Fix typo in comment.
[python.git] / Demo / threads / find.py
blob7d5edc1c50b19a9a6361d0c641f9aa9457df544b
1 # A parallelized "find(1)" using the thread module.
3 # This demonstrates the use of a work queue and worker threads.
4 # It really does do more stats/sec when using multiple threads,
5 # although the improvement is only about 20-30 percent.
6 # (That was 8 years ago. In 2002, on Linux, I can't measure
7 # a speedup. :-( )
9 # I'm too lazy to write a command line parser for the full find(1)
10 # command line syntax, so the predicate it searches for is wired-in,
11 # see function selector() below. (It currently searches for files with
12 # world write permission.)
14 # Usage: parfind.py [-w nworkers] [directory] ...
15 # Default nworkers is 4
18 import sys
19 import getopt
20 import string
21 import time
22 import os
23 from stat import *
24 import thread
27 # Work queue class. Usage:
28 # wq = WorkQ()
29 # wq.addwork(func, (arg1, arg2, ...)) # one or more calls
30 # wq.run(nworkers)
31 # The work is done when wq.run() completes.
32 # The function calls executed by the workers may add more work.
33 # Don't use keyboard interrupts!
35 class WorkQ:
37 # Invariants:
39 # - busy and work are only modified when mutex is locked
40 # - len(work) is the number of jobs ready to be taken
41 # - busy is the number of jobs being done
42 # - todo is locked iff there is no work and somebody is busy
44 def __init__(self):
45 self.mutex = thread.allocate()
46 self.todo = thread.allocate()
47 self.todo.acquire()
48 self.work = []
49 self.busy = 0
51 def addwork(self, func, args):
52 job = (func, args)
53 self.mutex.acquire()
54 self.work.append(job)
55 self.mutex.release()
56 if len(self.work) == 1:
57 self.todo.release()
59 def _getwork(self):
60 self.todo.acquire()
61 self.mutex.acquire()
62 if self.busy == 0 and len(self.work) == 0:
63 self.mutex.release()
64 self.todo.release()
65 return None
66 job = self.work[0]
67 del self.work[0]
68 self.busy = self.busy + 1
69 self.mutex.release()
70 if len(self.work) > 0:
71 self.todo.release()
72 return job
74 def _donework(self):
75 self.mutex.acquire()
76 self.busy = self.busy - 1
77 if self.busy == 0 and len(self.work) == 0:
78 self.todo.release()
79 self.mutex.release()
81 def _worker(self):
82 time.sleep(0.00001) # Let other threads run
83 while 1:
84 job = self._getwork()
85 if not job:
86 break
87 func, args = job
88 apply(func, args)
89 self._donework()
91 def run(self, nworkers):
92 if not self.work:
93 return # Nothing to do
94 for i in range(nworkers-1):
95 thread.start_new(self._worker, ())
96 self._worker()
97 self.todo.acquire()
100 # Main program
102 def main():
103 nworkers = 4
104 opts, args = getopt.getopt(sys.argv[1:], '-w:')
105 for opt, arg in opts:
106 if opt == '-w':
107 nworkers = string.atoi(arg)
108 if not args:
109 args = [os.curdir]
111 wq = WorkQ()
112 for dir in args:
113 wq.addwork(find, (dir, selector, wq))
115 t1 = time.time()
116 wq.run(nworkers)
117 t2 = time.time()
119 sys.stderr.write('Total time %r sec.\n' % (t2-t1))
122 # The predicate -- defines what files we look for.
123 # Feel free to change this to suit your purpose
125 def selector(dir, name, fullname, stat):
126 # Look for world writable files that are not symlinks
127 return (stat[ST_MODE] & 0002) != 0 and not S_ISLNK(stat[ST_MODE])
130 # The find procedure -- calls wq.addwork() for subdirectories
132 def find(dir, pred, wq):
133 try:
134 names = os.listdir(dir)
135 except os.error, msg:
136 print repr(dir), ':', msg
137 return
138 for name in names:
139 if name not in (os.curdir, os.pardir):
140 fullname = os.path.join(dir, name)
141 try:
142 stat = os.lstat(fullname)
143 except os.error, msg:
144 print repr(fullname), ':', msg
145 continue
146 if pred(dir, name, fullname, stat):
147 print fullname
148 if S_ISDIR(stat[ST_MODE]):
149 if not os.path.ismount(fullname):
150 wq.addwork(find, (fullname, pred, wq))
153 # Call the main program
155 main()