Fix typo in Python equivalent for bit_length.
[python.git] / Lib / random.py
blob5879340a8d461753306ef4146c2ffabd45781eae
1 """Random variable generators.
3 integers
4 --------
5 uniform within range
7 sequences
8 ---------
9 pick random element
10 pick random sample
11 generate random permutation
13 distributions on the real line:
14 ------------------------------
15 uniform
16 triangular
17 normal (Gaussian)
18 lognormal
19 negative exponential
20 gamma
21 beta
22 pareto
23 Weibull
25 distributions on the circle (angles 0 to 2pi)
26 ---------------------------------------------
27 circular uniform
28 von Mises
30 General notes on the underlying Mersenne Twister core generator:
32 * The period is 2**19937-1.
33 * It is one of the most extensively tested generators in existence.
34 * Without a direct way to compute N steps forward, the semantics of
35 jumpahead(n) are weakened to simply jump to another distant state and rely
36 on the large period to avoid overlapping sequences.
37 * The random() method is implemented in C, executes in a single Python step,
38 and is, therefore, threadsafe.
40 """
42 from __future__ import division
43 from warnings import warn as _warn
44 from types import MethodType as _MethodType, BuiltinMethodType as _BuiltinMethodType
45 from math import log as _log, exp as _exp, pi as _pi, e as _e, ceil as _ceil
46 from math import sqrt as _sqrt, acos as _acos, cos as _cos, sin as _sin
47 from os import urandom as _urandom
48 from binascii import hexlify as _hexlify
50 __all__ = ["Random","seed","random","uniform","randint","choice","sample",
51 "randrange","shuffle","normalvariate","lognormvariate",
52 "expovariate","vonmisesvariate","gammavariate","triangular",
53 "gauss","betavariate","paretovariate","weibullvariate",
54 "getstate","setstate","jumpahead", "WichmannHill", "getrandbits",
55 "SystemRandom"]
57 NV_MAGICCONST = 4 * _exp(-0.5)/_sqrt(2.0)
58 TWOPI = 2.0*_pi
59 LOG4 = _log(4.0)
60 SG_MAGICCONST = 1.0 + _log(4.5)
61 BPF = 53 # Number of bits in a float
62 RECIP_BPF = 2**-BPF
65 # Translated by Guido van Rossum from C source provided by
66 # Adrian Baddeley. Adapted by Raymond Hettinger for use with
67 # the Mersenne Twister and os.urandom() core generators.
69 import _random
71 class Random(_random.Random):
72 """Random number generator base class used by bound module functions.
74 Used to instantiate instances of Random to get generators that don't
75 share state. Especially useful for multi-threaded programs, creating
76 a different instance of Random for each thread, and using the jumpahead()
77 method to ensure that the generated sequences seen by each thread don't
78 overlap.
80 Class Random can also be subclassed if you want to use a different basic
81 generator of your own devising: in that case, override the following
82 methods: random(), seed(), getstate(), setstate() and jumpahead().
83 Optionally, implement a getrandbits() method so that randrange() can cover
84 arbitrarily large ranges.
86 """
88 VERSION = 3 # used by getstate/setstate
90 def __init__(self, x=None):
91 """Initialize an instance.
93 Optional argument x controls seeding, as for Random.seed().
94 """
96 self.seed(x)
97 self.gauss_next = None
99 def seed(self, a=None):
100 """Initialize internal state from hashable object.
102 None or no argument seeds from current time or from an operating
103 system specific randomness source if available.
105 If a is not None or an int or long, hash(a) is used instead.
108 if a is None:
109 try:
110 a = long(_hexlify(_urandom(16)), 16)
111 except NotImplementedError:
112 import time
113 a = long(time.time() * 256) # use fractional seconds
115 super(Random, self).seed(a)
116 self.gauss_next = None
118 def getstate(self):
119 """Return internal state; can be passed to setstate() later."""
120 return self.VERSION, super(Random, self).getstate(), self.gauss_next
122 def setstate(self, state):
123 """Restore internal state from object returned by getstate()."""
124 version = state[0]
125 if version == 3:
126 version, internalstate, self.gauss_next = state
127 super(Random, self).setstate(internalstate)
128 elif version == 2:
129 version, internalstate, self.gauss_next = state
130 # In version 2, the state was saved as signed ints, which causes
131 # inconsistencies between 32/64-bit systems. The state is
132 # really unsigned 32-bit ints, so we convert negative ints from
133 # version 2 to positive longs for version 3.
134 try:
135 internalstate = tuple( long(x) % (2**32) for x in internalstate )
136 except ValueError, e:
137 raise TypeError, e
138 super(Random, self).setstate(internalstate)
139 else:
140 raise ValueError("state with version %s passed to "
141 "Random.setstate() of version %s" %
142 (version, self.VERSION))
144 ## ---- Methods below this point do not need to be overridden when
145 ## ---- subclassing for the purpose of using a different core generator.
147 ## -------------------- pickle support -------------------
149 def __getstate__(self): # for pickle
150 return self.getstate()
152 def __setstate__(self, state): # for pickle
153 self.setstate(state)
155 def __reduce__(self):
156 return self.__class__, (), self.getstate()
158 ## -------------------- integer methods -------------------
160 def randrange(self, start, stop=None, step=1, int=int, default=None,
161 maxwidth=1L<<BPF):
162 """Choose a random item from range(start, stop[, step]).
164 This fixes the problem with randint() which includes the
165 endpoint; in Python this is usually not what you want.
166 Do not supply the 'int', 'default', and 'maxwidth' arguments.
169 # This code is a bit messy to make it fast for the
170 # common case while still doing adequate error checking.
171 istart = int(start)
172 if istart != start:
173 raise ValueError, "non-integer arg 1 for randrange()"
174 if stop is default:
175 if istart > 0:
176 if istart >= maxwidth:
177 return self._randbelow(istart)
178 return int(self.random() * istart)
179 raise ValueError, "empty range for randrange()"
181 # stop argument supplied.
182 istop = int(stop)
183 if istop != stop:
184 raise ValueError, "non-integer stop for randrange()"
185 width = istop - istart
186 if step == 1 and width > 0:
187 # Note that
188 # int(istart + self.random()*width)
189 # instead would be incorrect. For example, consider istart
190 # = -2 and istop = 0. Then the guts would be in
191 # -2.0 to 0.0 exclusive on both ends (ignoring that random()
192 # might return 0.0), and because int() truncates toward 0, the
193 # final result would be -1 or 0 (instead of -2 or -1).
194 # istart + int(self.random()*width)
195 # would also be incorrect, for a subtler reason: the RHS
196 # can return a long, and then randrange() would also return
197 # a long, but we're supposed to return an int (for backward
198 # compatibility).
200 if width >= maxwidth:
201 return int(istart + self._randbelow(width))
202 return int(istart + int(self.random()*width))
203 if step == 1:
204 raise ValueError, "empty range for randrange() (%d,%d, %d)" % (istart, istop, width)
206 # Non-unit step argument supplied.
207 istep = int(step)
208 if istep != step:
209 raise ValueError, "non-integer step for randrange()"
210 if istep > 0:
211 n = (width + istep - 1) // istep
212 elif istep < 0:
213 n = (width + istep + 1) // istep
214 else:
215 raise ValueError, "zero step for randrange()"
217 if n <= 0:
218 raise ValueError, "empty range for randrange()"
220 if n >= maxwidth:
221 return istart + istep*self._randbelow(n)
222 return istart + istep*int(self.random() * n)
224 def randint(self, a, b):
225 """Return random integer in range [a, b], including both end points.
228 return self.randrange(a, b+1)
230 def _randbelow(self, n, _log=_log, int=int, _maxwidth=1L<<BPF,
231 _Method=_MethodType, _BuiltinMethod=_BuiltinMethodType):
232 """Return a random int in the range [0,n)
234 Handles the case where n has more bits than returned
235 by a single call to the underlying generator.
238 try:
239 getrandbits = self.getrandbits
240 except AttributeError:
241 pass
242 else:
243 # Only call self.getrandbits if the original random() builtin method
244 # has not been overridden or if a new getrandbits() was supplied.
245 # This assures that the two methods correspond.
246 if type(self.random) is _BuiltinMethod or type(getrandbits) is _Method:
247 k = int(1.00001 + _log(n-1, 2.0)) # 2**k > n-1 > 2**(k-2)
248 r = getrandbits(k)
249 while r >= n:
250 r = getrandbits(k)
251 return r
252 if n >= _maxwidth:
253 _warn("Underlying random() generator does not supply \n"
254 "enough bits to choose from a population range this large")
255 return int(self.random() * n)
257 ## -------------------- sequence methods -------------------
259 def choice(self, seq):
260 """Choose a random element from a non-empty sequence."""
261 return seq[int(self.random() * len(seq))] # raises IndexError if seq is empty
263 def shuffle(self, x, random=None, int=int):
264 """x, random=random.random -> shuffle list x in place; return None.
266 Optional arg random is a 0-argument function returning a random
267 float in [0.0, 1.0); by default, the standard random.random.
270 if random is None:
271 random = self.random
272 for i in reversed(xrange(1, len(x))):
273 # pick an element in x[:i+1] with which to exchange x[i]
274 j = int(random() * (i+1))
275 x[i], x[j] = x[j], x[i]
277 def sample(self, population, k):
278 """Chooses k unique random elements from a population sequence.
280 Returns a new list containing elements from the population while
281 leaving the original population unchanged. The resulting list is
282 in selection order so that all sub-slices will also be valid random
283 samples. This allows raffle winners (the sample) to be partitioned
284 into grand prize and second place winners (the subslices).
286 Members of the population need not be hashable or unique. If the
287 population contains repeats, then each occurrence is a possible
288 selection in the sample.
290 To choose a sample in a range of integers, use xrange as an argument.
291 This is especially fast and space efficient for sampling from a
292 large population: sample(xrange(10000000), 60)
295 # XXX Although the documentation says `population` is "a sequence",
296 # XXX attempts are made to cater to any iterable with a __len__
297 # XXX method. This has had mixed success. Examples from both
298 # XXX sides: sets work fine, and should become officially supported;
299 # XXX dicts are much harder, and have failed in various subtle
300 # XXX ways across attempts. Support for mapping types should probably
301 # XXX be dropped (and users should pass mapping.keys() or .values()
302 # XXX explicitly).
304 # Sampling without replacement entails tracking either potential
305 # selections (the pool) in a list or previous selections in a set.
307 # When the number of selections is small compared to the
308 # population, then tracking selections is efficient, requiring
309 # only a small set and an occasional reselection. For
310 # a larger number of selections, the pool tracking method is
311 # preferred since the list takes less space than the
312 # set and it doesn't suffer from frequent reselections.
314 n = len(population)
315 if not 0 <= k <= n:
316 raise ValueError, "sample larger than population"
317 random = self.random
318 _int = int
319 result = [None] * k
320 setsize = 21 # size of a small set minus size of an empty list
321 if k > 5:
322 setsize += 4 ** _ceil(_log(k * 3, 4)) # table size for big sets
323 if n <= setsize or hasattr(population, "keys"):
324 # An n-length list is smaller than a k-length set, or this is a
325 # mapping type so the other algorithm wouldn't work.
326 pool = list(population)
327 for i in xrange(k): # invariant: non-selected at [0,n-i)
328 j = _int(random() * (n-i))
329 result[i] = pool[j]
330 pool[j] = pool[n-i-1] # move non-selected item into vacancy
331 else:
332 try:
333 selected = set()
334 selected_add = selected.add
335 for i in xrange(k):
336 j = _int(random() * n)
337 while j in selected:
338 j = _int(random() * n)
339 selected_add(j)
340 result[i] = population[j]
341 except (TypeError, KeyError): # handle (at least) sets
342 if isinstance(population, list):
343 raise
344 return self.sample(tuple(population), k)
345 return result
347 ## -------------------- real-valued distributions -------------------
349 ## -------------------- uniform distribution -------------------
351 def uniform(self, a, b):
352 """Get a random number in the range [a, b)."""
353 return a + (b-a) * self.random()
355 ## -------------------- triangular --------------------
357 def triangular(self, low=0.0, high=1.0, mode=None):
358 """Triangular distribution.
360 Continuous distribution bounded by given lower and upper limits,
361 and having a given mode value in-between.
363 http://en.wikipedia.org/wiki/Triangular_distribution
366 u = self.random()
367 c = 0.5 if mode is None else (mode - low) / (high - low)
368 if u > c:
369 u = 1.0 - u
370 c = 1.0 - c
371 low, high = high, low
372 return low + (high - low) * (u * c) ** 0.5
374 ## -------------------- normal distribution --------------------
376 def normalvariate(self, mu, sigma):
377 """Normal distribution.
379 mu is the mean, and sigma is the standard deviation.
382 # mu = mean, sigma = standard deviation
384 # Uses Kinderman and Monahan method. Reference: Kinderman,
385 # A.J. and Monahan, J.F., "Computer generation of random
386 # variables using the ratio of uniform deviates", ACM Trans
387 # Math Software, 3, (1977), pp257-260.
389 random = self.random
390 while 1:
391 u1 = random()
392 u2 = 1.0 - random()
393 z = NV_MAGICCONST*(u1-0.5)/u2
394 zz = z*z/4.0
395 if zz <= -_log(u2):
396 break
397 return mu + z*sigma
399 ## -------------------- lognormal distribution --------------------
401 def lognormvariate(self, mu, sigma):
402 """Log normal distribution.
404 If you take the natural logarithm of this distribution, you'll get a
405 normal distribution with mean mu and standard deviation sigma.
406 mu can have any value, and sigma must be greater than zero.
409 return _exp(self.normalvariate(mu, sigma))
411 ## -------------------- exponential distribution --------------------
413 def expovariate(self, lambd):
414 """Exponential distribution.
416 lambd is 1.0 divided by the desired mean. (The parameter would be
417 called "lambda", but that is a reserved word in Python.) Returned
418 values range from 0 to positive infinity.
421 # lambd: rate lambd = 1/mean
422 # ('lambda' is a Python reserved word)
424 random = self.random
425 u = random()
426 while u <= 1e-7:
427 u = random()
428 return -_log(u)/lambd
430 ## -------------------- von Mises distribution --------------------
432 def vonmisesvariate(self, mu, kappa):
433 """Circular data distribution.
435 mu is the mean angle, expressed in radians between 0 and 2*pi, and
436 kappa is the concentration parameter, which must be greater than or
437 equal to zero. If kappa is equal to zero, this distribution reduces
438 to a uniform random angle over the range 0 to 2*pi.
441 # mu: mean angle (in radians between 0 and 2*pi)
442 # kappa: concentration parameter kappa (>= 0)
443 # if kappa = 0 generate uniform random angle
445 # Based upon an algorithm published in: Fisher, N.I.,
446 # "Statistical Analysis of Circular Data", Cambridge
447 # University Press, 1993.
449 # Thanks to Magnus Kessler for a correction to the
450 # implementation of step 4.
452 random = self.random
453 if kappa <= 1e-6:
454 return TWOPI * random()
456 a = 1.0 + _sqrt(1.0 + 4.0 * kappa * kappa)
457 b = (a - _sqrt(2.0 * a))/(2.0 * kappa)
458 r = (1.0 + b * b)/(2.0 * b)
460 while 1:
461 u1 = random()
463 z = _cos(_pi * u1)
464 f = (1.0 + r * z)/(r + z)
465 c = kappa * (r - f)
467 u2 = random()
469 if u2 < c * (2.0 - c) or u2 <= c * _exp(1.0 - c):
470 break
472 u3 = random()
473 if u3 > 0.5:
474 theta = (mu % TWOPI) + _acos(f)
475 else:
476 theta = (mu % TWOPI) - _acos(f)
478 return theta
480 ## -------------------- gamma distribution --------------------
482 def gammavariate(self, alpha, beta):
483 """Gamma distribution. Not the gamma function!
485 Conditions on the parameters are alpha > 0 and beta > 0.
489 # alpha > 0, beta > 0, mean is alpha*beta, variance is alpha*beta**2
491 # Warning: a few older sources define the gamma distribution in terms
492 # of alpha > -1.0
493 if alpha <= 0.0 or beta <= 0.0:
494 raise ValueError, 'gammavariate: alpha and beta must be > 0.0'
496 random = self.random
497 if alpha > 1.0:
499 # Uses R.C.H. Cheng, "The generation of Gamma
500 # variables with non-integral shape parameters",
501 # Applied Statistics, (1977), 26, No. 1, p71-74
503 ainv = _sqrt(2.0 * alpha - 1.0)
504 bbb = alpha - LOG4
505 ccc = alpha + ainv
507 while 1:
508 u1 = random()
509 if not 1e-7 < u1 < .9999999:
510 continue
511 u2 = 1.0 - random()
512 v = _log(u1/(1.0-u1))/ainv
513 x = alpha*_exp(v)
514 z = u1*u1*u2
515 r = bbb+ccc*v-x
516 if r + SG_MAGICCONST - 4.5*z >= 0.0 or r >= _log(z):
517 return x * beta
519 elif alpha == 1.0:
520 # expovariate(1)
521 u = random()
522 while u <= 1e-7:
523 u = random()
524 return -_log(u) * beta
526 else: # alpha is between 0 and 1 (exclusive)
528 # Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle
530 while 1:
531 u = random()
532 b = (_e + alpha)/_e
533 p = b*u
534 if p <= 1.0:
535 x = p ** (1.0/alpha)
536 else:
537 x = -_log((b-p)/alpha)
538 u1 = random()
539 if p > 1.0:
540 if u1 <= x ** (alpha - 1.0):
541 break
542 elif u1 <= _exp(-x):
543 break
544 return x * beta
546 ## -------------------- Gauss (faster alternative) --------------------
548 def gauss(self, mu, sigma):
549 """Gaussian distribution.
551 mu is the mean, and sigma is the standard deviation. This is
552 slightly faster than the normalvariate() function.
554 Not thread-safe without a lock around calls.
558 # When x and y are two variables from [0, 1), uniformly
559 # distributed, then
561 # cos(2*pi*x)*sqrt(-2*log(1-y))
562 # sin(2*pi*x)*sqrt(-2*log(1-y))
564 # are two *independent* variables with normal distribution
565 # (mu = 0, sigma = 1).
566 # (Lambert Meertens)
567 # (corrected version; bug discovered by Mike Miller, fixed by LM)
569 # Multithreading note: When two threads call this function
570 # simultaneously, it is possible that they will receive the
571 # same return value. The window is very small though. To
572 # avoid this, you have to use a lock around all calls. (I
573 # didn't want to slow this down in the serial case by using a
574 # lock here.)
576 random = self.random
577 z = self.gauss_next
578 self.gauss_next = None
579 if z is None:
580 x2pi = random() * TWOPI
581 g2rad = _sqrt(-2.0 * _log(1.0 - random()))
582 z = _cos(x2pi) * g2rad
583 self.gauss_next = _sin(x2pi) * g2rad
585 return mu + z*sigma
587 ## -------------------- beta --------------------
588 ## See
589 ## http://sourceforge.net/bugs/?func=detailbug&bug_id=130030&group_id=5470
590 ## for Ivan Frohne's insightful analysis of why the original implementation:
592 ## def betavariate(self, alpha, beta):
593 ## # Discrete Event Simulation in C, pp 87-88.
595 ## y = self.expovariate(alpha)
596 ## z = self.expovariate(1.0/beta)
597 ## return z/(y+z)
599 ## was dead wrong, and how it probably got that way.
601 def betavariate(self, alpha, beta):
602 """Beta distribution.
604 Conditions on the parameters are alpha > 0 and beta > 0.
605 Returned values range between 0 and 1.
609 # This version due to Janne Sinkkonen, and matches all the std
610 # texts (e.g., Knuth Vol 2 Ed 3 pg 134 "the beta distribution").
611 y = self.gammavariate(alpha, 1.)
612 if y == 0:
613 return 0.0
614 else:
615 return y / (y + self.gammavariate(beta, 1.))
617 ## -------------------- Pareto --------------------
619 def paretovariate(self, alpha):
620 """Pareto distribution. alpha is the shape parameter."""
621 # Jain, pg. 495
623 u = 1.0 - self.random()
624 return 1.0 / pow(u, 1.0/alpha)
626 ## -------------------- Weibull --------------------
628 def weibullvariate(self, alpha, beta):
629 """Weibull distribution.
631 alpha is the scale parameter and beta is the shape parameter.
634 # Jain, pg. 499; bug fix courtesy Bill Arms
636 u = 1.0 - self.random()
637 return alpha * pow(-_log(u), 1.0/beta)
639 ## -------------------- Wichmann-Hill -------------------
641 class WichmannHill(Random):
643 VERSION = 1 # used by getstate/setstate
645 def seed(self, a=None):
646 """Initialize internal state from hashable object.
648 None or no argument seeds from current time or from an operating
649 system specific randomness source if available.
651 If a is not None or an int or long, hash(a) is used instead.
653 If a is an int or long, a is used directly. Distinct values between
654 0 and 27814431486575L inclusive are guaranteed to yield distinct
655 internal states (this guarantee is specific to the default
656 Wichmann-Hill generator).
659 if a is None:
660 try:
661 a = long(_hexlify(_urandom(16)), 16)
662 except NotImplementedError:
663 import time
664 a = long(time.time() * 256) # use fractional seconds
666 if not isinstance(a, (int, long)):
667 a = hash(a)
669 a, x = divmod(a, 30268)
670 a, y = divmod(a, 30306)
671 a, z = divmod(a, 30322)
672 self._seed = int(x)+1, int(y)+1, int(z)+1
674 self.gauss_next = None
676 def random(self):
677 """Get the next random number in the range [0.0, 1.0)."""
679 # Wichman-Hill random number generator.
681 # Wichmann, B. A. & Hill, I. D. (1982)
682 # Algorithm AS 183:
683 # An efficient and portable pseudo-random number generator
684 # Applied Statistics 31 (1982) 188-190
686 # see also:
687 # Correction to Algorithm AS 183
688 # Applied Statistics 33 (1984) 123
690 # McLeod, A. I. (1985)
691 # A remark on Algorithm AS 183
692 # Applied Statistics 34 (1985),198-200
694 # This part is thread-unsafe:
695 # BEGIN CRITICAL SECTION
696 x, y, z = self._seed
697 x = (171 * x) % 30269
698 y = (172 * y) % 30307
699 z = (170 * z) % 30323
700 self._seed = x, y, z
701 # END CRITICAL SECTION
703 # Note: on a platform using IEEE-754 double arithmetic, this can
704 # never return 0.0 (asserted by Tim; proof too long for a comment).
705 return (x/30269.0 + y/30307.0 + z/30323.0) % 1.0
707 def getstate(self):
708 """Return internal state; can be passed to setstate() later."""
709 return self.VERSION, self._seed, self.gauss_next
711 def setstate(self, state):
712 """Restore internal state from object returned by getstate()."""
713 version = state[0]
714 if version == 1:
715 version, self._seed, self.gauss_next = state
716 else:
717 raise ValueError("state with version %s passed to "
718 "Random.setstate() of version %s" %
719 (version, self.VERSION))
721 def jumpahead(self, n):
722 """Act as if n calls to random() were made, but quickly.
724 n is an int, greater than or equal to 0.
726 Example use: If you have 2 threads and know that each will
727 consume no more than a million random numbers, create two Random
728 objects r1 and r2, then do
729 r2.setstate(r1.getstate())
730 r2.jumpahead(1000000)
731 Then r1 and r2 will use guaranteed-disjoint segments of the full
732 period.
735 if not n >= 0:
736 raise ValueError("n must be >= 0")
737 x, y, z = self._seed
738 x = int(x * pow(171, n, 30269)) % 30269
739 y = int(y * pow(172, n, 30307)) % 30307
740 z = int(z * pow(170, n, 30323)) % 30323
741 self._seed = x, y, z
743 def __whseed(self, x=0, y=0, z=0):
744 """Set the Wichmann-Hill seed from (x, y, z).
746 These must be integers in the range [0, 256).
749 if not type(x) == type(y) == type(z) == int:
750 raise TypeError('seeds must be integers')
751 if not (0 <= x < 256 and 0 <= y < 256 and 0 <= z < 256):
752 raise ValueError('seeds must be in range(0, 256)')
753 if 0 == x == y == z:
754 # Initialize from current time
755 import time
756 t = long(time.time() * 256)
757 t = int((t&0xffffff) ^ (t>>24))
758 t, x = divmod(t, 256)
759 t, y = divmod(t, 256)
760 t, z = divmod(t, 256)
761 # Zero is a poor seed, so substitute 1
762 self._seed = (x or 1, y or 1, z or 1)
764 self.gauss_next = None
766 def whseed(self, a=None):
767 """Seed from hashable object's hash code.
769 None or no argument seeds from current time. It is not guaranteed
770 that objects with distinct hash codes lead to distinct internal
771 states.
773 This is obsolete, provided for compatibility with the seed routine
774 used prior to Python 2.1. Use the .seed() method instead.
777 if a is None:
778 self.__whseed()
779 return
780 a = hash(a)
781 a, x = divmod(a, 256)
782 a, y = divmod(a, 256)
783 a, z = divmod(a, 256)
784 x = (x + a) % 256 or 1
785 y = (y + a) % 256 or 1
786 z = (z + a) % 256 or 1
787 self.__whseed(x, y, z)
789 ## --------------- Operating System Random Source ------------------
791 class SystemRandom(Random):
792 """Alternate random number generator using sources provided
793 by the operating system (such as /dev/urandom on Unix or
794 CryptGenRandom on Windows).
796 Not available on all systems (see os.urandom() for details).
799 def random(self):
800 """Get the next random number in the range [0.0, 1.0)."""
801 return (long(_hexlify(_urandom(7)), 16) >> 3) * RECIP_BPF
803 def getrandbits(self, k):
804 """getrandbits(k) -> x. Generates a long int with k random bits."""
805 if k <= 0:
806 raise ValueError('number of bits must be greater than zero')
807 if k != int(k):
808 raise TypeError('number of bits should be an integer')
809 bytes = (k + 7) // 8 # bits / 8 and rounded up
810 x = long(_hexlify(_urandom(bytes)), 16)
811 return x >> (bytes * 8 - k) # trim excess bits
813 def _stub(self, *args, **kwds):
814 "Stub method. Not used for a system random number generator."
815 return None
816 seed = jumpahead = _stub
818 def _notimplemented(self, *args, **kwds):
819 "Method should not be called for a system random number generator."
820 raise NotImplementedError('System entropy source does not have state.')
821 getstate = setstate = _notimplemented
823 ## -------------------- test program --------------------
825 def _test_generator(n, func, args):
826 import time
827 print n, 'times', func.__name__
828 total = 0.0
829 sqsum = 0.0
830 smallest = 1e10
831 largest = -1e10
832 t0 = time.time()
833 for i in range(n):
834 x = func(*args)
835 total += x
836 sqsum = sqsum + x*x
837 smallest = min(x, smallest)
838 largest = max(x, largest)
839 t1 = time.time()
840 print round(t1-t0, 3), 'sec,',
841 avg = total/n
842 stddev = _sqrt(sqsum/n - avg*avg)
843 print 'avg %g, stddev %g, min %g, max %g' % \
844 (avg, stddev, smallest, largest)
847 def _test(N=2000):
848 _test_generator(N, random, ())
849 _test_generator(N, normalvariate, (0.0, 1.0))
850 _test_generator(N, lognormvariate, (0.0, 1.0))
851 _test_generator(N, vonmisesvariate, (0.0, 1.0))
852 _test_generator(N, gammavariate, (0.01, 1.0))
853 _test_generator(N, gammavariate, (0.1, 1.0))
854 _test_generator(N, gammavariate, (0.1, 2.0))
855 _test_generator(N, gammavariate, (0.5, 1.0))
856 _test_generator(N, gammavariate, (0.9, 1.0))
857 _test_generator(N, gammavariate, (1.0, 1.0))
858 _test_generator(N, gammavariate, (2.0, 1.0))
859 _test_generator(N, gammavariate, (20.0, 1.0))
860 _test_generator(N, gammavariate, (200.0, 1.0))
861 _test_generator(N, gauss, (0.0, 1.0))
862 _test_generator(N, betavariate, (3.0, 3.0))
863 _test_generator(N, triangular, (0.0, 1.0, 1.0/3.0))
865 # Create one instance, seeded from current time, and export its methods
866 # as module-level functions. The functions share state across all uses
867 #(both in the user's code and in the Python libraries), but that's fine
868 # for most programs and is easier for the casual user than making them
869 # instantiate their own Random() instance.
871 _inst = Random()
872 seed = _inst.seed
873 random = _inst.random
874 uniform = _inst.uniform
875 triangular = _inst.triangular
876 randint = _inst.randint
877 choice = _inst.choice
878 randrange = _inst.randrange
879 sample = _inst.sample
880 shuffle = _inst.shuffle
881 normalvariate = _inst.normalvariate
882 lognormvariate = _inst.lognormvariate
883 expovariate = _inst.expovariate
884 vonmisesvariate = _inst.vonmisesvariate
885 gammavariate = _inst.gammavariate
886 gauss = _inst.gauss
887 betavariate = _inst.betavariate
888 paretovariate = _inst.paretovariate
889 weibullvariate = _inst.weibullvariate
890 getstate = _inst.getstate
891 setstate = _inst.setstate
892 jumpahead = _inst.jumpahead
893 getrandbits = _inst.getrandbits
895 if __name__ == '__main__':
896 _test()