Refactoring for fileConfig. Contributed by Shane Hathaway.
[python.git] / Objects / floatobject.c
blob86c2ba3e4823ceb0e5ea86934fe8a0ca8f30ab07
2 /* Float object implementation */
4 /* XXX There should be overflow checks here, but it's hard to check
5 for any kind of float exception without losing portability. */
7 #include "Python.h"
9 #include <ctype.h>
11 #if !defined(__STDC__)
12 extern double fmod(double, double);
13 extern double pow(double, double);
14 #endif
16 /* Special free list -- see comments for same code in intobject.c. */
17 #define BLOCK_SIZE 1000 /* 1K less typical malloc overhead */
18 #define BHEAD_SIZE 8 /* Enough for a 64-bit pointer */
19 #define N_FLOATOBJECTS ((BLOCK_SIZE - BHEAD_SIZE) / sizeof(PyFloatObject))
21 struct _floatblock {
22 struct _floatblock *next;
23 PyFloatObject objects[N_FLOATOBJECTS];
26 typedef struct _floatblock PyFloatBlock;
28 static PyFloatBlock *block_list = NULL;
29 static PyFloatObject *free_list = NULL;
31 static PyFloatObject *
32 fill_free_list(void)
34 PyFloatObject *p, *q;
35 /* XXX Float blocks escape the object heap. Use PyObject_MALLOC ??? */
36 p = (PyFloatObject *) PyMem_MALLOC(sizeof(PyFloatBlock));
37 if (p == NULL)
38 return (PyFloatObject *) PyErr_NoMemory();
39 ((PyFloatBlock *)p)->next = block_list;
40 block_list = (PyFloatBlock *)p;
41 p = &((PyFloatBlock *)p)->objects[0];
42 q = p + N_FLOATOBJECTS;
43 while (--q > p)
44 q->ob_type = (struct _typeobject *)(q-1);
45 q->ob_type = NULL;
46 return p + N_FLOATOBJECTS - 1;
49 PyObject *
50 PyFloat_FromDouble(double fval)
52 register PyFloatObject *op;
53 if (free_list == NULL) {
54 if ((free_list = fill_free_list()) == NULL)
55 return NULL;
57 /* Inline PyObject_New */
58 op = free_list;
59 free_list = (PyFloatObject *)op->ob_type;
60 PyObject_INIT(op, &PyFloat_Type);
61 op->ob_fval = fval;
62 return (PyObject *) op;
65 /**************************************************************************
66 RED_FLAG 22-Sep-2000 tim
67 PyFloat_FromString's pend argument is braindead. Prior to this RED_FLAG,
69 1. If v was a regular string, *pend was set to point to its terminating
70 null byte. That's useless (the caller can find that without any
71 help from this function!).
73 2. If v was a Unicode string, or an object convertible to a character
74 buffer, *pend was set to point into stack trash (the auto temp
75 vector holding the character buffer). That was downright dangerous.
77 Since we can't change the interface of a public API function, pend is
78 still supported but now *officially* useless: if pend is not NULL,
79 *pend is set to NULL.
80 **************************************************************************/
81 PyObject *
82 PyFloat_FromString(PyObject *v, char **pend)
84 const char *s, *last, *end;
85 double x;
86 char buffer[256]; /* for errors */
87 #ifdef Py_USING_UNICODE
88 char s_buffer[256]; /* for objects convertible to a char buffer */
89 #endif
90 int len;
92 if (pend)
93 *pend = NULL;
94 if (PyString_Check(v)) {
95 s = PyString_AS_STRING(v);
96 len = PyString_GET_SIZE(v);
98 #ifdef Py_USING_UNICODE
99 else if (PyUnicode_Check(v)) {
100 if (PyUnicode_GET_SIZE(v) >= sizeof(s_buffer)) {
101 PyErr_SetString(PyExc_ValueError,
102 "Unicode float() literal too long to convert");
103 return NULL;
105 if (PyUnicode_EncodeDecimal(PyUnicode_AS_UNICODE(v),
106 PyUnicode_GET_SIZE(v),
107 s_buffer,
108 NULL))
109 return NULL;
110 s = s_buffer;
111 len = (int)strlen(s);
113 #endif
114 else if (PyObject_AsCharBuffer(v, &s, &len)) {
115 PyErr_SetString(PyExc_TypeError,
116 "float() argument must be a string or a number");
117 return NULL;
120 last = s + len;
121 while (*s && isspace(Py_CHARMASK(*s)))
122 s++;
123 if (*s == '\0') {
124 PyErr_SetString(PyExc_ValueError, "empty string for float()");
125 return NULL;
127 /* We don't care about overflow or underflow. If the platform supports
128 * them, infinities and signed zeroes (on underflow) are fine.
129 * However, strtod can return 0 for denormalized numbers, where atof
130 * does not. So (alas!) we special-case a zero result. Note that
131 * whether strtod sets errno on underflow is not defined, so we can't
132 * key off errno.
134 PyFPE_START_PROTECT("strtod", return NULL)
135 x = PyOS_ascii_strtod(s, (char **)&end);
136 PyFPE_END_PROTECT(x)
137 errno = 0;
138 /* Believe it or not, Solaris 2.6 can move end *beyond* the null
139 byte at the end of the string, when the input is inf(inity). */
140 if (end > last)
141 end = last;
142 if (end == s) {
143 PyOS_snprintf(buffer, sizeof(buffer),
144 "invalid literal for float(): %.200s", s);
145 PyErr_SetString(PyExc_ValueError, buffer);
146 return NULL;
148 /* Since end != s, the platform made *some* kind of sense out
149 of the input. Trust it. */
150 while (*end && isspace(Py_CHARMASK(*end)))
151 end++;
152 if (*end != '\0') {
153 PyOS_snprintf(buffer, sizeof(buffer),
154 "invalid literal for float(): %.200s", s);
155 PyErr_SetString(PyExc_ValueError, buffer);
156 return NULL;
158 else if (end != last) {
159 PyErr_SetString(PyExc_ValueError,
160 "null byte in argument for float()");
161 return NULL;
163 if (x == 0.0) {
164 /* See above -- may have been strtod being anal
165 about denorms. */
166 PyFPE_START_PROTECT("atof", return NULL)
167 x = PyOS_ascii_atof(s);
168 PyFPE_END_PROTECT(x)
169 errno = 0; /* whether atof ever set errno is undefined */
171 return PyFloat_FromDouble(x);
174 static void
175 float_dealloc(PyFloatObject *op)
177 if (PyFloat_CheckExact(op)) {
178 op->ob_type = (struct _typeobject *)free_list;
179 free_list = op;
181 else
182 op->ob_type->tp_free((PyObject *)op);
185 double
186 PyFloat_AsDouble(PyObject *op)
188 PyNumberMethods *nb;
189 PyFloatObject *fo;
190 double val;
192 if (op && PyFloat_Check(op))
193 return PyFloat_AS_DOUBLE((PyFloatObject*) op);
195 if (op == NULL) {
196 PyErr_BadArgument();
197 return -1;
200 if ((nb = op->ob_type->tp_as_number) == NULL || nb->nb_float == NULL) {
201 PyErr_SetString(PyExc_TypeError, "a float is required");
202 return -1;
205 fo = (PyFloatObject*) (*nb->nb_float) (op);
206 if (fo == NULL)
207 return -1;
208 if (!PyFloat_Check(fo)) {
209 PyErr_SetString(PyExc_TypeError,
210 "nb_float should return float object");
211 return -1;
214 val = PyFloat_AS_DOUBLE(fo);
215 Py_DECREF(fo);
217 return val;
220 /* Methods */
222 static void
223 format_float(char *buf, size_t buflen, PyFloatObject *v, int precision)
225 register char *cp;
226 char format[32];
227 /* Subroutine for float_repr and float_print.
228 We want float numbers to be recognizable as such,
229 i.e., they should contain a decimal point or an exponent.
230 However, %g may print the number as an integer;
231 in such cases, we append ".0" to the string. */
233 assert(PyFloat_Check(v));
234 PyOS_snprintf(format, 32, "%%.%ig", precision);
235 PyOS_ascii_formatd(buf, buflen, format, v->ob_fval);
236 cp = buf;
237 if (*cp == '-')
238 cp++;
239 for (; *cp != '\0'; cp++) {
240 /* Any non-digit means it's not an integer;
241 this takes care of NAN and INF as well. */
242 if (!isdigit(Py_CHARMASK(*cp)))
243 break;
245 if (*cp == '\0') {
246 *cp++ = '.';
247 *cp++ = '0';
248 *cp++ = '\0';
252 /* XXX PyFloat_AsStringEx should not be a public API function (for one
253 XXX thing, its signature passes a buffer without a length; for another,
254 XXX it isn't useful outside this file).
256 void
257 PyFloat_AsStringEx(char *buf, PyFloatObject *v, int precision)
259 format_float(buf, 100, v, precision);
262 /* Macro and helper that convert PyObject obj to a C double and store
263 the value in dbl; this replaces the functionality of the coercion
264 slot function. If conversion to double raises an exception, obj is
265 set to NULL, and the function invoking this macro returns NULL. If
266 obj is not of float, int or long type, Py_NotImplemented is incref'ed,
267 stored in obj, and returned from the function invoking this macro.
269 #define CONVERT_TO_DOUBLE(obj, dbl) \
270 if (PyFloat_Check(obj)) \
271 dbl = PyFloat_AS_DOUBLE(obj); \
272 else if (convert_to_double(&(obj), &(dbl)) < 0) \
273 return obj;
275 static int
276 convert_to_double(PyObject **v, double *dbl)
278 register PyObject *obj = *v;
280 if (PyInt_Check(obj)) {
281 *dbl = (double)PyInt_AS_LONG(obj);
283 else if (PyLong_Check(obj)) {
284 *dbl = PyLong_AsDouble(obj);
285 if (*dbl == -1.0 && PyErr_Occurred()) {
286 *v = NULL;
287 return -1;
290 else {
291 Py_INCREF(Py_NotImplemented);
292 *v = Py_NotImplemented;
293 return -1;
295 return 0;
298 /* Precisions used by repr() and str(), respectively.
300 The repr() precision (17 significant decimal digits) is the minimal number
301 that is guaranteed to have enough precision so that if the number is read
302 back in the exact same binary value is recreated. This is true for IEEE
303 floating point by design, and also happens to work for all other modern
304 hardware.
306 The str() precision is chosen so that in most cases, the rounding noise
307 created by various operations is suppressed, while giving plenty of
308 precision for practical use.
312 #define PREC_REPR 17
313 #define PREC_STR 12
315 /* XXX PyFloat_AsString and PyFloat_AsReprString should be deprecated:
316 XXX they pass a char buffer without passing a length.
318 void
319 PyFloat_AsString(char *buf, PyFloatObject *v)
321 format_float(buf, 100, v, PREC_STR);
324 void
325 PyFloat_AsReprString(char *buf, PyFloatObject *v)
327 format_float(buf, 100, v, PREC_REPR);
330 /* ARGSUSED */
331 static int
332 float_print(PyFloatObject *v, FILE *fp, int flags)
334 char buf[100];
335 format_float(buf, sizeof(buf), v,
336 (flags & Py_PRINT_RAW) ? PREC_STR : PREC_REPR);
337 fputs(buf, fp);
338 return 0;
341 static PyObject *
342 float_repr(PyFloatObject *v)
344 char buf[100];
345 format_float(buf, sizeof(buf), v, PREC_REPR);
346 return PyString_FromString(buf);
349 static PyObject *
350 float_str(PyFloatObject *v)
352 char buf[100];
353 format_float(buf, sizeof(buf), v, PREC_STR);
354 return PyString_FromString(buf);
357 /* Comparison is pretty much a nightmare. When comparing float to float,
358 * we do it as straightforwardly (and long-windedly) as conceivable, so
359 * that, e.g., Python x == y delivers the same result as the platform
360 * C x == y when x and/or y is a NaN.
361 * When mixing float with an integer type, there's no good *uniform* approach.
362 * Converting the double to an integer obviously doesn't work, since we
363 * may lose info from fractional bits. Converting the integer to a double
364 * also has two failure modes: (1) a long int may trigger overflow (too
365 * large to fit in the dynamic range of a C double); (2) even a C long may have
366 * more bits than fit in a C double (e.g., on a a 64-bit box long may have
367 * 63 bits of precision, but a C double probably has only 53), and then
368 * we can falsely claim equality when low-order integer bits are lost by
369 * coercion to double. So this part is painful too.
372 static PyObject*
373 float_richcompare(PyObject *v, PyObject *w, int op)
375 double i, j;
376 int r = 0;
378 assert(PyFloat_Check(v));
379 i = PyFloat_AS_DOUBLE(v);
381 /* Switch on the type of w. Set i and j to doubles to be compared,
382 * and op to the richcomp to use.
384 if (PyFloat_Check(w))
385 j = PyFloat_AS_DOUBLE(w);
387 else if (Py_IS_INFINITY(i) || Py_IS_NAN(i)) {
388 if (PyInt_Check(w) || PyLong_Check(w))
389 /* If i is an infinity, its magnitude exceeds any
390 * finite integer, so it doesn't matter which int we
391 * compare i with. If i is a NaN, similarly.
393 j = 0.0;
394 else
395 goto Unimplemented;
398 else if (PyInt_Check(w)) {
399 long jj = PyInt_AS_LONG(w);
400 /* In the worst realistic case I can imagine, C double is a
401 * Cray single with 48 bits of precision, and long has 64
402 * bits.
404 #if SIZEOF_LONG > 6
405 unsigned long abs = (unsigned long)(jj < 0 ? -jj : jj);
406 if (abs >> 48) {
407 /* Needs more than 48 bits. Make it take the
408 * PyLong path.
410 PyObject *result;
411 PyObject *ww = PyLong_FromLong(jj);
413 if (ww == NULL)
414 return NULL;
415 result = float_richcompare(v, ww, op);
416 Py_DECREF(ww);
417 return result;
419 #endif
420 j = (double)jj;
421 assert((long)j == jj);
424 else if (PyLong_Check(w)) {
425 int vsign = i == 0.0 ? 0 : i < 0.0 ? -1 : 1;
426 int wsign = _PyLong_Sign(w);
427 size_t nbits;
428 int exponent;
430 if (vsign != wsign) {
431 /* Magnitudes are irrelevant -- the signs alone
432 * determine the outcome.
434 i = (double)vsign;
435 j = (double)wsign;
436 goto Compare;
438 /* The signs are the same. */
439 /* Convert w to a double if it fits. In particular, 0 fits. */
440 nbits = _PyLong_NumBits(w);
441 if (nbits == (size_t)-1 && PyErr_Occurred()) {
442 /* This long is so large that size_t isn't big enough
443 * to hold the # of bits. Replace with little doubles
444 * that give the same outcome -- w is so large that
445 * its magnitude must exceed the magnitude of any
446 * finite float.
448 PyErr_Clear();
449 i = (double)vsign;
450 assert(wsign != 0);
451 j = wsign * 2.0;
452 goto Compare;
454 if (nbits <= 48) {
455 j = PyLong_AsDouble(w);
456 /* It's impossible that <= 48 bits overflowed. */
457 assert(j != -1.0 || ! PyErr_Occurred());
458 goto Compare;
460 assert(wsign != 0); /* else nbits was 0 */
461 assert(vsign != 0); /* if vsign were 0, then since wsign is
462 * not 0, we would have taken the
463 * vsign != wsign branch at the start */
464 /* We want to work with non-negative numbers. */
465 if (vsign < 0) {
466 /* "Multiply both sides" by -1; this also swaps the
467 * comparator.
469 i = -i;
470 op = _Py_SwappedOp[op];
472 assert(i > 0.0);
473 (void) frexp(i, &exponent);
474 /* exponent is the # of bits in v before the radix point;
475 * we know that nbits (the # of bits in w) > 48 at this point
477 if (exponent < 0 || (size_t)exponent < nbits) {
478 i = 1.0;
479 j = 2.0;
480 goto Compare;
482 if ((size_t)exponent > nbits) {
483 i = 2.0;
484 j = 1.0;
485 goto Compare;
487 /* v and w have the same number of bits before the radix
488 * point. Construct two longs that have the same comparison
489 * outcome.
492 double fracpart;
493 double intpart;
494 PyObject *result = NULL;
495 PyObject *one = NULL;
496 PyObject *vv = NULL;
497 PyObject *ww = w;
499 if (wsign < 0) {
500 ww = PyNumber_Negative(w);
501 if (ww == NULL)
502 goto Error;
504 else
505 Py_INCREF(ww);
507 fracpart = modf(i, &intpart);
508 vv = PyLong_FromDouble(intpart);
509 if (vv == NULL)
510 goto Error;
512 if (fracpart != 0.0) {
513 /* Shift left, and or a 1 bit into vv
514 * to represent the lost fraction.
516 PyObject *temp;
518 one = PyInt_FromLong(1);
519 if (one == NULL)
520 goto Error;
522 temp = PyNumber_Lshift(ww, one);
523 if (temp == NULL)
524 goto Error;
525 Py_DECREF(ww);
526 ww = temp;
528 temp = PyNumber_Lshift(vv, one);
529 if (temp == NULL)
530 goto Error;
531 Py_DECREF(vv);
532 vv = temp;
534 temp = PyNumber_Or(vv, one);
535 if (temp == NULL)
536 goto Error;
537 Py_DECREF(vv);
538 vv = temp;
541 r = PyObject_RichCompareBool(vv, ww, op);
542 if (r < 0)
543 goto Error;
544 result = PyBool_FromLong(r);
545 Error:
546 Py_XDECREF(vv);
547 Py_XDECREF(ww);
548 Py_XDECREF(one);
549 return result;
551 } /* else if (PyLong_Check(w)) */
553 else /* w isn't float, int, or long */
554 goto Unimplemented;
556 Compare:
557 PyFPE_START_PROTECT("richcompare", return NULL)
558 switch (op) {
559 case Py_EQ:
560 r = i == j;
561 break;
562 case Py_NE:
563 r = i != j;
564 break;
565 case Py_LE:
566 r = i <= j;
567 break;
568 case Py_GE:
569 r = i >= j;
570 break;
571 case Py_LT:
572 r = i < j;
573 break;
574 case Py_GT:
575 r = i > j;
576 break;
578 PyFPE_END_PROTECT(r)
579 return PyBool_FromLong(r);
581 Unimplemented:
582 Py_INCREF(Py_NotImplemented);
583 return Py_NotImplemented;
586 static long
587 float_hash(PyFloatObject *v)
589 return _Py_HashDouble(v->ob_fval);
592 static PyObject *
593 float_add(PyObject *v, PyObject *w)
595 double a,b;
596 CONVERT_TO_DOUBLE(v, a);
597 CONVERT_TO_DOUBLE(w, b);
598 PyFPE_START_PROTECT("add", return 0)
599 a = a + b;
600 PyFPE_END_PROTECT(a)
601 return PyFloat_FromDouble(a);
604 static PyObject *
605 float_sub(PyObject *v, PyObject *w)
607 double a,b;
608 CONVERT_TO_DOUBLE(v, a);
609 CONVERT_TO_DOUBLE(w, b);
610 PyFPE_START_PROTECT("subtract", return 0)
611 a = a - b;
612 PyFPE_END_PROTECT(a)
613 return PyFloat_FromDouble(a);
616 static PyObject *
617 float_mul(PyObject *v, PyObject *w)
619 double a,b;
620 CONVERT_TO_DOUBLE(v, a);
621 CONVERT_TO_DOUBLE(w, b);
622 PyFPE_START_PROTECT("multiply", return 0)
623 a = a * b;
624 PyFPE_END_PROTECT(a)
625 return PyFloat_FromDouble(a);
628 static PyObject *
629 float_div(PyObject *v, PyObject *w)
631 double a,b;
632 CONVERT_TO_DOUBLE(v, a);
633 CONVERT_TO_DOUBLE(w, b);
634 if (b == 0.0) {
635 PyErr_SetString(PyExc_ZeroDivisionError, "float division");
636 return NULL;
638 PyFPE_START_PROTECT("divide", return 0)
639 a = a / b;
640 PyFPE_END_PROTECT(a)
641 return PyFloat_FromDouble(a);
644 static PyObject *
645 float_classic_div(PyObject *v, PyObject *w)
647 double a,b;
648 CONVERT_TO_DOUBLE(v, a);
649 CONVERT_TO_DOUBLE(w, b);
650 if (Py_DivisionWarningFlag >= 2 &&
651 PyErr_Warn(PyExc_DeprecationWarning, "classic float division") < 0)
652 return NULL;
653 if (b == 0.0) {
654 PyErr_SetString(PyExc_ZeroDivisionError, "float division");
655 return NULL;
657 PyFPE_START_PROTECT("divide", return 0)
658 a = a / b;
659 PyFPE_END_PROTECT(a)
660 return PyFloat_FromDouble(a);
663 static PyObject *
664 float_rem(PyObject *v, PyObject *w)
666 double vx, wx;
667 double mod;
668 CONVERT_TO_DOUBLE(v, vx);
669 CONVERT_TO_DOUBLE(w, wx);
670 if (wx == 0.0) {
671 PyErr_SetString(PyExc_ZeroDivisionError, "float modulo");
672 return NULL;
674 PyFPE_START_PROTECT("modulo", return 0)
675 mod = fmod(vx, wx);
676 /* note: checking mod*wx < 0 is incorrect -- underflows to
677 0 if wx < sqrt(smallest nonzero double) */
678 if (mod && ((wx < 0) != (mod < 0))) {
679 mod += wx;
681 PyFPE_END_PROTECT(mod)
682 return PyFloat_FromDouble(mod);
685 static PyObject *
686 float_divmod(PyObject *v, PyObject *w)
688 double vx, wx;
689 double div, mod, floordiv;
690 CONVERT_TO_DOUBLE(v, vx);
691 CONVERT_TO_DOUBLE(w, wx);
692 if (wx == 0.0) {
693 PyErr_SetString(PyExc_ZeroDivisionError, "float divmod()");
694 return NULL;
696 PyFPE_START_PROTECT("divmod", return 0)
697 mod = fmod(vx, wx);
698 /* fmod is typically exact, so vx-mod is *mathematically* an
699 exact multiple of wx. But this is fp arithmetic, and fp
700 vx - mod is an approximation; the result is that div may
701 not be an exact integral value after the division, although
702 it will always be very close to one.
704 div = (vx - mod) / wx;
705 if (mod) {
706 /* ensure the remainder has the same sign as the denominator */
707 if ((wx < 0) != (mod < 0)) {
708 mod += wx;
709 div -= 1.0;
712 else {
713 /* the remainder is zero, and in the presence of signed zeroes
714 fmod returns different results across platforms; ensure
715 it has the same sign as the denominator; we'd like to do
716 "mod = wx * 0.0", but that may get optimized away */
717 mod *= mod; /* hide "mod = +0" from optimizer */
718 if (wx < 0.0)
719 mod = -mod;
721 /* snap quotient to nearest integral value */
722 if (div) {
723 floordiv = floor(div);
724 if (div - floordiv > 0.5)
725 floordiv += 1.0;
727 else {
728 /* div is zero - get the same sign as the true quotient */
729 div *= div; /* hide "div = +0" from optimizers */
730 floordiv = div * vx / wx; /* zero w/ sign of vx/wx */
732 PyFPE_END_PROTECT(floordiv)
733 return Py_BuildValue("(dd)", floordiv, mod);
736 static PyObject *
737 float_floor_div(PyObject *v, PyObject *w)
739 PyObject *t, *r;
741 t = float_divmod(v, w);
742 if (t == NULL || t == Py_NotImplemented)
743 return t;
744 assert(PyTuple_CheckExact(t));
745 r = PyTuple_GET_ITEM(t, 0);
746 Py_INCREF(r);
747 Py_DECREF(t);
748 return r;
751 static PyObject *
752 float_pow(PyObject *v, PyObject *w, PyObject *z)
754 double iv, iw, ix;
756 if ((PyObject *)z != Py_None) {
757 PyErr_SetString(PyExc_TypeError, "pow() 3rd argument not "
758 "allowed unless all arguments are integers");
759 return NULL;
762 CONVERT_TO_DOUBLE(v, iv);
763 CONVERT_TO_DOUBLE(w, iw);
765 /* Sort out special cases here instead of relying on pow() */
766 if (iw == 0) { /* v**0 is 1, even 0**0 */
767 PyFPE_START_PROTECT("pow", return NULL)
768 if ((PyObject *)z != Py_None) {
769 double iz;
770 CONVERT_TO_DOUBLE(z, iz);
771 ix = fmod(1.0, iz);
772 if (ix != 0 && iz < 0)
773 ix += iz;
775 else
776 ix = 1.0;
777 PyFPE_END_PROTECT(ix)
778 return PyFloat_FromDouble(ix);
780 if (iv == 0.0) { /* 0**w is error if w<0, else 1 */
781 if (iw < 0.0) {
782 PyErr_SetString(PyExc_ZeroDivisionError,
783 "0.0 cannot be raised to a negative power");
784 return NULL;
786 return PyFloat_FromDouble(0.0);
788 if (iv < 0.0) {
789 /* Whether this is an error is a mess, and bumps into libm
790 * bugs so we have to figure it out ourselves.
792 if (iw != floor(iw)) {
793 PyErr_SetString(PyExc_ValueError, "negative number "
794 "cannot be raised to a fractional power");
795 return NULL;
797 /* iw is an exact integer, albeit perhaps a very large one.
798 * -1 raised to an exact integer should never be exceptional.
799 * Alas, some libms (chiefly glibc as of early 2003) return
800 * NaN and set EDOM on pow(-1, large_int) if the int doesn't
801 * happen to be representable in a *C* integer. That's a
802 * bug; we let that slide in math.pow() (which currently
803 * reflects all platform accidents), but not for Python's **.
805 if (iv == -1.0 && !Py_IS_INFINITY(iw) && iw == iw) {
806 /* XXX the "iw == iw" was to weed out NaNs. This
807 * XXX doesn't actually work on all platforms.
809 /* Return 1 if iw is even, -1 if iw is odd; there's
810 * no guarantee that any C integral type is big
811 * enough to hold iw, so we have to check this
812 * indirectly.
814 ix = floor(iw * 0.5) * 2.0;
815 return PyFloat_FromDouble(ix == iw ? 1.0 : -1.0);
817 /* Else iv != -1.0, and overflow or underflow are possible.
818 * Unless we're to write pow() ourselves, we have to trust
819 * the platform to do this correctly.
822 errno = 0;
823 PyFPE_START_PROTECT("pow", return NULL)
824 ix = pow(iv, iw);
825 PyFPE_END_PROTECT(ix)
826 Py_ADJUST_ERANGE1(ix);
827 if (errno != 0) {
828 /* We don't expect any errno value other than ERANGE, but
829 * the range of libm bugs appears unbounded.
831 PyErr_SetFromErrno(errno == ERANGE ? PyExc_OverflowError :
832 PyExc_ValueError);
833 return NULL;
835 return PyFloat_FromDouble(ix);
838 static PyObject *
839 float_neg(PyFloatObject *v)
841 return PyFloat_FromDouble(-v->ob_fval);
844 static PyObject *
845 float_pos(PyFloatObject *v)
847 if (PyFloat_CheckExact(v)) {
848 Py_INCREF(v);
849 return (PyObject *)v;
851 else
852 return PyFloat_FromDouble(v->ob_fval);
855 static PyObject *
856 float_abs(PyFloatObject *v)
858 return PyFloat_FromDouble(fabs(v->ob_fval));
861 static int
862 float_nonzero(PyFloatObject *v)
864 return v->ob_fval != 0.0;
867 static int
868 float_coerce(PyObject **pv, PyObject **pw)
870 if (PyInt_Check(*pw)) {
871 long x = PyInt_AsLong(*pw);
872 *pw = PyFloat_FromDouble((double)x);
873 Py_INCREF(*pv);
874 return 0;
876 else if (PyLong_Check(*pw)) {
877 double x = PyLong_AsDouble(*pw);
878 if (x == -1.0 && PyErr_Occurred())
879 return -1;
880 *pw = PyFloat_FromDouble(x);
881 Py_INCREF(*pv);
882 return 0;
884 else if (PyFloat_Check(*pw)) {
885 Py_INCREF(*pv);
886 Py_INCREF(*pw);
887 return 0;
889 return 1; /* Can't do it */
892 static PyObject *
893 float_long(PyObject *v)
895 double x = PyFloat_AsDouble(v);
896 return PyLong_FromDouble(x);
899 static PyObject *
900 float_int(PyObject *v)
902 double x = PyFloat_AsDouble(v);
903 double wholepart; /* integral portion of x, rounded toward 0 */
905 (void)modf(x, &wholepart);
906 /* Try to get out cheap if this fits in a Python int. The attempt
907 * to cast to long must be protected, as C doesn't define what
908 * happens if the double is too big to fit in a long. Some rare
909 * systems raise an exception then (RISCOS was mentioned as one,
910 * and someone using a non-default option on Sun also bumped into
911 * that). Note that checking for >= and <= LONG_{MIN,MAX} would
912 * still be vulnerable: if a long has more bits of precision than
913 * a double, casting MIN/MAX to double may yield an approximation,
914 * and if that's rounded up, then, e.g., wholepart=LONG_MAX+1 would
915 * yield true from the C expression wholepart<=LONG_MAX, despite
916 * that wholepart is actually greater than LONG_MAX.
918 if (LONG_MIN < wholepart && wholepart < LONG_MAX) {
919 const long aslong = (long)wholepart;
920 return PyInt_FromLong(aslong);
922 return PyLong_FromDouble(wholepart);
925 static PyObject *
926 float_float(PyObject *v)
928 if (PyFloat_CheckExact(v))
929 Py_INCREF(v);
930 else
931 v = PyFloat_FromDouble(((PyFloatObject *)v)->ob_fval);
932 return v;
936 static PyObject *
937 float_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds);
939 static PyObject *
940 float_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
942 PyObject *x = Py_False; /* Integer zero */
943 static const char *kwlist[] = {"x", 0};
945 if (type != &PyFloat_Type)
946 return float_subtype_new(type, args, kwds); /* Wimp out */
947 if (!PyArg_ParseTupleAndKeywords(args, kwds, "|O:float", kwlist, &x))
948 return NULL;
949 if (PyString_Check(x))
950 return PyFloat_FromString(x, NULL);
951 return PyNumber_Float(x);
954 /* Wimpy, slow approach to tp_new calls for subtypes of float:
955 first create a regular float from whatever arguments we got,
956 then allocate a subtype instance and initialize its ob_fval
957 from the regular float. The regular float is then thrown away.
959 static PyObject *
960 float_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
962 PyObject *tmp, *new;
964 assert(PyType_IsSubtype(type, &PyFloat_Type));
965 tmp = float_new(&PyFloat_Type, args, kwds);
966 if (tmp == NULL)
967 return NULL;
968 assert(PyFloat_CheckExact(tmp));
969 new = type->tp_alloc(type, 0);
970 if (new == NULL) {
971 Py_DECREF(tmp);
972 return NULL;
974 ((PyFloatObject *)new)->ob_fval = ((PyFloatObject *)tmp)->ob_fval;
975 Py_DECREF(tmp);
976 return new;
979 static PyObject *
980 float_getnewargs(PyFloatObject *v)
982 return Py_BuildValue("(d)", v->ob_fval);
985 /* this is for the benefit of the pack/unpack routines below */
987 typedef enum {
988 unknown_format, ieee_big_endian_format, ieee_little_endian_format
989 } float_format_type;
991 static float_format_type double_format, float_format;
992 static float_format_type detected_double_format, detected_float_format;
994 static PyObject *
995 float_getformat(PyTypeObject *v, PyObject* arg)
997 char* s;
998 float_format_type r;
1000 if (!PyString_Check(arg)) {
1001 PyErr_Format(PyExc_TypeError,
1002 "__getformat__() argument must be string, not %.500s",
1003 arg->ob_type->tp_name);
1004 return NULL;
1006 s = PyString_AS_STRING(arg);
1007 if (strcmp(s, "double") == 0) {
1008 r = double_format;
1010 else if (strcmp(s, "float") == 0) {
1011 r = float_format;
1013 else {
1014 PyErr_SetString(PyExc_ValueError,
1015 "__getformat__() argument 1 must be "
1016 "'double' or 'float'");
1017 return NULL;
1020 switch (r) {
1021 case unknown_format:
1022 return PyString_FromString("unknown");
1023 case ieee_little_endian_format:
1024 return PyString_FromString("IEEE, little-endian");
1025 case ieee_big_endian_format:
1026 return PyString_FromString("IEEE, big-endian");
1027 default:
1028 Py_FatalError("insane float_format or double_format");
1029 return NULL;
1033 PyDoc_STRVAR(float_getformat_doc,
1034 "float.__getformat__(typestr) -> string\n"
1035 "\n"
1036 "You probably don't want to use this function. It exists mainly to be\n"
1037 "used in Python's test suite.\n"
1038 "\n"
1039 "typestr must be 'double' or 'float'. This function returns whichever of\n"
1040 "'unknown', 'IEEE, big-endian' or 'IEEE, little-endian' best describes the\n"
1041 "format of floating point numbers used by the C type named by typestr.");
1043 static PyObject *
1044 float_setformat(PyTypeObject *v, PyObject* args)
1046 char* typestr;
1047 char* format;
1048 float_format_type f;
1049 float_format_type detected;
1050 float_format_type *p;
1052 if (!PyArg_ParseTuple(args, "ss:__setformat__", &typestr, &format))
1053 return NULL;
1055 if (strcmp(typestr, "double") == 0) {
1056 p = &double_format;
1057 detected = detected_double_format;
1059 else if (strcmp(typestr, "float") == 0) {
1060 p = &float_format;
1061 detected = detected_float_format;
1063 else {
1064 PyErr_SetString(PyExc_ValueError,
1065 "__setformat__() argument 1 must "
1066 "be 'double' or 'float'");
1067 return NULL;
1070 if (strcmp(format, "unknown") == 0) {
1071 f = unknown_format;
1073 else if (strcmp(format, "IEEE, little-endian") == 0) {
1074 f = ieee_little_endian_format;
1076 else if (strcmp(format, "IEEE, big-endian") == 0) {
1077 f = ieee_big_endian_format;
1079 else {
1080 PyErr_SetString(PyExc_ValueError,
1081 "__setformat__() argument 2 must be "
1082 "'unknown', 'IEEE, little-endian' or "
1083 "'IEEE, big-endian'");
1084 return NULL;
1088 if (f != unknown_format && f != detected) {
1089 PyErr_Format(PyExc_ValueError,
1090 "can only set %s format to 'unknown' or the "
1091 "detected platform value", typestr);
1092 return NULL;
1095 *p = f;
1096 Py_RETURN_NONE;
1099 PyDoc_STRVAR(float_setformat_doc,
1100 "float.__setformat__(typestr, fmt) -> None\n"
1101 "\n"
1102 "You probably don't want to use this function. It exists mainly to be\n"
1103 "used in Python's test suite.\n"
1104 "\n"
1105 "typestr must be 'double' or 'float'. fmt must be one of 'unknown',\n"
1106 "'IEEE, big-endian' or 'IEEE, little-endian', and in addition can only be\n"
1107 "one of the latter two if it appears to match the underlying C reality.\n"
1108 "\n"
1109 "Overrides the automatic determination of C-level floating point type.\n"
1110 "This affects how floats are converted to and from binary strings.");
1112 static PyMethodDef float_methods[] = {
1113 {"__getnewargs__", (PyCFunction)float_getnewargs, METH_NOARGS},
1114 {"__getformat__", (PyCFunction)float_getformat,
1115 METH_O|METH_CLASS, float_getformat_doc},
1116 {"__setformat__", (PyCFunction)float_setformat,
1117 METH_VARARGS|METH_CLASS, float_setformat_doc},
1118 {NULL, NULL} /* sentinel */
1121 PyDoc_STRVAR(float_doc,
1122 "float(x) -> floating point number\n\
1124 Convert a string or number to a floating point number, if possible.");
1127 static PyNumberMethods float_as_number = {
1128 (binaryfunc)float_add, /*nb_add*/
1129 (binaryfunc)float_sub, /*nb_subtract*/
1130 (binaryfunc)float_mul, /*nb_multiply*/
1131 (binaryfunc)float_classic_div, /*nb_divide*/
1132 (binaryfunc)float_rem, /*nb_remainder*/
1133 (binaryfunc)float_divmod, /*nb_divmod*/
1134 (ternaryfunc)float_pow, /*nb_power*/
1135 (unaryfunc)float_neg, /*nb_negative*/
1136 (unaryfunc)float_pos, /*nb_positive*/
1137 (unaryfunc)float_abs, /*nb_absolute*/
1138 (inquiry)float_nonzero, /*nb_nonzero*/
1139 0, /*nb_invert*/
1140 0, /*nb_lshift*/
1141 0, /*nb_rshift*/
1142 0, /*nb_and*/
1143 0, /*nb_xor*/
1144 0, /*nb_or*/
1145 (coercion)float_coerce, /*nb_coerce*/
1146 (unaryfunc)float_int, /*nb_int*/
1147 (unaryfunc)float_long, /*nb_long*/
1148 (unaryfunc)float_float, /*nb_float*/
1149 0, /* nb_oct */
1150 0, /* nb_hex */
1151 0, /* nb_inplace_add */
1152 0, /* nb_inplace_subtract */
1153 0, /* nb_inplace_multiply */
1154 0, /* nb_inplace_divide */
1155 0, /* nb_inplace_remainder */
1156 0, /* nb_inplace_power */
1157 0, /* nb_inplace_lshift */
1158 0, /* nb_inplace_rshift */
1159 0, /* nb_inplace_and */
1160 0, /* nb_inplace_xor */
1161 0, /* nb_inplace_or */
1162 float_floor_div, /* nb_floor_divide */
1163 float_div, /* nb_true_divide */
1164 0, /* nb_inplace_floor_divide */
1165 0, /* nb_inplace_true_divide */
1168 PyTypeObject PyFloat_Type = {
1169 PyObject_HEAD_INIT(&PyType_Type)
1171 "float",
1172 sizeof(PyFloatObject),
1174 (destructor)float_dealloc, /* tp_dealloc */
1175 (printfunc)float_print, /* tp_print */
1176 0, /* tp_getattr */
1177 0, /* tp_setattr */
1178 0, /* tp_compare */
1179 (reprfunc)float_repr, /* tp_repr */
1180 &float_as_number, /* tp_as_number */
1181 0, /* tp_as_sequence */
1182 0, /* tp_as_mapping */
1183 (hashfunc)float_hash, /* tp_hash */
1184 0, /* tp_call */
1185 (reprfunc)float_str, /* tp_str */
1186 PyObject_GenericGetAttr, /* tp_getattro */
1187 0, /* tp_setattro */
1188 0, /* tp_as_buffer */
1189 Py_TPFLAGS_DEFAULT | Py_TPFLAGS_CHECKTYPES |
1190 Py_TPFLAGS_BASETYPE, /* tp_flags */
1191 float_doc, /* tp_doc */
1192 0, /* tp_traverse */
1193 0, /* tp_clear */
1194 (richcmpfunc)float_richcompare, /* tp_richcompare */
1195 0, /* tp_weaklistoffset */
1196 0, /* tp_iter */
1197 0, /* tp_iternext */
1198 float_methods, /* tp_methods */
1199 0, /* tp_members */
1200 0, /* tp_getset */
1201 0, /* tp_base */
1202 0, /* tp_dict */
1203 0, /* tp_descr_get */
1204 0, /* tp_descr_set */
1205 0, /* tp_dictoffset */
1206 0, /* tp_init */
1207 0, /* tp_alloc */
1208 float_new, /* tp_new */
1211 void
1212 _PyFloat_Init(void)
1214 /* We attempt to determine if this machine is using IEEE
1215 floating point formats by peering at the bits of some
1216 carefully chosen values. If it looks like we are on an
1217 IEEE platform, the float packing/unpacking routines can
1218 just copy bits, if not they resort to arithmetic & shifts
1219 and masks. The shifts & masks approach works on all finite
1220 values, but what happens to infinities, NaNs and signed
1221 zeroes on packing is an accident, and attempting to unpack
1222 a NaN or an infinity will raise an exception.
1224 Note that if we're on some whacked-out platform which uses
1225 IEEE formats but isn't strictly little-endian or big-
1226 endian, we will fall back to the portable shifts & masks
1227 method. */
1229 #if SIZEOF_DOUBLE == 8
1231 double x = 9006104071832581.0;
1232 if (memcmp(&x, "\x43\x3f\xff\x01\x02\x03\x04\x05", 8) == 0)
1233 detected_double_format = ieee_big_endian_format;
1234 else if (memcmp(&x, "\x05\x04\x03\x02\x01\xff\x3f\x43", 8) == 0)
1235 detected_double_format = ieee_little_endian_format;
1236 else
1237 detected_double_format = unknown_format;
1239 #else
1240 detected_double_format = unknown_format;
1241 #endif
1243 #if SIZEOF_FLOAT == 4
1245 float y = 16711938.0;
1246 if (memcmp(&y, "\x4b\x7f\x01\x02", 4) == 0)
1247 detected_float_format = ieee_big_endian_format;
1248 else if (memcmp(&y, "\x02\x01\x7f\x4b", 4) == 0)
1249 detected_float_format = ieee_little_endian_format;
1250 else
1251 detected_float_format = unknown_format;
1253 #else
1254 detected_float_format = unknown_format;
1255 #endif
1257 double_format = detected_double_format;
1258 float_format = detected_float_format;
1261 void
1262 PyFloat_Fini(void)
1264 PyFloatObject *p;
1265 PyFloatBlock *list, *next;
1266 unsigned i;
1267 int bc, bf; /* block count, number of freed blocks */
1268 int frem, fsum; /* remaining unfreed floats per block, total */
1270 bc = 0;
1271 bf = 0;
1272 fsum = 0;
1273 list = block_list;
1274 block_list = NULL;
1275 free_list = NULL;
1276 while (list != NULL) {
1277 bc++;
1278 frem = 0;
1279 for (i = 0, p = &list->objects[0];
1280 i < N_FLOATOBJECTS;
1281 i++, p++) {
1282 if (PyFloat_CheckExact(p) && p->ob_refcnt != 0)
1283 frem++;
1285 next = list->next;
1286 if (frem) {
1287 list->next = block_list;
1288 block_list = list;
1289 for (i = 0, p = &list->objects[0];
1290 i < N_FLOATOBJECTS;
1291 i++, p++) {
1292 if (!PyFloat_CheckExact(p) ||
1293 p->ob_refcnt == 0) {
1294 p->ob_type = (struct _typeobject *)
1295 free_list;
1296 free_list = p;
1300 else {
1301 PyMem_FREE(list); /* XXX PyObject_FREE ??? */
1302 bf++;
1304 fsum += frem;
1305 list = next;
1307 if (!Py_VerboseFlag)
1308 return;
1309 fprintf(stderr, "# cleanup floats");
1310 if (!fsum) {
1311 fprintf(stderr, "\n");
1313 else {
1314 fprintf(stderr,
1315 ": %d unfreed float%s in %d out of %d block%s\n",
1316 fsum, fsum == 1 ? "" : "s",
1317 bc - bf, bc, bc == 1 ? "" : "s");
1319 if (Py_VerboseFlag > 1) {
1320 list = block_list;
1321 while (list != NULL) {
1322 for (i = 0, p = &list->objects[0];
1323 i < N_FLOATOBJECTS;
1324 i++, p++) {
1325 if (PyFloat_CheckExact(p) &&
1326 p->ob_refcnt != 0) {
1327 char buf[100];
1328 PyFloat_AsString(buf, p);
1329 fprintf(stderr,
1330 "# <float at %p, refcnt=%d, val=%s>\n",
1331 p, p->ob_refcnt, buf);
1334 list = list->next;
1339 /*----------------------------------------------------------------------------
1340 * _PyFloat_{Pack,Unpack}{4,8}. See floatobject.h.
1342 * TODO: On platforms that use the standard IEEE-754 single and double
1343 * formats natively, these routines could simply copy the bytes.
1346 _PyFloat_Pack4(double x, unsigned char *p, int le)
1348 if (float_format == unknown_format) {
1349 unsigned char sign;
1350 int e;
1351 double f;
1352 unsigned int fbits;
1353 int incr = 1;
1355 if (le) {
1356 p += 3;
1357 incr = -1;
1360 if (x < 0) {
1361 sign = 1;
1362 x = -x;
1364 else
1365 sign = 0;
1367 f = frexp(x, &e);
1369 /* Normalize f to be in the range [1.0, 2.0) */
1370 if (0.5 <= f && f < 1.0) {
1371 f *= 2.0;
1372 e--;
1374 else if (f == 0.0)
1375 e = 0;
1376 else {
1377 PyErr_SetString(PyExc_SystemError,
1378 "frexp() result out of range");
1379 return -1;
1382 if (e >= 128)
1383 goto Overflow;
1384 else if (e < -126) {
1385 /* Gradual underflow */
1386 f = ldexp(f, 126 + e);
1387 e = 0;
1389 else if (!(e == 0 && f == 0.0)) {
1390 e += 127;
1391 f -= 1.0; /* Get rid of leading 1 */
1394 f *= 8388608.0; /* 2**23 */
1395 fbits = (unsigned int)(f + 0.5); /* Round */
1396 assert(fbits <= 8388608);
1397 if (fbits >> 23) {
1398 /* The carry propagated out of a string of 23 1 bits. */
1399 fbits = 0;
1400 ++e;
1401 if (e >= 255)
1402 goto Overflow;
1405 /* First byte */
1406 *p = (sign << 7) | (e >> 1);
1407 p += incr;
1409 /* Second byte */
1410 *p = (char) (((e & 1) << 7) | (fbits >> 16));
1411 p += incr;
1413 /* Third byte */
1414 *p = (fbits >> 8) & 0xFF;
1415 p += incr;
1417 /* Fourth byte */
1418 *p = fbits & 0xFF;
1420 /* Done */
1421 return 0;
1423 Overflow:
1424 PyErr_SetString(PyExc_OverflowError,
1425 "float too large to pack with f format");
1426 return -1;
1428 else {
1429 float y = (float)x;
1430 const char *s = (char*)&y;
1431 int i, incr = 1;
1433 if ((float_format == ieee_little_endian_format && !le)
1434 || (float_format == ieee_big_endian_format && le)) {
1435 p += 3;
1436 incr = -1;
1439 for (i = 0; i < 4; i++) {
1440 *p = *s++;
1441 p += incr;
1443 return 0;
1448 _PyFloat_Pack8(double x, unsigned char *p, int le)
1450 if (double_format == unknown_format) {
1451 unsigned char sign;
1452 int e;
1453 double f;
1454 unsigned int fhi, flo;
1455 int incr = 1;
1457 if (le) {
1458 p += 7;
1459 incr = -1;
1462 if (x < 0) {
1463 sign = 1;
1464 x = -x;
1466 else
1467 sign = 0;
1469 f = frexp(x, &e);
1471 /* Normalize f to be in the range [1.0, 2.0) */
1472 if (0.5 <= f && f < 1.0) {
1473 f *= 2.0;
1474 e--;
1476 else if (f == 0.0)
1477 e = 0;
1478 else {
1479 PyErr_SetString(PyExc_SystemError,
1480 "frexp() result out of range");
1481 return -1;
1484 if (e >= 1024)
1485 goto Overflow;
1486 else if (e < -1022) {
1487 /* Gradual underflow */
1488 f = ldexp(f, 1022 + e);
1489 e = 0;
1491 else if (!(e == 0 && f == 0.0)) {
1492 e += 1023;
1493 f -= 1.0; /* Get rid of leading 1 */
1496 /* fhi receives the high 28 bits; flo the low 24 bits (== 52 bits) */
1497 f *= 268435456.0; /* 2**28 */
1498 fhi = (unsigned int)f; /* Truncate */
1499 assert(fhi < 268435456);
1501 f -= (double)fhi;
1502 f *= 16777216.0; /* 2**24 */
1503 flo = (unsigned int)(f + 0.5); /* Round */
1504 assert(flo <= 16777216);
1505 if (flo >> 24) {
1506 /* The carry propagated out of a string of 24 1 bits. */
1507 flo = 0;
1508 ++fhi;
1509 if (fhi >> 28) {
1510 /* And it also progagated out of the next 28 bits. */
1511 fhi = 0;
1512 ++e;
1513 if (e >= 2047)
1514 goto Overflow;
1518 /* First byte */
1519 *p = (sign << 7) | (e >> 4);
1520 p += incr;
1522 /* Second byte */
1523 *p = (unsigned char) (((e & 0xF) << 4) | (fhi >> 24));
1524 p += incr;
1526 /* Third byte */
1527 *p = (fhi >> 16) & 0xFF;
1528 p += incr;
1530 /* Fourth byte */
1531 *p = (fhi >> 8) & 0xFF;
1532 p += incr;
1534 /* Fifth byte */
1535 *p = fhi & 0xFF;
1536 p += incr;
1538 /* Sixth byte */
1539 *p = (flo >> 16) & 0xFF;
1540 p += incr;
1542 /* Seventh byte */
1543 *p = (flo >> 8) & 0xFF;
1544 p += incr;
1546 /* Eighth byte */
1547 *p = flo & 0xFF;
1548 p += incr;
1550 /* Done */
1551 return 0;
1553 Overflow:
1554 PyErr_SetString(PyExc_OverflowError,
1555 "float too large to pack with d format");
1556 return -1;
1558 else {
1559 const char *s = (char*)&x;
1560 int i, incr = 1;
1562 if ((double_format == ieee_little_endian_format && !le)
1563 || (double_format == ieee_big_endian_format && le)) {
1564 p += 7;
1565 incr = -1;
1568 for (i = 0; i < 8; i++) {
1569 *p = *s++;
1570 p += incr;
1572 return 0;
1576 double
1577 _PyFloat_Unpack4(const unsigned char *p, int le)
1579 if (float_format == unknown_format) {
1580 unsigned char sign;
1581 int e;
1582 unsigned int f;
1583 double x;
1584 int incr = 1;
1586 if (le) {
1587 p += 3;
1588 incr = -1;
1591 /* First byte */
1592 sign = (*p >> 7) & 1;
1593 e = (*p & 0x7F) << 1;
1594 p += incr;
1596 /* Second byte */
1597 e |= (*p >> 7) & 1;
1598 f = (*p & 0x7F) << 16;
1599 p += incr;
1601 if (e == 255) {
1602 PyErr_SetString(
1603 PyExc_ValueError,
1604 "can't unpack IEEE 754 special value "
1605 "on non-IEEE platform");
1606 return -1;
1609 /* Third byte */
1610 f |= *p << 8;
1611 p += incr;
1613 /* Fourth byte */
1614 f |= *p;
1616 x = (double)f / 8388608.0;
1618 /* XXX This sadly ignores Inf/NaN issues */
1619 if (e == 0)
1620 e = -126;
1621 else {
1622 x += 1.0;
1623 e -= 127;
1625 x = ldexp(x, e);
1627 if (sign)
1628 x = -x;
1630 return x;
1632 else {
1633 float x;
1635 if ((float_format == ieee_little_endian_format && !le)
1636 || (float_format == ieee_big_endian_format && le)) {
1637 char buf[4];
1638 char *d = &buf[3];
1639 int i;
1641 for (i = 0; i < 4; i++) {
1642 *d-- = *p++;
1644 memcpy(&x, buf, 4);
1646 else {
1647 memcpy(&x, p, 4);
1650 return x;
1654 double
1655 _PyFloat_Unpack8(const unsigned char *p, int le)
1657 if (double_format == unknown_format) {
1658 unsigned char sign;
1659 int e;
1660 unsigned int fhi, flo;
1661 double x;
1662 int incr = 1;
1664 if (le) {
1665 p += 7;
1666 incr = -1;
1669 /* First byte */
1670 sign = (*p >> 7) & 1;
1671 e = (*p & 0x7F) << 4;
1673 p += incr;
1675 /* Second byte */
1676 e |= (*p >> 4) & 0xF;
1677 fhi = (*p & 0xF) << 24;
1678 p += incr;
1680 if (e == 2047) {
1681 PyErr_SetString(
1682 PyExc_ValueError,
1683 "can't unpack IEEE 754 special value "
1684 "on non-IEEE platform");
1685 return -1.0;
1688 /* Third byte */
1689 fhi |= *p << 16;
1690 p += incr;
1692 /* Fourth byte */
1693 fhi |= *p << 8;
1694 p += incr;
1696 /* Fifth byte */
1697 fhi |= *p;
1698 p += incr;
1700 /* Sixth byte */
1701 flo = *p << 16;
1702 p += incr;
1704 /* Seventh byte */
1705 flo |= *p << 8;
1706 p += incr;
1708 /* Eighth byte */
1709 flo |= *p;
1711 x = (double)fhi + (double)flo / 16777216.0; /* 2**24 */
1712 x /= 268435456.0; /* 2**28 */
1714 if (e == 0)
1715 e = -1022;
1716 else {
1717 x += 1.0;
1718 e -= 1023;
1720 x = ldexp(x, e);
1722 if (sign)
1723 x = -x;
1725 return x;
1727 else {
1728 double x;
1730 if ((double_format == ieee_little_endian_format && !le)
1731 || (double_format == ieee_big_endian_format && le)) {
1732 char buf[8];
1733 char *d = &buf[7];
1734 int i;
1736 for (i = 0; i < 8; i++) {
1737 *d-- = *p++;
1739 memcpy(&x, buf, 8);
1741 else {
1742 memcpy(&x, p, 8);
1745 return x;