Fixed bug in time-to-midnight calculation.
[python.git] / Modules / mathmodule.c
bloba5fec158d245b62fe9aa52432fd9ee9399a62098
1 /* Math module -- standard C math library functions, pi and e */
3 #include "Python.h"
4 #include "longintrepr.h" /* just for SHIFT */
6 #ifndef _MSC_VER
7 #ifndef __STDC__
8 extern double fmod (double, double);
9 extern double frexp (double, int *);
10 extern double ldexp (double, int);
11 extern double modf (double, double *);
12 #endif /* __STDC__ */
13 #endif /* _MSC_VER */
15 /* Call is_error when errno != 0, and where x is the result libm
16 * returned. is_error will usually set up an exception and return
17 * true (1), but may return false (0) without setting up an exception.
19 static int
20 is_error(double x)
22 int result = 1; /* presumption of guilt */
23 assert(errno); /* non-zero errno is a precondition for calling */
24 if (errno == EDOM)
25 PyErr_SetString(PyExc_ValueError, "math domain error");
27 else if (errno == ERANGE) {
28 /* ANSI C generally requires libm functions to set ERANGE
29 * on overflow, but also generally *allows* them to set
30 * ERANGE on underflow too. There's no consistency about
31 * the latter across platforms.
32 * Alas, C99 never requires that errno be set.
33 * Here we suppress the underflow errors (libm functions
34 * should return a zero on underflow, and +- HUGE_VAL on
35 * overflow, so testing the result for zero suffices to
36 * distinguish the cases).
38 if (x)
39 PyErr_SetString(PyExc_OverflowError,
40 "math range error");
41 else
42 result = 0;
44 else
45 /* Unexpected math error */
46 PyErr_SetFromErrno(PyExc_ValueError);
47 return result;
50 static PyObject *
51 math_1(PyObject *args, double (*func) (double), char *argsfmt)
53 double x;
54 if (! PyArg_ParseTuple(args, argsfmt, &x))
55 return NULL;
56 errno = 0;
57 PyFPE_START_PROTECT("in math_1", return 0)
58 x = (*func)(x);
59 PyFPE_END_PROTECT(x)
60 Py_SET_ERRNO_ON_MATH_ERROR(x);
61 if (errno && is_error(x))
62 return NULL;
63 else
64 return PyFloat_FromDouble(x);
67 static PyObject *
68 math_2(PyObject *args, double (*func) (double, double), char *argsfmt)
70 double x, y;
71 if (! PyArg_ParseTuple(args, argsfmt, &x, &y))
72 return NULL;
73 errno = 0;
74 PyFPE_START_PROTECT("in math_2", return 0)
75 x = (*func)(x, y);
76 PyFPE_END_PROTECT(x)
77 Py_SET_ERRNO_ON_MATH_ERROR(x);
78 if (errno && is_error(x))
79 return NULL;
80 else
81 return PyFloat_FromDouble(x);
84 #define FUNC1(funcname, func, docstring) \
85 static PyObject * math_##funcname(PyObject *self, PyObject *args) { \
86 return math_1(args, func, "d:" #funcname); \
88 PyDoc_STRVAR(math_##funcname##_doc, docstring);
90 #define FUNC2(funcname, func, docstring) \
91 static PyObject * math_##funcname(PyObject *self, PyObject *args) { \
92 return math_2(args, func, "dd:" #funcname); \
94 PyDoc_STRVAR(math_##funcname##_doc, docstring);
96 FUNC1(acos, acos,
97 "acos(x)\n\nReturn the arc cosine (measured in radians) of x.")
98 FUNC1(asin, asin,
99 "asin(x)\n\nReturn the arc sine (measured in radians) of x.")
100 FUNC1(atan, atan,
101 "atan(x)\n\nReturn the arc tangent (measured in radians) of x.")
102 FUNC2(atan2, atan2,
103 "atan2(y, x)\n\nReturn the arc tangent (measured in radians) of y/x.\n"
104 "Unlike atan(y/x), the signs of both x and y are considered.")
105 FUNC1(ceil, ceil,
106 "ceil(x)\n\nReturn the ceiling of x as a float.\n"
107 "This is the smallest integral value >= x.")
108 FUNC1(cos, cos,
109 "cos(x)\n\nReturn the cosine of x (measured in radians).")
110 FUNC1(cosh, cosh,
111 "cosh(x)\n\nReturn the hyperbolic cosine of x.")
112 FUNC1(exp, exp,
113 "exp(x)\n\nReturn e raised to the power of x.")
114 FUNC1(fabs, fabs,
115 "fabs(x)\n\nReturn the absolute value of the float x.")
116 FUNC1(floor, floor,
117 "floor(x)\n\nReturn the floor of x as a float.\n"
118 "This is the largest integral value <= x.")
119 FUNC2(fmod, fmod,
120 "fmod(x,y)\n\nReturn fmod(x, y), according to platform C."
121 " x % y may differ.")
122 FUNC2(hypot, hypot,
123 "hypot(x,y)\n\nReturn the Euclidean distance, sqrt(x*x + y*y).")
124 FUNC2(pow, pow,
125 "pow(x,y)\n\nReturn x**y (x to the power of y).")
126 FUNC1(sin, sin,
127 "sin(x)\n\nReturn the sine of x (measured in radians).")
128 FUNC1(sinh, sinh,
129 "sinh(x)\n\nReturn the hyperbolic sine of x.")
130 FUNC1(sqrt, sqrt,
131 "sqrt(x)\n\nReturn the square root of x.")
132 FUNC1(tan, tan,
133 "tan(x)\n\nReturn the tangent of x (measured in radians).")
134 FUNC1(tanh, tanh,
135 "tanh(x)\n\nReturn the hyperbolic tangent of x.")
137 static PyObject *
138 math_frexp(PyObject *self, PyObject *args)
140 double x;
141 int i;
142 if (! PyArg_ParseTuple(args, "d:frexp", &x))
143 return NULL;
144 errno = 0;
145 x = frexp(x, &i);
146 Py_SET_ERRNO_ON_MATH_ERROR(x);
147 if (errno && is_error(x))
148 return NULL;
149 else
150 return Py_BuildValue("(di)", x, i);
153 PyDoc_STRVAR(math_frexp_doc,
154 "frexp(x)\n"
155 "\n"
156 "Return the mantissa and exponent of x, as pair (m, e).\n"
157 "m is a float and e is an int, such that x = m * 2.**e.\n"
158 "If x is 0, m and e are both 0. Else 0.5 <= abs(m) < 1.0.");
160 static PyObject *
161 math_ldexp(PyObject *self, PyObject *args)
163 double x;
164 int exp;
165 if (! PyArg_ParseTuple(args, "di:ldexp", &x, &exp))
166 return NULL;
167 errno = 0;
168 PyFPE_START_PROTECT("ldexp", return 0)
169 x = ldexp(x, exp);
170 PyFPE_END_PROTECT(x)
171 Py_SET_ERRNO_ON_MATH_ERROR(x);
172 if (errno && is_error(x))
173 return NULL;
174 else
175 return PyFloat_FromDouble(x);
178 PyDoc_STRVAR(math_ldexp_doc,
179 "ldexp(x, i) -> x * (2**i)");
181 static PyObject *
182 math_modf(PyObject *self, PyObject *args)
184 double x, y;
185 if (! PyArg_ParseTuple(args, "d:modf", &x))
186 return NULL;
187 errno = 0;
188 x = modf(x, &y);
189 Py_SET_ERRNO_ON_MATH_ERROR(x);
190 if (errno && is_error(x))
191 return NULL;
192 else
193 return Py_BuildValue("(dd)", x, y);
196 PyDoc_STRVAR(math_modf_doc,
197 "modf(x)\n"
198 "\n"
199 "Return the fractional and integer parts of x. Both results carry the sign\n"
200 "of x. The integer part is returned as a real.");
202 /* A decent logarithm is easy to compute even for huge longs, but libm can't
203 do that by itself -- loghelper can. func is log or log10, and name is
204 "log" or "log10". Note that overflow isn't possible: a long can contain
205 no more than INT_MAX * SHIFT bits, so has value certainly less than
206 2**(2**64 * 2**16) == 2**2**80, and log2 of that is 2**80, which is
207 small enough to fit in an IEEE single. log and log10 are even smaller.
210 static PyObject*
211 loghelper(PyObject* args, double (*func)(double), char *format, PyObject *arg)
213 /* If it is long, do it ourselves. */
214 if (PyLong_Check(arg)) {
215 double x;
216 int e;
217 x = _PyLong_AsScaledDouble(arg, &e);
218 if (x <= 0.0) {
219 PyErr_SetString(PyExc_ValueError,
220 "math domain error");
221 return NULL;
223 /* Value is ~= x * 2**(e*SHIFT), so the log ~=
224 log(x) + log(2) * e * SHIFT.
225 CAUTION: e*SHIFT may overflow using int arithmetic,
226 so force use of double. */
227 x = func(x) + (e * (double)SHIFT) * func(2.0);
228 return PyFloat_FromDouble(x);
231 /* Else let libm handle it by itself. */
232 return math_1(args, func, format);
235 static PyObject *
236 math_log(PyObject *self, PyObject *args)
238 PyObject *arg;
239 PyObject *base = NULL;
240 PyObject *num, *den;
241 PyObject *ans;
242 PyObject *newargs;
244 if (!PyArg_UnpackTuple(args, "log", 1, 2, &arg, &base))
245 return NULL;
246 if (base == NULL)
247 return loghelper(args, log, "d:log", arg);
249 newargs = PyTuple_Pack(1, arg);
250 if (newargs == NULL)
251 return NULL;
252 num = loghelper(newargs, log, "d:log", arg);
253 Py_DECREF(newargs);
254 if (num == NULL)
255 return NULL;
257 newargs = PyTuple_Pack(1, base);
258 if (newargs == NULL) {
259 Py_DECREF(num);
260 return NULL;
262 den = loghelper(newargs, log, "d:log", base);
263 Py_DECREF(newargs);
264 if (den == NULL) {
265 Py_DECREF(num);
266 return NULL;
269 ans = PyNumber_Divide(num, den);
270 Py_DECREF(num);
271 Py_DECREF(den);
272 return ans;
275 PyDoc_STRVAR(math_log_doc,
276 "log(x[, base]) -> the logarithm of x to the given base.\n\
277 If the base not specified, returns the natural logarithm (base e) of x.");
279 static PyObject *
280 math_log10(PyObject *self, PyObject *args)
282 PyObject *arg;
284 if (!PyArg_UnpackTuple(args, "log10", 1, 1, &arg))
285 return NULL;
286 return loghelper(args, log10, "d:log10", arg);
289 PyDoc_STRVAR(math_log10_doc,
290 "log10(x) -> the base 10 logarithm of x.");
292 static const double degToRad = 3.141592653589793238462643383 / 180.0;
294 static PyObject *
295 math_degrees(PyObject *self, PyObject *args)
297 double x;
298 if (! PyArg_ParseTuple(args, "d:degrees", &x))
299 return NULL;
300 return PyFloat_FromDouble(x / degToRad);
303 PyDoc_STRVAR(math_degrees_doc,
304 "degrees(x) -> converts angle x from radians to degrees");
306 static PyObject *
307 math_radians(PyObject *self, PyObject *args)
309 double x;
310 if (! PyArg_ParseTuple(args, "d:radians", &x))
311 return NULL;
312 return PyFloat_FromDouble(x * degToRad);
315 PyDoc_STRVAR(math_radians_doc,
316 "radians(x) -> converts angle x from degrees to radians");
318 static PyMethodDef math_methods[] = {
319 {"acos", math_acos, METH_VARARGS, math_acos_doc},
320 {"asin", math_asin, METH_VARARGS, math_asin_doc},
321 {"atan", math_atan, METH_VARARGS, math_atan_doc},
322 {"atan2", math_atan2, METH_VARARGS, math_atan2_doc},
323 {"ceil", math_ceil, METH_VARARGS, math_ceil_doc},
324 {"cos", math_cos, METH_VARARGS, math_cos_doc},
325 {"cosh", math_cosh, METH_VARARGS, math_cosh_doc},
326 {"degrees", math_degrees, METH_VARARGS, math_degrees_doc},
327 {"exp", math_exp, METH_VARARGS, math_exp_doc},
328 {"fabs", math_fabs, METH_VARARGS, math_fabs_doc},
329 {"floor", math_floor, METH_VARARGS, math_floor_doc},
330 {"fmod", math_fmod, METH_VARARGS, math_fmod_doc},
331 {"frexp", math_frexp, METH_VARARGS, math_frexp_doc},
332 {"hypot", math_hypot, METH_VARARGS, math_hypot_doc},
333 {"ldexp", math_ldexp, METH_VARARGS, math_ldexp_doc},
334 {"log", math_log, METH_VARARGS, math_log_doc},
335 {"log10", math_log10, METH_VARARGS, math_log10_doc},
336 {"modf", math_modf, METH_VARARGS, math_modf_doc},
337 {"pow", math_pow, METH_VARARGS, math_pow_doc},
338 {"radians", math_radians, METH_VARARGS, math_radians_doc},
339 {"sin", math_sin, METH_VARARGS, math_sin_doc},
340 {"sinh", math_sinh, METH_VARARGS, math_sinh_doc},
341 {"sqrt", math_sqrt, METH_VARARGS, math_sqrt_doc},
342 {"tan", math_tan, METH_VARARGS, math_tan_doc},
343 {"tanh", math_tanh, METH_VARARGS, math_tanh_doc},
344 {NULL, NULL} /* sentinel */
348 PyDoc_STRVAR(module_doc,
349 "This module is always available. It provides access to the\n"
350 "mathematical functions defined by the C standard.");
352 PyMODINIT_FUNC
353 initmath(void)
355 PyObject *m, *d, *v;
357 m = Py_InitModule3("math", math_methods, module_doc);
358 d = PyModule_GetDict(m);
360 if (!(v = PyFloat_FromDouble(atan(1.0) * 4.0)))
361 goto finally;
362 if (PyDict_SetItemString(d, "pi", v) < 0)
363 goto finally;
364 Py_DECREF(v);
366 if (!(v = PyFloat_FromDouble(exp(1.0))))
367 goto finally;
368 if (PyDict_SetItemString(d, "e", v) < 0)
369 goto finally;
370 Py_DECREF(v);
372 finally:
373 return;