=j
=0; i
<self
->digestsize
; i
++) {
468 c
= (digest
[i
] >> 4) & 0xf;
469 c
= (c
>9) ? c
+'a'-10 : c
+ '0';
471 c
= (digest
[i
] & 0xf);
472 c
= (c
>9) ? c
+'a'-10 : c
+ '0';
478 PyDoc_STRVAR(SHA256_update__doc__
,
479 "Update this hash object's state with the provided string.");
482 SHA256_update(SHAobject
*self
, PyObject
*args
)
487 if (!PyArg_ParseTuple(args
, "O:update", &obj
))
490 GET_BUFFER_VIEW_OR_ERROUT(obj
, &buf
);
492 sha_update(self
, buf
.buf
, buf
.len
);
494 PyBuffer_Release(&buf
);
499 static PyMethodDef SHA_methods
[] = {
500 {"copy", (PyCFunction
)SHA256_copy
, METH_NOARGS
, SHA256_copy__doc__
},
501 {"digest", (PyCFunction
)SHA256_digest
, METH_NOARGS
, SHA256_digest__doc__
},
502 {"hexdigest", (PyCFunction
)SHA256_hexdigest
, METH_NOARGS
, SHA256_hexdigest__doc__
},
503 {"update", (PyCFunction
)SHA256_update
, METH_VARARGS
, SHA256_update__doc__
},
504 {NULL
, NULL
} /* sentinel */
508 SHA256_get_block_size(PyObject
*self
, void *closure
)
510 return PyLong_FromLong(SHA_BLOCKSIZE
);
514 SHA256_get_name(PyObject
*self
, void *closure
)
516 if (((SHAobject
*)self
)->digestsize
== 32)
517 return PyUnicode_FromStringAndSize("SHA256", 6);
519 return PyUnicode_FromStringAndSize("SHA224", 6);
522 static PyGetSetDef SHA_getseters
[] = {
524 (getter
)SHA256_get_block_size
, NULL
,
528 (getter
)SHA256_get_name
, NULL
,
531 {NULL
} /* Sentinel */
534 static PyMemberDef SHA_members
[] = {
535 {"digest_size", T_INT
, offsetof(SHAobject
, digestsize
), READONLY
, NULL
},
536 {NULL
} /* Sentinel */
539 static PyTypeObject SHA224type
= {
540 PyVarObject_HEAD_INIT(NULL
, 0)
541 "_sha256.sha224", /*tp_name*/
542 sizeof(SHAobject
), /*tp_size*/
545 SHA_dealloc
, /*tp_dealloc*/
552 0, /*tp_as_sequence*/
560 Py_TPFLAGS_DEFAULT
, /*tp_flags*/
564 0, /*tp_richcompare*/
565 0, /*tp_weaklistoffset*/
568 SHA_methods
, /* tp_methods */
569 SHA_members
, /* tp_members */
570 SHA_getseters
, /* tp_getset */
573 static PyTypeObject SHA256type
= {
574 PyVarObject_HEAD_INIT(NULL
, 0)
575 "_sha256.sha256", /*tp_name*/
576 sizeof(SHAobject
), /*tp_size*/
579 SHA_dealloc
, /*tp_dealloc*/
586 0, /*tp_as_sequence*/
594 Py_TPFLAGS_DEFAULT
, /*tp_flags*/
598 0, /*tp_richcompare*/
599 0, /*tp_weaklistoffset*/
602 SHA_methods
, /* tp_methods */
603 SHA_members
, /* tp_members */
604 SHA_getseters
, /* tp_getset */
608 /* The single module-level function: new() */
610 PyDoc_STRVAR(SHA256_new__doc__
,
611 "Return a new SHA-256 hash object; optionally initialized with a string.");
614 SHA256_new(PyObject
*self
, PyObject
*args
, PyObject
*kwdict
)
616 static char *kwlist
[] = {"string", NULL
};
618 PyObject
*data_obj
= NULL
;
621 if (!PyArg_ParseTupleAndKeywords(args
, kwdict
, "|O:new", kwlist
,
627 GET_BUFFER_VIEW_OR_ERROUT(data_obj
, &buf
);
629 if ((new = newSHA256object()) == NULL
) {
631 PyBuffer_Release(&buf
);
637 if (PyErr_Occurred()) {
640 PyBuffer_Release(&buf
);
644 sha_update(new, buf
.buf
, buf
.len
);
645 PyBuffer_Release(&buf
);
648 return (PyObject
*)new;
651 PyDoc_STRVAR(SHA224_new__doc__
,
652 "Return a new SHA-224 hash object; optionally initialized with a string.");
655 SHA224_new(PyObject
*self
, PyObject
*args
, PyObject
*kwdict
)
657 static char *kwlist
[] = {"string", NULL
};
659 PyObject
*data_obj
= NULL
;
662 if (!PyArg_ParseTupleAndKeywords(args
, kwdict
, "|O:new", kwlist
,
668 GET_BUFFER_VIEW_OR_ERROUT(data_obj
, &buf
);
670 if ((new = newSHA224object()) == NULL
) {
672 PyBuffer_Release(&buf
);
678 if (PyErr_Occurred()) {
681 PyBuffer_Release(&buf
);
685 sha_update(new, buf
.buf
, buf
.len
);
686 PyBuffer_Release(&buf
);
689 return (PyObject
*)new;
693 /* List of functions exported by this module */
695 static struct PyMethodDef SHA_functions
[] = {
696 {"sha256", (PyCFunction
)SHA256_new
, METH_VARARGS
|METH_KEYWORDS
, SHA256_new__doc__
},
697 {"sha224", (PyCFunction
)SHA224_new
, METH_VARARGS
|METH_KEYWORDS
, SHA224_new__doc__
},
698 {NULL
, NULL
} /* Sentinel */
702 /* Initialize this module. */
704 #define insint(n,v) { PyModule_AddIntConstant(m,n,v); }
707 static struct PyModuleDef _sha256module
= {
708 PyModuleDef_HEAD_INIT
,
722 Py_TYPE(&SHA224type
) = &PyType_Type
;
723 if (PyType_Ready(&SHA224type
) < 0)
725 Py_TYPE(&SHA256type
) = &PyType_Type
;
726 if (PyType_Ready(&SHA256type
) < 0)
728 return PyModule_Create(&_sha256module
);