Change a variable type to avoid signed overflow; replace repeated '19999' constant...
[python.git] / Lib / test / test_cmath.py
blobe53defff11c562e428327779d57fa23ff936dfba
1 from test.test_support import run_unittest
2 from test.test_math import parse_testfile, test_file
3 import unittest
4 import os, sys
5 import cmath, math
6 from cmath import phase, polar, rect, pi
8 INF = float('inf')
9 NAN = float('nan')
11 complex_zeros = [complex(x, y) for x in [0.0, -0.0] for y in [0.0, -0.0]]
12 complex_infinities = [complex(x, y) for x, y in [
13 (INF, 0.0), # 1st quadrant
14 (INF, 2.3),
15 (INF, INF),
16 (2.3, INF),
17 (0.0, INF),
18 (-0.0, INF), # 2nd quadrant
19 (-2.3, INF),
20 (-INF, INF),
21 (-INF, 2.3),
22 (-INF, 0.0),
23 (-INF, -0.0), # 3rd quadrant
24 (-INF, -2.3),
25 (-INF, -INF),
26 (-2.3, -INF),
27 (-0.0, -INF),
28 (0.0, -INF), # 4th quadrant
29 (2.3, -INF),
30 (INF, -INF),
31 (INF, -2.3),
32 (INF, -0.0)
34 complex_nans = [complex(x, y) for x, y in [
35 (NAN, -INF),
36 (NAN, -2.3),
37 (NAN, -0.0),
38 (NAN, 0.0),
39 (NAN, 2.3),
40 (NAN, INF),
41 (-INF, NAN),
42 (-2.3, NAN),
43 (-0.0, NAN),
44 (0.0, NAN),
45 (2.3, NAN),
46 (INF, NAN)
49 class CMathTests(unittest.TestCase):
50 # list of all functions in cmath
51 test_functions = [getattr(cmath, fname) for fname in [
52 'acos', 'acosh', 'asin', 'asinh', 'atan', 'atanh',
53 'cos', 'cosh', 'exp', 'log', 'log10', 'sin', 'sinh',
54 'sqrt', 'tan', 'tanh']]
55 # test first and second arguments independently for 2-argument log
56 test_functions.append(lambda x : cmath.log(x, 1729. + 0j))
57 test_functions.append(lambda x : cmath.log(14.-27j, x))
59 def setUp(self):
60 self.test_values = open(test_file)
62 def tearDown(self):
63 self.test_values.close()
65 def rAssertAlmostEqual(self, a, b, rel_err = 2e-15, abs_err = 5e-323,
66 msg=None):
67 """Fail if the two floating-point numbers are not almost equal.
69 Determine whether floating-point values a and b are equal to within
70 a (small) rounding error. The default values for rel_err and
71 abs_err are chosen to be suitable for platforms where a float is
72 represented by an IEEE 754 double. They allow an error of between
73 9 and 19 ulps.
74 """
76 # special values testing
77 if math.isnan(a):
78 if math.isnan(b):
79 return
80 self.fail(msg or '{!r} should be nan'.format(b))
82 if math.isinf(a):
83 if a == b:
84 return
85 self.fail(msg or 'finite result where infinity expected: '
86 'expected {!r}, got {!r}'.format(a, b))
88 # if both a and b are zero, check whether they have the same sign
89 # (in theory there are examples where it would be legitimate for a
90 # and b to have opposite signs; in practice these hardly ever
91 # occur).
92 if not a and not b:
93 if math.copysign(1., a) != math.copysign(1., b):
94 self.fail(msg or 'zero has wrong sign: expected {!r}, '
95 'got {!r}'.format(a, b))
97 # if a-b overflows, or b is infinite, return False. Again, in
98 # theory there are examples where a is within a few ulps of the
99 # max representable float, and then b could legitimately be
100 # infinite. In practice these examples are rare.
101 try:
102 absolute_error = abs(b-a)
103 except OverflowError:
104 pass
105 else:
106 # test passes if either the absolute error or the relative
107 # error is sufficiently small. The defaults amount to an
108 # error of between 9 ulps and 19 ulps on an IEEE-754 compliant
109 # machine.
110 if absolute_error <= max(abs_err, rel_err * abs(a)):
111 return
112 self.fail(msg or
113 '{!r} and {!r} are not sufficiently close'.format(a, b))
115 def test_constants(self):
116 e_expected = 2.71828182845904523536
117 pi_expected = 3.14159265358979323846
118 self.assertAlmostEqual(cmath.pi, pi_expected, places=9,
119 msg="cmath.pi is {}; should be {}".format(cmath.pi, pi_expected))
120 self.assertAlmostEqual(cmath.e, e_expected, places=9,
121 msg="cmath.e is {}; should be {}".format(cmath.e, e_expected))
123 def test_user_object(self):
124 # Test automatic calling of __complex__ and __float__ by cmath
125 # functions
127 # some random values to use as test values; we avoid values
128 # for which any of the functions in cmath is undefined
129 # (i.e. 0., 1., -1., 1j, -1j) or would cause overflow
130 cx_arg = 4.419414439 + 1.497100113j
131 flt_arg = -6.131677725
133 # a variety of non-complex numbers, used to check that
134 # non-complex return values from __complex__ give an error
135 non_complexes = ["not complex", 1, 5L, 2., None,
136 object(), NotImplemented]
138 # Now we introduce a variety of classes whose instances might
139 # end up being passed to the cmath functions
141 # usual case: new-style class implementing __complex__
142 class MyComplex(object):
143 def __init__(self, value):
144 self.value = value
145 def __complex__(self):
146 return self.value
148 # old-style class implementing __complex__
149 class MyComplexOS:
150 def __init__(self, value):
151 self.value = value
152 def __complex__(self):
153 return self.value
155 # classes for which __complex__ raises an exception
156 class SomeException(Exception):
157 pass
158 class MyComplexException(object):
159 def __complex__(self):
160 raise SomeException
161 class MyComplexExceptionOS:
162 def __complex__(self):
163 raise SomeException
165 # some classes not providing __float__ or __complex__
166 class NeitherComplexNorFloat(object):
167 pass
168 class NeitherComplexNorFloatOS:
169 pass
170 class MyInt(object):
171 def __int__(self): return 2
172 def __long__(self): return 2L
173 def __index__(self): return 2
174 class MyIntOS:
175 def __int__(self): return 2
176 def __long__(self): return 2L
177 def __index__(self): return 2
179 # other possible combinations of __float__ and __complex__
180 # that should work
181 class FloatAndComplex(object):
182 def __float__(self):
183 return flt_arg
184 def __complex__(self):
185 return cx_arg
186 class FloatAndComplexOS:
187 def __float__(self):
188 return flt_arg
189 def __complex__(self):
190 return cx_arg
191 class JustFloat(object):
192 def __float__(self):
193 return flt_arg
194 class JustFloatOS:
195 def __float__(self):
196 return flt_arg
198 for f in self.test_functions:
199 # usual usage
200 self.assertEqual(f(MyComplex(cx_arg)), f(cx_arg))
201 self.assertEqual(f(MyComplexOS(cx_arg)), f(cx_arg))
202 # other combinations of __float__ and __complex__
203 self.assertEqual(f(FloatAndComplex()), f(cx_arg))
204 self.assertEqual(f(FloatAndComplexOS()), f(cx_arg))
205 self.assertEqual(f(JustFloat()), f(flt_arg))
206 self.assertEqual(f(JustFloatOS()), f(flt_arg))
207 # TypeError should be raised for classes not providing
208 # either __complex__ or __float__, even if they provide
209 # __int__, __long__ or __index__. An old-style class
210 # currently raises AttributeError instead of a TypeError;
211 # this could be considered a bug.
212 self.assertRaises(TypeError, f, NeitherComplexNorFloat())
213 self.assertRaises(TypeError, f, MyInt())
214 self.assertRaises(Exception, f, NeitherComplexNorFloatOS())
215 self.assertRaises(Exception, f, MyIntOS())
216 # non-complex return value from __complex__ -> TypeError
217 for bad_complex in non_complexes:
218 self.assertRaises(TypeError, f, MyComplex(bad_complex))
219 self.assertRaises(TypeError, f, MyComplexOS(bad_complex))
220 # exceptions in __complex__ should be propagated correctly
221 self.assertRaises(SomeException, f, MyComplexException())
222 self.assertRaises(SomeException, f, MyComplexExceptionOS())
224 def test_input_type(self):
225 # ints and longs should be acceptable inputs to all cmath
226 # functions, by virtue of providing a __float__ method
227 for f in self.test_functions:
228 for arg in [2, 2L, 2.]:
229 self.assertEqual(f(arg), f(arg.__float__()))
231 # but strings should give a TypeError
232 for f in self.test_functions:
233 for arg in ["a", "long_string", "0", "1j", ""]:
234 self.assertRaises(TypeError, f, arg)
236 def test_cmath_matches_math(self):
237 # check that corresponding cmath and math functions are equal
238 # for floats in the appropriate range
240 # test_values in (0, 1)
241 test_values = [0.01, 0.1, 0.2, 0.5, 0.9, 0.99]
243 # test_values for functions defined on [-1., 1.]
244 unit_interval = test_values + [-x for x in test_values] + \
245 [0., 1., -1.]
247 # test_values for log, log10, sqrt
248 positive = test_values + [1.] + [1./x for x in test_values]
249 nonnegative = [0.] + positive
251 # test_values for functions defined on the whole real line
252 real_line = [0.] + positive + [-x for x in positive]
254 test_functions = {
255 'acos' : unit_interval,
256 'asin' : unit_interval,
257 'atan' : real_line,
258 'cos' : real_line,
259 'cosh' : real_line,
260 'exp' : real_line,
261 'log' : positive,
262 'log10' : positive,
263 'sin' : real_line,
264 'sinh' : real_line,
265 'sqrt' : nonnegative,
266 'tan' : real_line,
267 'tanh' : real_line}
269 for fn, values in test_functions.items():
270 float_fn = getattr(math, fn)
271 complex_fn = getattr(cmath, fn)
272 for v in values:
273 z = complex_fn(v)
274 self.rAssertAlmostEqual(float_fn(v), z.real)
275 self.assertEqual(0., z.imag)
277 # test two-argument version of log with various bases
278 for base in [0.5, 2., 10.]:
279 for v in positive:
280 z = cmath.log(v, base)
281 self.rAssertAlmostEqual(math.log(v, base), z.real)
282 self.assertEqual(0., z.imag)
284 def test_specific_values(self):
285 if not float.__getformat__("double").startswith("IEEE"):
286 return
288 def rect_complex(z):
289 """Wrapped version of rect that accepts a complex number instead of
290 two float arguments."""
291 return cmath.rect(z.real, z.imag)
293 def polar_complex(z):
294 """Wrapped version of polar that returns a complex number instead of
295 two floats."""
296 return complex(*polar(z))
298 for id, fn, ar, ai, er, ei, flags in parse_testfile(test_file):
299 arg = complex(ar, ai)
300 expected = complex(er, ei)
301 if fn == 'rect':
302 function = rect_complex
303 elif fn == 'polar':
304 function = polar_complex
305 else:
306 function = getattr(cmath, fn)
307 if 'divide-by-zero' in flags or 'invalid' in flags:
308 try:
309 actual = function(arg)
310 except ValueError:
311 continue
312 else:
313 self.fail('ValueError not raised in test '
314 '{}: {}(complex({!r}, {!r}))'.format(id, fn, ar, ai))
316 if 'overflow' in flags:
317 try:
318 actual = function(arg)
319 except OverflowError:
320 continue
321 else:
322 self.fail('OverflowError not raised in test '
323 '{}: {}(complex({!r}, {!r}))'.format(id, fn, ar, ai))
325 actual = function(arg)
327 if 'ignore-real-sign' in flags:
328 actual = complex(abs(actual.real), actual.imag)
329 expected = complex(abs(expected.real), expected.imag)
330 if 'ignore-imag-sign' in flags:
331 actual = complex(actual.real, abs(actual.imag))
332 expected = complex(expected.real, abs(expected.imag))
334 # for the real part of the log function, we allow an
335 # absolute error of up to 2e-15.
336 if fn in ('log', 'log10'):
337 real_abs_err = 2e-15
338 else:
339 real_abs_err = 5e-323
341 error_message = (
342 '{}: {}(complex({!r}, {!r}))\n'
343 'Expected: complex({!r}, {!r})\n'
344 'Received: complex({!r}, {!r})\n'
345 'Received value insufficiently close to expected value.'
346 ).format(id, fn, ar, ai,
347 expected.real, expected.imag,
348 actual.real, actual.imag)
349 self.rAssertAlmostEqual(expected.real, actual.real,
350 abs_err=real_abs_err,
351 msg=error_message)
352 self.rAssertAlmostEqual(expected.imag, actual.imag,
353 msg=error_message)
355 def assertCISEqual(self, a, b):
356 eps = 1E-7
357 if abs(a[0] - b[0]) > eps or abs(a[1] - b[1]) > eps:
358 self.fail((a ,b))
360 def test_polar(self):
361 self.assertCISEqual(polar(0), (0., 0.))
362 self.assertCISEqual(polar(1.), (1., 0.))
363 self.assertCISEqual(polar(-1.), (1., pi))
364 self.assertCISEqual(polar(1j), (1., pi/2))
365 self.assertCISEqual(polar(-1j), (1., -pi/2))
367 def test_phase(self):
368 self.assertAlmostEqual(phase(0), 0.)
369 self.assertAlmostEqual(phase(1.), 0.)
370 self.assertAlmostEqual(phase(-1.), pi)
371 self.assertAlmostEqual(phase(-1.+1E-300j), pi)
372 self.assertAlmostEqual(phase(-1.-1E-300j), -pi)
373 self.assertAlmostEqual(phase(1j), pi/2)
374 self.assertAlmostEqual(phase(-1j), -pi/2)
376 # zeros
377 self.assertEqual(phase(complex(0.0, 0.0)), 0.0)
378 self.assertEqual(phase(complex(0.0, -0.0)), -0.0)
379 self.assertEqual(phase(complex(-0.0, 0.0)), pi)
380 self.assertEqual(phase(complex(-0.0, -0.0)), -pi)
382 # infinities
383 self.assertAlmostEqual(phase(complex(-INF, -0.0)), -pi)
384 self.assertAlmostEqual(phase(complex(-INF, -2.3)), -pi)
385 self.assertAlmostEqual(phase(complex(-INF, -INF)), -0.75*pi)
386 self.assertAlmostEqual(phase(complex(-2.3, -INF)), -pi/2)
387 self.assertAlmostEqual(phase(complex(-0.0, -INF)), -pi/2)
388 self.assertAlmostEqual(phase(complex(0.0, -INF)), -pi/2)
389 self.assertAlmostEqual(phase(complex(2.3, -INF)), -pi/2)
390 self.assertAlmostEqual(phase(complex(INF, -INF)), -pi/4)
391 self.assertEqual(phase(complex(INF, -2.3)), -0.0)
392 self.assertEqual(phase(complex(INF, -0.0)), -0.0)
393 self.assertEqual(phase(complex(INF, 0.0)), 0.0)
394 self.assertEqual(phase(complex(INF, 2.3)), 0.0)
395 self.assertAlmostEqual(phase(complex(INF, INF)), pi/4)
396 self.assertAlmostEqual(phase(complex(2.3, INF)), pi/2)
397 self.assertAlmostEqual(phase(complex(0.0, INF)), pi/2)
398 self.assertAlmostEqual(phase(complex(-0.0, INF)), pi/2)
399 self.assertAlmostEqual(phase(complex(-2.3, INF)), pi/2)
400 self.assertAlmostEqual(phase(complex(-INF, INF)), 0.75*pi)
401 self.assertAlmostEqual(phase(complex(-INF, 2.3)), pi)
402 self.assertAlmostEqual(phase(complex(-INF, 0.0)), pi)
404 # real or imaginary part NaN
405 for z in complex_nans:
406 self.assertTrue(math.isnan(phase(z)))
408 def test_abs(self):
409 # zeros
410 for z in complex_zeros:
411 self.assertEqual(abs(z), 0.0)
413 # infinities
414 for z in complex_infinities:
415 self.assertEqual(abs(z), INF)
417 # real or imaginary part NaN
418 self.assertEqual(abs(complex(NAN, -INF)), INF)
419 self.assertTrue(math.isnan(abs(complex(NAN, -2.3))))
420 self.assertTrue(math.isnan(abs(complex(NAN, -0.0))))
421 self.assertTrue(math.isnan(abs(complex(NAN, 0.0))))
422 self.assertTrue(math.isnan(abs(complex(NAN, 2.3))))
423 self.assertEqual(abs(complex(NAN, INF)), INF)
424 self.assertEqual(abs(complex(-INF, NAN)), INF)
425 self.assertTrue(math.isnan(abs(complex(-2.3, NAN))))
426 self.assertTrue(math.isnan(abs(complex(-0.0, NAN))))
427 self.assertTrue(math.isnan(abs(complex(0.0, NAN))))
428 self.assertTrue(math.isnan(abs(complex(2.3, NAN))))
429 self.assertEqual(abs(complex(INF, NAN)), INF)
430 self.assertTrue(math.isnan(abs(complex(NAN, NAN))))
432 # result overflows
433 if float.__getformat__("double").startswith("IEEE"):
434 self.assertRaises(OverflowError, abs, complex(1.4e308, 1.4e308))
436 def assertCEqual(self, a, b):
437 eps = 1E-7
438 if abs(a.real - b[0]) > eps or abs(a.imag - b[1]) > eps:
439 self.fail((a ,b))
441 def test_rect(self):
442 self.assertCEqual(rect(0, 0), (0, 0))
443 self.assertCEqual(rect(1, 0), (1., 0))
444 self.assertCEqual(rect(1, -pi), (-1., 0))
445 self.assertCEqual(rect(1, pi/2), (0, 1.))
446 self.assertCEqual(rect(1, -pi/2), (0, -1.))
448 def test_isnan(self):
449 self.assertFalse(cmath.isnan(1))
450 self.assertFalse(cmath.isnan(1j))
451 self.assertFalse(cmath.isnan(INF))
452 self.assertTrue(cmath.isnan(NAN))
453 self.assertTrue(cmath.isnan(complex(NAN, 0)))
454 self.assertTrue(cmath.isnan(complex(0, NAN)))
455 self.assertTrue(cmath.isnan(complex(NAN, NAN)))
456 self.assertTrue(cmath.isnan(complex(NAN, INF)))
457 self.assertTrue(cmath.isnan(complex(INF, NAN)))
459 def test_isinf(self):
460 self.assertFalse(cmath.isinf(1))
461 self.assertFalse(cmath.isinf(1j))
462 self.assertFalse(cmath.isinf(NAN))
463 self.assertTrue(cmath.isinf(INF))
464 self.assertTrue(cmath.isinf(complex(INF, 0)))
465 self.assertTrue(cmath.isinf(complex(0, INF)))
466 self.assertTrue(cmath.isinf(complex(INF, INF)))
467 self.assertTrue(cmath.isinf(complex(NAN, INF)))
468 self.assertTrue(cmath.isinf(complex(INF, NAN)))
471 def test_main():
472 run_unittest(CMathTests)
474 if __name__ == "__main__":
475 test_main()