Issue #5768: Change to Unicode output logic and test case for same.
[python.git] / Lib / decimal.py
blobdc38167a8bf81d14d0266e978a80d6c52f5aebb7
1 # Copyright (c) 2004 Python Software Foundation.
2 # All rights reserved.
4 # Written by Eric Price <eprice at tjhsst.edu>
5 # and Facundo Batista <facundo at taniquetil.com.ar>
6 # and Raymond Hettinger <python at rcn.com>
7 # and Aahz <aahz at pobox.com>
8 # and Tim Peters
10 # This module is currently Py2.3 compatible and should be kept that way
11 # unless a major compelling advantage arises. IOW, 2.3 compatibility is
12 # strongly preferred, but not guaranteed.
14 # Also, this module should be kept in sync with the latest updates of
15 # the IBM specification as it evolves. Those updates will be treated
16 # as bug fixes (deviation from the spec is a compatibility, usability
17 # bug) and will be backported. At this point the spec is stabilizing
18 # and the updates are becoming fewer, smaller, and less significant.
20 """
21 This is a Py2.3 implementation of decimal floating point arithmetic based on
22 the General Decimal Arithmetic Specification:
24 www2.hursley.ibm.com/decimal/decarith.html
26 and IEEE standard 854-1987:
28 www.cs.berkeley.edu/~ejr/projects/754/private/drafts/854-1987/dir.html
30 Decimal floating point has finite precision with arbitrarily large bounds.
32 The purpose of this module is to support arithmetic using familiar
33 "schoolhouse" rules and to avoid some of the tricky representation
34 issues associated with binary floating point. The package is especially
35 useful for financial applications or for contexts where users have
36 expectations that are at odds with binary floating point (for instance,
37 in binary floating point, 1.00 % 0.1 gives 0.09999999999999995 instead
38 of the expected Decimal('0.00') returned by decimal floating point).
40 Here are some examples of using the decimal module:
42 >>> from decimal import *
43 >>> setcontext(ExtendedContext)
44 >>> Decimal(0)
45 Decimal('0')
46 >>> Decimal('1')
47 Decimal('1')
48 >>> Decimal('-.0123')
49 Decimal('-0.0123')
50 >>> Decimal(123456)
51 Decimal('123456')
52 >>> Decimal('123.45e12345678901234567890')
53 Decimal('1.2345E+12345678901234567892')
54 >>> Decimal('1.33') + Decimal('1.27')
55 Decimal('2.60')
56 >>> Decimal('12.34') + Decimal('3.87') - Decimal('18.41')
57 Decimal('-2.20')
58 >>> dig = Decimal(1)
59 >>> print dig / Decimal(3)
60 0.333333333
61 >>> getcontext().prec = 18
62 >>> print dig / Decimal(3)
63 0.333333333333333333
64 >>> print dig.sqrt()
66 >>> print Decimal(3).sqrt()
67 1.73205080756887729
68 >>> print Decimal(3) ** 123
69 4.85192780976896427E+58
70 >>> inf = Decimal(1) / Decimal(0)
71 >>> print inf
72 Infinity
73 >>> neginf = Decimal(-1) / Decimal(0)
74 >>> print neginf
75 -Infinity
76 >>> print neginf + inf
77 NaN
78 >>> print neginf * inf
79 -Infinity
80 >>> print dig / 0
81 Infinity
82 >>> getcontext().traps[DivisionByZero] = 1
83 >>> print dig / 0
84 Traceback (most recent call last):
85 ...
86 ...
87 ...
88 DivisionByZero: x / 0
89 >>> c = Context()
90 >>> c.traps[InvalidOperation] = 0
91 >>> print c.flags[InvalidOperation]
93 >>> c.divide(Decimal(0), Decimal(0))
94 Decimal('NaN')
95 >>> c.traps[InvalidOperation] = 1
96 >>> print c.flags[InvalidOperation]
98 >>> c.flags[InvalidOperation] = 0
99 >>> print c.flags[InvalidOperation]
101 >>> print c.divide(Decimal(0), Decimal(0))
102 Traceback (most recent call last):
106 InvalidOperation: 0 / 0
107 >>> print c.flags[InvalidOperation]
109 >>> c.flags[InvalidOperation] = 0
110 >>> c.traps[InvalidOperation] = 0
111 >>> print c.divide(Decimal(0), Decimal(0))
113 >>> print c.flags[InvalidOperation]
118 __all__ = [
119 # Two major classes
120 'Decimal', 'Context',
122 # Contexts
123 'DefaultContext', 'BasicContext', 'ExtendedContext',
125 # Exceptions
126 'DecimalException', 'Clamped', 'InvalidOperation', 'DivisionByZero',
127 'Inexact', 'Rounded', 'Subnormal', 'Overflow', 'Underflow',
129 # Constants for use in setting up contexts
130 'ROUND_DOWN', 'ROUND_HALF_UP', 'ROUND_HALF_EVEN', 'ROUND_CEILING',
131 'ROUND_FLOOR', 'ROUND_UP', 'ROUND_HALF_DOWN', 'ROUND_05UP',
133 # Functions for manipulating contexts
134 'setcontext', 'getcontext', 'localcontext'
137 __version__ = '1.68' # Highest version of the spec this complies with
139 import copy as _copy
140 import math as _math
141 import numbers as _numbers
143 try:
144 from collections import namedtuple as _namedtuple
145 DecimalTuple = _namedtuple('DecimalTuple', 'sign digits exponent')
146 except ImportError:
147 DecimalTuple = lambda *args: args
149 # Rounding
150 ROUND_DOWN = 'ROUND_DOWN'
151 ROUND_HALF_UP = 'ROUND_HALF_UP'
152 ROUND_HALF_EVEN = 'ROUND_HALF_EVEN'
153 ROUND_CEILING = 'ROUND_CEILING'
154 ROUND_FLOOR = 'ROUND_FLOOR'
155 ROUND_UP = 'ROUND_UP'
156 ROUND_HALF_DOWN = 'ROUND_HALF_DOWN'
157 ROUND_05UP = 'ROUND_05UP'
159 # Errors
161 class DecimalException(ArithmeticError):
162 """Base exception class.
164 Used exceptions derive from this.
165 If an exception derives from another exception besides this (such as
166 Underflow (Inexact, Rounded, Subnormal) that indicates that it is only
167 called if the others are present. This isn't actually used for
168 anything, though.
170 handle -- Called when context._raise_error is called and the
171 trap_enabler is set. First argument is self, second is the
172 context. More arguments can be given, those being after
173 the explanation in _raise_error (For example,
174 context._raise_error(NewError, '(-x)!', self._sign) would
175 call NewError().handle(context, self._sign).)
177 To define a new exception, it should be sufficient to have it derive
178 from DecimalException.
180 def handle(self, context, *args):
181 pass
184 class Clamped(DecimalException):
185 """Exponent of a 0 changed to fit bounds.
187 This occurs and signals clamped if the exponent of a result has been
188 altered in order to fit the constraints of a specific concrete
189 representation. This may occur when the exponent of a zero result would
190 be outside the bounds of a representation, or when a large normal
191 number would have an encoded exponent that cannot be represented. In
192 this latter case, the exponent is reduced to fit and the corresponding
193 number of zero digits are appended to the coefficient ("fold-down").
196 class InvalidOperation(DecimalException):
197 """An invalid operation was performed.
199 Various bad things cause this:
201 Something creates a signaling NaN
202 -INF + INF
203 0 * (+-)INF
204 (+-)INF / (+-)INF
205 x % 0
206 (+-)INF % x
207 x._rescale( non-integer )
208 sqrt(-x) , x > 0
209 0 ** 0
210 x ** (non-integer)
211 x ** (+-)INF
212 An operand is invalid
214 The result of the operation after these is a quiet positive NaN,
215 except when the cause is a signaling NaN, in which case the result is
216 also a quiet NaN, but with the original sign, and an optional
217 diagnostic information.
219 def handle(self, context, *args):
220 if args:
221 ans = _dec_from_triple(args[0]._sign, args[0]._int, 'n', True)
222 return ans._fix_nan(context)
223 return _NaN
225 class ConversionSyntax(InvalidOperation):
226 """Trying to convert badly formed string.
228 This occurs and signals invalid-operation if an string is being
229 converted to a number and it does not conform to the numeric string
230 syntax. The result is [0,qNaN].
232 def handle(self, context, *args):
233 return _NaN
235 class DivisionByZero(DecimalException, ZeroDivisionError):
236 """Division by 0.
238 This occurs and signals division-by-zero if division of a finite number
239 by zero was attempted (during a divide-integer or divide operation, or a
240 power operation with negative right-hand operand), and the dividend was
241 not zero.
243 The result of the operation is [sign,inf], where sign is the exclusive
244 or of the signs of the operands for divide, or is 1 for an odd power of
245 -0, for power.
248 def handle(self, context, sign, *args):
249 return _SignedInfinity[sign]
251 class DivisionImpossible(InvalidOperation):
252 """Cannot perform the division adequately.
254 This occurs and signals invalid-operation if the integer result of a
255 divide-integer or remainder operation had too many digits (would be
256 longer than precision). The result is [0,qNaN].
259 def handle(self, context, *args):
260 return _NaN
262 class DivisionUndefined(InvalidOperation, ZeroDivisionError):
263 """Undefined result of division.
265 This occurs and signals invalid-operation if division by zero was
266 attempted (during a divide-integer, divide, or remainder operation), and
267 the dividend is also zero. The result is [0,qNaN].
270 def handle(self, context, *args):
271 return _NaN
273 class Inexact(DecimalException):
274 """Had to round, losing information.
276 This occurs and signals inexact whenever the result of an operation is
277 not exact (that is, it needed to be rounded and any discarded digits
278 were non-zero), or if an overflow or underflow condition occurs. The
279 result in all cases is unchanged.
281 The inexact signal may be tested (or trapped) to determine if a given
282 operation (or sequence of operations) was inexact.
285 class InvalidContext(InvalidOperation):
286 """Invalid context. Unknown rounding, for example.
288 This occurs and signals invalid-operation if an invalid context was
289 detected during an operation. This can occur if contexts are not checked
290 on creation and either the precision exceeds the capability of the
291 underlying concrete representation or an unknown or unsupported rounding
292 was specified. These aspects of the context need only be checked when
293 the values are required to be used. The result is [0,qNaN].
296 def handle(self, context, *args):
297 return _NaN
299 class Rounded(DecimalException):
300 """Number got rounded (not necessarily changed during rounding).
302 This occurs and signals rounded whenever the result of an operation is
303 rounded (that is, some zero or non-zero digits were discarded from the
304 coefficient), or if an overflow or underflow condition occurs. The
305 result in all cases is unchanged.
307 The rounded signal may be tested (or trapped) to determine if a given
308 operation (or sequence of operations) caused a loss of precision.
311 class Subnormal(DecimalException):
312 """Exponent < Emin before rounding.
314 This occurs and signals subnormal whenever the result of a conversion or
315 operation is subnormal (that is, its adjusted exponent is less than
316 Emin, before any rounding). The result in all cases is unchanged.
318 The subnormal signal may be tested (or trapped) to determine if a given
319 or operation (or sequence of operations) yielded a subnormal result.
322 class Overflow(Inexact, Rounded):
323 """Numerical overflow.
325 This occurs and signals overflow if the adjusted exponent of a result
326 (from a conversion or from an operation that is not an attempt to divide
327 by zero), after rounding, would be greater than the largest value that
328 can be handled by the implementation (the value Emax).
330 The result depends on the rounding mode:
332 For round-half-up and round-half-even (and for round-half-down and
333 round-up, if implemented), the result of the operation is [sign,inf],
334 where sign is the sign of the intermediate result. For round-down, the
335 result is the largest finite number that can be represented in the
336 current precision, with the sign of the intermediate result. For
337 round-ceiling, the result is the same as for round-down if the sign of
338 the intermediate result is 1, or is [0,inf] otherwise. For round-floor,
339 the result is the same as for round-down if the sign of the intermediate
340 result is 0, or is [1,inf] otherwise. In all cases, Inexact and Rounded
341 will also be raised.
344 def handle(self, context, sign, *args):
345 if context.rounding in (ROUND_HALF_UP, ROUND_HALF_EVEN,
346 ROUND_HALF_DOWN, ROUND_UP):
347 return _SignedInfinity[sign]
348 if sign == 0:
349 if context.rounding == ROUND_CEILING:
350 return _SignedInfinity[sign]
351 return _dec_from_triple(sign, '9'*context.prec,
352 context.Emax-context.prec+1)
353 if sign == 1:
354 if context.rounding == ROUND_FLOOR:
355 return _SignedInfinity[sign]
356 return _dec_from_triple(sign, '9'*context.prec,
357 context.Emax-context.prec+1)
360 class Underflow(Inexact, Rounded, Subnormal):
361 """Numerical underflow with result rounded to 0.
363 This occurs and signals underflow if a result is inexact and the
364 adjusted exponent of the result would be smaller (more negative) than
365 the smallest value that can be handled by the implementation (the value
366 Emin). That is, the result is both inexact and subnormal.
368 The result after an underflow will be a subnormal number rounded, if
369 necessary, so that its exponent is not less than Etiny. This may result
370 in 0 with the sign of the intermediate result and an exponent of Etiny.
372 In all cases, Inexact, Rounded, and Subnormal will also be raised.
375 # List of public traps and flags
376 _signals = [Clamped, DivisionByZero, Inexact, Overflow, Rounded,
377 Underflow, InvalidOperation, Subnormal]
379 # Map conditions (per the spec) to signals
380 _condition_map = {ConversionSyntax:InvalidOperation,
381 DivisionImpossible:InvalidOperation,
382 DivisionUndefined:InvalidOperation,
383 InvalidContext:InvalidOperation}
385 ##### Context Functions ##################################################
387 # The getcontext() and setcontext() function manage access to a thread-local
388 # current context. Py2.4 offers direct support for thread locals. If that
389 # is not available, use threading.currentThread() which is slower but will
390 # work for older Pythons. If threads are not part of the build, create a
391 # mock threading object with threading.local() returning the module namespace.
393 try:
394 import threading
395 except ImportError:
396 # Python was compiled without threads; create a mock object instead
397 import sys
398 class MockThreading(object):
399 def local(self, sys=sys):
400 return sys.modules[__name__]
401 threading = MockThreading()
402 del sys, MockThreading
404 try:
405 threading.local
407 except AttributeError:
409 # To fix reloading, force it to create a new context
410 # Old contexts have different exceptions in their dicts, making problems.
411 if hasattr(threading.currentThread(), '__decimal_context__'):
412 del threading.currentThread().__decimal_context__
414 def setcontext(context):
415 """Set this thread's context to context."""
416 if context in (DefaultContext, BasicContext, ExtendedContext):
417 context = context.copy()
418 context.clear_flags()
419 threading.currentThread().__decimal_context__ = context
421 def getcontext():
422 """Returns this thread's context.
424 If this thread does not yet have a context, returns
425 a new context and sets this thread's context.
426 New contexts are copies of DefaultContext.
428 try:
429 return threading.currentThread().__decimal_context__
430 except AttributeError:
431 context = Context()
432 threading.currentThread().__decimal_context__ = context
433 return context
435 else:
437 local = threading.local()
438 if hasattr(local, '__decimal_context__'):
439 del local.__decimal_context__
441 def getcontext(_local=local):
442 """Returns this thread's context.
444 If this thread does not yet have a context, returns
445 a new context and sets this thread's context.
446 New contexts are copies of DefaultContext.
448 try:
449 return _local.__decimal_context__
450 except AttributeError:
451 context = Context()
452 _local.__decimal_context__ = context
453 return context
455 def setcontext(context, _local=local):
456 """Set this thread's context to context."""
457 if context in (DefaultContext, BasicContext, ExtendedContext):
458 context = context.copy()
459 context.clear_flags()
460 _local.__decimal_context__ = context
462 del threading, local # Don't contaminate the namespace
464 def localcontext(ctx=None):
465 """Return a context manager for a copy of the supplied context
467 Uses a copy of the current context if no context is specified
468 The returned context manager creates a local decimal context
469 in a with statement:
470 def sin(x):
471 with localcontext() as ctx:
472 ctx.prec += 2
473 # Rest of sin calculation algorithm
474 # uses a precision 2 greater than normal
475 return +s # Convert result to normal precision
477 def sin(x):
478 with localcontext(ExtendedContext):
479 # Rest of sin calculation algorithm
480 # uses the Extended Context from the
481 # General Decimal Arithmetic Specification
482 return +s # Convert result to normal context
484 >>> setcontext(DefaultContext)
485 >>> print getcontext().prec
487 >>> with localcontext():
488 ... ctx = getcontext()
489 ... ctx.prec += 2
490 ... print ctx.prec
493 >>> with localcontext(ExtendedContext):
494 ... print getcontext().prec
497 >>> print getcontext().prec
500 if ctx is None: ctx = getcontext()
501 return _ContextManager(ctx)
504 ##### Decimal class #######################################################
506 class Decimal(object):
507 """Floating point class for decimal arithmetic."""
509 __slots__ = ('_exp','_int','_sign', '_is_special')
510 # Generally, the value of the Decimal instance is given by
511 # (-1)**_sign * _int * 10**_exp
512 # Special values are signified by _is_special == True
514 # We're immutable, so use __new__ not __init__
515 def __new__(cls, value="0", context=None):
516 """Create a decimal point instance.
518 >>> Decimal('3.14') # string input
519 Decimal('3.14')
520 >>> Decimal((0, (3, 1, 4), -2)) # tuple (sign, digit_tuple, exponent)
521 Decimal('3.14')
522 >>> Decimal(314) # int or long
523 Decimal('314')
524 >>> Decimal(Decimal(314)) # another decimal instance
525 Decimal('314')
526 >>> Decimal(' 3.14 \\n') # leading and trailing whitespace okay
527 Decimal('3.14')
530 # Note that the coefficient, self._int, is actually stored as
531 # a string rather than as a tuple of digits. This speeds up
532 # the "digits to integer" and "integer to digits" conversions
533 # that are used in almost every arithmetic operation on
534 # Decimals. This is an internal detail: the as_tuple function
535 # and the Decimal constructor still deal with tuples of
536 # digits.
538 self = object.__new__(cls)
540 # From a string
541 # REs insist on real strings, so we can too.
542 if isinstance(value, basestring):
543 m = _parser(value.strip())
544 if m is None:
545 if context is None:
546 context = getcontext()
547 return context._raise_error(ConversionSyntax,
548 "Invalid literal for Decimal: %r" % value)
550 if m.group('sign') == "-":
551 self._sign = 1
552 else:
553 self._sign = 0
554 intpart = m.group('int')
555 if intpart is not None:
556 # finite number
557 fracpart = m.group('frac')
558 exp = int(m.group('exp') or '0')
559 if fracpart is not None:
560 self._int = str((intpart+fracpart).lstrip('0') or '0')
561 self._exp = exp - len(fracpart)
562 else:
563 self._int = str(intpart.lstrip('0') or '0')
564 self._exp = exp
565 self._is_special = False
566 else:
567 diag = m.group('diag')
568 if diag is not None:
569 # NaN
570 self._int = str(diag.lstrip('0'))
571 if m.group('signal'):
572 self._exp = 'N'
573 else:
574 self._exp = 'n'
575 else:
576 # infinity
577 self._int = '0'
578 self._exp = 'F'
579 self._is_special = True
580 return self
582 # From an integer
583 if isinstance(value, (int,long)):
584 if value >= 0:
585 self._sign = 0
586 else:
587 self._sign = 1
588 self._exp = 0
589 self._int = str(abs(value))
590 self._is_special = False
591 return self
593 # From another decimal
594 if isinstance(value, Decimal):
595 self._exp = value._exp
596 self._sign = value._sign
597 self._int = value._int
598 self._is_special = value._is_special
599 return self
601 # From an internal working value
602 if isinstance(value, _WorkRep):
603 self._sign = value.sign
604 self._int = str(value.int)
605 self._exp = int(value.exp)
606 self._is_special = False
607 return self
609 # tuple/list conversion (possibly from as_tuple())
610 if isinstance(value, (list,tuple)):
611 if len(value) != 3:
612 raise ValueError('Invalid tuple size in creation of Decimal '
613 'from list or tuple. The list or tuple '
614 'should have exactly three elements.')
615 # process sign. The isinstance test rejects floats
616 if not (isinstance(value[0], (int, long)) and value[0] in (0,1)):
617 raise ValueError("Invalid sign. The first value in the tuple "
618 "should be an integer; either 0 for a "
619 "positive number or 1 for a negative number.")
620 self._sign = value[0]
621 if value[2] == 'F':
622 # infinity: value[1] is ignored
623 self._int = '0'
624 self._exp = value[2]
625 self._is_special = True
626 else:
627 # process and validate the digits in value[1]
628 digits = []
629 for digit in value[1]:
630 if isinstance(digit, (int, long)) and 0 <= digit <= 9:
631 # skip leading zeros
632 if digits or digit != 0:
633 digits.append(digit)
634 else:
635 raise ValueError("The second value in the tuple must "
636 "be composed of integers in the range "
637 "0 through 9.")
638 if value[2] in ('n', 'N'):
639 # NaN: digits form the diagnostic
640 self._int = ''.join(map(str, digits))
641 self._exp = value[2]
642 self._is_special = True
643 elif isinstance(value[2], (int, long)):
644 # finite number: digits give the coefficient
645 self._int = ''.join(map(str, digits or [0]))
646 self._exp = value[2]
647 self._is_special = False
648 else:
649 raise ValueError("The third value in the tuple must "
650 "be an integer, or one of the "
651 "strings 'F', 'n', 'N'.")
652 return self
654 if isinstance(value, float):
655 raise TypeError("Cannot convert float to Decimal. " +
656 "First convert the float to a string")
658 raise TypeError("Cannot convert %r to Decimal" % value)
660 # @classmethod, but @decorator is not valid Python 2.3 syntax, so
661 # don't use it (see notes on Py2.3 compatibility at top of file)
662 def from_float(cls, f):
663 """Converts a float to a decimal number, exactly.
665 Note that Decimal.from_float(0.1) is not the same as Decimal('0.1').
666 Since 0.1 is not exactly representable in binary floating point, the
667 value is stored as the nearest representable value which is
668 0x1.999999999999ap-4. The exact equivalent of the value in decimal
669 is 0.1000000000000000055511151231257827021181583404541015625.
671 >>> Decimal.from_float(0.1)
672 Decimal('0.1000000000000000055511151231257827021181583404541015625')
673 >>> Decimal.from_float(float('nan'))
674 Decimal('NaN')
675 >>> Decimal.from_float(float('inf'))
676 Decimal('Infinity')
677 >>> Decimal.from_float(-float('inf'))
678 Decimal('-Infinity')
679 >>> Decimal.from_float(-0.0)
680 Decimal('-0')
683 if isinstance(f, (int, long)): # handle integer inputs
684 return cls(f)
685 if _math.isinf(f) or _math.isnan(f): # raises TypeError if not a float
686 return cls(repr(f))
687 if _math.copysign(1.0, f) == 1.0:
688 sign = 0
689 else:
690 sign = 1
691 n, d = abs(f).as_integer_ratio()
692 k = d.bit_length() - 1
693 result = _dec_from_triple(sign, str(n*5**k), -k)
694 if cls is Decimal:
695 return result
696 else:
697 return cls(result)
698 from_float = classmethod(from_float)
700 def _isnan(self):
701 """Returns whether the number is not actually one.
703 0 if a number
704 1 if NaN
705 2 if sNaN
707 if self._is_special:
708 exp = self._exp
709 if exp == 'n':
710 return 1
711 elif exp == 'N':
712 return 2
713 return 0
715 def _isinfinity(self):
716 """Returns whether the number is infinite
718 0 if finite or not a number
719 1 if +INF
720 -1 if -INF
722 if self._exp == 'F':
723 if self._sign:
724 return -1
725 return 1
726 return 0
728 def _check_nans(self, other=None, context=None):
729 """Returns whether the number is not actually one.
731 if self, other are sNaN, signal
732 if self, other are NaN return nan
733 return 0
735 Done before operations.
738 self_is_nan = self._isnan()
739 if other is None:
740 other_is_nan = False
741 else:
742 other_is_nan = other._isnan()
744 if self_is_nan or other_is_nan:
745 if context is None:
746 context = getcontext()
748 if self_is_nan == 2:
749 return context._raise_error(InvalidOperation, 'sNaN',
750 self)
751 if other_is_nan == 2:
752 return context._raise_error(InvalidOperation, 'sNaN',
753 other)
754 if self_is_nan:
755 return self._fix_nan(context)
757 return other._fix_nan(context)
758 return 0
760 def _compare_check_nans(self, other, context):
761 """Version of _check_nans used for the signaling comparisons
762 compare_signal, __le__, __lt__, __ge__, __gt__.
764 Signal InvalidOperation if either self or other is a (quiet
765 or signaling) NaN. Signaling NaNs take precedence over quiet
766 NaNs.
768 Return 0 if neither operand is a NaN.
771 if context is None:
772 context = getcontext()
774 if self._is_special or other._is_special:
775 if self.is_snan():
776 return context._raise_error(InvalidOperation,
777 'comparison involving sNaN',
778 self)
779 elif other.is_snan():
780 return context._raise_error(InvalidOperation,
781 'comparison involving sNaN',
782 other)
783 elif self.is_qnan():
784 return context._raise_error(InvalidOperation,
785 'comparison involving NaN',
786 self)
787 elif other.is_qnan():
788 return context._raise_error(InvalidOperation,
789 'comparison involving NaN',
790 other)
791 return 0
793 def __nonzero__(self):
794 """Return True if self is nonzero; otherwise return False.
796 NaNs and infinities are considered nonzero.
798 return self._is_special or self._int != '0'
800 def _cmp(self, other):
801 """Compare the two non-NaN decimal instances self and other.
803 Returns -1 if self < other, 0 if self == other and 1
804 if self > other. This routine is for internal use only."""
806 if self._is_special or other._is_special:
807 self_inf = self._isinfinity()
808 other_inf = other._isinfinity()
809 if self_inf == other_inf:
810 return 0
811 elif self_inf < other_inf:
812 return -1
813 else:
814 return 1
816 # check for zeros; Decimal('0') == Decimal('-0')
817 if not self:
818 if not other:
819 return 0
820 else:
821 return -((-1)**other._sign)
822 if not other:
823 return (-1)**self._sign
825 # If different signs, neg one is less
826 if other._sign < self._sign:
827 return -1
828 if self._sign < other._sign:
829 return 1
831 self_adjusted = self.adjusted()
832 other_adjusted = other.adjusted()
833 if self_adjusted == other_adjusted:
834 self_padded = self._int + '0'*(self._exp - other._exp)
835 other_padded = other._int + '0'*(other._exp - self._exp)
836 if self_padded == other_padded:
837 return 0
838 elif self_padded < other_padded:
839 return -(-1)**self._sign
840 else:
841 return (-1)**self._sign
842 elif self_adjusted > other_adjusted:
843 return (-1)**self._sign
844 else: # self_adjusted < other_adjusted
845 return -((-1)**self._sign)
847 # Note: The Decimal standard doesn't cover rich comparisons for
848 # Decimals. In particular, the specification is silent on the
849 # subject of what should happen for a comparison involving a NaN.
850 # We take the following approach:
852 # == comparisons involving a NaN always return False
853 # != comparisons involving a NaN always return True
854 # <, >, <= and >= comparisons involving a (quiet or signaling)
855 # NaN signal InvalidOperation, and return False if the
856 # InvalidOperation is not trapped.
858 # This behavior is designed to conform as closely as possible to
859 # that specified by IEEE 754.
861 def __eq__(self, other):
862 other = _convert_other(other)
863 if other is NotImplemented:
864 return other
865 if self.is_nan() or other.is_nan():
866 return False
867 return self._cmp(other) == 0
869 def __ne__(self, other):
870 other = _convert_other(other)
871 if other is NotImplemented:
872 return other
873 if self.is_nan() or other.is_nan():
874 return True
875 return self._cmp(other) != 0
877 def __lt__(self, other, context=None):
878 other = _convert_other(other)
879 if other is NotImplemented:
880 return other
881 ans = self._compare_check_nans(other, context)
882 if ans:
883 return False
884 return self._cmp(other) < 0
886 def __le__(self, other, context=None):
887 other = _convert_other(other)
888 if other is NotImplemented:
889 return other
890 ans = self._compare_check_nans(other, context)
891 if ans:
892 return False
893 return self._cmp(other) <= 0
895 def __gt__(self, other, context=None):
896 other = _convert_other(other)
897 if other is NotImplemented:
898 return other
899 ans = self._compare_check_nans(other, context)
900 if ans:
901 return False
902 return self._cmp(other) > 0
904 def __ge__(self, other, context=None):
905 other = _convert_other(other)
906 if other is NotImplemented:
907 return other
908 ans = self._compare_check_nans(other, context)
909 if ans:
910 return False
911 return self._cmp(other) >= 0
913 def compare(self, other, context=None):
914 """Compares one to another.
916 -1 => a < b
917 0 => a = b
918 1 => a > b
919 NaN => one is NaN
920 Like __cmp__, but returns Decimal instances.
922 other = _convert_other(other, raiseit=True)
924 # Compare(NaN, NaN) = NaN
925 if (self._is_special or other and other._is_special):
926 ans = self._check_nans(other, context)
927 if ans:
928 return ans
930 return Decimal(self._cmp(other))
932 def __hash__(self):
933 """x.__hash__() <==> hash(x)"""
934 # Decimal integers must hash the same as the ints
936 # The hash of a nonspecial noninteger Decimal must depend only
937 # on the value of that Decimal, and not on its representation.
938 # For example: hash(Decimal('100E-1')) == hash(Decimal('10')).
939 if self._is_special:
940 if self._isnan():
941 raise TypeError('Cannot hash a NaN value.')
942 return hash(str(self))
943 if not self:
944 return 0
945 if self._isinteger():
946 op = _WorkRep(self.to_integral_value())
947 # to make computation feasible for Decimals with large
948 # exponent, we use the fact that hash(n) == hash(m) for
949 # any two nonzero integers n and m such that (i) n and m
950 # have the same sign, and (ii) n is congruent to m modulo
951 # 2**64-1. So we can replace hash((-1)**s*c*10**e) with
952 # hash((-1)**s*c*pow(10, e, 2**64-1).
953 return hash((-1)**op.sign*op.int*pow(10, op.exp, 2**64-1))
954 # The value of a nonzero nonspecial Decimal instance is
955 # faithfully represented by the triple consisting of its sign,
956 # its adjusted exponent, and its coefficient with trailing
957 # zeros removed.
958 return hash((self._sign,
959 self._exp+len(self._int),
960 self._int.rstrip('0')))
962 def as_tuple(self):
963 """Represents the number as a triple tuple.
965 To show the internals exactly as they are.
967 return DecimalTuple(self._sign, tuple(map(int, self._int)), self._exp)
969 def __repr__(self):
970 """Represents the number as an instance of Decimal."""
971 # Invariant: eval(repr(d)) == d
972 return "Decimal('%s')" % str(self)
974 def __str__(self, eng=False, context=None):
975 """Return string representation of the number in scientific notation.
977 Captures all of the information in the underlying representation.
980 sign = ['', '-'][self._sign]
981 if self._is_special:
982 if self._exp == 'F':
983 return sign + 'Infinity'
984 elif self._exp == 'n':
985 return sign + 'NaN' + self._int
986 else: # self._exp == 'N'
987 return sign + 'sNaN' + self._int
989 # number of digits of self._int to left of decimal point
990 leftdigits = self._exp + len(self._int)
992 # dotplace is number of digits of self._int to the left of the
993 # decimal point in the mantissa of the output string (that is,
994 # after adjusting the exponent)
995 if self._exp <= 0 and leftdigits > -6:
996 # no exponent required
997 dotplace = leftdigits
998 elif not eng:
999 # usual scientific notation: 1 digit on left of the point
1000 dotplace = 1
1001 elif self._int == '0':
1002 # engineering notation, zero
1003 dotplace = (leftdigits + 1) % 3 - 1
1004 else:
1005 # engineering notation, nonzero
1006 dotplace = (leftdigits - 1) % 3 + 1
1008 if dotplace <= 0:
1009 intpart = '0'
1010 fracpart = '.' + '0'*(-dotplace) + self._int
1011 elif dotplace >= len(self._int):
1012 intpart = self._int+'0'*(dotplace-len(self._int))
1013 fracpart = ''
1014 else:
1015 intpart = self._int[:dotplace]
1016 fracpart = '.' + self._int[dotplace:]
1017 if leftdigits == dotplace:
1018 exp = ''
1019 else:
1020 if context is None:
1021 context = getcontext()
1022 exp = ['e', 'E'][context.capitals] + "%+d" % (leftdigits-dotplace)
1024 return sign + intpart + fracpart + exp
1026 def to_eng_string(self, context=None):
1027 """Convert to engineering-type string.
1029 Engineering notation has an exponent which is a multiple of 3, so there
1030 are up to 3 digits left of the decimal place.
1032 Same rules for when in exponential and when as a value as in __str__.
1034 return self.__str__(eng=True, context=context)
1036 def __neg__(self, context=None):
1037 """Returns a copy with the sign switched.
1039 Rounds, if it has reason.
1041 if self._is_special:
1042 ans = self._check_nans(context=context)
1043 if ans:
1044 return ans
1046 if not self:
1047 # -Decimal('0') is Decimal('0'), not Decimal('-0')
1048 ans = self.copy_abs()
1049 else:
1050 ans = self.copy_negate()
1052 if context is None:
1053 context = getcontext()
1054 return ans._fix(context)
1056 def __pos__(self, context=None):
1057 """Returns a copy, unless it is a sNaN.
1059 Rounds the number (if more then precision digits)
1061 if self._is_special:
1062 ans = self._check_nans(context=context)
1063 if ans:
1064 return ans
1066 if not self:
1067 # + (-0) = 0
1068 ans = self.copy_abs()
1069 else:
1070 ans = Decimal(self)
1072 if context is None:
1073 context = getcontext()
1074 return ans._fix(context)
1076 def __abs__(self, round=True, context=None):
1077 """Returns the absolute value of self.
1079 If the keyword argument 'round' is false, do not round. The
1080 expression self.__abs__(round=False) is equivalent to
1081 self.copy_abs().
1083 if not round:
1084 return self.copy_abs()
1086 if self._is_special:
1087 ans = self._check_nans(context=context)
1088 if ans:
1089 return ans
1091 if self._sign:
1092 ans = self.__neg__(context=context)
1093 else:
1094 ans = self.__pos__(context=context)
1096 return ans
1098 def __add__(self, other, context=None):
1099 """Returns self + other.
1101 -INF + INF (or the reverse) cause InvalidOperation errors.
1103 other = _convert_other(other)
1104 if other is NotImplemented:
1105 return other
1107 if context is None:
1108 context = getcontext()
1110 if self._is_special or other._is_special:
1111 ans = self._check_nans(other, context)
1112 if ans:
1113 return ans
1115 if self._isinfinity():
1116 # If both INF, same sign => same as both, opposite => error.
1117 if self._sign != other._sign and other._isinfinity():
1118 return context._raise_error(InvalidOperation, '-INF + INF')
1119 return Decimal(self)
1120 if other._isinfinity():
1121 return Decimal(other) # Can't both be infinity here
1123 exp = min(self._exp, other._exp)
1124 negativezero = 0
1125 if context.rounding == ROUND_FLOOR and self._sign != other._sign:
1126 # If the answer is 0, the sign should be negative, in this case.
1127 negativezero = 1
1129 if not self and not other:
1130 sign = min(self._sign, other._sign)
1131 if negativezero:
1132 sign = 1
1133 ans = _dec_from_triple(sign, '0', exp)
1134 ans = ans._fix(context)
1135 return ans
1136 if not self:
1137 exp = max(exp, other._exp - context.prec-1)
1138 ans = other._rescale(exp, context.rounding)
1139 ans = ans._fix(context)
1140 return ans
1141 if not other:
1142 exp = max(exp, self._exp - context.prec-1)
1143 ans = self._rescale(exp, context.rounding)
1144 ans = ans._fix(context)
1145 return ans
1147 op1 = _WorkRep(self)
1148 op2 = _WorkRep(other)
1149 op1, op2 = _normalize(op1, op2, context.prec)
1151 result = _WorkRep()
1152 if op1.sign != op2.sign:
1153 # Equal and opposite
1154 if op1.int == op2.int:
1155 ans = _dec_from_triple(negativezero, '0', exp)
1156 ans = ans._fix(context)
1157 return ans
1158 if op1.int < op2.int:
1159 op1, op2 = op2, op1
1160 # OK, now abs(op1) > abs(op2)
1161 if op1.sign == 1:
1162 result.sign = 1
1163 op1.sign, op2.sign = op2.sign, op1.sign
1164 else:
1165 result.sign = 0
1166 # So we know the sign, and op1 > 0.
1167 elif op1.sign == 1:
1168 result.sign = 1
1169 op1.sign, op2.sign = (0, 0)
1170 else:
1171 result.sign = 0
1172 # Now, op1 > abs(op2) > 0
1174 if op2.sign == 0:
1175 result.int = op1.int + op2.int
1176 else:
1177 result.int = op1.int - op2.int
1179 result.exp = op1.exp
1180 ans = Decimal(result)
1181 ans = ans._fix(context)
1182 return ans
1184 __radd__ = __add__
1186 def __sub__(self, other, context=None):
1187 """Return self - other"""
1188 other = _convert_other(other)
1189 if other is NotImplemented:
1190 return other
1192 if self._is_special or other._is_special:
1193 ans = self._check_nans(other, context=context)
1194 if ans:
1195 return ans
1197 # self - other is computed as self + other.copy_negate()
1198 return self.__add__(other.copy_negate(), context=context)
1200 def __rsub__(self, other, context=None):
1201 """Return other - self"""
1202 other = _convert_other(other)
1203 if other is NotImplemented:
1204 return other
1206 return other.__sub__(self, context=context)
1208 def __mul__(self, other, context=None):
1209 """Return self * other.
1211 (+-) INF * 0 (or its reverse) raise InvalidOperation.
1213 other = _convert_other(other)
1214 if other is NotImplemented:
1215 return other
1217 if context is None:
1218 context = getcontext()
1220 resultsign = self._sign ^ other._sign
1222 if self._is_special or other._is_special:
1223 ans = self._check_nans(other, context)
1224 if ans:
1225 return ans
1227 if self._isinfinity():
1228 if not other:
1229 return context._raise_error(InvalidOperation, '(+-)INF * 0')
1230 return _SignedInfinity[resultsign]
1232 if other._isinfinity():
1233 if not self:
1234 return context._raise_error(InvalidOperation, '0 * (+-)INF')
1235 return _SignedInfinity[resultsign]
1237 resultexp = self._exp + other._exp
1239 # Special case for multiplying by zero
1240 if not self or not other:
1241 ans = _dec_from_triple(resultsign, '0', resultexp)
1242 # Fixing in case the exponent is out of bounds
1243 ans = ans._fix(context)
1244 return ans
1246 # Special case for multiplying by power of 10
1247 if self._int == '1':
1248 ans = _dec_from_triple(resultsign, other._int, resultexp)
1249 ans = ans._fix(context)
1250 return ans
1251 if other._int == '1':
1252 ans = _dec_from_triple(resultsign, self._int, resultexp)
1253 ans = ans._fix(context)
1254 return ans
1256 op1 = _WorkRep(self)
1257 op2 = _WorkRep(other)
1259 ans = _dec_from_triple(resultsign, str(op1.int * op2.int), resultexp)
1260 ans = ans._fix(context)
1262 return ans
1263 __rmul__ = __mul__
1265 def __truediv__(self, other, context=None):
1266 """Return self / other."""
1267 other = _convert_other(other)
1268 if other is NotImplemented:
1269 return NotImplemented
1271 if context is None:
1272 context = getcontext()
1274 sign = self._sign ^ other._sign
1276 if self._is_special or other._is_special:
1277 ans = self._check_nans(other, context)
1278 if ans:
1279 return ans
1281 if self._isinfinity() and other._isinfinity():
1282 return context._raise_error(InvalidOperation, '(+-)INF/(+-)INF')
1284 if self._isinfinity():
1285 return _SignedInfinity[sign]
1287 if other._isinfinity():
1288 context._raise_error(Clamped, 'Division by infinity')
1289 return _dec_from_triple(sign, '0', context.Etiny())
1291 # Special cases for zeroes
1292 if not other:
1293 if not self:
1294 return context._raise_error(DivisionUndefined, '0 / 0')
1295 return context._raise_error(DivisionByZero, 'x / 0', sign)
1297 if not self:
1298 exp = self._exp - other._exp
1299 coeff = 0
1300 else:
1301 # OK, so neither = 0, INF or NaN
1302 shift = len(other._int) - len(self._int) + context.prec + 1
1303 exp = self._exp - other._exp - shift
1304 op1 = _WorkRep(self)
1305 op2 = _WorkRep(other)
1306 if shift >= 0:
1307 coeff, remainder = divmod(op1.int * 10**shift, op2.int)
1308 else:
1309 coeff, remainder = divmod(op1.int, op2.int * 10**-shift)
1310 if remainder:
1311 # result is not exact; adjust to ensure correct rounding
1312 if coeff % 5 == 0:
1313 coeff += 1
1314 else:
1315 # result is exact; get as close to ideal exponent as possible
1316 ideal_exp = self._exp - other._exp
1317 while exp < ideal_exp and coeff % 10 == 0:
1318 coeff //= 10
1319 exp += 1
1321 ans = _dec_from_triple(sign, str(coeff), exp)
1322 return ans._fix(context)
1324 def _divide(self, other, context):
1325 """Return (self // other, self % other), to context.prec precision.
1327 Assumes that neither self nor other is a NaN, that self is not
1328 infinite and that other is nonzero.
1330 sign = self._sign ^ other._sign
1331 if other._isinfinity():
1332 ideal_exp = self._exp
1333 else:
1334 ideal_exp = min(self._exp, other._exp)
1336 expdiff = self.adjusted() - other.adjusted()
1337 if not self or other._isinfinity() or expdiff <= -2:
1338 return (_dec_from_triple(sign, '0', 0),
1339 self._rescale(ideal_exp, context.rounding))
1340 if expdiff <= context.prec:
1341 op1 = _WorkRep(self)
1342 op2 = _WorkRep(other)
1343 if op1.exp >= op2.exp:
1344 op1.int *= 10**(op1.exp - op2.exp)
1345 else:
1346 op2.int *= 10**(op2.exp - op1.exp)
1347 q, r = divmod(op1.int, op2.int)
1348 if q < 10**context.prec:
1349 return (_dec_from_triple(sign, str(q), 0),
1350 _dec_from_triple(self._sign, str(r), ideal_exp))
1352 # Here the quotient is too large to be representable
1353 ans = context._raise_error(DivisionImpossible,
1354 'quotient too large in //, % or divmod')
1355 return ans, ans
1357 def __rtruediv__(self, other, context=None):
1358 """Swaps self/other and returns __truediv__."""
1359 other = _convert_other(other)
1360 if other is NotImplemented:
1361 return other
1362 return other.__truediv__(self, context=context)
1364 __div__ = __truediv__
1365 __rdiv__ = __rtruediv__
1367 def __divmod__(self, other, context=None):
1369 Return (self // other, self % other)
1371 other = _convert_other(other)
1372 if other is NotImplemented:
1373 return other
1375 if context is None:
1376 context = getcontext()
1378 ans = self._check_nans(other, context)
1379 if ans:
1380 return (ans, ans)
1382 sign = self._sign ^ other._sign
1383 if self._isinfinity():
1384 if other._isinfinity():
1385 ans = context._raise_error(InvalidOperation, 'divmod(INF, INF)')
1386 return ans, ans
1387 else:
1388 return (_SignedInfinity[sign],
1389 context._raise_error(InvalidOperation, 'INF % x'))
1391 if not other:
1392 if not self:
1393 ans = context._raise_error(DivisionUndefined, 'divmod(0, 0)')
1394 return ans, ans
1395 else:
1396 return (context._raise_error(DivisionByZero, 'x // 0', sign),
1397 context._raise_error(InvalidOperation, 'x % 0'))
1399 quotient, remainder = self._divide(other, context)
1400 remainder = remainder._fix(context)
1401 return quotient, remainder
1403 def __rdivmod__(self, other, context=None):
1404 """Swaps self/other and returns __divmod__."""
1405 other = _convert_other(other)
1406 if other is NotImplemented:
1407 return other
1408 return other.__divmod__(self, context=context)
1410 def __mod__(self, other, context=None):
1412 self % other
1414 other = _convert_other(other)
1415 if other is NotImplemented:
1416 return other
1418 if context is None:
1419 context = getcontext()
1421 ans = self._check_nans(other, context)
1422 if ans:
1423 return ans
1425 if self._isinfinity():
1426 return context._raise_error(InvalidOperation, 'INF % x')
1427 elif not other:
1428 if self:
1429 return context._raise_error(InvalidOperation, 'x % 0')
1430 else:
1431 return context._raise_error(DivisionUndefined, '0 % 0')
1433 remainder = self._divide(other, context)[1]
1434 remainder = remainder._fix(context)
1435 return remainder
1437 def __rmod__(self, other, context=None):
1438 """Swaps self/other and returns __mod__."""
1439 other = _convert_other(other)
1440 if other is NotImplemented:
1441 return other
1442 return other.__mod__(self, context=context)
1444 def remainder_near(self, other, context=None):
1446 Remainder nearest to 0- abs(remainder-near) <= other/2
1448 if context is None:
1449 context = getcontext()
1451 other = _convert_other(other, raiseit=True)
1453 ans = self._check_nans(other, context)
1454 if ans:
1455 return ans
1457 # self == +/-infinity -> InvalidOperation
1458 if self._isinfinity():
1459 return context._raise_error(InvalidOperation,
1460 'remainder_near(infinity, x)')
1462 # other == 0 -> either InvalidOperation or DivisionUndefined
1463 if not other:
1464 if self:
1465 return context._raise_error(InvalidOperation,
1466 'remainder_near(x, 0)')
1467 else:
1468 return context._raise_error(DivisionUndefined,
1469 'remainder_near(0, 0)')
1471 # other = +/-infinity -> remainder = self
1472 if other._isinfinity():
1473 ans = Decimal(self)
1474 return ans._fix(context)
1476 # self = 0 -> remainder = self, with ideal exponent
1477 ideal_exponent = min(self._exp, other._exp)
1478 if not self:
1479 ans = _dec_from_triple(self._sign, '0', ideal_exponent)
1480 return ans._fix(context)
1482 # catch most cases of large or small quotient
1483 expdiff = self.adjusted() - other.adjusted()
1484 if expdiff >= context.prec + 1:
1485 # expdiff >= prec+1 => abs(self/other) > 10**prec
1486 return context._raise_error(DivisionImpossible)
1487 if expdiff <= -2:
1488 # expdiff <= -2 => abs(self/other) < 0.1
1489 ans = self._rescale(ideal_exponent, context.rounding)
1490 return ans._fix(context)
1492 # adjust both arguments to have the same exponent, then divide
1493 op1 = _WorkRep(self)
1494 op2 = _WorkRep(other)
1495 if op1.exp >= op2.exp:
1496 op1.int *= 10**(op1.exp - op2.exp)
1497 else:
1498 op2.int *= 10**(op2.exp - op1.exp)
1499 q, r = divmod(op1.int, op2.int)
1500 # remainder is r*10**ideal_exponent; other is +/-op2.int *
1501 # 10**ideal_exponent. Apply correction to ensure that
1502 # abs(remainder) <= abs(other)/2
1503 if 2*r + (q&1) > op2.int:
1504 r -= op2.int
1505 q += 1
1507 if q >= 10**context.prec:
1508 return context._raise_error(DivisionImpossible)
1510 # result has same sign as self unless r is negative
1511 sign = self._sign
1512 if r < 0:
1513 sign = 1-sign
1514 r = -r
1516 ans = _dec_from_triple(sign, str(r), ideal_exponent)
1517 return ans._fix(context)
1519 def __floordiv__(self, other, context=None):
1520 """self // other"""
1521 other = _convert_other(other)
1522 if other is NotImplemented:
1523 return other
1525 if context is None:
1526 context = getcontext()
1528 ans = self._check_nans(other, context)
1529 if ans:
1530 return ans
1532 if self._isinfinity():
1533 if other._isinfinity():
1534 return context._raise_error(InvalidOperation, 'INF // INF')
1535 else:
1536 return _SignedInfinity[self._sign ^ other._sign]
1538 if not other:
1539 if self:
1540 return context._raise_error(DivisionByZero, 'x // 0',
1541 self._sign ^ other._sign)
1542 else:
1543 return context._raise_error(DivisionUndefined, '0 // 0')
1545 return self._divide(other, context)[0]
1547 def __rfloordiv__(self, other, context=None):
1548 """Swaps self/other and returns __floordiv__."""
1549 other = _convert_other(other)
1550 if other is NotImplemented:
1551 return other
1552 return other.__floordiv__(self, context=context)
1554 def __float__(self):
1555 """Float representation."""
1556 return float(str(self))
1558 def __int__(self):
1559 """Converts self to an int, truncating if necessary."""
1560 if self._is_special:
1561 if self._isnan():
1562 context = getcontext()
1563 return context._raise_error(InvalidContext)
1564 elif self._isinfinity():
1565 raise OverflowError("Cannot convert infinity to int")
1566 s = (-1)**self._sign
1567 if self._exp >= 0:
1568 return s*int(self._int)*10**self._exp
1569 else:
1570 return s*int(self._int[:self._exp] or '0')
1572 __trunc__ = __int__
1574 def real(self):
1575 return self
1576 real = property(real)
1578 def imag(self):
1579 return Decimal(0)
1580 imag = property(imag)
1582 def conjugate(self):
1583 return self
1585 def __complex__(self):
1586 return complex(float(self))
1588 def __long__(self):
1589 """Converts to a long.
1591 Equivalent to long(int(self))
1593 return long(self.__int__())
1595 def _fix_nan(self, context):
1596 """Decapitate the payload of a NaN to fit the context"""
1597 payload = self._int
1599 # maximum length of payload is precision if _clamp=0,
1600 # precision-1 if _clamp=1.
1601 max_payload_len = context.prec - context._clamp
1602 if len(payload) > max_payload_len:
1603 payload = payload[len(payload)-max_payload_len:].lstrip('0')
1604 return _dec_from_triple(self._sign, payload, self._exp, True)
1605 return Decimal(self)
1607 def _fix(self, context):
1608 """Round if it is necessary to keep self within prec precision.
1610 Rounds and fixes the exponent. Does not raise on a sNaN.
1612 Arguments:
1613 self - Decimal instance
1614 context - context used.
1617 if self._is_special:
1618 if self._isnan():
1619 # decapitate payload if necessary
1620 return self._fix_nan(context)
1621 else:
1622 # self is +/-Infinity; return unaltered
1623 return Decimal(self)
1625 # if self is zero then exponent should be between Etiny and
1626 # Emax if _clamp==0, and between Etiny and Etop if _clamp==1.
1627 Etiny = context.Etiny()
1628 Etop = context.Etop()
1629 if not self:
1630 exp_max = [context.Emax, Etop][context._clamp]
1631 new_exp = min(max(self._exp, Etiny), exp_max)
1632 if new_exp != self._exp:
1633 context._raise_error(Clamped)
1634 return _dec_from_triple(self._sign, '0', new_exp)
1635 else:
1636 return Decimal(self)
1638 # exp_min is the smallest allowable exponent of the result,
1639 # equal to max(self.adjusted()-context.prec+1, Etiny)
1640 exp_min = len(self._int) + self._exp - context.prec
1641 if exp_min > Etop:
1642 # overflow: exp_min > Etop iff self.adjusted() > Emax
1643 context._raise_error(Inexact)
1644 context._raise_error(Rounded)
1645 return context._raise_error(Overflow, 'above Emax', self._sign)
1646 self_is_subnormal = exp_min < Etiny
1647 if self_is_subnormal:
1648 context._raise_error(Subnormal)
1649 exp_min = Etiny
1651 # round if self has too many digits
1652 if self._exp < exp_min:
1653 context._raise_error(Rounded)
1654 digits = len(self._int) + self._exp - exp_min
1655 if digits < 0:
1656 self = _dec_from_triple(self._sign, '1', exp_min-1)
1657 digits = 0
1658 this_function = getattr(self, self._pick_rounding_function[context.rounding])
1659 changed = this_function(digits)
1660 coeff = self._int[:digits] or '0'
1661 if changed == 1:
1662 coeff = str(int(coeff)+1)
1663 ans = _dec_from_triple(self._sign, coeff, exp_min)
1665 if changed:
1666 context._raise_error(Inexact)
1667 if self_is_subnormal:
1668 context._raise_error(Underflow)
1669 if not ans:
1670 # raise Clamped on underflow to 0
1671 context._raise_error(Clamped)
1672 elif len(ans._int) == context.prec+1:
1673 # we get here only if rescaling rounds the
1674 # cofficient up to exactly 10**context.prec
1675 if ans._exp < Etop:
1676 ans = _dec_from_triple(ans._sign,
1677 ans._int[:-1], ans._exp+1)
1678 else:
1679 # Inexact and Rounded have already been raised
1680 ans = context._raise_error(Overflow, 'above Emax',
1681 self._sign)
1682 return ans
1684 # fold down if _clamp == 1 and self has too few digits
1685 if context._clamp == 1 and self._exp > Etop:
1686 context._raise_error(Clamped)
1687 self_padded = self._int + '0'*(self._exp - Etop)
1688 return _dec_from_triple(self._sign, self_padded, Etop)
1690 # here self was representable to begin with; return unchanged
1691 return Decimal(self)
1693 _pick_rounding_function = {}
1695 # for each of the rounding functions below:
1696 # self is a finite, nonzero Decimal
1697 # prec is an integer satisfying 0 <= prec < len(self._int)
1699 # each function returns either -1, 0, or 1, as follows:
1700 # 1 indicates that self should be rounded up (away from zero)
1701 # 0 indicates that self should be truncated, and that all the
1702 # digits to be truncated are zeros (so the value is unchanged)
1703 # -1 indicates that there are nonzero digits to be truncated
1705 def _round_down(self, prec):
1706 """Also known as round-towards-0, truncate."""
1707 if _all_zeros(self._int, prec):
1708 return 0
1709 else:
1710 return -1
1712 def _round_up(self, prec):
1713 """Rounds away from 0."""
1714 return -self._round_down(prec)
1716 def _round_half_up(self, prec):
1717 """Rounds 5 up (away from 0)"""
1718 if self._int[prec] in '56789':
1719 return 1
1720 elif _all_zeros(self._int, prec):
1721 return 0
1722 else:
1723 return -1
1725 def _round_half_down(self, prec):
1726 """Round 5 down"""
1727 if _exact_half(self._int, prec):
1728 return -1
1729 else:
1730 return self._round_half_up(prec)
1732 def _round_half_even(self, prec):
1733 """Round 5 to even, rest to nearest."""
1734 if _exact_half(self._int, prec) and \
1735 (prec == 0 or self._int[prec-1] in '02468'):
1736 return -1
1737 else:
1738 return self._round_half_up(prec)
1740 def _round_ceiling(self, prec):
1741 """Rounds up (not away from 0 if negative.)"""
1742 if self._sign:
1743 return self._round_down(prec)
1744 else:
1745 return -self._round_down(prec)
1747 def _round_floor(self, prec):
1748 """Rounds down (not towards 0 if negative)"""
1749 if not self._sign:
1750 return self._round_down(prec)
1751 else:
1752 return -self._round_down(prec)
1754 def _round_05up(self, prec):
1755 """Round down unless digit prec-1 is 0 or 5."""
1756 if prec and self._int[prec-1] not in '05':
1757 return self._round_down(prec)
1758 else:
1759 return -self._round_down(prec)
1761 def fma(self, other, third, context=None):
1762 """Fused multiply-add.
1764 Returns self*other+third with no rounding of the intermediate
1765 product self*other.
1767 self and other are multiplied together, with no rounding of
1768 the result. The third operand is then added to the result,
1769 and a single final rounding is performed.
1772 other = _convert_other(other, raiseit=True)
1774 # compute product; raise InvalidOperation if either operand is
1775 # a signaling NaN or if the product is zero times infinity.
1776 if self._is_special or other._is_special:
1777 if context is None:
1778 context = getcontext()
1779 if self._exp == 'N':
1780 return context._raise_error(InvalidOperation, 'sNaN', self)
1781 if other._exp == 'N':
1782 return context._raise_error(InvalidOperation, 'sNaN', other)
1783 if self._exp == 'n':
1784 product = self
1785 elif other._exp == 'n':
1786 product = other
1787 elif self._exp == 'F':
1788 if not other:
1789 return context._raise_error(InvalidOperation,
1790 'INF * 0 in fma')
1791 product = _SignedInfinity[self._sign ^ other._sign]
1792 elif other._exp == 'F':
1793 if not self:
1794 return context._raise_error(InvalidOperation,
1795 '0 * INF in fma')
1796 product = _SignedInfinity[self._sign ^ other._sign]
1797 else:
1798 product = _dec_from_triple(self._sign ^ other._sign,
1799 str(int(self._int) * int(other._int)),
1800 self._exp + other._exp)
1802 third = _convert_other(third, raiseit=True)
1803 return product.__add__(third, context)
1805 def _power_modulo(self, other, modulo, context=None):
1806 """Three argument version of __pow__"""
1808 # if can't convert other and modulo to Decimal, raise
1809 # TypeError; there's no point returning NotImplemented (no
1810 # equivalent of __rpow__ for three argument pow)
1811 other = _convert_other(other, raiseit=True)
1812 modulo = _convert_other(modulo, raiseit=True)
1814 if context is None:
1815 context = getcontext()
1817 # deal with NaNs: if there are any sNaNs then first one wins,
1818 # (i.e. behaviour for NaNs is identical to that of fma)
1819 self_is_nan = self._isnan()
1820 other_is_nan = other._isnan()
1821 modulo_is_nan = modulo._isnan()
1822 if self_is_nan or other_is_nan or modulo_is_nan:
1823 if self_is_nan == 2:
1824 return context._raise_error(InvalidOperation, 'sNaN',
1825 self)
1826 if other_is_nan == 2:
1827 return context._raise_error(InvalidOperation, 'sNaN',
1828 other)
1829 if modulo_is_nan == 2:
1830 return context._raise_error(InvalidOperation, 'sNaN',
1831 modulo)
1832 if self_is_nan:
1833 return self._fix_nan(context)
1834 if other_is_nan:
1835 return other._fix_nan(context)
1836 return modulo._fix_nan(context)
1838 # check inputs: we apply same restrictions as Python's pow()
1839 if not (self._isinteger() and
1840 other._isinteger() and
1841 modulo._isinteger()):
1842 return context._raise_error(InvalidOperation,
1843 'pow() 3rd argument not allowed '
1844 'unless all arguments are integers')
1845 if other < 0:
1846 return context._raise_error(InvalidOperation,
1847 'pow() 2nd argument cannot be '
1848 'negative when 3rd argument specified')
1849 if not modulo:
1850 return context._raise_error(InvalidOperation,
1851 'pow() 3rd argument cannot be 0')
1853 # additional restriction for decimal: the modulus must be less
1854 # than 10**prec in absolute value
1855 if modulo.adjusted() >= context.prec:
1856 return context._raise_error(InvalidOperation,
1857 'insufficient precision: pow() 3rd '
1858 'argument must not have more than '
1859 'precision digits')
1861 # define 0**0 == NaN, for consistency with two-argument pow
1862 # (even though it hurts!)
1863 if not other and not self:
1864 return context._raise_error(InvalidOperation,
1865 'at least one of pow() 1st argument '
1866 'and 2nd argument must be nonzero ;'
1867 '0**0 is not defined')
1869 # compute sign of result
1870 if other._iseven():
1871 sign = 0
1872 else:
1873 sign = self._sign
1875 # convert modulo to a Python integer, and self and other to
1876 # Decimal integers (i.e. force their exponents to be >= 0)
1877 modulo = abs(int(modulo))
1878 base = _WorkRep(self.to_integral_value())
1879 exponent = _WorkRep(other.to_integral_value())
1881 # compute result using integer pow()
1882 base = (base.int % modulo * pow(10, base.exp, modulo)) % modulo
1883 for i in xrange(exponent.exp):
1884 base = pow(base, 10, modulo)
1885 base = pow(base, exponent.int, modulo)
1887 return _dec_from_triple(sign, str(base), 0)
1889 def _power_exact(self, other, p):
1890 """Attempt to compute self**other exactly.
1892 Given Decimals self and other and an integer p, attempt to
1893 compute an exact result for the power self**other, with p
1894 digits of precision. Return None if self**other is not
1895 exactly representable in p digits.
1897 Assumes that elimination of special cases has already been
1898 performed: self and other must both be nonspecial; self must
1899 be positive and not numerically equal to 1; other must be
1900 nonzero. For efficiency, other._exp should not be too large,
1901 so that 10**abs(other._exp) is a feasible calculation."""
1903 # In the comments below, we write x for the value of self and
1904 # y for the value of other. Write x = xc*10**xe and y =
1905 # yc*10**ye.
1907 # The main purpose of this method is to identify the *failure*
1908 # of x**y to be exactly representable with as little effort as
1909 # possible. So we look for cheap and easy tests that
1910 # eliminate the possibility of x**y being exact. Only if all
1911 # these tests are passed do we go on to actually compute x**y.
1913 # Here's the main idea. First normalize both x and y. We
1914 # express y as a rational m/n, with m and n relatively prime
1915 # and n>0. Then for x**y to be exactly representable (at
1916 # *any* precision), xc must be the nth power of a positive
1917 # integer and xe must be divisible by n. If m is negative
1918 # then additionally xc must be a power of either 2 or 5, hence
1919 # a power of 2**n or 5**n.
1921 # There's a limit to how small |y| can be: if y=m/n as above
1922 # then:
1924 # (1) if xc != 1 then for the result to be representable we
1925 # need xc**(1/n) >= 2, and hence also xc**|y| >= 2. So
1926 # if |y| <= 1/nbits(xc) then xc < 2**nbits(xc) <=
1927 # 2**(1/|y|), hence xc**|y| < 2 and the result is not
1928 # representable.
1930 # (2) if xe != 0, |xe|*(1/n) >= 1, so |xe|*|y| >= 1. Hence if
1931 # |y| < 1/|xe| then the result is not representable.
1933 # Note that since x is not equal to 1, at least one of (1) and
1934 # (2) must apply. Now |y| < 1/nbits(xc) iff |yc|*nbits(xc) <
1935 # 10**-ye iff len(str(|yc|*nbits(xc)) <= -ye.
1937 # There's also a limit to how large y can be, at least if it's
1938 # positive: the normalized result will have coefficient xc**y,
1939 # so if it's representable then xc**y < 10**p, and y <
1940 # p/log10(xc). Hence if y*log10(xc) >= p then the result is
1941 # not exactly representable.
1943 # if len(str(abs(yc*xe)) <= -ye then abs(yc*xe) < 10**-ye,
1944 # so |y| < 1/xe and the result is not representable.
1945 # Similarly, len(str(abs(yc)*xc_bits)) <= -ye implies |y|
1946 # < 1/nbits(xc).
1948 x = _WorkRep(self)
1949 xc, xe = x.int, x.exp
1950 while xc % 10 == 0:
1951 xc //= 10
1952 xe += 1
1954 y = _WorkRep(other)
1955 yc, ye = y.int, y.exp
1956 while yc % 10 == 0:
1957 yc //= 10
1958 ye += 1
1960 # case where xc == 1: result is 10**(xe*y), with xe*y
1961 # required to be an integer
1962 if xc == 1:
1963 if ye >= 0:
1964 exponent = xe*yc*10**ye
1965 else:
1966 exponent, remainder = divmod(xe*yc, 10**-ye)
1967 if remainder:
1968 return None
1969 if y.sign == 1:
1970 exponent = -exponent
1971 # if other is a nonnegative integer, use ideal exponent
1972 if other._isinteger() and other._sign == 0:
1973 ideal_exponent = self._exp*int(other)
1974 zeros = min(exponent-ideal_exponent, p-1)
1975 else:
1976 zeros = 0
1977 return _dec_from_triple(0, '1' + '0'*zeros, exponent-zeros)
1979 # case where y is negative: xc must be either a power
1980 # of 2 or a power of 5.
1981 if y.sign == 1:
1982 last_digit = xc % 10
1983 if last_digit in (2,4,6,8):
1984 # quick test for power of 2
1985 if xc & -xc != xc:
1986 return None
1987 # now xc is a power of 2; e is its exponent
1988 e = _nbits(xc)-1
1989 # find e*y and xe*y; both must be integers
1990 if ye >= 0:
1991 y_as_int = yc*10**ye
1992 e = e*y_as_int
1993 xe = xe*y_as_int
1994 else:
1995 ten_pow = 10**-ye
1996 e, remainder = divmod(e*yc, ten_pow)
1997 if remainder:
1998 return None
1999 xe, remainder = divmod(xe*yc, ten_pow)
2000 if remainder:
2001 return None
2003 if e*65 >= p*93: # 93/65 > log(10)/log(5)
2004 return None
2005 xc = 5**e
2007 elif last_digit == 5:
2008 # e >= log_5(xc) if xc is a power of 5; we have
2009 # equality all the way up to xc=5**2658
2010 e = _nbits(xc)*28//65
2011 xc, remainder = divmod(5**e, xc)
2012 if remainder:
2013 return None
2014 while xc % 5 == 0:
2015 xc //= 5
2016 e -= 1
2017 if ye >= 0:
2018 y_as_integer = yc*10**ye
2019 e = e*y_as_integer
2020 xe = xe*y_as_integer
2021 else:
2022 ten_pow = 10**-ye
2023 e, remainder = divmod(e*yc, ten_pow)
2024 if remainder:
2025 return None
2026 xe, remainder = divmod(xe*yc, ten_pow)
2027 if remainder:
2028 return None
2029 if e*3 >= p*10: # 10/3 > log(10)/log(2)
2030 return None
2031 xc = 2**e
2032 else:
2033 return None
2035 if xc >= 10**p:
2036 return None
2037 xe = -e-xe
2038 return _dec_from_triple(0, str(xc), xe)
2040 # now y is positive; find m and n such that y = m/n
2041 if ye >= 0:
2042 m, n = yc*10**ye, 1
2043 else:
2044 if xe != 0 and len(str(abs(yc*xe))) <= -ye:
2045 return None
2046 xc_bits = _nbits(xc)
2047 if xc != 1 and len(str(abs(yc)*xc_bits)) <= -ye:
2048 return None
2049 m, n = yc, 10**(-ye)
2050 while m % 2 == n % 2 == 0:
2051 m //= 2
2052 n //= 2
2053 while m % 5 == n % 5 == 0:
2054 m //= 5
2055 n //= 5
2057 # compute nth root of xc*10**xe
2058 if n > 1:
2059 # if 1 < xc < 2**n then xc isn't an nth power
2060 if xc != 1 and xc_bits <= n:
2061 return None
2063 xe, rem = divmod(xe, n)
2064 if rem != 0:
2065 return None
2067 # compute nth root of xc using Newton's method
2068 a = 1L << -(-_nbits(xc)//n) # initial estimate
2069 while True:
2070 q, r = divmod(xc, a**(n-1))
2071 if a <= q:
2072 break
2073 else:
2074 a = (a*(n-1) + q)//n
2075 if not (a == q and r == 0):
2076 return None
2077 xc = a
2079 # now xc*10**xe is the nth root of the original xc*10**xe
2080 # compute mth power of xc*10**xe
2082 # if m > p*100//_log10_lb(xc) then m > p/log10(xc), hence xc**m >
2083 # 10**p and the result is not representable.
2084 if xc > 1 and m > p*100//_log10_lb(xc):
2085 return None
2086 xc = xc**m
2087 xe *= m
2088 if xc > 10**p:
2089 return None
2091 # by this point the result *is* exactly representable
2092 # adjust the exponent to get as close as possible to the ideal
2093 # exponent, if necessary
2094 str_xc = str(xc)
2095 if other._isinteger() and other._sign == 0:
2096 ideal_exponent = self._exp*int(other)
2097 zeros = min(xe-ideal_exponent, p-len(str_xc))
2098 else:
2099 zeros = 0
2100 return _dec_from_triple(0, str_xc+'0'*zeros, xe-zeros)
2102 def __pow__(self, other, modulo=None, context=None):
2103 """Return self ** other [ % modulo].
2105 With two arguments, compute self**other.
2107 With three arguments, compute (self**other) % modulo. For the
2108 three argument form, the following restrictions on the
2109 arguments hold:
2111 - all three arguments must be integral
2112 - other must be nonnegative
2113 - either self or other (or both) must be nonzero
2114 - modulo must be nonzero and must have at most p digits,
2115 where p is the context precision.
2117 If any of these restrictions is violated the InvalidOperation
2118 flag is raised.
2120 The result of pow(self, other, modulo) is identical to the
2121 result that would be obtained by computing (self**other) %
2122 modulo with unbounded precision, but is computed more
2123 efficiently. It is always exact.
2126 if modulo is not None:
2127 return self._power_modulo(other, modulo, context)
2129 other = _convert_other(other)
2130 if other is NotImplemented:
2131 return other
2133 if context is None:
2134 context = getcontext()
2136 # either argument is a NaN => result is NaN
2137 ans = self._check_nans(other, context)
2138 if ans:
2139 return ans
2141 # 0**0 = NaN (!), x**0 = 1 for nonzero x (including +/-Infinity)
2142 if not other:
2143 if not self:
2144 return context._raise_error(InvalidOperation, '0 ** 0')
2145 else:
2146 return _One
2148 # result has sign 1 iff self._sign is 1 and other is an odd integer
2149 result_sign = 0
2150 if self._sign == 1:
2151 if other._isinteger():
2152 if not other._iseven():
2153 result_sign = 1
2154 else:
2155 # -ve**noninteger = NaN
2156 # (-0)**noninteger = 0**noninteger
2157 if self:
2158 return context._raise_error(InvalidOperation,
2159 'x ** y with x negative and y not an integer')
2160 # negate self, without doing any unwanted rounding
2161 self = self.copy_negate()
2163 # 0**(+ve or Inf)= 0; 0**(-ve or -Inf) = Infinity
2164 if not self:
2165 if other._sign == 0:
2166 return _dec_from_triple(result_sign, '0', 0)
2167 else:
2168 return _SignedInfinity[result_sign]
2170 # Inf**(+ve or Inf) = Inf; Inf**(-ve or -Inf) = 0
2171 if self._isinfinity():
2172 if other._sign == 0:
2173 return _SignedInfinity[result_sign]
2174 else:
2175 return _dec_from_triple(result_sign, '0', 0)
2177 # 1**other = 1, but the choice of exponent and the flags
2178 # depend on the exponent of self, and on whether other is a
2179 # positive integer, a negative integer, or neither
2180 if self == _One:
2181 if other._isinteger():
2182 # exp = max(self._exp*max(int(other), 0),
2183 # 1-context.prec) but evaluating int(other) directly
2184 # is dangerous until we know other is small (other
2185 # could be 1e999999999)
2186 if other._sign == 1:
2187 multiplier = 0
2188 elif other > context.prec:
2189 multiplier = context.prec
2190 else:
2191 multiplier = int(other)
2193 exp = self._exp * multiplier
2194 if exp < 1-context.prec:
2195 exp = 1-context.prec
2196 context._raise_error(Rounded)
2197 else:
2198 context._raise_error(Inexact)
2199 context._raise_error(Rounded)
2200 exp = 1-context.prec
2202 return _dec_from_triple(result_sign, '1'+'0'*-exp, exp)
2204 # compute adjusted exponent of self
2205 self_adj = self.adjusted()
2207 # self ** infinity is infinity if self > 1, 0 if self < 1
2208 # self ** -infinity is infinity if self < 1, 0 if self > 1
2209 if other._isinfinity():
2210 if (other._sign == 0) == (self_adj < 0):
2211 return _dec_from_triple(result_sign, '0', 0)
2212 else:
2213 return _SignedInfinity[result_sign]
2215 # from here on, the result always goes through the call
2216 # to _fix at the end of this function.
2217 ans = None
2219 # crude test to catch cases of extreme overflow/underflow. If
2220 # log10(self)*other >= 10**bound and bound >= len(str(Emax))
2221 # then 10**bound >= 10**len(str(Emax)) >= Emax+1 and hence
2222 # self**other >= 10**(Emax+1), so overflow occurs. The test
2223 # for underflow is similar.
2224 bound = self._log10_exp_bound() + other.adjusted()
2225 if (self_adj >= 0) == (other._sign == 0):
2226 # self > 1 and other +ve, or self < 1 and other -ve
2227 # possibility of overflow
2228 if bound >= len(str(context.Emax)):
2229 ans = _dec_from_triple(result_sign, '1', context.Emax+1)
2230 else:
2231 # self > 1 and other -ve, or self < 1 and other +ve
2232 # possibility of underflow to 0
2233 Etiny = context.Etiny()
2234 if bound >= len(str(-Etiny)):
2235 ans = _dec_from_triple(result_sign, '1', Etiny-1)
2237 # try for an exact result with precision +1
2238 if ans is None:
2239 ans = self._power_exact(other, context.prec + 1)
2240 if ans is not None and result_sign == 1:
2241 ans = _dec_from_triple(1, ans._int, ans._exp)
2243 # usual case: inexact result, x**y computed directly as exp(y*log(x))
2244 if ans is None:
2245 p = context.prec
2246 x = _WorkRep(self)
2247 xc, xe = x.int, x.exp
2248 y = _WorkRep(other)
2249 yc, ye = y.int, y.exp
2250 if y.sign == 1:
2251 yc = -yc
2253 # compute correctly rounded result: start with precision +3,
2254 # then increase precision until result is unambiguously roundable
2255 extra = 3
2256 while True:
2257 coeff, exp = _dpower(xc, xe, yc, ye, p+extra)
2258 if coeff % (5*10**(len(str(coeff))-p-1)):
2259 break
2260 extra += 3
2262 ans = _dec_from_triple(result_sign, str(coeff), exp)
2264 # the specification says that for non-integer other we need to
2265 # raise Inexact, even when the result is actually exact. In
2266 # the same way, we need to raise Underflow here if the result
2267 # is subnormal. (The call to _fix will take care of raising
2268 # Rounded and Subnormal, as usual.)
2269 if not other._isinteger():
2270 context._raise_error(Inexact)
2271 # pad with zeros up to length context.prec+1 if necessary
2272 if len(ans._int) <= context.prec:
2273 expdiff = context.prec+1 - len(ans._int)
2274 ans = _dec_from_triple(ans._sign, ans._int+'0'*expdiff,
2275 ans._exp-expdiff)
2276 if ans.adjusted() < context.Emin:
2277 context._raise_error(Underflow)
2279 # unlike exp, ln and log10, the power function respects the
2280 # rounding mode; no need to use ROUND_HALF_EVEN here
2281 ans = ans._fix(context)
2282 return ans
2284 def __rpow__(self, other, context=None):
2285 """Swaps self/other and returns __pow__."""
2286 other = _convert_other(other)
2287 if other is NotImplemented:
2288 return other
2289 return other.__pow__(self, context=context)
2291 def normalize(self, context=None):
2292 """Normalize- strip trailing 0s, change anything equal to 0 to 0e0"""
2294 if context is None:
2295 context = getcontext()
2297 if self._is_special:
2298 ans = self._check_nans(context=context)
2299 if ans:
2300 return ans
2302 dup = self._fix(context)
2303 if dup._isinfinity():
2304 return dup
2306 if not dup:
2307 return _dec_from_triple(dup._sign, '0', 0)
2308 exp_max = [context.Emax, context.Etop()][context._clamp]
2309 end = len(dup._int)
2310 exp = dup._exp
2311 while dup._int[end-1] == '0' and exp < exp_max:
2312 exp += 1
2313 end -= 1
2314 return _dec_from_triple(dup._sign, dup._int[:end], exp)
2316 def quantize(self, exp, rounding=None, context=None, watchexp=True):
2317 """Quantize self so its exponent is the same as that of exp.
2319 Similar to self._rescale(exp._exp) but with error checking.
2321 exp = _convert_other(exp, raiseit=True)
2323 if context is None:
2324 context = getcontext()
2325 if rounding is None:
2326 rounding = context.rounding
2328 if self._is_special or exp._is_special:
2329 ans = self._check_nans(exp, context)
2330 if ans:
2331 return ans
2333 if exp._isinfinity() or self._isinfinity():
2334 if exp._isinfinity() and self._isinfinity():
2335 return Decimal(self) # if both are inf, it is OK
2336 return context._raise_error(InvalidOperation,
2337 'quantize with one INF')
2339 # if we're not watching exponents, do a simple rescale
2340 if not watchexp:
2341 ans = self._rescale(exp._exp, rounding)
2342 # raise Inexact and Rounded where appropriate
2343 if ans._exp > self._exp:
2344 context._raise_error(Rounded)
2345 if ans != self:
2346 context._raise_error(Inexact)
2347 return ans
2349 # exp._exp should be between Etiny and Emax
2350 if not (context.Etiny() <= exp._exp <= context.Emax):
2351 return context._raise_error(InvalidOperation,
2352 'target exponent out of bounds in quantize')
2354 if not self:
2355 ans = _dec_from_triple(self._sign, '0', exp._exp)
2356 return ans._fix(context)
2358 self_adjusted = self.adjusted()
2359 if self_adjusted > context.Emax:
2360 return context._raise_error(InvalidOperation,
2361 'exponent of quantize result too large for current context')
2362 if self_adjusted - exp._exp + 1 > context.prec:
2363 return context._raise_error(InvalidOperation,
2364 'quantize result has too many digits for current context')
2366 ans = self._rescale(exp._exp, rounding)
2367 if ans.adjusted() > context.Emax:
2368 return context._raise_error(InvalidOperation,
2369 'exponent of quantize result too large for current context')
2370 if len(ans._int) > context.prec:
2371 return context._raise_error(InvalidOperation,
2372 'quantize result has too many digits for current context')
2374 # raise appropriate flags
2375 if ans._exp > self._exp:
2376 context._raise_error(Rounded)
2377 if ans != self:
2378 context._raise_error(Inexact)
2379 if ans and ans.adjusted() < context.Emin:
2380 context._raise_error(Subnormal)
2382 # call to fix takes care of any necessary folddown
2383 ans = ans._fix(context)
2384 return ans
2386 def same_quantum(self, other):
2387 """Return True if self and other have the same exponent; otherwise
2388 return False.
2390 If either operand is a special value, the following rules are used:
2391 * return True if both operands are infinities
2392 * return True if both operands are NaNs
2393 * otherwise, return False.
2395 other = _convert_other(other, raiseit=True)
2396 if self._is_special or other._is_special:
2397 return (self.is_nan() and other.is_nan() or
2398 self.is_infinite() and other.is_infinite())
2399 return self._exp == other._exp
2401 def _rescale(self, exp, rounding):
2402 """Rescale self so that the exponent is exp, either by padding with zeros
2403 or by truncating digits, using the given rounding mode.
2405 Specials are returned without change. This operation is
2406 quiet: it raises no flags, and uses no information from the
2407 context.
2409 exp = exp to scale to (an integer)
2410 rounding = rounding mode
2412 if self._is_special:
2413 return Decimal(self)
2414 if not self:
2415 return _dec_from_triple(self._sign, '0', exp)
2417 if self._exp >= exp:
2418 # pad answer with zeros if necessary
2419 return _dec_from_triple(self._sign,
2420 self._int + '0'*(self._exp - exp), exp)
2422 # too many digits; round and lose data. If self.adjusted() <
2423 # exp-1, replace self by 10**(exp-1) before rounding
2424 digits = len(self._int) + self._exp - exp
2425 if digits < 0:
2426 self = _dec_from_triple(self._sign, '1', exp-1)
2427 digits = 0
2428 this_function = getattr(self, self._pick_rounding_function[rounding])
2429 changed = this_function(digits)
2430 coeff = self._int[:digits] or '0'
2431 if changed == 1:
2432 coeff = str(int(coeff)+1)
2433 return _dec_from_triple(self._sign, coeff, exp)
2435 def _round(self, places, rounding):
2436 """Round a nonzero, nonspecial Decimal to a fixed number of
2437 significant figures, using the given rounding mode.
2439 Infinities, NaNs and zeros are returned unaltered.
2441 This operation is quiet: it raises no flags, and uses no
2442 information from the context.
2445 if places <= 0:
2446 raise ValueError("argument should be at least 1 in _round")
2447 if self._is_special or not self:
2448 return Decimal(self)
2449 ans = self._rescale(self.adjusted()+1-places, rounding)
2450 # it can happen that the rescale alters the adjusted exponent;
2451 # for example when rounding 99.97 to 3 significant figures.
2452 # When this happens we end up with an extra 0 at the end of
2453 # the number; a second rescale fixes this.
2454 if ans.adjusted() != self.adjusted():
2455 ans = ans._rescale(ans.adjusted()+1-places, rounding)
2456 return ans
2458 def to_integral_exact(self, rounding=None, context=None):
2459 """Rounds to a nearby integer.
2461 If no rounding mode is specified, take the rounding mode from
2462 the context. This method raises the Rounded and Inexact flags
2463 when appropriate.
2465 See also: to_integral_value, which does exactly the same as
2466 this method except that it doesn't raise Inexact or Rounded.
2468 if self._is_special:
2469 ans = self._check_nans(context=context)
2470 if ans:
2471 return ans
2472 return Decimal(self)
2473 if self._exp >= 0:
2474 return Decimal(self)
2475 if not self:
2476 return _dec_from_triple(self._sign, '0', 0)
2477 if context is None:
2478 context = getcontext()
2479 if rounding is None:
2480 rounding = context.rounding
2481 context._raise_error(Rounded)
2482 ans = self._rescale(0, rounding)
2483 if ans != self:
2484 context._raise_error(Inexact)
2485 return ans
2487 def to_integral_value(self, rounding=None, context=None):
2488 """Rounds to the nearest integer, without raising inexact, rounded."""
2489 if context is None:
2490 context = getcontext()
2491 if rounding is None:
2492 rounding = context.rounding
2493 if self._is_special:
2494 ans = self._check_nans(context=context)
2495 if ans:
2496 return ans
2497 return Decimal(self)
2498 if self._exp >= 0:
2499 return Decimal(self)
2500 else:
2501 return self._rescale(0, rounding)
2503 # the method name changed, but we provide also the old one, for compatibility
2504 to_integral = to_integral_value
2506 def sqrt(self, context=None):
2507 """Return the square root of self."""
2508 if context is None:
2509 context = getcontext()
2511 if self._is_special:
2512 ans = self._check_nans(context=context)
2513 if ans:
2514 return ans
2516 if self._isinfinity() and self._sign == 0:
2517 return Decimal(self)
2519 if not self:
2520 # exponent = self._exp // 2. sqrt(-0) = -0
2521 ans = _dec_from_triple(self._sign, '0', self._exp // 2)
2522 return ans._fix(context)
2524 if self._sign == 1:
2525 return context._raise_error(InvalidOperation, 'sqrt(-x), x > 0')
2527 # At this point self represents a positive number. Let p be
2528 # the desired precision and express self in the form c*100**e
2529 # with c a positive real number and e an integer, c and e
2530 # being chosen so that 100**(p-1) <= c < 100**p. Then the
2531 # (exact) square root of self is sqrt(c)*10**e, and 10**(p-1)
2532 # <= sqrt(c) < 10**p, so the closest representable Decimal at
2533 # precision p is n*10**e where n = round_half_even(sqrt(c)),
2534 # the closest integer to sqrt(c) with the even integer chosen
2535 # in the case of a tie.
2537 # To ensure correct rounding in all cases, we use the
2538 # following trick: we compute the square root to an extra
2539 # place (precision p+1 instead of precision p), rounding down.
2540 # Then, if the result is inexact and its last digit is 0 or 5,
2541 # we increase the last digit to 1 or 6 respectively; if it's
2542 # exact we leave the last digit alone. Now the final round to
2543 # p places (or fewer in the case of underflow) will round
2544 # correctly and raise the appropriate flags.
2546 # use an extra digit of precision
2547 prec = context.prec+1
2549 # write argument in the form c*100**e where e = self._exp//2
2550 # is the 'ideal' exponent, to be used if the square root is
2551 # exactly representable. l is the number of 'digits' of c in
2552 # base 100, so that 100**(l-1) <= c < 100**l.
2553 op = _WorkRep(self)
2554 e = op.exp >> 1
2555 if op.exp & 1:
2556 c = op.int * 10
2557 l = (len(self._int) >> 1) + 1
2558 else:
2559 c = op.int
2560 l = len(self._int)+1 >> 1
2562 # rescale so that c has exactly prec base 100 'digits'
2563 shift = prec-l
2564 if shift >= 0:
2565 c *= 100**shift
2566 exact = True
2567 else:
2568 c, remainder = divmod(c, 100**-shift)
2569 exact = not remainder
2570 e -= shift
2572 # find n = floor(sqrt(c)) using Newton's method
2573 n = 10**prec
2574 while True:
2575 q = c//n
2576 if n <= q:
2577 break
2578 else:
2579 n = n + q >> 1
2580 exact = exact and n*n == c
2582 if exact:
2583 # result is exact; rescale to use ideal exponent e
2584 if shift >= 0:
2585 # assert n % 10**shift == 0
2586 n //= 10**shift
2587 else:
2588 n *= 10**-shift
2589 e += shift
2590 else:
2591 # result is not exact; fix last digit as described above
2592 if n % 5 == 0:
2593 n += 1
2595 ans = _dec_from_triple(0, str(n), e)
2597 # round, and fit to current context
2598 context = context._shallow_copy()
2599 rounding = context._set_rounding(ROUND_HALF_EVEN)
2600 ans = ans._fix(context)
2601 context.rounding = rounding
2603 return ans
2605 def max(self, other, context=None):
2606 """Returns the larger value.
2608 Like max(self, other) except if one is not a number, returns
2609 NaN (and signals if one is sNaN). Also rounds.
2611 other = _convert_other(other, raiseit=True)
2613 if context is None:
2614 context = getcontext()
2616 if self._is_special or other._is_special:
2617 # If one operand is a quiet NaN and the other is number, then the
2618 # number is always returned
2619 sn = self._isnan()
2620 on = other._isnan()
2621 if sn or on:
2622 if on == 1 and sn == 0:
2623 return self._fix(context)
2624 if sn == 1 and on == 0:
2625 return other._fix(context)
2626 return self._check_nans(other, context)
2628 c = self._cmp(other)
2629 if c == 0:
2630 # If both operands are finite and equal in numerical value
2631 # then an ordering is applied:
2633 # If the signs differ then max returns the operand with the
2634 # positive sign and min returns the operand with the negative sign
2636 # If the signs are the same then the exponent is used to select
2637 # the result. This is exactly the ordering used in compare_total.
2638 c = self.compare_total(other)
2640 if c == -1:
2641 ans = other
2642 else:
2643 ans = self
2645 return ans._fix(context)
2647 def min(self, other, context=None):
2648 """Returns the smaller value.
2650 Like min(self, other) except if one is not a number, returns
2651 NaN (and signals if one is sNaN). Also rounds.
2653 other = _convert_other(other, raiseit=True)
2655 if context is None:
2656 context = getcontext()
2658 if self._is_special or other._is_special:
2659 # If one operand is a quiet NaN and the other is number, then the
2660 # number is always returned
2661 sn = self._isnan()
2662 on = other._isnan()
2663 if sn or on:
2664 if on == 1 and sn == 0:
2665 return self._fix(context)
2666 if sn == 1 and on == 0:
2667 return other._fix(context)
2668 return self._check_nans(other, context)
2670 c = self._cmp(other)
2671 if c == 0:
2672 c = self.compare_total(other)
2674 if c == -1:
2675 ans = self
2676 else:
2677 ans = other
2679 return ans._fix(context)
2681 def _isinteger(self):
2682 """Returns whether self is an integer"""
2683 if self._is_special:
2684 return False
2685 if self._exp >= 0:
2686 return True
2687 rest = self._int[self._exp:]
2688 return rest == '0'*len(rest)
2690 def _iseven(self):
2691 """Returns True if self is even. Assumes self is an integer."""
2692 if not self or self._exp > 0:
2693 return True
2694 return self._int[-1+self._exp] in '02468'
2696 def adjusted(self):
2697 """Return the adjusted exponent of self"""
2698 try:
2699 return self._exp + len(self._int) - 1
2700 # If NaN or Infinity, self._exp is string
2701 except TypeError:
2702 return 0
2704 def canonical(self, context=None):
2705 """Returns the same Decimal object.
2707 As we do not have different encodings for the same number, the
2708 received object already is in its canonical form.
2710 return self
2712 def compare_signal(self, other, context=None):
2713 """Compares self to the other operand numerically.
2715 It's pretty much like compare(), but all NaNs signal, with signaling
2716 NaNs taking precedence over quiet NaNs.
2718 other = _convert_other(other, raiseit = True)
2719 ans = self._compare_check_nans(other, context)
2720 if ans:
2721 return ans
2722 return self.compare(other, context=context)
2724 def compare_total(self, other):
2725 """Compares self to other using the abstract representations.
2727 This is not like the standard compare, which use their numerical
2728 value. Note that a total ordering is defined for all possible abstract
2729 representations.
2731 # if one is negative and the other is positive, it's easy
2732 if self._sign and not other._sign:
2733 return _NegativeOne
2734 if not self._sign and other._sign:
2735 return _One
2736 sign = self._sign
2738 # let's handle both NaN types
2739 self_nan = self._isnan()
2740 other_nan = other._isnan()
2741 if self_nan or other_nan:
2742 if self_nan == other_nan:
2743 if self._int < other._int:
2744 if sign:
2745 return _One
2746 else:
2747 return _NegativeOne
2748 if self._int > other._int:
2749 if sign:
2750 return _NegativeOne
2751 else:
2752 return _One
2753 return _Zero
2755 if sign:
2756 if self_nan == 1:
2757 return _NegativeOne
2758 if other_nan == 1:
2759 return _One
2760 if self_nan == 2:
2761 return _NegativeOne
2762 if other_nan == 2:
2763 return _One
2764 else:
2765 if self_nan == 1:
2766 return _One
2767 if other_nan == 1:
2768 return _NegativeOne
2769 if self_nan == 2:
2770 return _One
2771 if other_nan == 2:
2772 return _NegativeOne
2774 if self < other:
2775 return _NegativeOne
2776 if self > other:
2777 return _One
2779 if self._exp < other._exp:
2780 if sign:
2781 return _One
2782 else:
2783 return _NegativeOne
2784 if self._exp > other._exp:
2785 if sign:
2786 return _NegativeOne
2787 else:
2788 return _One
2789 return _Zero
2792 def compare_total_mag(self, other):
2793 """Compares self to other using abstract repr., ignoring sign.
2795 Like compare_total, but with operand's sign ignored and assumed to be 0.
2797 s = self.copy_abs()
2798 o = other.copy_abs()
2799 return s.compare_total(o)
2801 def copy_abs(self):
2802 """Returns a copy with the sign set to 0. """
2803 return _dec_from_triple(0, self._int, self._exp, self._is_special)
2805 def copy_negate(self):
2806 """Returns a copy with the sign inverted."""
2807 if self._sign:
2808 return _dec_from_triple(0, self._int, self._exp, self._is_special)
2809 else:
2810 return _dec_from_triple(1, self._int, self._exp, self._is_special)
2812 def copy_sign(self, other):
2813 """Returns self with the sign of other."""
2814 return _dec_from_triple(other._sign, self._int,
2815 self._exp, self._is_special)
2817 def exp(self, context=None):
2818 """Returns e ** self."""
2820 if context is None:
2821 context = getcontext()
2823 # exp(NaN) = NaN
2824 ans = self._check_nans(context=context)
2825 if ans:
2826 return ans
2828 # exp(-Infinity) = 0
2829 if self._isinfinity() == -1:
2830 return _Zero
2832 # exp(0) = 1
2833 if not self:
2834 return _One
2836 # exp(Infinity) = Infinity
2837 if self._isinfinity() == 1:
2838 return Decimal(self)
2840 # the result is now guaranteed to be inexact (the true
2841 # mathematical result is transcendental). There's no need to
2842 # raise Rounded and Inexact here---they'll always be raised as
2843 # a result of the call to _fix.
2844 p = context.prec
2845 adj = self.adjusted()
2847 # we only need to do any computation for quite a small range
2848 # of adjusted exponents---for example, -29 <= adj <= 10 for
2849 # the default context. For smaller exponent the result is
2850 # indistinguishable from 1 at the given precision, while for
2851 # larger exponent the result either overflows or underflows.
2852 if self._sign == 0 and adj > len(str((context.Emax+1)*3)):
2853 # overflow
2854 ans = _dec_from_triple(0, '1', context.Emax+1)
2855 elif self._sign == 1 and adj > len(str((-context.Etiny()+1)*3)):
2856 # underflow to 0
2857 ans = _dec_from_triple(0, '1', context.Etiny()-1)
2858 elif self._sign == 0 and adj < -p:
2859 # p+1 digits; final round will raise correct flags
2860 ans = _dec_from_triple(0, '1' + '0'*(p-1) + '1', -p)
2861 elif self._sign == 1 and adj < -p-1:
2862 # p+1 digits; final round will raise correct flags
2863 ans = _dec_from_triple(0, '9'*(p+1), -p-1)
2864 # general case
2865 else:
2866 op = _WorkRep(self)
2867 c, e = op.int, op.exp
2868 if op.sign == 1:
2869 c = -c
2871 # compute correctly rounded result: increase precision by
2872 # 3 digits at a time until we get an unambiguously
2873 # roundable result
2874 extra = 3
2875 while True:
2876 coeff, exp = _dexp(c, e, p+extra)
2877 if coeff % (5*10**(len(str(coeff))-p-1)):
2878 break
2879 extra += 3
2881 ans = _dec_from_triple(0, str(coeff), exp)
2883 # at this stage, ans should round correctly with *any*
2884 # rounding mode, not just with ROUND_HALF_EVEN
2885 context = context._shallow_copy()
2886 rounding = context._set_rounding(ROUND_HALF_EVEN)
2887 ans = ans._fix(context)
2888 context.rounding = rounding
2890 return ans
2892 def is_canonical(self):
2893 """Return True if self is canonical; otherwise return False.
2895 Currently, the encoding of a Decimal instance is always
2896 canonical, so this method returns True for any Decimal.
2898 return True
2900 def is_finite(self):
2901 """Return True if self is finite; otherwise return False.
2903 A Decimal instance is considered finite if it is neither
2904 infinite nor a NaN.
2906 return not self._is_special
2908 def is_infinite(self):
2909 """Return True if self is infinite; otherwise return False."""
2910 return self._exp == 'F'
2912 def is_nan(self):
2913 """Return True if self is a qNaN or sNaN; otherwise return False."""
2914 return self._exp in ('n', 'N')
2916 def is_normal(self, context=None):
2917 """Return True if self is a normal number; otherwise return False."""
2918 if self._is_special or not self:
2919 return False
2920 if context is None:
2921 context = getcontext()
2922 return context.Emin <= self.adjusted() <= context.Emax
2924 def is_qnan(self):
2925 """Return True if self is a quiet NaN; otherwise return False."""
2926 return self._exp == 'n'
2928 def is_signed(self):
2929 """Return True if self is negative; otherwise return False."""
2930 return self._sign == 1
2932 def is_snan(self):
2933 """Return True if self is a signaling NaN; otherwise return False."""
2934 return self._exp == 'N'
2936 def is_subnormal(self, context=None):
2937 """Return True if self is subnormal; otherwise return False."""
2938 if self._is_special or not self:
2939 return False
2940 if context is None:
2941 context = getcontext()
2942 return self.adjusted() < context.Emin
2944 def is_zero(self):
2945 """Return True if self is a zero; otherwise return False."""
2946 return not self._is_special and self._int == '0'
2948 def _ln_exp_bound(self):
2949 """Compute a lower bound for the adjusted exponent of self.ln().
2950 In other words, compute r such that self.ln() >= 10**r. Assumes
2951 that self is finite and positive and that self != 1.
2954 # for 0.1 <= x <= 10 we use the inequalities 1-1/x <= ln(x) <= x-1
2955 adj = self._exp + len(self._int) - 1
2956 if adj >= 1:
2957 # argument >= 10; we use 23/10 = 2.3 as a lower bound for ln(10)
2958 return len(str(adj*23//10)) - 1
2959 if adj <= -2:
2960 # argument <= 0.1
2961 return len(str((-1-adj)*23//10)) - 1
2962 op = _WorkRep(self)
2963 c, e = op.int, op.exp
2964 if adj == 0:
2965 # 1 < self < 10
2966 num = str(c-10**-e)
2967 den = str(c)
2968 return len(num) - len(den) - (num < den)
2969 # adj == -1, 0.1 <= self < 1
2970 return e + len(str(10**-e - c)) - 1
2973 def ln(self, context=None):
2974 """Returns the natural (base e) logarithm of self."""
2976 if context is None:
2977 context = getcontext()
2979 # ln(NaN) = NaN
2980 ans = self._check_nans(context=context)
2981 if ans:
2982 return ans
2984 # ln(0.0) == -Infinity
2985 if not self:
2986 return _NegativeInfinity
2988 # ln(Infinity) = Infinity
2989 if self._isinfinity() == 1:
2990 return _Infinity
2992 # ln(1.0) == 0.0
2993 if self == _One:
2994 return _Zero
2996 # ln(negative) raises InvalidOperation
2997 if self._sign == 1:
2998 return context._raise_error(InvalidOperation,
2999 'ln of a negative value')
3001 # result is irrational, so necessarily inexact
3002 op = _WorkRep(self)
3003 c, e = op.int, op.exp
3004 p = context.prec
3006 # correctly rounded result: repeatedly increase precision by 3
3007 # until we get an unambiguously roundable result
3008 places = p - self._ln_exp_bound() + 2 # at least p+3 places
3009 while True:
3010 coeff = _dlog(c, e, places)
3011 # assert len(str(abs(coeff)))-p >= 1
3012 if coeff % (5*10**(len(str(abs(coeff)))-p-1)):
3013 break
3014 places += 3
3015 ans = _dec_from_triple(int(coeff<0), str(abs(coeff)), -places)
3017 context = context._shallow_copy()
3018 rounding = context._set_rounding(ROUND_HALF_EVEN)
3019 ans = ans._fix(context)
3020 context.rounding = rounding
3021 return ans
3023 def _log10_exp_bound(self):
3024 """Compute a lower bound for the adjusted exponent of self.log10().
3025 In other words, find r such that self.log10() >= 10**r.
3026 Assumes that self is finite and positive and that self != 1.
3029 # For x >= 10 or x < 0.1 we only need a bound on the integer
3030 # part of log10(self), and this comes directly from the
3031 # exponent of x. For 0.1 <= x <= 10 we use the inequalities
3032 # 1-1/x <= log(x) <= x-1. If x > 1 we have |log10(x)| >
3033 # (1-1/x)/2.31 > 0. If x < 1 then |log10(x)| > (1-x)/2.31 > 0
3035 adj = self._exp + len(self._int) - 1
3036 if adj >= 1:
3037 # self >= 10
3038 return len(str(adj))-1
3039 if adj <= -2:
3040 # self < 0.1
3041 return len(str(-1-adj))-1
3042 op = _WorkRep(self)
3043 c, e = op.int, op.exp
3044 if adj == 0:
3045 # 1 < self < 10
3046 num = str(c-10**-e)
3047 den = str(231*c)
3048 return len(num) - len(den) - (num < den) + 2
3049 # adj == -1, 0.1 <= self < 1
3050 num = str(10**-e-c)
3051 return len(num) + e - (num < "231") - 1
3053 def log10(self, context=None):
3054 """Returns the base 10 logarithm of self."""
3056 if context is None:
3057 context = getcontext()
3059 # log10(NaN) = NaN
3060 ans = self._check_nans(context=context)
3061 if ans:
3062 return ans
3064 # log10(0.0) == -Infinity
3065 if not self:
3066 return _NegativeInfinity
3068 # log10(Infinity) = Infinity
3069 if self._isinfinity() == 1:
3070 return _Infinity
3072 # log10(negative or -Infinity) raises InvalidOperation
3073 if self._sign == 1:
3074 return context._raise_error(InvalidOperation,
3075 'log10 of a negative value')
3077 # log10(10**n) = n
3078 if self._int[0] == '1' and self._int[1:] == '0'*(len(self._int) - 1):
3079 # answer may need rounding
3080 ans = Decimal(self._exp + len(self._int) - 1)
3081 else:
3082 # result is irrational, so necessarily inexact
3083 op = _WorkRep(self)
3084 c, e = op.int, op.exp
3085 p = context.prec
3087 # correctly rounded result: repeatedly increase precision
3088 # until result is unambiguously roundable
3089 places = p-self._log10_exp_bound()+2
3090 while True:
3091 coeff = _dlog10(c, e, places)
3092 # assert len(str(abs(coeff)))-p >= 1
3093 if coeff % (5*10**(len(str(abs(coeff)))-p-1)):
3094 break
3095 places += 3
3096 ans = _dec_from_triple(int(coeff<0), str(abs(coeff)), -places)
3098 context = context._shallow_copy()
3099 rounding = context._set_rounding(ROUND_HALF_EVEN)
3100 ans = ans._fix(context)
3101 context.rounding = rounding
3102 return ans
3104 def logb(self, context=None):
3105 """ Returns the exponent of the magnitude of self's MSD.
3107 The result is the integer which is the exponent of the magnitude
3108 of the most significant digit of self (as though it were truncated
3109 to a single digit while maintaining the value of that digit and
3110 without limiting the resulting exponent).
3112 # logb(NaN) = NaN
3113 ans = self._check_nans(context=context)
3114 if ans:
3115 return ans
3117 if context is None:
3118 context = getcontext()
3120 # logb(+/-Inf) = +Inf
3121 if self._isinfinity():
3122 return _Infinity
3124 # logb(0) = -Inf, DivisionByZero
3125 if not self:
3126 return context._raise_error(DivisionByZero, 'logb(0)', 1)
3128 # otherwise, simply return the adjusted exponent of self, as a
3129 # Decimal. Note that no attempt is made to fit the result
3130 # into the current context.
3131 return Decimal(self.adjusted())
3133 def _islogical(self):
3134 """Return True if self is a logical operand.
3136 For being logical, it must be a finite number with a sign of 0,
3137 an exponent of 0, and a coefficient whose digits must all be
3138 either 0 or 1.
3140 if self._sign != 0 or self._exp != 0:
3141 return False
3142 for dig in self._int:
3143 if dig not in '01':
3144 return False
3145 return True
3147 def _fill_logical(self, context, opa, opb):
3148 dif = context.prec - len(opa)
3149 if dif > 0:
3150 opa = '0'*dif + opa
3151 elif dif < 0:
3152 opa = opa[-context.prec:]
3153 dif = context.prec - len(opb)
3154 if dif > 0:
3155 opb = '0'*dif + opb
3156 elif dif < 0:
3157 opb = opb[-context.prec:]
3158 return opa, opb
3160 def logical_and(self, other, context=None):
3161 """Applies an 'and' operation between self and other's digits."""
3162 if context is None:
3163 context = getcontext()
3164 if not self._islogical() or not other._islogical():
3165 return context._raise_error(InvalidOperation)
3167 # fill to context.prec
3168 (opa, opb) = self._fill_logical(context, self._int, other._int)
3170 # make the operation, and clean starting zeroes
3171 result = "".join([str(int(a)&int(b)) for a,b in zip(opa,opb)])
3172 return _dec_from_triple(0, result.lstrip('0') or '0', 0)
3174 def logical_invert(self, context=None):
3175 """Invert all its digits."""
3176 if context is None:
3177 context = getcontext()
3178 return self.logical_xor(_dec_from_triple(0,'1'*context.prec,0),
3179 context)
3181 def logical_or(self, other, context=None):
3182 """Applies an 'or' operation between self and other's digits."""
3183 if context is None:
3184 context = getcontext()
3185 if not self._islogical() or not other._islogical():
3186 return context._raise_error(InvalidOperation)
3188 # fill to context.prec
3189 (opa, opb) = self._fill_logical(context, self._int, other._int)
3191 # make the operation, and clean starting zeroes
3192 result = "".join([str(int(a)|int(b)) for a,b in zip(opa,opb)])
3193 return _dec_from_triple(0, result.lstrip('0') or '0', 0)
3195 def logical_xor(self, other, context=None):
3196 """Applies an 'xor' operation between self and other's digits."""
3197 if context is None:
3198 context = getcontext()
3199 if not self._islogical() or not other._islogical():
3200 return context._raise_error(InvalidOperation)
3202 # fill to context.prec
3203 (opa, opb) = self._fill_logical(context, self._int, other._int)
3205 # make the operation, and clean starting zeroes
3206 result = "".join([str(int(a)^int(b)) for a,b in zip(opa,opb)])
3207 return _dec_from_triple(0, result.lstrip('0') or '0', 0)
3209 def max_mag(self, other, context=None):
3210 """Compares the values numerically with their sign ignored."""
3211 other = _convert_other(other, raiseit=True)
3213 if context is None:
3214 context = getcontext()
3216 if self._is_special or other._is_special:
3217 # If one operand is a quiet NaN and the other is number, then the
3218 # number is always returned
3219 sn = self._isnan()
3220 on = other._isnan()
3221 if sn or on:
3222 if on == 1 and sn == 0:
3223 return self._fix(context)
3224 if sn == 1 and on == 0:
3225 return other._fix(context)
3226 return self._check_nans(other, context)
3228 c = self.copy_abs()._cmp(other.copy_abs())
3229 if c == 0:
3230 c = self.compare_total(other)
3232 if c == -1:
3233 ans = other
3234 else:
3235 ans = self
3237 return ans._fix(context)
3239 def min_mag(self, other, context=None):
3240 """Compares the values numerically with their sign ignored."""
3241 other = _convert_other(other, raiseit=True)
3243 if context is None:
3244 context = getcontext()
3246 if self._is_special or other._is_special:
3247 # If one operand is a quiet NaN and the other is number, then the
3248 # number is always returned
3249 sn = self._isnan()
3250 on = other._isnan()
3251 if sn or on:
3252 if on == 1 and sn == 0:
3253 return self._fix(context)
3254 if sn == 1 and on == 0:
3255 return other._fix(context)
3256 return self._check_nans(other, context)
3258 c = self.copy_abs()._cmp(other.copy_abs())
3259 if c == 0:
3260 c = self.compare_total(other)
3262 if c == -1:
3263 ans = self
3264 else:
3265 ans = other
3267 return ans._fix(context)
3269 def next_minus(self, context=None):
3270 """Returns the largest representable number smaller than itself."""
3271 if context is None:
3272 context = getcontext()
3274 ans = self._check_nans(context=context)
3275 if ans:
3276 return ans
3278 if self._isinfinity() == -1:
3279 return _NegativeInfinity
3280 if self._isinfinity() == 1:
3281 return _dec_from_triple(0, '9'*context.prec, context.Etop())
3283 context = context.copy()
3284 context._set_rounding(ROUND_FLOOR)
3285 context._ignore_all_flags()
3286 new_self = self._fix(context)
3287 if new_self != self:
3288 return new_self
3289 return self.__sub__(_dec_from_triple(0, '1', context.Etiny()-1),
3290 context)
3292 def next_plus(self, context=None):
3293 """Returns the smallest representable number larger than itself."""
3294 if context is None:
3295 context = getcontext()
3297 ans = self._check_nans(context=context)
3298 if ans:
3299 return ans
3301 if self._isinfinity() == 1:
3302 return _Infinity
3303 if self._isinfinity() == -1:
3304 return _dec_from_triple(1, '9'*context.prec, context.Etop())
3306 context = context.copy()
3307 context._set_rounding(ROUND_CEILING)
3308 context._ignore_all_flags()
3309 new_self = self._fix(context)
3310 if new_self != self:
3311 return new_self
3312 return self.__add__(_dec_from_triple(0, '1', context.Etiny()-1),
3313 context)
3315 def next_toward(self, other, context=None):
3316 """Returns the number closest to self, in the direction towards other.
3318 The result is the closest representable number to self
3319 (excluding self) that is in the direction towards other,
3320 unless both have the same value. If the two operands are
3321 numerically equal, then the result is a copy of self with the
3322 sign set to be the same as the sign of other.
3324 other = _convert_other(other, raiseit=True)
3326 if context is None:
3327 context = getcontext()
3329 ans = self._check_nans(other, context)
3330 if ans:
3331 return ans
3333 comparison = self._cmp(other)
3334 if comparison == 0:
3335 return self.copy_sign(other)
3337 if comparison == -1:
3338 ans = self.next_plus(context)
3339 else: # comparison == 1
3340 ans = self.next_minus(context)
3342 # decide which flags to raise using value of ans
3343 if ans._isinfinity():
3344 context._raise_error(Overflow,
3345 'Infinite result from next_toward',
3346 ans._sign)
3347 context._raise_error(Rounded)
3348 context._raise_error(Inexact)
3349 elif ans.adjusted() < context.Emin:
3350 context._raise_error(Underflow)
3351 context._raise_error(Subnormal)
3352 context._raise_error(Rounded)
3353 context._raise_error(Inexact)
3354 # if precision == 1 then we don't raise Clamped for a
3355 # result 0E-Etiny.
3356 if not ans:
3357 context._raise_error(Clamped)
3359 return ans
3361 def number_class(self, context=None):
3362 """Returns an indication of the class of self.
3364 The class is one of the following strings:
3365 sNaN
3367 -Infinity
3368 -Normal
3369 -Subnormal
3370 -Zero
3371 +Zero
3372 +Subnormal
3373 +Normal
3374 +Infinity
3376 if self.is_snan():
3377 return "sNaN"
3378 if self.is_qnan():
3379 return "NaN"
3380 inf = self._isinfinity()
3381 if inf == 1:
3382 return "+Infinity"
3383 if inf == -1:
3384 return "-Infinity"
3385 if self.is_zero():
3386 if self._sign:
3387 return "-Zero"
3388 else:
3389 return "+Zero"
3390 if context is None:
3391 context = getcontext()
3392 if self.is_subnormal(context=context):
3393 if self._sign:
3394 return "-Subnormal"
3395 else:
3396 return "+Subnormal"
3397 # just a normal, regular, boring number, :)
3398 if self._sign:
3399 return "-Normal"
3400 else:
3401 return "+Normal"
3403 def radix(self):
3404 """Just returns 10, as this is Decimal, :)"""
3405 return Decimal(10)
3407 def rotate(self, other, context=None):
3408 """Returns a rotated copy of self, value-of-other times."""
3409 if context is None:
3410 context = getcontext()
3412 ans = self._check_nans(other, context)
3413 if ans:
3414 return ans
3416 if other._exp != 0:
3417 return context._raise_error(InvalidOperation)
3418 if not (-context.prec <= int(other) <= context.prec):
3419 return context._raise_error(InvalidOperation)
3421 if self._isinfinity():
3422 return Decimal(self)
3424 # get values, pad if necessary
3425 torot = int(other)
3426 rotdig = self._int
3427 topad = context.prec - len(rotdig)
3428 if topad:
3429 rotdig = '0'*topad + rotdig
3431 # let's rotate!
3432 rotated = rotdig[torot:] + rotdig[:torot]
3433 return _dec_from_triple(self._sign,
3434 rotated.lstrip('0') or '0', self._exp)
3436 def scaleb (self, other, context=None):
3437 """Returns self operand after adding the second value to its exp."""
3438 if context is None:
3439 context = getcontext()
3441 ans = self._check_nans(other, context)
3442 if ans:
3443 return ans
3445 if other._exp != 0:
3446 return context._raise_error(InvalidOperation)
3447 liminf = -2 * (context.Emax + context.prec)
3448 limsup = 2 * (context.Emax + context.prec)
3449 if not (liminf <= int(other) <= limsup):
3450 return context._raise_error(InvalidOperation)
3452 if self._isinfinity():
3453 return Decimal(self)
3455 d = _dec_from_triple(self._sign, self._int, self._exp + int(other))
3456 d = d._fix(context)
3457 return d
3459 def shift(self, other, context=None):
3460 """Returns a shifted copy of self, value-of-other times."""
3461 if context is None:
3462 context = getcontext()
3464 ans = self._check_nans(other, context)
3465 if ans:
3466 return ans
3468 if other._exp != 0:
3469 return context._raise_error(InvalidOperation)
3470 if not (-context.prec <= int(other) <= context.prec):
3471 return context._raise_error(InvalidOperation)
3473 if self._isinfinity():
3474 return Decimal(self)
3476 # get values, pad if necessary
3477 torot = int(other)
3478 if not torot:
3479 return Decimal(self)
3480 rotdig = self._int
3481 topad = context.prec - len(rotdig)
3482 if topad:
3483 rotdig = '0'*topad + rotdig
3485 # let's shift!
3486 if torot < 0:
3487 rotated = rotdig[:torot]
3488 else:
3489 rotated = rotdig + '0'*torot
3490 rotated = rotated[-context.prec:]
3492 return _dec_from_triple(self._sign,
3493 rotated.lstrip('0') or '0', self._exp)
3495 # Support for pickling, copy, and deepcopy
3496 def __reduce__(self):
3497 return (self.__class__, (str(self),))
3499 def __copy__(self):
3500 if type(self) == Decimal:
3501 return self # I'm immutable; therefore I am my own clone
3502 return self.__class__(str(self))
3504 def __deepcopy__(self, memo):
3505 if type(self) == Decimal:
3506 return self # My components are also immutable
3507 return self.__class__(str(self))
3509 # PEP 3101 support. the _localeconv keyword argument should be
3510 # considered private: it's provided for ease of testing only.
3511 def __format__(self, specifier, context=None, _localeconv=None):
3512 """Format a Decimal instance according to the given specifier.
3514 The specifier should be a standard format specifier, with the
3515 form described in PEP 3101. Formatting types 'e', 'E', 'f',
3516 'F', 'g', 'G', 'n' and '%' are supported. If the formatting
3517 type is omitted it defaults to 'g' or 'G', depending on the
3518 value of context.capitals.
3521 # Note: PEP 3101 says that if the type is not present then
3522 # there should be at least one digit after the decimal point.
3523 # We take the liberty of ignoring this requirement for
3524 # Decimal---it's presumably there to make sure that
3525 # format(float, '') behaves similarly to str(float).
3526 if context is None:
3527 context = getcontext()
3529 spec = _parse_format_specifier(specifier, _localeconv=_localeconv)
3531 # special values don't care about the type or precision
3532 if self._is_special:
3533 sign = _format_sign(self._sign, spec)
3534 body = str(self.copy_abs())
3535 return _format_align(sign, body, spec)
3537 # a type of None defaults to 'g' or 'G', depending on context
3538 if spec['type'] is None:
3539 spec['type'] = ['g', 'G'][context.capitals]
3541 # if type is '%', adjust exponent of self accordingly
3542 if spec['type'] == '%':
3543 self = _dec_from_triple(self._sign, self._int, self._exp+2)
3545 # round if necessary, taking rounding mode from the context
3546 rounding = context.rounding
3547 precision = spec['precision']
3548 if precision is not None:
3549 if spec['type'] in 'eE':
3550 self = self._round(precision+1, rounding)
3551 elif spec['type'] in 'fF%':
3552 self = self._rescale(-precision, rounding)
3553 elif spec['type'] in 'gG' and len(self._int) > precision:
3554 self = self._round(precision, rounding)
3555 # special case: zeros with a positive exponent can't be
3556 # represented in fixed point; rescale them to 0e0.
3557 if not self and self._exp > 0 and spec['type'] in 'fF%':
3558 self = self._rescale(0, rounding)
3560 # figure out placement of the decimal point
3561 leftdigits = self._exp + len(self._int)
3562 if spec['type'] in 'eE':
3563 if not self and precision is not None:
3564 dotplace = 1 - precision
3565 else:
3566 dotplace = 1
3567 elif spec['type'] in 'fF%':
3568 dotplace = leftdigits
3569 elif spec['type'] in 'gG':
3570 if self._exp <= 0 and leftdigits > -6:
3571 dotplace = leftdigits
3572 else:
3573 dotplace = 1
3575 # find digits before and after decimal point, and get exponent
3576 if dotplace < 0:
3577 intpart = '0'
3578 fracpart = '0'*(-dotplace) + self._int
3579 elif dotplace > len(self._int):
3580 intpart = self._int + '0'*(dotplace-len(self._int))
3581 fracpart = ''
3582 else:
3583 intpart = self._int[:dotplace] or '0'
3584 fracpart = self._int[dotplace:]
3585 exp = leftdigits-dotplace
3587 # done with the decimal-specific stuff; hand over the rest
3588 # of the formatting to the _format_number function
3589 return _format_number(self._sign, intpart, fracpart, exp, spec)
3591 def _dec_from_triple(sign, coefficient, exponent, special=False):
3592 """Create a decimal instance directly, without any validation,
3593 normalization (e.g. removal of leading zeros) or argument
3594 conversion.
3596 This function is for *internal use only*.
3599 self = object.__new__(Decimal)
3600 self._sign = sign
3601 self._int = coefficient
3602 self._exp = exponent
3603 self._is_special = special
3605 return self
3607 # Register Decimal as a kind of Number (an abstract base class).
3608 # However, do not register it as Real (because Decimals are not
3609 # interoperable with floats).
3610 _numbers.Number.register(Decimal)
3613 ##### Context class #######################################################
3616 # get rounding method function:
3617 rounding_functions = [name for name in Decimal.__dict__.keys()
3618 if name.startswith('_round_')]
3619 for name in rounding_functions:
3620 # name is like _round_half_even, goes to the global ROUND_HALF_EVEN value.
3621 globalname = name[1:].upper()
3622 val = globals()[globalname]
3623 Decimal._pick_rounding_function[val] = name
3625 del name, val, globalname, rounding_functions
3627 class _ContextManager(object):
3628 """Context manager class to support localcontext().
3630 Sets a copy of the supplied context in __enter__() and restores
3631 the previous decimal context in __exit__()
3633 def __init__(self, new_context):
3634 self.new_context = new_context.copy()
3635 def __enter__(self):
3636 self.saved_context = getcontext()
3637 setcontext(self.new_context)
3638 return self.new_context
3639 def __exit__(self, t, v, tb):
3640 setcontext(self.saved_context)
3642 class Context(object):
3643 """Contains the context for a Decimal instance.
3645 Contains:
3646 prec - precision (for use in rounding, division, square roots..)
3647 rounding - rounding type (how you round)
3648 traps - If traps[exception] = 1, then the exception is
3649 raised when it is caused. Otherwise, a value is
3650 substituted in.
3651 flags - When an exception is caused, flags[exception] is set.
3652 (Whether or not the trap_enabler is set)
3653 Should be reset by user of Decimal instance.
3654 Emin - Minimum exponent
3655 Emax - Maximum exponent
3656 capitals - If 1, 1*10^1 is printed as 1E+1.
3657 If 0, printed as 1e1
3658 _clamp - If 1, change exponents if too high (Default 0)
3661 def __init__(self, prec=None, rounding=None,
3662 traps=None, flags=None,
3663 Emin=None, Emax=None,
3664 capitals=None, _clamp=0,
3665 _ignored_flags=None):
3666 if flags is None:
3667 flags = []
3668 if _ignored_flags is None:
3669 _ignored_flags = []
3670 if not isinstance(flags, dict):
3671 flags = dict([(s, int(s in flags)) for s in _signals])
3672 del s
3673 if traps is not None and not isinstance(traps, dict):
3674 traps = dict([(s, int(s in traps)) for s in _signals])
3675 del s
3676 for name, val in locals().items():
3677 if val is None:
3678 setattr(self, name, _copy.copy(getattr(DefaultContext, name)))
3679 else:
3680 setattr(self, name, val)
3681 del self.self
3683 def __repr__(self):
3684 """Show the current context."""
3685 s = []
3686 s.append('Context(prec=%(prec)d, rounding=%(rounding)s, '
3687 'Emin=%(Emin)d, Emax=%(Emax)d, capitals=%(capitals)d'
3688 % vars(self))
3689 names = [f.__name__ for f, v in self.flags.items() if v]
3690 s.append('flags=[' + ', '.join(names) + ']')
3691 names = [t.__name__ for t, v in self.traps.items() if v]
3692 s.append('traps=[' + ', '.join(names) + ']')
3693 return ', '.join(s) + ')'
3695 def clear_flags(self):
3696 """Reset all flags to zero"""
3697 for flag in self.flags:
3698 self.flags[flag] = 0
3700 def _shallow_copy(self):
3701 """Returns a shallow copy from self."""
3702 nc = Context(self.prec, self.rounding, self.traps,
3703 self.flags, self.Emin, self.Emax,
3704 self.capitals, self._clamp, self._ignored_flags)
3705 return nc
3707 def copy(self):
3708 """Returns a deep copy from self."""
3709 nc = Context(self.prec, self.rounding, self.traps.copy(),
3710 self.flags.copy(), self.Emin, self.Emax,
3711 self.capitals, self._clamp, self._ignored_flags)
3712 return nc
3713 __copy__ = copy
3715 def _raise_error(self, condition, explanation = None, *args):
3716 """Handles an error
3718 If the flag is in _ignored_flags, returns the default response.
3719 Otherwise, it sets the flag, then, if the corresponding
3720 trap_enabler is set, it reaises the exception. Otherwise, it returns
3721 the default value after setting the flag.
3723 error = _condition_map.get(condition, condition)
3724 if error in self._ignored_flags:
3725 # Don't touch the flag
3726 return error().handle(self, *args)
3728 self.flags[error] = 1
3729 if not self.traps[error]:
3730 # The errors define how to handle themselves.
3731 return condition().handle(self, *args)
3733 # Errors should only be risked on copies of the context
3734 # self._ignored_flags = []
3735 raise error(explanation)
3737 def _ignore_all_flags(self):
3738 """Ignore all flags, if they are raised"""
3739 return self._ignore_flags(*_signals)
3741 def _ignore_flags(self, *flags):
3742 """Ignore the flags, if they are raised"""
3743 # Do not mutate-- This way, copies of a context leave the original
3744 # alone.
3745 self._ignored_flags = (self._ignored_flags + list(flags))
3746 return list(flags)
3748 def _regard_flags(self, *flags):
3749 """Stop ignoring the flags, if they are raised"""
3750 if flags and isinstance(flags[0], (tuple,list)):
3751 flags = flags[0]
3752 for flag in flags:
3753 self._ignored_flags.remove(flag)
3755 # We inherit object.__hash__, so we must deny this explicitly
3756 __hash__ = None
3758 def Etiny(self):
3759 """Returns Etiny (= Emin - prec + 1)"""
3760 return int(self.Emin - self.prec + 1)
3762 def Etop(self):
3763 """Returns maximum exponent (= Emax - prec + 1)"""
3764 return int(self.Emax - self.prec + 1)
3766 def _set_rounding(self, type):
3767 """Sets the rounding type.
3769 Sets the rounding type, and returns the current (previous)
3770 rounding type. Often used like:
3772 context = context.copy()
3773 # so you don't change the calling context
3774 # if an error occurs in the middle.
3775 rounding = context._set_rounding(ROUND_UP)
3776 val = self.__sub__(other, context=context)
3777 context._set_rounding(rounding)
3779 This will make it round up for that operation.
3781 rounding = self.rounding
3782 self.rounding= type
3783 return rounding
3785 def create_decimal(self, num='0'):
3786 """Creates a new Decimal instance but using self as context.
3788 This method implements the to-number operation of the
3789 IBM Decimal specification."""
3791 if isinstance(num, basestring) and num != num.strip():
3792 return self._raise_error(ConversionSyntax,
3793 "no trailing or leading whitespace is "
3794 "permitted.")
3796 d = Decimal(num, context=self)
3797 if d._isnan() and len(d._int) > self.prec - self._clamp:
3798 return self._raise_error(ConversionSyntax,
3799 "diagnostic info too long in NaN")
3800 return d._fix(self)
3802 def create_decimal_from_float(self, f):
3803 """Creates a new Decimal instance from a float but rounding using self
3804 as the context.
3806 >>> context = Context(prec=5, rounding=ROUND_DOWN)
3807 >>> context.create_decimal_from_float(3.1415926535897932)
3808 Decimal('3.1415')
3809 >>> context = Context(prec=5, traps=[Inexact])
3810 >>> context.create_decimal_from_float(3.1415926535897932)
3811 Traceback (most recent call last):
3813 Inexact: None
3816 d = Decimal.from_float(f) # An exact conversion
3817 return d._fix(self) # Apply the context rounding
3819 # Methods
3820 def abs(self, a):
3821 """Returns the absolute value of the operand.
3823 If the operand is negative, the result is the same as using the minus
3824 operation on the operand. Otherwise, the result is the same as using
3825 the plus operation on the operand.
3827 >>> ExtendedContext.abs(Decimal('2.1'))
3828 Decimal('2.1')
3829 >>> ExtendedContext.abs(Decimal('-100'))
3830 Decimal('100')
3831 >>> ExtendedContext.abs(Decimal('101.5'))
3832 Decimal('101.5')
3833 >>> ExtendedContext.abs(Decimal('-101.5'))
3834 Decimal('101.5')
3836 return a.__abs__(context=self)
3838 def add(self, a, b):
3839 """Return the sum of the two operands.
3841 >>> ExtendedContext.add(Decimal('12'), Decimal('7.00'))
3842 Decimal('19.00')
3843 >>> ExtendedContext.add(Decimal('1E+2'), Decimal('1.01E+4'))
3844 Decimal('1.02E+4')
3846 return a.__add__(b, context=self)
3848 def _apply(self, a):
3849 return str(a._fix(self))
3851 def canonical(self, a):
3852 """Returns the same Decimal object.
3854 As we do not have different encodings for the same number, the
3855 received object already is in its canonical form.
3857 >>> ExtendedContext.canonical(Decimal('2.50'))
3858 Decimal('2.50')
3860 return a.canonical(context=self)
3862 def compare(self, a, b):
3863 """Compares values numerically.
3865 If the signs of the operands differ, a value representing each operand
3866 ('-1' if the operand is less than zero, '0' if the operand is zero or
3867 negative zero, or '1' if the operand is greater than zero) is used in
3868 place of that operand for the comparison instead of the actual
3869 operand.
3871 The comparison is then effected by subtracting the second operand from
3872 the first and then returning a value according to the result of the
3873 subtraction: '-1' if the result is less than zero, '0' if the result is
3874 zero or negative zero, or '1' if the result is greater than zero.
3876 >>> ExtendedContext.compare(Decimal('2.1'), Decimal('3'))
3877 Decimal('-1')
3878 >>> ExtendedContext.compare(Decimal('2.1'), Decimal('2.1'))
3879 Decimal('0')
3880 >>> ExtendedContext.compare(Decimal('2.1'), Decimal('2.10'))
3881 Decimal('0')
3882 >>> ExtendedContext.compare(Decimal('3'), Decimal('2.1'))
3883 Decimal('1')
3884 >>> ExtendedContext.compare(Decimal('2.1'), Decimal('-3'))
3885 Decimal('1')
3886 >>> ExtendedContext.compare(Decimal('-3'), Decimal('2.1'))
3887 Decimal('-1')
3889 return a.compare(b, context=self)
3891 def compare_signal(self, a, b):
3892 """Compares the values of the two operands numerically.
3894 It's pretty much like compare(), but all NaNs signal, with signaling
3895 NaNs taking precedence over quiet NaNs.
3897 >>> c = ExtendedContext
3898 >>> c.compare_signal(Decimal('2.1'), Decimal('3'))
3899 Decimal('-1')
3900 >>> c.compare_signal(Decimal('2.1'), Decimal('2.1'))
3901 Decimal('0')
3902 >>> c.flags[InvalidOperation] = 0
3903 >>> print c.flags[InvalidOperation]
3905 >>> c.compare_signal(Decimal('NaN'), Decimal('2.1'))
3906 Decimal('NaN')
3907 >>> print c.flags[InvalidOperation]
3909 >>> c.flags[InvalidOperation] = 0
3910 >>> print c.flags[InvalidOperation]
3912 >>> c.compare_signal(Decimal('sNaN'), Decimal('2.1'))
3913 Decimal('NaN')
3914 >>> print c.flags[InvalidOperation]
3917 return a.compare_signal(b, context=self)
3919 def compare_total(self, a, b):
3920 """Compares two operands using their abstract representation.
3922 This is not like the standard compare, which use their numerical
3923 value. Note that a total ordering is defined for all possible abstract
3924 representations.
3926 >>> ExtendedContext.compare_total(Decimal('12.73'), Decimal('127.9'))
3927 Decimal('-1')
3928 >>> ExtendedContext.compare_total(Decimal('-127'), Decimal('12'))
3929 Decimal('-1')
3930 >>> ExtendedContext.compare_total(Decimal('12.30'), Decimal('12.3'))
3931 Decimal('-1')
3932 >>> ExtendedContext.compare_total(Decimal('12.30'), Decimal('12.30'))
3933 Decimal('0')
3934 >>> ExtendedContext.compare_total(Decimal('12.3'), Decimal('12.300'))
3935 Decimal('1')
3936 >>> ExtendedContext.compare_total(Decimal('12.3'), Decimal('NaN'))
3937 Decimal('-1')
3939 return a.compare_total(b)
3941 def compare_total_mag(self, a, b):
3942 """Compares two operands using their abstract representation ignoring sign.
3944 Like compare_total, but with operand's sign ignored and assumed to be 0.
3946 return a.compare_total_mag(b)
3948 def copy_abs(self, a):
3949 """Returns a copy of the operand with the sign set to 0.
3951 >>> ExtendedContext.copy_abs(Decimal('2.1'))
3952 Decimal('2.1')
3953 >>> ExtendedContext.copy_abs(Decimal('-100'))
3954 Decimal('100')
3956 return a.copy_abs()
3958 def copy_decimal(self, a):
3959 """Returns a copy of the decimal objet.
3961 >>> ExtendedContext.copy_decimal(Decimal('2.1'))
3962 Decimal('2.1')
3963 >>> ExtendedContext.copy_decimal(Decimal('-1.00'))
3964 Decimal('-1.00')
3966 return Decimal(a)
3968 def copy_negate(self, a):
3969 """Returns a copy of the operand with the sign inverted.
3971 >>> ExtendedContext.copy_negate(Decimal('101.5'))
3972 Decimal('-101.5')
3973 >>> ExtendedContext.copy_negate(Decimal('-101.5'))
3974 Decimal('101.5')
3976 return a.copy_negate()
3978 def copy_sign(self, a, b):
3979 """Copies the second operand's sign to the first one.
3981 In detail, it returns a copy of the first operand with the sign
3982 equal to the sign of the second operand.
3984 >>> ExtendedContext.copy_sign(Decimal( '1.50'), Decimal('7.33'))
3985 Decimal('1.50')
3986 >>> ExtendedContext.copy_sign(Decimal('-1.50'), Decimal('7.33'))
3987 Decimal('1.50')
3988 >>> ExtendedContext.copy_sign(Decimal( '1.50'), Decimal('-7.33'))
3989 Decimal('-1.50')
3990 >>> ExtendedContext.copy_sign(Decimal('-1.50'), Decimal('-7.33'))
3991 Decimal('-1.50')
3993 return a.copy_sign(b)
3995 def divide(self, a, b):
3996 """Decimal division in a specified context.
3998 >>> ExtendedContext.divide(Decimal('1'), Decimal('3'))
3999 Decimal('0.333333333')
4000 >>> ExtendedContext.divide(Decimal('2'), Decimal('3'))
4001 Decimal('0.666666667')
4002 >>> ExtendedContext.divide(Decimal('5'), Decimal('2'))
4003 Decimal('2.5')
4004 >>> ExtendedContext.divide(Decimal('1'), Decimal('10'))
4005 Decimal('0.1')
4006 >>> ExtendedContext.divide(Decimal('12'), Decimal('12'))
4007 Decimal('1')
4008 >>> ExtendedContext.divide(Decimal('8.00'), Decimal('2'))
4009 Decimal('4.00')
4010 >>> ExtendedContext.divide(Decimal('2.400'), Decimal('2.0'))
4011 Decimal('1.20')
4012 >>> ExtendedContext.divide(Decimal('1000'), Decimal('100'))
4013 Decimal('10')
4014 >>> ExtendedContext.divide(Decimal('1000'), Decimal('1'))
4015 Decimal('1000')
4016 >>> ExtendedContext.divide(Decimal('2.40E+6'), Decimal('2'))
4017 Decimal('1.20E+6')
4019 return a.__div__(b, context=self)
4021 def divide_int(self, a, b):
4022 """Divides two numbers and returns the integer part of the result.
4024 >>> ExtendedContext.divide_int(Decimal('2'), Decimal('3'))
4025 Decimal('0')
4026 >>> ExtendedContext.divide_int(Decimal('10'), Decimal('3'))
4027 Decimal('3')
4028 >>> ExtendedContext.divide_int(Decimal('1'), Decimal('0.3'))
4029 Decimal('3')
4031 return a.__floordiv__(b, context=self)
4033 def divmod(self, a, b):
4034 return a.__divmod__(b, context=self)
4036 def exp(self, a):
4037 """Returns e ** a.
4039 >>> c = ExtendedContext.copy()
4040 >>> c.Emin = -999
4041 >>> c.Emax = 999
4042 >>> c.exp(Decimal('-Infinity'))
4043 Decimal('0')
4044 >>> c.exp(Decimal('-1'))
4045 Decimal('0.367879441')
4046 >>> c.exp(Decimal('0'))
4047 Decimal('1')
4048 >>> c.exp(Decimal('1'))
4049 Decimal('2.71828183')
4050 >>> c.exp(Decimal('0.693147181'))
4051 Decimal('2.00000000')
4052 >>> c.exp(Decimal('+Infinity'))
4053 Decimal('Infinity')
4055 return a.exp(context=self)
4057 def fma(self, a, b, c):
4058 """Returns a multiplied by b, plus c.
4060 The first two operands are multiplied together, using multiply,
4061 the third operand is then added to the result of that
4062 multiplication, using add, all with only one final rounding.
4064 >>> ExtendedContext.fma(Decimal('3'), Decimal('5'), Decimal('7'))
4065 Decimal('22')
4066 >>> ExtendedContext.fma(Decimal('3'), Decimal('-5'), Decimal('7'))
4067 Decimal('-8')
4068 >>> ExtendedContext.fma(Decimal('888565290'), Decimal('1557.96930'), Decimal('-86087.7578'))
4069 Decimal('1.38435736E+12')
4071 return a.fma(b, c, context=self)
4073 def is_canonical(self, a):
4074 """Return True if the operand is canonical; otherwise return False.
4076 Currently, the encoding of a Decimal instance is always
4077 canonical, so this method returns True for any Decimal.
4079 >>> ExtendedContext.is_canonical(Decimal('2.50'))
4080 True
4082 return a.is_canonical()
4084 def is_finite(self, a):
4085 """Return True if the operand is finite; otherwise return False.
4087 A Decimal instance is considered finite if it is neither
4088 infinite nor a NaN.
4090 >>> ExtendedContext.is_finite(Decimal('2.50'))
4091 True
4092 >>> ExtendedContext.is_finite(Decimal('-0.3'))
4093 True
4094 >>> ExtendedContext.is_finite(Decimal('0'))
4095 True
4096 >>> ExtendedContext.is_finite(Decimal('Inf'))
4097 False
4098 >>> ExtendedContext.is_finite(Decimal('NaN'))
4099 False
4101 return a.is_finite()
4103 def is_infinite(self, a):
4104 """Return True if the operand is infinite; otherwise return False.
4106 >>> ExtendedContext.is_infinite(Decimal('2.50'))
4107 False
4108 >>> ExtendedContext.is_infinite(Decimal('-Inf'))
4109 True
4110 >>> ExtendedContext.is_infinite(Decimal('NaN'))
4111 False
4113 return a.is_infinite()
4115 def is_nan(self, a):
4116 """Return True if the operand is a qNaN or sNaN;
4117 otherwise return False.
4119 >>> ExtendedContext.is_nan(Decimal('2.50'))
4120 False
4121 >>> ExtendedContext.is_nan(Decimal('NaN'))
4122 True
4123 >>> ExtendedContext.is_nan(Decimal('-sNaN'))
4124 True
4126 return a.is_nan()
4128 def is_normal(self, a):
4129 """Return True if the operand is a normal number;
4130 otherwise return False.
4132 >>> c = ExtendedContext.copy()
4133 >>> c.Emin = -999
4134 >>> c.Emax = 999
4135 >>> c.is_normal(Decimal('2.50'))
4136 True
4137 >>> c.is_normal(Decimal('0.1E-999'))
4138 False
4139 >>> c.is_normal(Decimal('0.00'))
4140 False
4141 >>> c.is_normal(Decimal('-Inf'))
4142 False
4143 >>> c.is_normal(Decimal('NaN'))
4144 False
4146 return a.is_normal(context=self)
4148 def is_qnan(self, a):
4149 """Return True if the operand is a quiet NaN; otherwise return False.
4151 >>> ExtendedContext.is_qnan(Decimal('2.50'))
4152 False
4153 >>> ExtendedContext.is_qnan(Decimal('NaN'))
4154 True
4155 >>> ExtendedContext.is_qnan(Decimal('sNaN'))
4156 False
4158 return a.is_qnan()
4160 def is_signed(self, a):
4161 """Return True if the operand is negative; otherwise return False.
4163 >>> ExtendedContext.is_signed(Decimal('2.50'))
4164 False
4165 >>> ExtendedContext.is_signed(Decimal('-12'))
4166 True
4167 >>> ExtendedContext.is_signed(Decimal('-0'))
4168 True
4170 return a.is_signed()
4172 def is_snan(self, a):
4173 """Return True if the operand is a signaling NaN;
4174 otherwise return False.
4176 >>> ExtendedContext.is_snan(Decimal('2.50'))
4177 False
4178 >>> ExtendedContext.is_snan(Decimal('NaN'))
4179 False
4180 >>> ExtendedContext.is_snan(Decimal('sNaN'))
4181 True
4183 return a.is_snan()
4185 def is_subnormal(self, a):
4186 """Return True if the operand is subnormal; otherwise return False.
4188 >>> c = ExtendedContext.copy()
4189 >>> c.Emin = -999
4190 >>> c.Emax = 999
4191 >>> c.is_subnormal(Decimal('2.50'))
4192 False
4193 >>> c.is_subnormal(Decimal('0.1E-999'))
4194 True
4195 >>> c.is_subnormal(Decimal('0.00'))
4196 False
4197 >>> c.is_subnormal(Decimal('-Inf'))
4198 False
4199 >>> c.is_subnormal(Decimal('NaN'))
4200 False
4202 return a.is_subnormal(context=self)
4204 def is_zero(self, a):
4205 """Return True if the operand is a zero; otherwise return False.
4207 >>> ExtendedContext.is_zero(Decimal('0'))
4208 True
4209 >>> ExtendedContext.is_zero(Decimal('2.50'))
4210 False
4211 >>> ExtendedContext.is_zero(Decimal('-0E+2'))
4212 True
4214 return a.is_zero()
4216 def ln(self, a):
4217 """Returns the natural (base e) logarithm of the operand.
4219 >>> c = ExtendedContext.copy()
4220 >>> c.Emin = -999
4221 >>> c.Emax = 999
4222 >>> c.ln(Decimal('0'))
4223 Decimal('-Infinity')
4224 >>> c.ln(Decimal('1.000'))
4225 Decimal('0')
4226 >>> c.ln(Decimal('2.71828183'))
4227 Decimal('1.00000000')
4228 >>> c.ln(Decimal('10'))
4229 Decimal('2.30258509')
4230 >>> c.ln(Decimal('+Infinity'))
4231 Decimal('Infinity')
4233 return a.ln(context=self)
4235 def log10(self, a):
4236 """Returns the base 10 logarithm of the operand.
4238 >>> c = ExtendedContext.copy()
4239 >>> c.Emin = -999
4240 >>> c.Emax = 999
4241 >>> c.log10(Decimal('0'))
4242 Decimal('-Infinity')
4243 >>> c.log10(Decimal('0.001'))
4244 Decimal('-3')
4245 >>> c.log10(Decimal('1.000'))
4246 Decimal('0')
4247 >>> c.log10(Decimal('2'))
4248 Decimal('0.301029996')
4249 >>> c.log10(Decimal('10'))
4250 Decimal('1')
4251 >>> c.log10(Decimal('70'))
4252 Decimal('1.84509804')
4253 >>> c.log10(Decimal('+Infinity'))
4254 Decimal('Infinity')
4256 return a.log10(context=self)
4258 def logb(self, a):
4259 """ Returns the exponent of the magnitude of the operand's MSD.
4261 The result is the integer which is the exponent of the magnitude
4262 of the most significant digit of the operand (as though the
4263 operand were truncated to a single digit while maintaining the
4264 value of that digit and without limiting the resulting exponent).
4266 >>> ExtendedContext.logb(Decimal('250'))
4267 Decimal('2')
4268 >>> ExtendedContext.logb(Decimal('2.50'))
4269 Decimal('0')
4270 >>> ExtendedContext.logb(Decimal('0.03'))
4271 Decimal('-2')
4272 >>> ExtendedContext.logb(Decimal('0'))
4273 Decimal('-Infinity')
4275 return a.logb(context=self)
4277 def logical_and(self, a, b):
4278 """Applies the logical operation 'and' between each operand's digits.
4280 The operands must be both logical numbers.
4282 >>> ExtendedContext.logical_and(Decimal('0'), Decimal('0'))
4283 Decimal('0')
4284 >>> ExtendedContext.logical_and(Decimal('0'), Decimal('1'))
4285 Decimal('0')
4286 >>> ExtendedContext.logical_and(Decimal('1'), Decimal('0'))
4287 Decimal('0')
4288 >>> ExtendedContext.logical_and(Decimal('1'), Decimal('1'))
4289 Decimal('1')
4290 >>> ExtendedContext.logical_and(Decimal('1100'), Decimal('1010'))
4291 Decimal('1000')
4292 >>> ExtendedContext.logical_and(Decimal('1111'), Decimal('10'))
4293 Decimal('10')
4295 return a.logical_and(b, context=self)
4297 def logical_invert(self, a):
4298 """Invert all the digits in the operand.
4300 The operand must be a logical number.
4302 >>> ExtendedContext.logical_invert(Decimal('0'))
4303 Decimal('111111111')
4304 >>> ExtendedContext.logical_invert(Decimal('1'))
4305 Decimal('111111110')
4306 >>> ExtendedContext.logical_invert(Decimal('111111111'))
4307 Decimal('0')
4308 >>> ExtendedContext.logical_invert(Decimal('101010101'))
4309 Decimal('10101010')
4311 return a.logical_invert(context=self)
4313 def logical_or(self, a, b):
4314 """Applies the logical operation 'or' between each operand's digits.
4316 The operands must be both logical numbers.
4318 >>> ExtendedContext.logical_or(Decimal('0'), Decimal('0'))
4319 Decimal('0')
4320 >>> ExtendedContext.logical_or(Decimal('0'), Decimal('1'))
4321 Decimal('1')
4322 >>> ExtendedContext.logical_or(Decimal('1'), Decimal('0'))
4323 Decimal('1')
4324 >>> ExtendedContext.logical_or(Decimal('1'), Decimal('1'))
4325 Decimal('1')
4326 >>> ExtendedContext.logical_or(Decimal('1100'), Decimal('1010'))
4327 Decimal('1110')
4328 >>> ExtendedContext.logical_or(Decimal('1110'), Decimal('10'))
4329 Decimal('1110')
4331 return a.logical_or(b, context=self)
4333 def logical_xor(self, a, b):
4334 """Applies the logical operation 'xor' between each operand's digits.
4336 The operands must be both logical numbers.
4338 >>> ExtendedContext.logical_xor(Decimal('0'), Decimal('0'))
4339 Decimal('0')
4340 >>> ExtendedContext.logical_xor(Decimal('0'), Decimal('1'))
4341 Decimal('1')
4342 >>> ExtendedContext.logical_xor(Decimal('1'), Decimal('0'))
4343 Decimal('1')
4344 >>> ExtendedContext.logical_xor(Decimal('1'), Decimal('1'))
4345 Decimal('0')
4346 >>> ExtendedContext.logical_xor(Decimal('1100'), Decimal('1010'))
4347 Decimal('110')
4348 >>> ExtendedContext.logical_xor(Decimal('1111'), Decimal('10'))
4349 Decimal('1101')
4351 return a.logical_xor(b, context=self)
4353 def max(self, a,b):
4354 """max compares two values numerically and returns the maximum.
4356 If either operand is a NaN then the general rules apply.
4357 Otherwise, the operands are compared as though by the compare
4358 operation. If they are numerically equal then the left-hand operand
4359 is chosen as the result. Otherwise the maximum (closer to positive
4360 infinity) of the two operands is chosen as the result.
4362 >>> ExtendedContext.max(Decimal('3'), Decimal('2'))
4363 Decimal('3')
4364 >>> ExtendedContext.max(Decimal('-10'), Decimal('3'))
4365 Decimal('3')
4366 >>> ExtendedContext.max(Decimal('1.0'), Decimal('1'))
4367 Decimal('1')
4368 >>> ExtendedContext.max(Decimal('7'), Decimal('NaN'))
4369 Decimal('7')
4371 return a.max(b, context=self)
4373 def max_mag(self, a, b):
4374 """Compares the values numerically with their sign ignored."""
4375 return a.max_mag(b, context=self)
4377 def min(self, a,b):
4378 """min compares two values numerically and returns the minimum.
4380 If either operand is a NaN then the general rules apply.
4381 Otherwise, the operands are compared as though by the compare
4382 operation. If they are numerically equal then the left-hand operand
4383 is chosen as the result. Otherwise the minimum (closer to negative
4384 infinity) of the two operands is chosen as the result.
4386 >>> ExtendedContext.min(Decimal('3'), Decimal('2'))
4387 Decimal('2')
4388 >>> ExtendedContext.min(Decimal('-10'), Decimal('3'))
4389 Decimal('-10')
4390 >>> ExtendedContext.min(Decimal('1.0'), Decimal('1'))
4391 Decimal('1.0')
4392 >>> ExtendedContext.min(Decimal('7'), Decimal('NaN'))
4393 Decimal('7')
4395 return a.min(b, context=self)
4397 def min_mag(self, a, b):
4398 """Compares the values numerically with their sign ignored."""
4399 return a.min_mag(b, context=self)
4401 def minus(self, a):
4402 """Minus corresponds to unary prefix minus in Python.
4404 The operation is evaluated using the same rules as subtract; the
4405 operation minus(a) is calculated as subtract('0', a) where the '0'
4406 has the same exponent as the operand.
4408 >>> ExtendedContext.minus(Decimal('1.3'))
4409 Decimal('-1.3')
4410 >>> ExtendedContext.minus(Decimal('-1.3'))
4411 Decimal('1.3')
4413 return a.__neg__(context=self)
4415 def multiply(self, a, b):
4416 """multiply multiplies two operands.
4418 If either operand is a special value then the general rules apply.
4419 Otherwise, the operands are multiplied together ('long multiplication'),
4420 resulting in a number which may be as long as the sum of the lengths
4421 of the two operands.
4423 >>> ExtendedContext.multiply(Decimal('1.20'), Decimal('3'))
4424 Decimal('3.60')
4425 >>> ExtendedContext.multiply(Decimal('7'), Decimal('3'))
4426 Decimal('21')
4427 >>> ExtendedContext.multiply(Decimal('0.9'), Decimal('0.8'))
4428 Decimal('0.72')
4429 >>> ExtendedContext.multiply(Decimal('0.9'), Decimal('-0'))
4430 Decimal('-0.0')
4431 >>> ExtendedContext.multiply(Decimal('654321'), Decimal('654321'))
4432 Decimal('4.28135971E+11')
4434 return a.__mul__(b, context=self)
4436 def next_minus(self, a):
4437 """Returns the largest representable number smaller than a.
4439 >>> c = ExtendedContext.copy()
4440 >>> c.Emin = -999
4441 >>> c.Emax = 999
4442 >>> ExtendedContext.next_minus(Decimal('1'))
4443 Decimal('0.999999999')
4444 >>> c.next_minus(Decimal('1E-1007'))
4445 Decimal('0E-1007')
4446 >>> ExtendedContext.next_minus(Decimal('-1.00000003'))
4447 Decimal('-1.00000004')
4448 >>> c.next_minus(Decimal('Infinity'))
4449 Decimal('9.99999999E+999')
4451 return a.next_minus(context=self)
4453 def next_plus(self, a):
4454 """Returns the smallest representable number larger than a.
4456 >>> c = ExtendedContext.copy()
4457 >>> c.Emin = -999
4458 >>> c.Emax = 999
4459 >>> ExtendedContext.next_plus(Decimal('1'))
4460 Decimal('1.00000001')
4461 >>> c.next_plus(Decimal('-1E-1007'))
4462 Decimal('-0E-1007')
4463 >>> ExtendedContext.next_plus(Decimal('-1.00000003'))
4464 Decimal('-1.00000002')
4465 >>> c.next_plus(Decimal('-Infinity'))
4466 Decimal('-9.99999999E+999')
4468 return a.next_plus(context=self)
4470 def next_toward(self, a, b):
4471 """Returns the number closest to a, in direction towards b.
4473 The result is the closest representable number from the first
4474 operand (but not the first operand) that is in the direction
4475 towards the second operand, unless the operands have the same
4476 value.
4478 >>> c = ExtendedContext.copy()
4479 >>> c.Emin = -999
4480 >>> c.Emax = 999
4481 >>> c.next_toward(Decimal('1'), Decimal('2'))
4482 Decimal('1.00000001')
4483 >>> c.next_toward(Decimal('-1E-1007'), Decimal('1'))
4484 Decimal('-0E-1007')
4485 >>> c.next_toward(Decimal('-1.00000003'), Decimal('0'))
4486 Decimal('-1.00000002')
4487 >>> c.next_toward(Decimal('1'), Decimal('0'))
4488 Decimal('0.999999999')
4489 >>> c.next_toward(Decimal('1E-1007'), Decimal('-100'))
4490 Decimal('0E-1007')
4491 >>> c.next_toward(Decimal('-1.00000003'), Decimal('-10'))
4492 Decimal('-1.00000004')
4493 >>> c.next_toward(Decimal('0.00'), Decimal('-0.0000'))
4494 Decimal('-0.00')
4496 return a.next_toward(b, context=self)
4498 def normalize(self, a):
4499 """normalize reduces an operand to its simplest form.
4501 Essentially a plus operation with all trailing zeros removed from the
4502 result.
4504 >>> ExtendedContext.normalize(Decimal('2.1'))
4505 Decimal('2.1')
4506 >>> ExtendedContext.normalize(Decimal('-2.0'))
4507 Decimal('-2')
4508 >>> ExtendedContext.normalize(Decimal('1.200'))
4509 Decimal('1.2')
4510 >>> ExtendedContext.normalize(Decimal('-120'))
4511 Decimal('-1.2E+2')
4512 >>> ExtendedContext.normalize(Decimal('120.00'))
4513 Decimal('1.2E+2')
4514 >>> ExtendedContext.normalize(Decimal('0.00'))
4515 Decimal('0')
4517 return a.normalize(context=self)
4519 def number_class(self, a):
4520 """Returns an indication of the class of the operand.
4522 The class is one of the following strings:
4523 -sNaN
4524 -NaN
4525 -Infinity
4526 -Normal
4527 -Subnormal
4528 -Zero
4529 +Zero
4530 +Subnormal
4531 +Normal
4532 +Infinity
4534 >>> c = Context(ExtendedContext)
4535 >>> c.Emin = -999
4536 >>> c.Emax = 999
4537 >>> c.number_class(Decimal('Infinity'))
4538 '+Infinity'
4539 >>> c.number_class(Decimal('1E-10'))
4540 '+Normal'
4541 >>> c.number_class(Decimal('2.50'))
4542 '+Normal'
4543 >>> c.number_class(Decimal('0.1E-999'))
4544 '+Subnormal'
4545 >>> c.number_class(Decimal('0'))
4546 '+Zero'
4547 >>> c.number_class(Decimal('-0'))
4548 '-Zero'
4549 >>> c.number_class(Decimal('-0.1E-999'))
4550 '-Subnormal'
4551 >>> c.number_class(Decimal('-1E-10'))
4552 '-Normal'
4553 >>> c.number_class(Decimal('-2.50'))
4554 '-Normal'
4555 >>> c.number_class(Decimal('-Infinity'))
4556 '-Infinity'
4557 >>> c.number_class(Decimal('NaN'))
4558 'NaN'
4559 >>> c.number_class(Decimal('-NaN'))
4560 'NaN'
4561 >>> c.number_class(Decimal('sNaN'))
4562 'sNaN'
4564 return a.number_class(context=self)
4566 def plus(self, a):
4567 """Plus corresponds to unary prefix plus in Python.
4569 The operation is evaluated using the same rules as add; the
4570 operation plus(a) is calculated as add('0', a) where the '0'
4571 has the same exponent as the operand.
4573 >>> ExtendedContext.plus(Decimal('1.3'))
4574 Decimal('1.3')
4575 >>> ExtendedContext.plus(Decimal('-1.3'))
4576 Decimal('-1.3')
4578 return a.__pos__(context=self)
4580 def power(self, a, b, modulo=None):
4581 """Raises a to the power of b, to modulo if given.
4583 With two arguments, compute a**b. If a is negative then b
4584 must be integral. The result will be inexact unless b is
4585 integral and the result is finite and can be expressed exactly
4586 in 'precision' digits.
4588 With three arguments, compute (a**b) % modulo. For the
4589 three argument form, the following restrictions on the
4590 arguments hold:
4592 - all three arguments must be integral
4593 - b must be nonnegative
4594 - at least one of a or b must be nonzero
4595 - modulo must be nonzero and have at most 'precision' digits
4597 The result of pow(a, b, modulo) is identical to the result
4598 that would be obtained by computing (a**b) % modulo with
4599 unbounded precision, but is computed more efficiently. It is
4600 always exact.
4602 >>> c = ExtendedContext.copy()
4603 >>> c.Emin = -999
4604 >>> c.Emax = 999
4605 >>> c.power(Decimal('2'), Decimal('3'))
4606 Decimal('8')
4607 >>> c.power(Decimal('-2'), Decimal('3'))
4608 Decimal('-8')
4609 >>> c.power(Decimal('2'), Decimal('-3'))
4610 Decimal('0.125')
4611 >>> c.power(Decimal('1.7'), Decimal('8'))
4612 Decimal('69.7575744')
4613 >>> c.power(Decimal('10'), Decimal('0.301029996'))
4614 Decimal('2.00000000')
4615 >>> c.power(Decimal('Infinity'), Decimal('-1'))
4616 Decimal('0')
4617 >>> c.power(Decimal('Infinity'), Decimal('0'))
4618 Decimal('1')
4619 >>> c.power(Decimal('Infinity'), Decimal('1'))
4620 Decimal('Infinity')
4621 >>> c.power(Decimal('-Infinity'), Decimal('-1'))
4622 Decimal('-0')
4623 >>> c.power(Decimal('-Infinity'), Decimal('0'))
4624 Decimal('1')
4625 >>> c.power(Decimal('-Infinity'), Decimal('1'))
4626 Decimal('-Infinity')
4627 >>> c.power(Decimal('-Infinity'), Decimal('2'))
4628 Decimal('Infinity')
4629 >>> c.power(Decimal('0'), Decimal('0'))
4630 Decimal('NaN')
4632 >>> c.power(Decimal('3'), Decimal('7'), Decimal('16'))
4633 Decimal('11')
4634 >>> c.power(Decimal('-3'), Decimal('7'), Decimal('16'))
4635 Decimal('-11')
4636 >>> c.power(Decimal('-3'), Decimal('8'), Decimal('16'))
4637 Decimal('1')
4638 >>> c.power(Decimal('3'), Decimal('7'), Decimal('-16'))
4639 Decimal('11')
4640 >>> c.power(Decimal('23E12345'), Decimal('67E189'), Decimal('123456789'))
4641 Decimal('11729830')
4642 >>> c.power(Decimal('-0'), Decimal('17'), Decimal('1729'))
4643 Decimal('-0')
4644 >>> c.power(Decimal('-23'), Decimal('0'), Decimal('65537'))
4645 Decimal('1')
4647 return a.__pow__(b, modulo, context=self)
4649 def quantize(self, a, b):
4650 """Returns a value equal to 'a' (rounded), having the exponent of 'b'.
4652 The coefficient of the result is derived from that of the left-hand
4653 operand. It may be rounded using the current rounding setting (if the
4654 exponent is being increased), multiplied by a positive power of ten (if
4655 the exponent is being decreased), or is unchanged (if the exponent is
4656 already equal to that of the right-hand operand).
4658 Unlike other operations, if the length of the coefficient after the
4659 quantize operation would be greater than precision then an Invalid
4660 operation condition is raised. This guarantees that, unless there is
4661 an error condition, the exponent of the result of a quantize is always
4662 equal to that of the right-hand operand.
4664 Also unlike other operations, quantize will never raise Underflow, even
4665 if the result is subnormal and inexact.
4667 >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.001'))
4668 Decimal('2.170')
4669 >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.01'))
4670 Decimal('2.17')
4671 >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.1'))
4672 Decimal('2.2')
4673 >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('1e+0'))
4674 Decimal('2')
4675 >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('1e+1'))
4676 Decimal('0E+1')
4677 >>> ExtendedContext.quantize(Decimal('-Inf'), Decimal('Infinity'))
4678 Decimal('-Infinity')
4679 >>> ExtendedContext.quantize(Decimal('2'), Decimal('Infinity'))
4680 Decimal('NaN')
4681 >>> ExtendedContext.quantize(Decimal('-0.1'), Decimal('1'))
4682 Decimal('-0')
4683 >>> ExtendedContext.quantize(Decimal('-0'), Decimal('1e+5'))
4684 Decimal('-0E+5')
4685 >>> ExtendedContext.quantize(Decimal('+35236450.6'), Decimal('1e-2'))
4686 Decimal('NaN')
4687 >>> ExtendedContext.quantize(Decimal('-35236450.6'), Decimal('1e-2'))
4688 Decimal('NaN')
4689 >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e-1'))
4690 Decimal('217.0')
4691 >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e-0'))
4692 Decimal('217')
4693 >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e+1'))
4694 Decimal('2.2E+2')
4695 >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e+2'))
4696 Decimal('2E+2')
4698 return a.quantize(b, context=self)
4700 def radix(self):
4701 """Just returns 10, as this is Decimal, :)
4703 >>> ExtendedContext.radix()
4704 Decimal('10')
4706 return Decimal(10)
4708 def remainder(self, a, b):
4709 """Returns the remainder from integer division.
4711 The result is the residue of the dividend after the operation of
4712 calculating integer division as described for divide-integer, rounded
4713 to precision digits if necessary. The sign of the result, if
4714 non-zero, is the same as that of the original dividend.
4716 This operation will fail under the same conditions as integer division
4717 (that is, if integer division on the same two operands would fail, the
4718 remainder cannot be calculated).
4720 >>> ExtendedContext.remainder(Decimal('2.1'), Decimal('3'))
4721 Decimal('2.1')
4722 >>> ExtendedContext.remainder(Decimal('10'), Decimal('3'))
4723 Decimal('1')
4724 >>> ExtendedContext.remainder(Decimal('-10'), Decimal('3'))
4725 Decimal('-1')
4726 >>> ExtendedContext.remainder(Decimal('10.2'), Decimal('1'))
4727 Decimal('0.2')
4728 >>> ExtendedContext.remainder(Decimal('10'), Decimal('0.3'))
4729 Decimal('0.1')
4730 >>> ExtendedContext.remainder(Decimal('3.6'), Decimal('1.3'))
4731 Decimal('1.0')
4733 return a.__mod__(b, context=self)
4735 def remainder_near(self, a, b):
4736 """Returns to be "a - b * n", where n is the integer nearest the exact
4737 value of "x / b" (if two integers are equally near then the even one
4738 is chosen). If the result is equal to 0 then its sign will be the
4739 sign of a.
4741 This operation will fail under the same conditions as integer division
4742 (that is, if integer division on the same two operands would fail, the
4743 remainder cannot be calculated).
4745 >>> ExtendedContext.remainder_near(Decimal('2.1'), Decimal('3'))
4746 Decimal('-0.9')
4747 >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('6'))
4748 Decimal('-2')
4749 >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('3'))
4750 Decimal('1')
4751 >>> ExtendedContext.remainder_near(Decimal('-10'), Decimal('3'))
4752 Decimal('-1')
4753 >>> ExtendedContext.remainder_near(Decimal('10.2'), Decimal('1'))
4754 Decimal('0.2')
4755 >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('0.3'))
4756 Decimal('0.1')
4757 >>> ExtendedContext.remainder_near(Decimal('3.6'), Decimal('1.3'))
4758 Decimal('-0.3')
4760 return a.remainder_near(b, context=self)
4762 def rotate(self, a, b):
4763 """Returns a rotated copy of a, b times.
4765 The coefficient of the result is a rotated copy of the digits in
4766 the coefficient of the first operand. The number of places of
4767 rotation is taken from the absolute value of the second operand,
4768 with the rotation being to the left if the second operand is
4769 positive or to the right otherwise.
4771 >>> ExtendedContext.rotate(Decimal('34'), Decimal('8'))
4772 Decimal('400000003')
4773 >>> ExtendedContext.rotate(Decimal('12'), Decimal('9'))
4774 Decimal('12')
4775 >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('-2'))
4776 Decimal('891234567')
4777 >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('0'))
4778 Decimal('123456789')
4779 >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('+2'))
4780 Decimal('345678912')
4782 return a.rotate(b, context=self)
4784 def same_quantum(self, a, b):
4785 """Returns True if the two operands have the same exponent.
4787 The result is never affected by either the sign or the coefficient of
4788 either operand.
4790 >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('0.001'))
4791 False
4792 >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('0.01'))
4793 True
4794 >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('1'))
4795 False
4796 >>> ExtendedContext.same_quantum(Decimal('Inf'), Decimal('-Inf'))
4797 True
4799 return a.same_quantum(b)
4801 def scaleb (self, a, b):
4802 """Returns the first operand after adding the second value its exp.
4804 >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('-2'))
4805 Decimal('0.0750')
4806 >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('0'))
4807 Decimal('7.50')
4808 >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('3'))
4809 Decimal('7.50E+3')
4811 return a.scaleb (b, context=self)
4813 def shift(self, a, b):
4814 """Returns a shifted copy of a, b times.
4816 The coefficient of the result is a shifted copy of the digits
4817 in the coefficient of the first operand. The number of places
4818 to shift is taken from the absolute value of the second operand,
4819 with the shift being to the left if the second operand is
4820 positive or to the right otherwise. Digits shifted into the
4821 coefficient are zeros.
4823 >>> ExtendedContext.shift(Decimal('34'), Decimal('8'))
4824 Decimal('400000000')
4825 >>> ExtendedContext.shift(Decimal('12'), Decimal('9'))
4826 Decimal('0')
4827 >>> ExtendedContext.shift(Decimal('123456789'), Decimal('-2'))
4828 Decimal('1234567')
4829 >>> ExtendedContext.shift(Decimal('123456789'), Decimal('0'))
4830 Decimal('123456789')
4831 >>> ExtendedContext.shift(Decimal('123456789'), Decimal('+2'))
4832 Decimal('345678900')
4834 return a.shift(b, context=self)
4836 def sqrt(self, a):
4837 """Square root of a non-negative number to context precision.
4839 If the result must be inexact, it is rounded using the round-half-even
4840 algorithm.
4842 >>> ExtendedContext.sqrt(Decimal('0'))
4843 Decimal('0')
4844 >>> ExtendedContext.sqrt(Decimal('-0'))
4845 Decimal('-0')
4846 >>> ExtendedContext.sqrt(Decimal('0.39'))
4847 Decimal('0.624499800')
4848 >>> ExtendedContext.sqrt(Decimal('100'))
4849 Decimal('10')
4850 >>> ExtendedContext.sqrt(Decimal('1'))
4851 Decimal('1')
4852 >>> ExtendedContext.sqrt(Decimal('1.0'))
4853 Decimal('1.0')
4854 >>> ExtendedContext.sqrt(Decimal('1.00'))
4855 Decimal('1.0')
4856 >>> ExtendedContext.sqrt(Decimal('7'))
4857 Decimal('2.64575131')
4858 >>> ExtendedContext.sqrt(Decimal('10'))
4859 Decimal('3.16227766')
4860 >>> ExtendedContext.prec
4863 return a.sqrt(context=self)
4865 def subtract(self, a, b):
4866 """Return the difference between the two operands.
4868 >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('1.07'))
4869 Decimal('0.23')
4870 >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('1.30'))
4871 Decimal('0.00')
4872 >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('2.07'))
4873 Decimal('-0.77')
4875 return a.__sub__(b, context=self)
4877 def to_eng_string(self, a):
4878 """Converts a number to a string, using scientific notation.
4880 The operation is not affected by the context.
4882 return a.to_eng_string(context=self)
4884 def to_sci_string(self, a):
4885 """Converts a number to a string, using scientific notation.
4887 The operation is not affected by the context.
4889 return a.__str__(context=self)
4891 def to_integral_exact(self, a):
4892 """Rounds to an integer.
4894 When the operand has a negative exponent, the result is the same
4895 as using the quantize() operation using the given operand as the
4896 left-hand-operand, 1E+0 as the right-hand-operand, and the precision
4897 of the operand as the precision setting; Inexact and Rounded flags
4898 are allowed in this operation. The rounding mode is taken from the
4899 context.
4901 >>> ExtendedContext.to_integral_exact(Decimal('2.1'))
4902 Decimal('2')
4903 >>> ExtendedContext.to_integral_exact(Decimal('100'))
4904 Decimal('100')
4905 >>> ExtendedContext.to_integral_exact(Decimal('100.0'))
4906 Decimal('100')
4907 >>> ExtendedContext.to_integral_exact(Decimal('101.5'))
4908 Decimal('102')
4909 >>> ExtendedContext.to_integral_exact(Decimal('-101.5'))
4910 Decimal('-102')
4911 >>> ExtendedContext.to_integral_exact(Decimal('10E+5'))
4912 Decimal('1.0E+6')
4913 >>> ExtendedContext.to_integral_exact(Decimal('7.89E+77'))
4914 Decimal('7.89E+77')
4915 >>> ExtendedContext.to_integral_exact(Decimal('-Inf'))
4916 Decimal('-Infinity')
4918 return a.to_integral_exact(context=self)
4920 def to_integral_value(self, a):
4921 """Rounds to an integer.
4923 When the operand has a negative exponent, the result is the same
4924 as using the quantize() operation using the given operand as the
4925 left-hand-operand, 1E+0 as the right-hand-operand, and the precision
4926 of the operand as the precision setting, except that no flags will
4927 be set. The rounding mode is taken from the context.
4929 >>> ExtendedContext.to_integral_value(Decimal('2.1'))
4930 Decimal('2')
4931 >>> ExtendedContext.to_integral_value(Decimal('100'))
4932 Decimal('100')
4933 >>> ExtendedContext.to_integral_value(Decimal('100.0'))
4934 Decimal('100')
4935 >>> ExtendedContext.to_integral_value(Decimal('101.5'))
4936 Decimal('102')
4937 >>> ExtendedContext.to_integral_value(Decimal('-101.5'))
4938 Decimal('-102')
4939 >>> ExtendedContext.to_integral_value(Decimal('10E+5'))
4940 Decimal('1.0E+6')
4941 >>> ExtendedContext.to_integral_value(Decimal('7.89E+77'))
4942 Decimal('7.89E+77')
4943 >>> ExtendedContext.to_integral_value(Decimal('-Inf'))
4944 Decimal('-Infinity')
4946 return a.to_integral_value(context=self)
4948 # the method name changed, but we provide also the old one, for compatibility
4949 to_integral = to_integral_value
4951 class _WorkRep(object):
4952 __slots__ = ('sign','int','exp')
4953 # sign: 0 or 1
4954 # int: int or long
4955 # exp: None, int, or string
4957 def __init__(self, value=None):
4958 if value is None:
4959 self.sign = None
4960 self.int = 0
4961 self.exp = None
4962 elif isinstance(value, Decimal):
4963 self.sign = value._sign
4964 self.int = int(value._int)
4965 self.exp = value._exp
4966 else:
4967 # assert isinstance(value, tuple)
4968 self.sign = value[0]
4969 self.int = value[1]
4970 self.exp = value[2]
4972 def __repr__(self):
4973 return "(%r, %r, %r)" % (self.sign, self.int, self.exp)
4975 __str__ = __repr__
4979 def _normalize(op1, op2, prec = 0):
4980 """Normalizes op1, op2 to have the same exp and length of coefficient.
4982 Done during addition.
4984 if op1.exp < op2.exp:
4985 tmp = op2
4986 other = op1
4987 else:
4988 tmp = op1
4989 other = op2
4991 # Let exp = min(tmp.exp - 1, tmp.adjusted() - precision - 1).
4992 # Then adding 10**exp to tmp has the same effect (after rounding)
4993 # as adding any positive quantity smaller than 10**exp; similarly
4994 # for subtraction. So if other is smaller than 10**exp we replace
4995 # it with 10**exp. This avoids tmp.exp - other.exp getting too large.
4996 tmp_len = len(str(tmp.int))
4997 other_len = len(str(other.int))
4998 exp = tmp.exp + min(-1, tmp_len - prec - 2)
4999 if other_len + other.exp - 1 < exp:
5000 other.int = 1
5001 other.exp = exp
5003 tmp.int *= 10 ** (tmp.exp - other.exp)
5004 tmp.exp = other.exp
5005 return op1, op2
5007 ##### Integer arithmetic functions used by ln, log10, exp and __pow__ #####
5009 # This function from Tim Peters was taken from here:
5010 # http://mail.python.org/pipermail/python-list/1999-July/007758.html
5011 # The correction being in the function definition is for speed, and
5012 # the whole function is not resolved with math.log because of avoiding
5013 # the use of floats.
5014 def _nbits(n, correction = {
5015 '0': 4, '1': 3, '2': 2, '3': 2,
5016 '4': 1, '5': 1, '6': 1, '7': 1,
5017 '8': 0, '9': 0, 'a': 0, 'b': 0,
5018 'c': 0, 'd': 0, 'e': 0, 'f': 0}):
5019 """Number of bits in binary representation of the positive integer n,
5020 or 0 if n == 0.
5022 if n < 0:
5023 raise ValueError("The argument to _nbits should be nonnegative.")
5024 hex_n = "%x" % n
5025 return 4*len(hex_n) - correction[hex_n[0]]
5027 def _sqrt_nearest(n, a):
5028 """Closest integer to the square root of the positive integer n. a is
5029 an initial approximation to the square root. Any positive integer
5030 will do for a, but the closer a is to the square root of n the
5031 faster convergence will be.
5034 if n <= 0 or a <= 0:
5035 raise ValueError("Both arguments to _sqrt_nearest should be positive.")
5038 while a != b:
5039 b, a = a, a--n//a>>1
5040 return a
5042 def _rshift_nearest(x, shift):
5043 """Given an integer x and a nonnegative integer shift, return closest
5044 integer to x / 2**shift; use round-to-even in case of a tie.
5047 b, q = 1L << shift, x >> shift
5048 return q + (2*(x & (b-1)) + (q&1) > b)
5050 def _div_nearest(a, b):
5051 """Closest integer to a/b, a and b positive integers; rounds to even
5052 in the case of a tie.
5055 q, r = divmod(a, b)
5056 return q + (2*r + (q&1) > b)
5058 def _ilog(x, M, L = 8):
5059 """Integer approximation to M*log(x/M), with absolute error boundable
5060 in terms only of x/M.
5062 Given positive integers x and M, return an integer approximation to
5063 M * log(x/M). For L = 8 and 0.1 <= x/M <= 10 the difference
5064 between the approximation and the exact result is at most 22. For
5065 L = 8 and 1.0 <= x/M <= 10.0 the difference is at most 15. In
5066 both cases these are upper bounds on the error; it will usually be
5067 much smaller."""
5069 # The basic algorithm is the following: let log1p be the function
5070 # log1p(x) = log(1+x). Then log(x/M) = log1p((x-M)/M). We use
5071 # the reduction
5073 # log1p(y) = 2*log1p(y/(1+sqrt(1+y)))
5075 # repeatedly until the argument to log1p is small (< 2**-L in
5076 # absolute value). For small y we can use the Taylor series
5077 # expansion
5079 # log1p(y) ~ y - y**2/2 + y**3/3 - ... - (-y)**T/T
5081 # truncating at T such that y**T is small enough. The whole
5082 # computation is carried out in a form of fixed-point arithmetic,
5083 # with a real number z being represented by an integer
5084 # approximation to z*M. To avoid loss of precision, the y below
5085 # is actually an integer approximation to 2**R*y*M, where R is the
5086 # number of reductions performed so far.
5088 y = x-M
5089 # argument reduction; R = number of reductions performed
5090 R = 0
5091 while (R <= L and long(abs(y)) << L-R >= M or
5092 R > L and abs(y) >> R-L >= M):
5093 y = _div_nearest(long(M*y) << 1,
5094 M + _sqrt_nearest(M*(M+_rshift_nearest(y, R)), M))
5095 R += 1
5097 # Taylor series with T terms
5098 T = -int(-10*len(str(M))//(3*L))
5099 yshift = _rshift_nearest(y, R)
5100 w = _div_nearest(M, T)
5101 for k in xrange(T-1, 0, -1):
5102 w = _div_nearest(M, k) - _div_nearest(yshift*w, M)
5104 return _div_nearest(w*y, M)
5106 def _dlog10(c, e, p):
5107 """Given integers c, e and p with c > 0, p >= 0, compute an integer
5108 approximation to 10**p * log10(c*10**e), with an absolute error of
5109 at most 1. Assumes that c*10**e is not exactly 1."""
5111 # increase precision by 2; compensate for this by dividing
5112 # final result by 100
5113 p += 2
5115 # write c*10**e as d*10**f with either:
5116 # f >= 0 and 1 <= d <= 10, or
5117 # f <= 0 and 0.1 <= d <= 1.
5118 # Thus for c*10**e close to 1, f = 0
5119 l = len(str(c))
5120 f = e+l - (e+l >= 1)
5122 if p > 0:
5123 M = 10**p
5124 k = e+p-f
5125 if k >= 0:
5126 c *= 10**k
5127 else:
5128 c = _div_nearest(c, 10**-k)
5130 log_d = _ilog(c, M) # error < 5 + 22 = 27
5131 log_10 = _log10_digits(p) # error < 1
5132 log_d = _div_nearest(log_d*M, log_10)
5133 log_tenpower = f*M # exact
5134 else:
5135 log_d = 0 # error < 2.31
5136 log_tenpower = _div_nearest(f, 10**-p) # error < 0.5
5138 return _div_nearest(log_tenpower+log_d, 100)
5140 def _dlog(c, e, p):
5141 """Given integers c, e and p with c > 0, compute an integer
5142 approximation to 10**p * log(c*10**e), with an absolute error of
5143 at most 1. Assumes that c*10**e is not exactly 1."""
5145 # Increase precision by 2. The precision increase is compensated
5146 # for at the end with a division by 100.
5147 p += 2
5149 # rewrite c*10**e as d*10**f with either f >= 0 and 1 <= d <= 10,
5150 # or f <= 0 and 0.1 <= d <= 1. Then we can compute 10**p * log(c*10**e)
5151 # as 10**p * log(d) + 10**p*f * log(10).
5152 l = len(str(c))
5153 f = e+l - (e+l >= 1)
5155 # compute approximation to 10**p*log(d), with error < 27
5156 if p > 0:
5157 k = e+p-f
5158 if k >= 0:
5159 c *= 10**k
5160 else:
5161 c = _div_nearest(c, 10**-k) # error of <= 0.5 in c
5163 # _ilog magnifies existing error in c by a factor of at most 10
5164 log_d = _ilog(c, 10**p) # error < 5 + 22 = 27
5165 else:
5166 # p <= 0: just approximate the whole thing by 0; error < 2.31
5167 log_d = 0
5169 # compute approximation to f*10**p*log(10), with error < 11.
5170 if f:
5171 extra = len(str(abs(f)))-1
5172 if p + extra >= 0:
5173 # error in f * _log10_digits(p+extra) < |f| * 1 = |f|
5174 # after division, error < |f|/10**extra + 0.5 < 10 + 0.5 < 11
5175 f_log_ten = _div_nearest(f*_log10_digits(p+extra), 10**extra)
5176 else:
5177 f_log_ten = 0
5178 else:
5179 f_log_ten = 0
5181 # error in sum < 11+27 = 38; error after division < 0.38 + 0.5 < 1
5182 return _div_nearest(f_log_ten + log_d, 100)
5184 class _Log10Memoize(object):
5185 """Class to compute, store, and allow retrieval of, digits of the
5186 constant log(10) = 2.302585.... This constant is needed by
5187 Decimal.ln, Decimal.log10, Decimal.exp and Decimal.__pow__."""
5188 def __init__(self):
5189 self.digits = "23025850929940456840179914546843642076011014886"
5191 def getdigits(self, p):
5192 """Given an integer p >= 0, return floor(10**p)*log(10).
5194 For example, self.getdigits(3) returns 2302.
5196 # digits are stored as a string, for quick conversion to
5197 # integer in the case that we've already computed enough
5198 # digits; the stored digits should always be correct
5199 # (truncated, not rounded to nearest).
5200 if p < 0:
5201 raise ValueError("p should be nonnegative")
5203 if p >= len(self.digits):
5204 # compute p+3, p+6, p+9, ... digits; continue until at
5205 # least one of the extra digits is nonzero
5206 extra = 3
5207 while True:
5208 # compute p+extra digits, correct to within 1ulp
5209 M = 10**(p+extra+2)
5210 digits = str(_div_nearest(_ilog(10*M, M), 100))
5211 if digits[-extra:] != '0'*extra:
5212 break
5213 extra += 3
5214 # keep all reliable digits so far; remove trailing zeros
5215 # and next nonzero digit
5216 self.digits = digits.rstrip('0')[:-1]
5217 return int(self.digits[:p+1])
5219 _log10_digits = _Log10Memoize().getdigits
5221 def _iexp(x, M, L=8):
5222 """Given integers x and M, M > 0, such that x/M is small in absolute
5223 value, compute an integer approximation to M*exp(x/M). For 0 <=
5224 x/M <= 2.4, the absolute error in the result is bounded by 60 (and
5225 is usually much smaller)."""
5227 # Algorithm: to compute exp(z) for a real number z, first divide z
5228 # by a suitable power R of 2 so that |z/2**R| < 2**-L. Then
5229 # compute expm1(z/2**R) = exp(z/2**R) - 1 using the usual Taylor
5230 # series
5232 # expm1(x) = x + x**2/2! + x**3/3! + ...
5234 # Now use the identity
5236 # expm1(2x) = expm1(x)*(expm1(x)+2)
5238 # R times to compute the sequence expm1(z/2**R),
5239 # expm1(z/2**(R-1)), ... , exp(z/2), exp(z).
5241 # Find R such that x/2**R/M <= 2**-L
5242 R = _nbits((long(x)<<L)//M)
5244 # Taylor series. (2**L)**T > M
5245 T = -int(-10*len(str(M))//(3*L))
5246 y = _div_nearest(x, T)
5247 Mshift = long(M)<<R
5248 for i in xrange(T-1, 0, -1):
5249 y = _div_nearest(x*(Mshift + y), Mshift * i)
5251 # Expansion
5252 for k in xrange(R-1, -1, -1):
5253 Mshift = long(M)<<(k+2)
5254 y = _div_nearest(y*(y+Mshift), Mshift)
5256 return M+y
5258 def _dexp(c, e, p):
5259 """Compute an approximation to exp(c*10**e), with p decimal places of
5260 precision.
5262 Returns integers d, f such that:
5264 10**(p-1) <= d <= 10**p, and
5265 (d-1)*10**f < exp(c*10**e) < (d+1)*10**f
5267 In other words, d*10**f is an approximation to exp(c*10**e) with p
5268 digits of precision, and with an error in d of at most 1. This is
5269 almost, but not quite, the same as the error being < 1ulp: when d
5270 = 10**(p-1) the error could be up to 10 ulp."""
5272 # we'll call iexp with M = 10**(p+2), giving p+3 digits of precision
5273 p += 2
5275 # compute log(10) with extra precision = adjusted exponent of c*10**e
5276 extra = max(0, e + len(str(c)) - 1)
5277 q = p + extra
5279 # compute quotient c*10**e/(log(10)) = c*10**(e+q)/(log(10)*10**q),
5280 # rounding down
5281 shift = e+q
5282 if shift >= 0:
5283 cshift = c*10**shift
5284 else:
5285 cshift = c//10**-shift
5286 quot, rem = divmod(cshift, _log10_digits(q))
5288 # reduce remainder back to original precision
5289 rem = _div_nearest(rem, 10**extra)
5291 # error in result of _iexp < 120; error after division < 0.62
5292 return _div_nearest(_iexp(rem, 10**p), 1000), quot - p + 3
5294 def _dpower(xc, xe, yc, ye, p):
5295 """Given integers xc, xe, yc and ye representing Decimals x = xc*10**xe and
5296 y = yc*10**ye, compute x**y. Returns a pair of integers (c, e) such that:
5298 10**(p-1) <= c <= 10**p, and
5299 (c-1)*10**e < x**y < (c+1)*10**e
5301 in other words, c*10**e is an approximation to x**y with p digits
5302 of precision, and with an error in c of at most 1. (This is
5303 almost, but not quite, the same as the error being < 1ulp: when c
5304 == 10**(p-1) we can only guarantee error < 10ulp.)
5306 We assume that: x is positive and not equal to 1, and y is nonzero.
5309 # Find b such that 10**(b-1) <= |y| <= 10**b
5310 b = len(str(abs(yc))) + ye
5312 # log(x) = lxc*10**(-p-b-1), to p+b+1 places after the decimal point
5313 lxc = _dlog(xc, xe, p+b+1)
5315 # compute product y*log(x) = yc*lxc*10**(-p-b-1+ye) = pc*10**(-p-1)
5316 shift = ye-b
5317 if shift >= 0:
5318 pc = lxc*yc*10**shift
5319 else:
5320 pc = _div_nearest(lxc*yc, 10**-shift)
5322 if pc == 0:
5323 # we prefer a result that isn't exactly 1; this makes it
5324 # easier to compute a correctly rounded result in __pow__
5325 if ((len(str(xc)) + xe >= 1) == (yc > 0)): # if x**y > 1:
5326 coeff, exp = 10**(p-1)+1, 1-p
5327 else:
5328 coeff, exp = 10**p-1, -p
5329 else:
5330 coeff, exp = _dexp(pc, -(p+1), p+1)
5331 coeff = _div_nearest(coeff, 10)
5332 exp += 1
5334 return coeff, exp
5336 def _log10_lb(c, correction = {
5337 '1': 100, '2': 70, '3': 53, '4': 40, '5': 31,
5338 '6': 23, '7': 16, '8': 10, '9': 5}):
5339 """Compute a lower bound for 100*log10(c) for a positive integer c."""
5340 if c <= 0:
5341 raise ValueError("The argument to _log10_lb should be nonnegative.")
5342 str_c = str(c)
5343 return 100*len(str_c) - correction[str_c[0]]
5345 ##### Helper Functions ####################################################
5347 def _convert_other(other, raiseit=False):
5348 """Convert other to Decimal.
5350 Verifies that it's ok to use in an implicit construction.
5352 if isinstance(other, Decimal):
5353 return other
5354 if isinstance(other, (int, long)):
5355 return Decimal(other)
5356 if raiseit:
5357 raise TypeError("Unable to convert %s to Decimal" % other)
5358 return NotImplemented
5360 ##### Setup Specific Contexts ############################################
5362 # The default context prototype used by Context()
5363 # Is mutable, so that new contexts can have different default values
5365 DefaultContext = Context(
5366 prec=28, rounding=ROUND_HALF_EVEN,
5367 traps=[DivisionByZero, Overflow, InvalidOperation],
5368 flags=[],
5369 Emax=999999999,
5370 Emin=-999999999,
5371 capitals=1
5374 # Pre-made alternate contexts offered by the specification
5375 # Don't change these; the user should be able to select these
5376 # contexts and be able to reproduce results from other implementations
5377 # of the spec.
5379 BasicContext = Context(
5380 prec=9, rounding=ROUND_HALF_UP,
5381 traps=[DivisionByZero, Overflow, InvalidOperation, Clamped, Underflow],
5382 flags=[],
5385 ExtendedContext = Context(
5386 prec=9, rounding=ROUND_HALF_EVEN,
5387 traps=[],
5388 flags=[],
5392 ##### crud for parsing strings #############################################
5394 # Regular expression used for parsing numeric strings. Additional
5395 # comments:
5397 # 1. Uncomment the two '\s*' lines to allow leading and/or trailing
5398 # whitespace. But note that the specification disallows whitespace in
5399 # a numeric string.
5401 # 2. For finite numbers (not infinities and NaNs) the body of the
5402 # number between the optional sign and the optional exponent must have
5403 # at least one decimal digit, possibly after the decimal point. The
5404 # lookahead expression '(?=\d|\.\d)' checks this.
5406 # As the flag UNICODE is not enabled here, we're explicitly avoiding any
5407 # other meaning for \d than the numbers [0-9].
5409 import re
5410 _parser = re.compile(r""" # A numeric string consists of:
5411 # \s*
5412 (?P<sign>[-+])? # an optional sign, followed by either...
5414 (?=[0-9]|\.[0-9]) # ...a number (with at least one digit)
5415 (?P<int>[0-9]*) # having a (possibly empty) integer part
5416 (\.(?P<frac>[0-9]*))? # followed by an optional fractional part
5417 (E(?P<exp>[-+]?[0-9]+))? # followed by an optional exponent, or...
5419 Inf(inity)? # ...an infinity, or...
5421 (?P<signal>s)? # ...an (optionally signaling)
5422 NaN # NaN
5423 (?P<diag>[0-9]*) # with (possibly empty) diagnostic info.
5425 # \s*
5427 """, re.VERBOSE | re.IGNORECASE).match
5429 _all_zeros = re.compile('0*$').match
5430 _exact_half = re.compile('50*$').match
5432 ##### PEP3101 support functions ##############################################
5433 # The functions in this section have little to do with the Decimal
5434 # class, and could potentially be reused or adapted for other pure
5435 # Python numeric classes that want to implement __format__
5437 # A format specifier for Decimal looks like:
5439 # [[fill]align][sign][0][minimumwidth][,][.precision][type]
5441 _parse_format_specifier_regex = re.compile(r"""\A
5443 (?P<fill>.)?
5444 (?P<align>[<>=^])
5446 (?P<sign>[-+ ])?
5447 (?P<zeropad>0)?
5448 (?P<minimumwidth>(?!0)\d+)?
5449 (?P<thousands_sep>,)?
5450 (?:\.(?P<precision>0|(?!0)\d+))?
5451 (?P<type>[eEfFgGn%])?
5453 """, re.VERBOSE)
5455 del re
5457 # The locale module is only needed for the 'n' format specifier. The
5458 # rest of the PEP 3101 code functions quite happily without it, so we
5459 # don't care too much if locale isn't present.
5460 try:
5461 import locale as _locale
5462 except ImportError:
5463 pass
5465 def _parse_format_specifier(format_spec, _localeconv=None):
5466 """Parse and validate a format specifier.
5468 Turns a standard numeric format specifier into a dict, with the
5469 following entries:
5471 fill: fill character to pad field to minimum width
5472 align: alignment type, either '<', '>', '=' or '^'
5473 sign: either '+', '-' or ' '
5474 minimumwidth: nonnegative integer giving minimum width
5475 zeropad: boolean, indicating whether to pad with zeros
5476 thousands_sep: string to use as thousands separator, or ''
5477 grouping: grouping for thousands separators, in format
5478 used by localeconv
5479 decimal_point: string to use for decimal point
5480 precision: nonnegative integer giving precision, or None
5481 type: one of the characters 'eEfFgG%', or None
5482 unicode: boolean (always True for Python 3.x)
5485 m = _parse_format_specifier_regex.match(format_spec)
5486 if m is None:
5487 raise ValueError("Invalid format specifier: " + format_spec)
5489 # get the dictionary
5490 format_dict = m.groupdict()
5492 # zeropad; defaults for fill and alignment. If zero padding
5493 # is requested, the fill and align fields should be absent.
5494 fill = format_dict['fill']
5495 align = format_dict['align']
5496 format_dict['zeropad'] = (format_dict['zeropad'] is not None)
5497 if format_dict['zeropad']:
5498 if fill is not None:
5499 raise ValueError("Fill character conflicts with '0'"
5500 " in format specifier: " + format_spec)
5501 if align is not None:
5502 raise ValueError("Alignment conflicts with '0' in "
5503 "format specifier: " + format_spec)
5504 format_dict['fill'] = fill or ' '
5505 format_dict['align'] = align or '<'
5507 # default sign handling: '-' for negative, '' for positive
5508 if format_dict['sign'] is None:
5509 format_dict['sign'] = '-'
5511 # minimumwidth defaults to 0; precision remains None if not given
5512 format_dict['minimumwidth'] = int(format_dict['minimumwidth'] or '0')
5513 if format_dict['precision'] is not None:
5514 format_dict['precision'] = int(format_dict['precision'])
5516 # if format type is 'g' or 'G' then a precision of 0 makes little
5517 # sense; convert it to 1. Same if format type is unspecified.
5518 if format_dict['precision'] == 0:
5519 if format_dict['type'] in 'gG' or format_dict['type'] is None:
5520 format_dict['precision'] = 1
5522 # determine thousands separator, grouping, and decimal separator, and
5523 # add appropriate entries to format_dict
5524 if format_dict['type'] == 'n':
5525 # apart from separators, 'n' behaves just like 'g'
5526 format_dict['type'] = 'g'
5527 if _localeconv is None:
5528 _localeconv = _locale.localeconv()
5529 if format_dict['thousands_sep'] is not None:
5530 raise ValueError("Explicit thousands separator conflicts with "
5531 "'n' type in format specifier: " + format_spec)
5532 format_dict['thousands_sep'] = _localeconv['thousands_sep']
5533 format_dict['grouping'] = _localeconv['grouping']
5534 format_dict['decimal_point'] = _localeconv['decimal_point']
5535 else:
5536 if format_dict['thousands_sep'] is None:
5537 format_dict['thousands_sep'] = ''
5538 format_dict['grouping'] = [3, 0]
5539 format_dict['decimal_point'] = '.'
5541 # record whether return type should be str or unicode
5542 format_dict['unicode'] = isinstance(format_spec, unicode)
5544 return format_dict
5546 def _format_align(sign, body, spec):
5547 """Given an unpadded, non-aligned numeric string 'body' and sign
5548 string 'sign', add padding and aligment conforming to the given
5549 format specifier dictionary 'spec' (as produced by
5550 parse_format_specifier).
5552 Also converts result to unicode if necessary.
5555 # how much extra space do we have to play with?
5556 minimumwidth = spec['minimumwidth']
5557 fill = spec['fill']
5558 padding = fill*(minimumwidth - len(sign) - len(body))
5560 align = spec['align']
5561 if align == '<':
5562 result = sign + body + padding
5563 elif align == '>':
5564 result = padding + sign + body
5565 elif align == '=':
5566 result = sign + padding + body
5567 elif align == '^':
5568 half = len(padding)//2
5569 result = padding[:half] + sign + body + padding[half:]
5570 else:
5571 raise ValueError('Unrecognised alignment field')
5573 # make sure that result is unicode if necessary
5574 if spec['unicode']:
5575 result = unicode(result)
5577 return result
5579 def _group_lengths(grouping):
5580 """Convert a localeconv-style grouping into a (possibly infinite)
5581 iterable of integers representing group lengths.
5584 # The result from localeconv()['grouping'], and the input to this
5585 # function, should be a list of integers in one of the
5586 # following three forms:
5588 # (1) an empty list, or
5589 # (2) nonempty list of positive integers + [0]
5590 # (3) list of positive integers + [locale.CHAR_MAX], or
5592 from itertools import chain, repeat
5593 if not grouping:
5594 return []
5595 elif grouping[-1] == 0 and len(grouping) >= 2:
5596 return chain(grouping[:-1], repeat(grouping[-2]))
5597 elif grouping[-1] == _locale.CHAR_MAX:
5598 return grouping[:-1]
5599 else:
5600 raise ValueError('unrecognised format for grouping')
5602 def _insert_thousands_sep(digits, spec, min_width=1):
5603 """Insert thousands separators into a digit string.
5605 spec is a dictionary whose keys should include 'thousands_sep' and
5606 'grouping'; typically it's the result of parsing the format
5607 specifier using _parse_format_specifier.
5609 The min_width keyword argument gives the minimum length of the
5610 result, which will be padded on the left with zeros if necessary.
5612 If necessary, the zero padding adds an extra '0' on the left to
5613 avoid a leading thousands separator. For example, inserting
5614 commas every three digits in '123456', with min_width=8, gives
5615 '0,123,456', even though that has length 9.
5619 sep = spec['thousands_sep']
5620 grouping = spec['grouping']
5622 groups = []
5623 for l in _group_lengths(grouping):
5624 if l <= 0:
5625 raise ValueError("group length should be positive")
5626 # max(..., 1) forces at least 1 digit to the left of a separator
5627 l = min(max(len(digits), min_width, 1), l)
5628 groups.append('0'*(l - len(digits)) + digits[-l:])
5629 digits = digits[:-l]
5630 min_width -= l
5631 if not digits and min_width <= 0:
5632 break
5633 min_width -= len(sep)
5634 else:
5635 l = max(len(digits), min_width, 1)
5636 groups.append('0'*(l - len(digits)) + digits[-l:])
5637 return sep.join(reversed(groups))
5639 def _format_sign(is_negative, spec):
5640 """Determine sign character."""
5642 if is_negative:
5643 return '-'
5644 elif spec['sign'] in ' +':
5645 return spec['sign']
5646 else:
5647 return ''
5649 def _format_number(is_negative, intpart, fracpart, exp, spec):
5650 """Format a number, given the following data:
5652 is_negative: true if the number is negative, else false
5653 intpart: string of digits that must appear before the decimal point
5654 fracpart: string of digits that must come after the point
5655 exp: exponent, as an integer
5656 spec: dictionary resulting from parsing the format specifier
5658 This function uses the information in spec to:
5659 insert separators (decimal separator and thousands separators)
5660 format the sign
5661 format the exponent
5662 add trailing '%' for the '%' type
5663 zero-pad if necessary
5664 fill and align if necessary
5667 sign = _format_sign(is_negative, spec)
5669 if fracpart:
5670 fracpart = spec['decimal_point'] + fracpart
5672 if exp != 0 or spec['type'] in 'eE':
5673 echar = {'E': 'E', 'e': 'e', 'G': 'E', 'g': 'e'}[spec['type']]
5674 fracpart += "{0}{1:+}".format(echar, exp)
5675 if spec['type'] == '%':
5676 fracpart += '%'
5678 if spec['zeropad']:
5679 min_width = spec['minimumwidth'] - len(fracpart) - len(sign)
5680 else:
5681 min_width = 0
5682 intpart = _insert_thousands_sep(intpart, spec, min_width)
5684 return _format_align(sign, intpart+fracpart, spec)
5687 ##### Useful Constants (internal use only) ################################
5689 # Reusable defaults
5690 _Infinity = Decimal('Inf')
5691 _NegativeInfinity = Decimal('-Inf')
5692 _NaN = Decimal('NaN')
5693 _Zero = Decimal(0)
5694 _One = Decimal(1)
5695 _NegativeOne = Decimal(-1)
5697 # _SignedInfinity[sign] is infinity w/ that sign
5698 _SignedInfinity = (_Infinity, _NegativeInfinity)
5702 if __name__ == '__main__':
5703 import doctest, sys
5704 doctest.testmod(sys.modules[__name__])