Use richer assertions in test_mailbox (for better failure messages).
[python.git] / Objects / longobject.c
blob8bdb283eab2ae67ee6871821ce735a6f1959679c
3 /* Long (arbitrary precision) integer object implementation */
5 /* XXX The functional organization of this file is terrible */
7 #include "Python.h"
8 #include "longintrepr.h"
9 #include "structseq.h"
11 #include <float.h>
12 #include <ctype.h>
13 #include <stddef.h>
15 /* For long multiplication, use the O(N**2) school algorithm unless
16 * both operands contain more than KARATSUBA_CUTOFF digits (this
17 * being an internal Python long digit, in base PyLong_BASE).
19 #define KARATSUBA_CUTOFF 70
20 #define KARATSUBA_SQUARE_CUTOFF (2 * KARATSUBA_CUTOFF)
22 /* For exponentiation, use the binary left-to-right algorithm
23 * unless the exponent contains more than FIVEARY_CUTOFF digits.
24 * In that case, do 5 bits at a time. The potential drawback is that
25 * a table of 2**5 intermediate results is computed.
27 #define FIVEARY_CUTOFF 8
29 #define ABS(x) ((x) < 0 ? -(x) : (x))
31 #undef MIN
32 #undef MAX
33 #define MAX(x, y) ((x) < (y) ? (y) : (x))
34 #define MIN(x, y) ((x) > (y) ? (y) : (x))
36 #define SIGCHECK(PyTryBlock) \
37 if (--_Py_Ticker < 0) { \
38 _Py_Ticker = _Py_CheckInterval; \
39 if (PyErr_CheckSignals()) PyTryBlock \
42 /* forward declaration */
43 static int bits_in_digit(digit d);
45 /* Normalize (remove leading zeros from) a long int object.
46 Doesn't attempt to free the storage--in most cases, due to the nature
47 of the algorithms used, this could save at most be one word anyway. */
49 static PyLongObject *
50 long_normalize(register PyLongObject *v)
52 Py_ssize_t j = ABS(Py_SIZE(v));
53 Py_ssize_t i = j;
55 while (i > 0 && v->ob_digit[i-1] == 0)
56 --i;
57 if (i != j)
58 Py_SIZE(v) = (Py_SIZE(v) < 0) ? -(i) : i;
59 return v;
62 /* Allocate a new long int object with size digits.
63 Return NULL and set exception if we run out of memory. */
65 #define MAX_LONG_DIGITS \
66 ((PY_SSIZE_T_MAX - offsetof(PyLongObject, ob_digit))/sizeof(digit))
68 PyLongObject *
69 _PyLong_New(Py_ssize_t size)
71 if (size > (Py_ssize_t)MAX_LONG_DIGITS) {
72 PyErr_SetString(PyExc_OverflowError,
73 "too many digits in integer");
74 return NULL;
76 /* coverity[ampersand_in_size] */
77 /* XXX(nnorwitz): PyObject_NEW_VAR / _PyObject_VAR_SIZE need to detect
78 overflow */
79 return PyObject_NEW_VAR(PyLongObject, &PyLong_Type, size);
82 PyObject *
83 _PyLong_Copy(PyLongObject *src)
85 PyLongObject *result;
86 Py_ssize_t i;
88 assert(src != NULL);
89 i = src->ob_size;
90 if (i < 0)
91 i = -(i);
92 result = _PyLong_New(i);
93 if (result != NULL) {
94 result->ob_size = src->ob_size;
95 while (--i >= 0)
96 result->ob_digit[i] = src->ob_digit[i];
98 return (PyObject *)result;
101 /* Create a new long int object from a C long int */
103 PyObject *
104 PyLong_FromLong(long ival)
106 PyLongObject *v;
107 unsigned long abs_ival;
108 unsigned long t; /* unsigned so >> doesn't propagate sign bit */
109 int ndigits = 0;
110 int negative = 0;
112 if (ival < 0) {
113 /* if LONG_MIN == -LONG_MAX-1 (true on most platforms) then
114 ANSI C says that the result of -ival is undefined when ival
115 == LONG_MIN. Hence the following workaround. */
116 abs_ival = (unsigned long)(-1-ival) + 1;
117 negative = 1;
119 else {
120 abs_ival = (unsigned long)ival;
123 /* Count the number of Python digits.
124 We used to pick 5 ("big enough for anything"), but that's a
125 waste of time and space given that 5*15 = 75 bits are rarely
126 needed. */
127 t = abs_ival;
128 while (t) {
129 ++ndigits;
130 t >>= PyLong_SHIFT;
132 v = _PyLong_New(ndigits);
133 if (v != NULL) {
134 digit *p = v->ob_digit;
135 v->ob_size = negative ? -ndigits : ndigits;
136 t = abs_ival;
137 while (t) {
138 *p++ = (digit)(t & PyLong_MASK);
139 t >>= PyLong_SHIFT;
142 return (PyObject *)v;
145 /* Create a new long int object from a C unsigned long int */
147 PyObject *
148 PyLong_FromUnsignedLong(unsigned long ival)
150 PyLongObject *v;
151 unsigned long t;
152 int ndigits = 0;
154 /* Count the number of Python digits. */
155 t = (unsigned long)ival;
156 while (t) {
157 ++ndigits;
158 t >>= PyLong_SHIFT;
160 v = _PyLong_New(ndigits);
161 if (v != NULL) {
162 digit *p = v->ob_digit;
163 Py_SIZE(v) = ndigits;
164 while (ival) {
165 *p++ = (digit)(ival & PyLong_MASK);
166 ival >>= PyLong_SHIFT;
169 return (PyObject *)v;
172 /* Create a new long int object from a C double */
174 PyObject *
175 PyLong_FromDouble(double dval)
177 PyLongObject *v;
178 double frac;
179 int i, ndig, expo, neg;
180 neg = 0;
181 if (Py_IS_INFINITY(dval)) {
182 PyErr_SetString(PyExc_OverflowError,
183 "cannot convert float infinity to integer");
184 return NULL;
186 if (Py_IS_NAN(dval)) {
187 PyErr_SetString(PyExc_ValueError,
188 "cannot convert float NaN to integer");
189 return NULL;
191 if (dval < 0.0) {
192 neg = 1;
193 dval = -dval;
195 frac = frexp(dval, &expo); /* dval = frac*2**expo; 0.0 <= frac < 1.0 */
196 if (expo <= 0)
197 return PyLong_FromLong(0L);
198 ndig = (expo-1) / PyLong_SHIFT + 1; /* Number of 'digits' in result */
199 v = _PyLong_New(ndig);
200 if (v == NULL)
201 return NULL;
202 frac = ldexp(frac, (expo-1) % PyLong_SHIFT + 1);
203 for (i = ndig; --i >= 0; ) {
204 digit bits = (digit)frac;
205 v->ob_digit[i] = bits;
206 frac = frac - (double)bits;
207 frac = ldexp(frac, PyLong_SHIFT);
209 if (neg)
210 Py_SIZE(v) = -(Py_SIZE(v));
211 return (PyObject *)v;
214 /* Checking for overflow in PyLong_AsLong is a PITA since C doesn't define
215 * anything about what happens when a signed integer operation overflows,
216 * and some compilers think they're doing you a favor by being "clever"
217 * then. The bit pattern for the largest postive signed long is
218 * (unsigned long)LONG_MAX, and for the smallest negative signed long
219 * it is abs(LONG_MIN), which we could write -(unsigned long)LONG_MIN.
220 * However, some other compilers warn about applying unary minus to an
221 * unsigned operand. Hence the weird "0-".
223 #define PY_ABS_LONG_MIN (0-(unsigned long)LONG_MIN)
224 #define PY_ABS_SSIZE_T_MIN (0-(size_t)PY_SSIZE_T_MIN)
226 /* Get a C long int from a long int object.
227 Returns -1 and sets an error condition if overflow occurs. */
229 long
230 PyLong_AsLong(PyObject *vv)
232 /* This version by Tim Peters */
233 register PyLongObject *v;
234 unsigned long x, prev;
235 Py_ssize_t i;
236 int sign;
238 if (vv == NULL || !PyLong_Check(vv)) {
239 if (vv != NULL && PyInt_Check(vv))
240 return PyInt_AsLong(vv);
241 PyErr_BadInternalCall();
242 return -1;
244 v = (PyLongObject *)vv;
245 i = v->ob_size;
246 sign = 1;
247 x = 0;
248 if (i < 0) {
249 sign = -1;
250 i = -(i);
252 while (--i >= 0) {
253 prev = x;
254 x = (x << PyLong_SHIFT) | v->ob_digit[i];
255 if ((x >> PyLong_SHIFT) != prev)
256 goto overflow;
258 /* Haven't lost any bits, but casting to long requires extra care
259 * (see comment above).
261 if (x <= (unsigned long)LONG_MAX) {
262 return (long)x * sign;
264 else if (sign < 0 && x == PY_ABS_LONG_MIN) {
265 return LONG_MIN;
267 /* else overflow */
269 overflow:
270 PyErr_SetString(PyExc_OverflowError,
271 "long int too large to convert to int");
272 return -1;
275 /* Get a Py_ssize_t from a long int object.
276 Returns -1 and sets an error condition if overflow occurs. */
278 Py_ssize_t
279 PyLong_AsSsize_t(PyObject *vv) {
280 register PyLongObject *v;
281 size_t x, prev;
282 Py_ssize_t i;
283 int sign;
285 if (vv == NULL || !PyLong_Check(vv)) {
286 PyErr_BadInternalCall();
287 return -1;
289 v = (PyLongObject *)vv;
290 i = v->ob_size;
291 sign = 1;
292 x = 0;
293 if (i < 0) {
294 sign = -1;
295 i = -(i);
297 while (--i >= 0) {
298 prev = x;
299 x = (x << PyLong_SHIFT) | v->ob_digit[i];
300 if ((x >> PyLong_SHIFT) != prev)
301 goto overflow;
303 /* Haven't lost any bits, but casting to a signed type requires
304 * extra care (see comment above).
306 if (x <= (size_t)PY_SSIZE_T_MAX) {
307 return (Py_ssize_t)x * sign;
309 else if (sign < 0 && x == PY_ABS_SSIZE_T_MIN) {
310 return PY_SSIZE_T_MIN;
312 /* else overflow */
314 overflow:
315 PyErr_SetString(PyExc_OverflowError,
316 "long int too large to convert to int");
317 return -1;
320 /* Get a C unsigned long int from a long int object.
321 Returns -1 and sets an error condition if overflow occurs. */
323 unsigned long
324 PyLong_AsUnsignedLong(PyObject *vv)
326 register PyLongObject *v;
327 unsigned long x, prev;
328 Py_ssize_t i;
330 if (vv == NULL || !PyLong_Check(vv)) {
331 if (vv != NULL && PyInt_Check(vv)) {
332 long val = PyInt_AsLong(vv);
333 if (val < 0) {
334 PyErr_SetString(PyExc_OverflowError,
335 "can't convert negative value to unsigned long");
336 return (unsigned long) -1;
338 return val;
340 PyErr_BadInternalCall();
341 return (unsigned long) -1;
343 v = (PyLongObject *)vv;
344 i = Py_SIZE(v);
345 x = 0;
346 if (i < 0) {
347 PyErr_SetString(PyExc_OverflowError,
348 "can't convert negative value to unsigned long");
349 return (unsigned long) -1;
351 while (--i >= 0) {
352 prev = x;
353 x = (x << PyLong_SHIFT) | v->ob_digit[i];
354 if ((x >> PyLong_SHIFT) != prev) {
355 PyErr_SetString(PyExc_OverflowError,
356 "long int too large to convert");
357 return (unsigned long) -1;
360 return x;
363 /* Get a C unsigned long int from a long int object, ignoring the high bits.
364 Returns -1 and sets an error condition if an error occurs. */
366 unsigned long
367 PyLong_AsUnsignedLongMask(PyObject *vv)
369 register PyLongObject *v;
370 unsigned long x;
371 Py_ssize_t i;
372 int sign;
374 if (vv == NULL || !PyLong_Check(vv)) {
375 if (vv != NULL && PyInt_Check(vv))
376 return PyInt_AsUnsignedLongMask(vv);
377 PyErr_BadInternalCall();
378 return (unsigned long) -1;
380 v = (PyLongObject *)vv;
381 i = v->ob_size;
382 sign = 1;
383 x = 0;
384 if (i < 0) {
385 sign = -1;
386 i = -i;
388 while (--i >= 0) {
389 x = (x << PyLong_SHIFT) | v->ob_digit[i];
391 return x * sign;
395 _PyLong_Sign(PyObject *vv)
397 PyLongObject *v = (PyLongObject *)vv;
399 assert(v != NULL);
400 assert(PyLong_Check(v));
402 return Py_SIZE(v) == 0 ? 0 : (Py_SIZE(v) < 0 ? -1 : 1);
405 size_t
406 _PyLong_NumBits(PyObject *vv)
408 PyLongObject *v = (PyLongObject *)vv;
409 size_t result = 0;
410 Py_ssize_t ndigits;
412 assert(v != NULL);
413 assert(PyLong_Check(v));
414 ndigits = ABS(Py_SIZE(v));
415 assert(ndigits == 0 || v->ob_digit[ndigits - 1] != 0);
416 if (ndigits > 0) {
417 digit msd = v->ob_digit[ndigits - 1];
419 result = (ndigits - 1) * PyLong_SHIFT;
420 if (result / PyLong_SHIFT != (size_t)(ndigits - 1))
421 goto Overflow;
422 do {
423 ++result;
424 if (result == 0)
425 goto Overflow;
426 msd >>= 1;
427 } while (msd);
429 return result;
431 Overflow:
432 PyErr_SetString(PyExc_OverflowError, "long has too many bits "
433 "to express in a platform size_t");
434 return (size_t)-1;
437 PyObject *
438 _PyLong_FromByteArray(const unsigned char* bytes, size_t n,
439 int little_endian, int is_signed)
441 const unsigned char* pstartbyte;/* LSB of bytes */
442 int incr; /* direction to move pstartbyte */
443 const unsigned char* pendbyte; /* MSB of bytes */
444 size_t numsignificantbytes; /* number of bytes that matter */
445 Py_ssize_t ndigits; /* number of Python long digits */
446 PyLongObject* v; /* result */
447 Py_ssize_t idigit = 0; /* next free index in v->ob_digit */
449 if (n == 0)
450 return PyLong_FromLong(0L);
452 if (little_endian) {
453 pstartbyte = bytes;
454 pendbyte = bytes + n - 1;
455 incr = 1;
457 else {
458 pstartbyte = bytes + n - 1;
459 pendbyte = bytes;
460 incr = -1;
463 if (is_signed)
464 is_signed = *pendbyte >= 0x80;
466 /* Compute numsignificantbytes. This consists of finding the most
467 significant byte. Leading 0 bytes are insignficant if the number
468 is positive, and leading 0xff bytes if negative. */
470 size_t i;
471 const unsigned char* p = pendbyte;
472 const int pincr = -incr; /* search MSB to LSB */
473 const unsigned char insignficant = is_signed ? 0xff : 0x00;
475 for (i = 0; i < n; ++i, p += pincr) {
476 if (*p != insignficant)
477 break;
479 numsignificantbytes = n - i;
480 /* 2's-comp is a bit tricky here, e.g. 0xff00 == -0x0100, so
481 actually has 2 significant bytes. OTOH, 0xff0001 ==
482 -0x00ffff, so we wouldn't *need* to bump it there; but we
483 do for 0xffff = -0x0001. To be safe without bothering to
484 check every case, bump it regardless. */
485 if (is_signed && numsignificantbytes < n)
486 ++numsignificantbytes;
489 /* How many Python long digits do we need? We have
490 8*numsignificantbytes bits, and each Python long digit has
491 PyLong_SHIFT bits, so it's the ceiling of the quotient. */
492 /* catch overflow before it happens */
493 if (numsignificantbytes > (PY_SSIZE_T_MAX - PyLong_SHIFT) / 8) {
494 PyErr_SetString(PyExc_OverflowError,
495 "byte array too long to convert to int");
496 return NULL;
498 ndigits = (numsignificantbytes * 8 + PyLong_SHIFT - 1) / PyLong_SHIFT;
499 v = _PyLong_New(ndigits);
500 if (v == NULL)
501 return NULL;
503 /* Copy the bits over. The tricky parts are computing 2's-comp on
504 the fly for signed numbers, and dealing with the mismatch between
505 8-bit bytes and (probably) 15-bit Python digits.*/
507 size_t i;
508 twodigits carry = 1; /* for 2's-comp calculation */
509 twodigits accum = 0; /* sliding register */
510 unsigned int accumbits = 0; /* number of bits in accum */
511 const unsigned char* p = pstartbyte;
513 for (i = 0; i < numsignificantbytes; ++i, p += incr) {
514 twodigits thisbyte = *p;
515 /* Compute correction for 2's comp, if needed. */
516 if (is_signed) {
517 thisbyte = (0xff ^ thisbyte) + carry;
518 carry = thisbyte >> 8;
519 thisbyte &= 0xff;
521 /* Because we're going LSB to MSB, thisbyte is
522 more significant than what's already in accum,
523 so needs to be prepended to accum. */
524 accum |= (twodigits)thisbyte << accumbits;
525 accumbits += 8;
526 if (accumbits >= PyLong_SHIFT) {
527 /* There's enough to fill a Python digit. */
528 assert(idigit < ndigits);
529 v->ob_digit[idigit] = (digit)(accum &
530 PyLong_MASK);
531 ++idigit;
532 accum >>= PyLong_SHIFT;
533 accumbits -= PyLong_SHIFT;
534 assert(accumbits < PyLong_SHIFT);
537 assert(accumbits < PyLong_SHIFT);
538 if (accumbits) {
539 assert(idigit < ndigits);
540 v->ob_digit[idigit] = (digit)accum;
541 ++idigit;
545 Py_SIZE(v) = is_signed ? -idigit : idigit;
546 return (PyObject *)long_normalize(v);
550 _PyLong_AsByteArray(PyLongObject* v,
551 unsigned char* bytes, size_t n,
552 int little_endian, int is_signed)
554 Py_ssize_t i; /* index into v->ob_digit */
555 Py_ssize_t ndigits; /* |v->ob_size| */
556 twodigits accum; /* sliding register */
557 unsigned int accumbits; /* # bits in accum */
558 int do_twos_comp; /* store 2's-comp? is_signed and v < 0 */
559 digit carry; /* for computing 2's-comp */
560 size_t j; /* # bytes filled */
561 unsigned char* p; /* pointer to next byte in bytes */
562 int pincr; /* direction to move p */
564 assert(v != NULL && PyLong_Check(v));
566 if (Py_SIZE(v) < 0) {
567 ndigits = -(Py_SIZE(v));
568 if (!is_signed) {
569 PyErr_SetString(PyExc_OverflowError,
570 "can't convert negative long to unsigned");
571 return -1;
573 do_twos_comp = 1;
575 else {
576 ndigits = Py_SIZE(v);
577 do_twos_comp = 0;
580 if (little_endian) {
581 p = bytes;
582 pincr = 1;
584 else {
585 p = bytes + n - 1;
586 pincr = -1;
589 /* Copy over all the Python digits.
590 It's crucial that every Python digit except for the MSD contribute
591 exactly PyLong_SHIFT bits to the total, so first assert that the long is
592 normalized. */
593 assert(ndigits == 0 || v->ob_digit[ndigits - 1] != 0);
594 j = 0;
595 accum = 0;
596 accumbits = 0;
597 carry = do_twos_comp ? 1 : 0;
598 for (i = 0; i < ndigits; ++i) {
599 digit thisdigit = v->ob_digit[i];
600 if (do_twos_comp) {
601 thisdigit = (thisdigit ^ PyLong_MASK) + carry;
602 carry = thisdigit >> PyLong_SHIFT;
603 thisdigit &= PyLong_MASK;
605 /* Because we're going LSB to MSB, thisdigit is more
606 significant than what's already in accum, so needs to be
607 prepended to accum. */
608 accum |= (twodigits)thisdigit << accumbits;
610 /* The most-significant digit may be (probably is) at least
611 partly empty. */
612 if (i == ndigits - 1) {
613 /* Count # of sign bits -- they needn't be stored,
614 * although for signed conversion we need later to
615 * make sure at least one sign bit gets stored. */
616 digit s = do_twos_comp ? thisdigit ^ PyLong_MASK :
617 thisdigit;
618 while (s != 0) {
619 s >>= 1;
620 accumbits++;
623 else
624 accumbits += PyLong_SHIFT;
626 /* Store as many bytes as possible. */
627 while (accumbits >= 8) {
628 if (j >= n)
629 goto Overflow;
630 ++j;
631 *p = (unsigned char)(accum & 0xff);
632 p += pincr;
633 accumbits -= 8;
634 accum >>= 8;
638 /* Store the straggler (if any). */
639 assert(accumbits < 8);
640 assert(carry == 0); /* else do_twos_comp and *every* digit was 0 */
641 if (accumbits > 0) {
642 if (j >= n)
643 goto Overflow;
644 ++j;
645 if (do_twos_comp) {
646 /* Fill leading bits of the byte with sign bits
647 (appropriately pretending that the long had an
648 infinite supply of sign bits). */
649 accum |= (~(twodigits)0) << accumbits;
651 *p = (unsigned char)(accum & 0xff);
652 p += pincr;
654 else if (j == n && n > 0 && is_signed) {
655 /* The main loop filled the byte array exactly, so the code
656 just above didn't get to ensure there's a sign bit, and the
657 loop below wouldn't add one either. Make sure a sign bit
658 exists. */
659 unsigned char msb = *(p - pincr);
660 int sign_bit_set = msb >= 0x80;
661 assert(accumbits == 0);
662 if (sign_bit_set == do_twos_comp)
663 return 0;
664 else
665 goto Overflow;
668 /* Fill remaining bytes with copies of the sign bit. */
670 unsigned char signbyte = do_twos_comp ? 0xffU : 0U;
671 for ( ; j < n; ++j, p += pincr)
672 *p = signbyte;
675 return 0;
677 Overflow:
678 PyErr_SetString(PyExc_OverflowError, "long too big to convert");
679 return -1;
683 double
684 _PyLong_AsScaledDouble(PyObject *vv, int *exponent)
686 /* NBITS_WANTED should be > the number of bits in a double's precision,
687 but small enough so that 2**NBITS_WANTED is within the normal double
688 range. nbitsneeded is set to 1 less than that because the most-significant
689 Python digit contains at least 1 significant bit, but we don't want to
690 bother counting them (catering to the worst case cheaply).
692 57 is one more than VAX-D double precision; I (Tim) don't know of a double
693 format with more precision than that; it's 1 larger so that we add in at
694 least one round bit to stand in for the ignored least-significant bits.
696 #define NBITS_WANTED 57
697 PyLongObject *v;
698 double x;
699 const double multiplier = (double)(1L << PyLong_SHIFT);
700 Py_ssize_t i;
701 int sign;
702 int nbitsneeded;
704 if (vv == NULL || !PyLong_Check(vv)) {
705 PyErr_BadInternalCall();
706 return -1;
708 v = (PyLongObject *)vv;
709 i = Py_SIZE(v);
710 sign = 1;
711 if (i < 0) {
712 sign = -1;
713 i = -(i);
715 else if (i == 0) {
716 *exponent = 0;
717 return 0.0;
719 --i;
720 x = (double)v->ob_digit[i];
721 nbitsneeded = NBITS_WANTED - 1;
722 /* Invariant: i Python digits remain unaccounted for. */
723 while (i > 0 && nbitsneeded > 0) {
724 --i;
725 x = x * multiplier + (double)v->ob_digit[i];
726 nbitsneeded -= PyLong_SHIFT;
728 /* There are i digits we didn't shift in. Pretending they're all
729 zeroes, the true value is x * 2**(i*PyLong_SHIFT). */
730 *exponent = i;
731 assert(x > 0.0);
732 return x * sign;
733 #undef NBITS_WANTED
736 /* Get a C double from a long int object. Rounds to the nearest double,
737 using the round-half-to-even rule in the case of a tie. */
739 double
740 PyLong_AsDouble(PyObject *vv)
742 PyLongObject *v = (PyLongObject *)vv;
743 Py_ssize_t rnd_digit, rnd_bit, m, n;
744 digit lsb, *d;
745 int round_up = 0;
746 double x;
748 if (vv == NULL || !PyLong_Check(vv)) {
749 PyErr_BadInternalCall();
750 return -1.0;
753 /* Notes on the method: for simplicity, assume v is positive and >=
754 2**DBL_MANT_DIG. (For negative v we just ignore the sign until the
755 end; for small v no rounding is necessary.) Write n for the number
756 of bits in v, so that 2**(n-1) <= v < 2**n, and n > DBL_MANT_DIG.
758 Some terminology: the *rounding bit* of v is the 1st bit of v that
759 will be rounded away (bit n - DBL_MANT_DIG - 1); the *parity bit*
760 is the bit immediately above. The round-half-to-even rule says
761 that we round up if the rounding bit is set, unless v is exactly
762 halfway between two floats and the parity bit is zero.
764 Write d[0] ... d[m] for the digits of v, least to most significant.
765 Let rnd_bit be the index of the rounding bit, and rnd_digit the
766 index of the PyLong digit containing the rounding bit. Then the
767 bits of the digit d[rnd_digit] look something like:
769 rounding bit
772 msb -> sssssrttttttttt <- lsb
775 parity bit
777 where 's' represents a 'significant bit' that will be included in
778 the mantissa of the result, 'r' is the rounding bit, and 't'
779 represents a 'trailing bit' following the rounding bit. Note that
780 if the rounding bit is at the top of d[rnd_digit] then the parity
781 bit will be the lsb of d[rnd_digit+1]. If we set
783 lsb = 1 << (rnd_bit % PyLong_SHIFT)
785 then d[rnd_digit] & (PyLong_BASE - 2*lsb) selects just the
786 significant bits of d[rnd_digit], d[rnd_digit] & (lsb-1) gets the
787 trailing bits, and d[rnd_digit] & lsb gives the rounding bit.
789 We initialize the double x to the integer given by digits
790 d[rnd_digit:m-1], but with the rounding bit and trailing bits of
791 d[rnd_digit] masked out. So the value of x comes from the top
792 DBL_MANT_DIG bits of v, multiplied by 2*lsb. Note that in the loop
793 that produces x, all floating-point operations are exact (assuming
794 that FLT_RADIX==2). Now if we're rounding down, the value we want
795 to return is simply
797 x * 2**(PyLong_SHIFT * rnd_digit).
799 and if we're rounding up, it's
801 (x + 2*lsb) * 2**(PyLong_SHIFT * rnd_digit).
803 Under the round-half-to-even rule, we round up if, and only
804 if, the rounding bit is set *and* at least one of the
805 following three conditions is satisfied:
807 (1) the parity bit is set, or
808 (2) at least one of the trailing bits of d[rnd_digit] is set, or
809 (3) at least one of the digits d[i], 0 <= i < rnd_digit
810 is nonzero.
812 Finally, we have to worry about overflow. If v >= 2**DBL_MAX_EXP,
813 or equivalently n > DBL_MAX_EXP, then overflow occurs. If v <
814 2**DBL_MAX_EXP then we're usually safe, but there's a corner case
815 to consider: if v is very close to 2**DBL_MAX_EXP then it's
816 possible that v is rounded up to exactly 2**DBL_MAX_EXP, and then
817 again overflow occurs.
820 if (Py_SIZE(v) == 0)
821 return 0.0;
822 m = ABS(Py_SIZE(v)) - 1;
823 d = v->ob_digit;
824 assert(d[m]); /* v should be normalized */
826 /* fast path for case where 0 < abs(v) < 2**DBL_MANT_DIG */
827 if (m < DBL_MANT_DIG / PyLong_SHIFT ||
828 (m == DBL_MANT_DIG / PyLong_SHIFT &&
829 d[m] < (digit)1 << DBL_MANT_DIG%PyLong_SHIFT)) {
830 x = d[m];
831 while (--m >= 0)
832 x = x*PyLong_BASE + d[m];
833 return Py_SIZE(v) < 0 ? -x : x;
836 /* if m is huge then overflow immediately; otherwise, compute the
837 number of bits n in v. The condition below implies n (= #bits) >=
838 m * PyLong_SHIFT + 1 > DBL_MAX_EXP, hence v >= 2**DBL_MAX_EXP. */
839 if (m > (DBL_MAX_EXP-1)/PyLong_SHIFT)
840 goto overflow;
841 n = m * PyLong_SHIFT + bits_in_digit(d[m]);
842 if (n > DBL_MAX_EXP)
843 goto overflow;
845 /* find location of rounding bit */
846 assert(n > DBL_MANT_DIG); /* dealt with |v| < 2**DBL_MANT_DIG above */
847 rnd_bit = n - DBL_MANT_DIG - 1;
848 rnd_digit = rnd_bit/PyLong_SHIFT;
849 lsb = (digit)1 << (rnd_bit%PyLong_SHIFT);
851 /* Get top DBL_MANT_DIG bits of v. Assumes PyLong_SHIFT <
852 DBL_MANT_DIG, so we'll need bits from at least 2 digits of v. */
853 x = d[m];
854 assert(m > rnd_digit);
855 while (--m > rnd_digit)
856 x = x*PyLong_BASE + d[m];
857 x = x*PyLong_BASE + (d[m] & (PyLong_BASE-2*lsb));
859 /* decide whether to round up, using round-half-to-even */
860 assert(m == rnd_digit);
861 if (d[m] & lsb) { /* if (rounding bit is set) */
862 digit parity_bit;
863 if (lsb == PyLong_BASE/2)
864 parity_bit = d[m+1] & 1;
865 else
866 parity_bit = d[m] & 2*lsb;
867 if (parity_bit)
868 round_up = 1;
869 else if (d[m] & (lsb-1))
870 round_up = 1;
871 else {
872 while (--m >= 0) {
873 if (d[m]) {
874 round_up = 1;
875 break;
881 /* and round up if necessary */
882 if (round_up) {
883 x += 2*lsb;
884 if (n == DBL_MAX_EXP &&
885 x == ldexp((double)(2*lsb), DBL_MANT_DIG)) {
886 /* overflow corner case */
887 goto overflow;
891 /* shift, adjust for sign, and return */
892 x = ldexp(x, rnd_digit*PyLong_SHIFT);
893 return Py_SIZE(v) < 0 ? -x : x;
895 overflow:
896 PyErr_SetString(PyExc_OverflowError,
897 "long int too large to convert to float");
898 return -1.0;
901 /* Create a new long (or int) object from a C pointer */
903 PyObject *
904 PyLong_FromVoidPtr(void *p)
906 #if SIZEOF_VOID_P <= SIZEOF_LONG
907 if ((long)p < 0)
908 return PyLong_FromUnsignedLong((unsigned long)p);
909 return PyInt_FromLong((long)p);
910 #else
912 #ifndef HAVE_LONG_LONG
913 # error "PyLong_FromVoidPtr: sizeof(void*) > sizeof(long), but no long long"
914 #endif
915 #if SIZEOF_LONG_LONG < SIZEOF_VOID_P
916 # error "PyLong_FromVoidPtr: sizeof(PY_LONG_LONG) < sizeof(void*)"
917 #endif
918 /* optimize null pointers */
919 if (p == NULL)
920 return PyInt_FromLong(0);
921 return PyLong_FromUnsignedLongLong((unsigned PY_LONG_LONG)p);
923 #endif /* SIZEOF_VOID_P <= SIZEOF_LONG */
926 /* Get a C pointer from a long object (or an int object in some cases) */
928 void *
929 PyLong_AsVoidPtr(PyObject *vv)
931 /* This function will allow int or long objects. If vv is neither,
932 then the PyLong_AsLong*() functions will raise the exception:
933 PyExc_SystemError, "bad argument to internal function"
935 #if SIZEOF_VOID_P <= SIZEOF_LONG
936 long x;
938 if (PyInt_Check(vv))
939 x = PyInt_AS_LONG(vv);
940 else if (PyLong_Check(vv) && _PyLong_Sign(vv) < 0)
941 x = PyLong_AsLong(vv);
942 else
943 x = PyLong_AsUnsignedLong(vv);
944 #else
946 #ifndef HAVE_LONG_LONG
947 # error "PyLong_AsVoidPtr: sizeof(void*) > sizeof(long), but no long long"
948 #endif
949 #if SIZEOF_LONG_LONG < SIZEOF_VOID_P
950 # error "PyLong_AsVoidPtr: sizeof(PY_LONG_LONG) < sizeof(void*)"
951 #endif
952 PY_LONG_LONG x;
954 if (PyInt_Check(vv))
955 x = PyInt_AS_LONG(vv);
956 else if (PyLong_Check(vv) && _PyLong_Sign(vv) < 0)
957 x = PyLong_AsLongLong(vv);
958 else
959 x = PyLong_AsUnsignedLongLong(vv);
961 #endif /* SIZEOF_VOID_P <= SIZEOF_LONG */
963 if (x == -1 && PyErr_Occurred())
964 return NULL;
965 return (void *)x;
968 #ifdef HAVE_LONG_LONG
970 /* Initial PY_LONG_LONG support by Chris Herborth (chrish@qnx.com), later
971 * rewritten to use the newer PyLong_{As,From}ByteArray API.
974 #define IS_LITTLE_ENDIAN (int)*(unsigned char*)&one
976 /* Create a new long int object from a C PY_LONG_LONG int. */
978 PyObject *
979 PyLong_FromLongLong(PY_LONG_LONG ival)
981 PyLongObject *v;
982 unsigned PY_LONG_LONG abs_ival;
983 unsigned PY_LONG_LONG t; /* unsigned so >> doesn't propagate sign bit */
984 int ndigits = 0;
985 int negative = 0;
987 if (ival < 0) {
988 /* avoid signed overflow on negation; see comments
989 in PyLong_FromLong above. */
990 abs_ival = (unsigned PY_LONG_LONG)(-1-ival) + 1;
991 negative = 1;
993 else {
994 abs_ival = (unsigned PY_LONG_LONG)ival;
997 /* Count the number of Python digits.
998 We used to pick 5 ("big enough for anything"), but that's a
999 waste of time and space given that 5*15 = 75 bits are rarely
1000 needed. */
1001 t = abs_ival;
1002 while (t) {
1003 ++ndigits;
1004 t >>= PyLong_SHIFT;
1006 v = _PyLong_New(ndigits);
1007 if (v != NULL) {
1008 digit *p = v->ob_digit;
1009 Py_SIZE(v) = negative ? -ndigits : ndigits;
1010 t = abs_ival;
1011 while (t) {
1012 *p++ = (digit)(t & PyLong_MASK);
1013 t >>= PyLong_SHIFT;
1016 return (PyObject *)v;
1019 /* Create a new long int object from a C unsigned PY_LONG_LONG int. */
1021 PyObject *
1022 PyLong_FromUnsignedLongLong(unsigned PY_LONG_LONG ival)
1024 PyLongObject *v;
1025 unsigned PY_LONG_LONG t;
1026 int ndigits = 0;
1028 /* Count the number of Python digits. */
1029 t = (unsigned PY_LONG_LONG)ival;
1030 while (t) {
1031 ++ndigits;
1032 t >>= PyLong_SHIFT;
1034 v = _PyLong_New(ndigits);
1035 if (v != NULL) {
1036 digit *p = v->ob_digit;
1037 Py_SIZE(v) = ndigits;
1038 while (ival) {
1039 *p++ = (digit)(ival & PyLong_MASK);
1040 ival >>= PyLong_SHIFT;
1043 return (PyObject *)v;
1046 /* Create a new long int object from a C Py_ssize_t. */
1048 PyObject *
1049 PyLong_FromSsize_t(Py_ssize_t ival)
1051 Py_ssize_t bytes = ival;
1052 int one = 1;
1053 return _PyLong_FromByteArray(
1054 (unsigned char *)&bytes,
1055 SIZEOF_SIZE_T, IS_LITTLE_ENDIAN, 1);
1058 /* Create a new long int object from a C size_t. */
1060 PyObject *
1061 PyLong_FromSize_t(size_t ival)
1063 size_t bytes = ival;
1064 int one = 1;
1065 return _PyLong_FromByteArray(
1066 (unsigned char *)&bytes,
1067 SIZEOF_SIZE_T, IS_LITTLE_ENDIAN, 0);
1070 /* Get a C PY_LONG_LONG int from a long int object.
1071 Return -1 and set an error if overflow occurs. */
1073 PY_LONG_LONG
1074 PyLong_AsLongLong(PyObject *vv)
1076 PY_LONG_LONG bytes;
1077 int one = 1;
1078 int res;
1080 if (vv == NULL) {
1081 PyErr_BadInternalCall();
1082 return -1;
1084 if (!PyLong_Check(vv)) {
1085 PyNumberMethods *nb;
1086 PyObject *io;
1087 if (PyInt_Check(vv))
1088 return (PY_LONG_LONG)PyInt_AsLong(vv);
1089 if ((nb = vv->ob_type->tp_as_number) == NULL ||
1090 nb->nb_int == NULL) {
1091 PyErr_SetString(PyExc_TypeError, "an integer is required");
1092 return -1;
1094 io = (*nb->nb_int) (vv);
1095 if (io == NULL)
1096 return -1;
1097 if (PyInt_Check(io)) {
1098 bytes = PyInt_AsLong(io);
1099 Py_DECREF(io);
1100 return bytes;
1102 if (PyLong_Check(io)) {
1103 bytes = PyLong_AsLongLong(io);
1104 Py_DECREF(io);
1105 return bytes;
1107 Py_DECREF(io);
1108 PyErr_SetString(PyExc_TypeError, "integer conversion failed");
1109 return -1;
1112 res = _PyLong_AsByteArray(
1113 (PyLongObject *)vv, (unsigned char *)&bytes,
1114 SIZEOF_LONG_LONG, IS_LITTLE_ENDIAN, 1);
1116 /* Plan 9 can't handle PY_LONG_LONG in ? : expressions */
1117 if (res < 0)
1118 return (PY_LONG_LONG)-1;
1119 else
1120 return bytes;
1123 /* Get a C unsigned PY_LONG_LONG int from a long int object.
1124 Return -1 and set an error if overflow occurs. */
1126 unsigned PY_LONG_LONG
1127 PyLong_AsUnsignedLongLong(PyObject *vv)
1129 unsigned PY_LONG_LONG bytes;
1130 int one = 1;
1131 int res;
1133 if (vv == NULL || !PyLong_Check(vv)) {
1134 PyErr_BadInternalCall();
1135 return (unsigned PY_LONG_LONG)-1;
1138 res = _PyLong_AsByteArray(
1139 (PyLongObject *)vv, (unsigned char *)&bytes,
1140 SIZEOF_LONG_LONG, IS_LITTLE_ENDIAN, 0);
1142 /* Plan 9 can't handle PY_LONG_LONG in ? : expressions */
1143 if (res < 0)
1144 return (unsigned PY_LONG_LONG)res;
1145 else
1146 return bytes;
1149 /* Get a C unsigned long int from a long int object, ignoring the high bits.
1150 Returns -1 and sets an error condition if an error occurs. */
1152 unsigned PY_LONG_LONG
1153 PyLong_AsUnsignedLongLongMask(PyObject *vv)
1155 register PyLongObject *v;
1156 unsigned PY_LONG_LONG x;
1157 Py_ssize_t i;
1158 int sign;
1160 if (vv == NULL || !PyLong_Check(vv)) {
1161 PyErr_BadInternalCall();
1162 return (unsigned long) -1;
1164 v = (PyLongObject *)vv;
1165 i = v->ob_size;
1166 sign = 1;
1167 x = 0;
1168 if (i < 0) {
1169 sign = -1;
1170 i = -i;
1172 while (--i >= 0) {
1173 x = (x << PyLong_SHIFT) | v->ob_digit[i];
1175 return x * sign;
1177 #undef IS_LITTLE_ENDIAN
1179 #endif /* HAVE_LONG_LONG */
1182 static int
1183 convert_binop(PyObject *v, PyObject *w, PyLongObject **a, PyLongObject **b) {
1184 if (PyLong_Check(v)) {
1185 *a = (PyLongObject *) v;
1186 Py_INCREF(v);
1188 else if (PyInt_Check(v)) {
1189 *a = (PyLongObject *) PyLong_FromLong(PyInt_AS_LONG(v));
1191 else {
1192 return 0;
1194 if (PyLong_Check(w)) {
1195 *b = (PyLongObject *) w;
1196 Py_INCREF(w);
1198 else if (PyInt_Check(w)) {
1199 *b = (PyLongObject *) PyLong_FromLong(PyInt_AS_LONG(w));
1201 else {
1202 Py_DECREF(*a);
1203 return 0;
1205 return 1;
1208 #define CONVERT_BINOP(v, w, a, b) \
1209 if (!convert_binop(v, w, a, b)) { \
1210 Py_INCREF(Py_NotImplemented); \
1211 return Py_NotImplemented; \
1214 /* bits_in_digit(d) returns the unique integer k such that 2**(k-1) <= d <
1215 2**k if d is nonzero, else 0. */
1217 static const unsigned char BitLengthTable[32] = {
1218 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
1219 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
1222 static int
1223 bits_in_digit(digit d)
1225 int d_bits = 0;
1226 while (d >= 32) {
1227 d_bits += 6;
1228 d >>= 6;
1230 d_bits += (int)BitLengthTable[d];
1231 return d_bits;
1234 /* x[0:m] and y[0:n] are digit vectors, LSD first, m >= n required. x[0:n]
1235 * is modified in place, by adding y to it. Carries are propagated as far as
1236 * x[m-1], and the remaining carry (0 or 1) is returned.
1238 static digit
1239 v_iadd(digit *x, Py_ssize_t m, digit *y, Py_ssize_t n)
1241 Py_ssize_t i;
1242 digit carry = 0;
1244 assert(m >= n);
1245 for (i = 0; i < n; ++i) {
1246 carry += x[i] + y[i];
1247 x[i] = carry & PyLong_MASK;
1248 carry >>= PyLong_SHIFT;
1249 assert((carry & 1) == carry);
1251 for (; carry && i < m; ++i) {
1252 carry += x[i];
1253 x[i] = carry & PyLong_MASK;
1254 carry >>= PyLong_SHIFT;
1255 assert((carry & 1) == carry);
1257 return carry;
1260 /* x[0:m] and y[0:n] are digit vectors, LSD first, m >= n required. x[0:n]
1261 * is modified in place, by subtracting y from it. Borrows are propagated as
1262 * far as x[m-1], and the remaining borrow (0 or 1) is returned.
1264 static digit
1265 v_isub(digit *x, Py_ssize_t m, digit *y, Py_ssize_t n)
1267 Py_ssize_t i;
1268 digit borrow = 0;
1270 assert(m >= n);
1271 for (i = 0; i < n; ++i) {
1272 borrow = x[i] - y[i] - borrow;
1273 x[i] = borrow & PyLong_MASK;
1274 borrow >>= PyLong_SHIFT;
1275 borrow &= 1; /* keep only 1 sign bit */
1277 for (; borrow && i < m; ++i) {
1278 borrow = x[i] - borrow;
1279 x[i] = borrow & PyLong_MASK;
1280 borrow >>= PyLong_SHIFT;
1281 borrow &= 1;
1283 return borrow;
1286 /* Shift digit vector a[0:m] d bits left, with 0 <= d < PyLong_SHIFT. Put
1287 * result in z[0:m], and return the d bits shifted out of the top.
1289 static digit
1290 v_lshift(digit *z, digit *a, Py_ssize_t m, int d)
1292 Py_ssize_t i;
1293 digit carry = 0;
1295 assert(0 <= d && d < PyLong_SHIFT);
1296 for (i=0; i < m; i++) {
1297 twodigits acc = (twodigits)a[i] << d | carry;
1298 z[i] = (digit)acc & PyLong_MASK;
1299 carry = (digit)(acc >> PyLong_SHIFT);
1301 return carry;
1304 /* Shift digit vector a[0:m] d bits right, with 0 <= d < PyLong_SHIFT. Put
1305 * result in z[0:m], and return the d bits shifted out of the bottom.
1307 static digit
1308 v_rshift(digit *z, digit *a, Py_ssize_t m, int d)
1310 Py_ssize_t i;
1311 digit carry = 0;
1312 digit mask = ((digit)1 << d) - 1U;
1314 assert(0 <= d && d < PyLong_SHIFT);
1315 for (i=m; i-- > 0;) {
1316 twodigits acc = (twodigits)carry << PyLong_SHIFT | a[i];
1317 carry = (digit)acc & mask;
1318 z[i] = (digit)(acc >> d);
1320 return carry;
1323 /* Divide long pin, w/ size digits, by non-zero digit n, storing quotient
1324 in pout, and returning the remainder. pin and pout point at the LSD.
1325 It's OK for pin == pout on entry, which saves oodles of mallocs/frees in
1326 _PyLong_Format, but that should be done with great care since longs are
1327 immutable. */
1329 static digit
1330 inplace_divrem1(digit *pout, digit *pin, Py_ssize_t size, digit n)
1332 twodigits rem = 0;
1334 assert(n > 0 && n <= PyLong_MASK);
1335 pin += size;
1336 pout += size;
1337 while (--size >= 0) {
1338 digit hi;
1339 rem = (rem << PyLong_SHIFT) | *--pin;
1340 *--pout = hi = (digit)(rem / n);
1341 rem -= (twodigits)hi * n;
1343 return (digit)rem;
1346 /* Divide a long integer by a digit, returning both the quotient
1347 (as function result) and the remainder (through *prem).
1348 The sign of a is ignored; n should not be zero. */
1350 static PyLongObject *
1351 divrem1(PyLongObject *a, digit n, digit *prem)
1353 const Py_ssize_t size = ABS(Py_SIZE(a));
1354 PyLongObject *z;
1356 assert(n > 0 && n <= PyLong_MASK);
1357 z = _PyLong_New(size);
1358 if (z == NULL)
1359 return NULL;
1360 *prem = inplace_divrem1(z->ob_digit, a->ob_digit, size, n);
1361 return long_normalize(z);
1364 /* Convert a long integer to a base 10 string. Returns a new non-shared
1365 string. (Return value is non-shared so that callers can modify the
1366 returned value if necessary.) */
1368 static PyObject *
1369 long_to_decimal_string(PyObject *aa, int addL)
1371 PyLongObject *scratch, *a;
1372 PyObject *str;
1373 Py_ssize_t size, strlen, size_a, i, j;
1374 digit *pout, *pin, rem, tenpow;
1375 char *p;
1376 int negative;
1378 a = (PyLongObject *)aa;
1379 if (a == NULL || !PyLong_Check(a)) {
1380 PyErr_BadInternalCall();
1381 return NULL;
1383 size_a = ABS(Py_SIZE(a));
1384 negative = Py_SIZE(a) < 0;
1386 /* quick and dirty upper bound for the number of digits
1387 required to express a in base _PyLong_DECIMAL_BASE:
1389 #digits = 1 + floor(log2(a) / log2(_PyLong_DECIMAL_BASE))
1391 But log2(a) < size_a * PyLong_SHIFT, and
1392 log2(_PyLong_DECIMAL_BASE) = log2(10) * _PyLong_DECIMAL_SHIFT
1393 > 3 * _PyLong_DECIMAL_SHIFT
1395 if (size_a > PY_SSIZE_T_MAX / PyLong_SHIFT) {
1396 PyErr_SetString(PyExc_OverflowError,
1397 "long is too large to format");
1398 return NULL;
1400 /* the expression size_a * PyLong_SHIFT is now safe from overflow */
1401 size = 1 + size_a * PyLong_SHIFT / (3 * _PyLong_DECIMAL_SHIFT);
1402 scratch = _PyLong_New(size);
1403 if (scratch == NULL)
1404 return NULL;
1406 /* convert array of base _PyLong_BASE digits in pin to an array of
1407 base _PyLong_DECIMAL_BASE digits in pout, following Knuth (TAOCP,
1408 Volume 2 (3rd edn), section 4.4, Method 1b). */
1409 pin = a->ob_digit;
1410 pout = scratch->ob_digit;
1411 size = 0;
1412 for (i = size_a; --i >= 0; ) {
1413 digit hi = pin[i];
1414 for (j = 0; j < size; j++) {
1415 twodigits z = (twodigits)pout[j] << PyLong_SHIFT | hi;
1416 hi = (digit)(z / _PyLong_DECIMAL_BASE);
1417 pout[j] = (digit)(z - (twodigits)hi *
1418 _PyLong_DECIMAL_BASE);
1420 while (hi) {
1421 pout[size++] = hi % _PyLong_DECIMAL_BASE;
1422 hi /= _PyLong_DECIMAL_BASE;
1424 /* check for keyboard interrupt */
1425 SIGCHECK({
1426 Py_DECREF(scratch);
1427 return NULL;
1430 /* pout should have at least one digit, so that the case when a = 0
1431 works correctly */
1432 if (size == 0)
1433 pout[size++] = 0;
1435 /* calculate exact length of output string, and allocate */
1436 strlen = (addL != 0) + negative +
1437 1 + (size - 1) * _PyLong_DECIMAL_SHIFT;
1438 tenpow = 10;
1439 rem = pout[size-1];
1440 while (rem >= tenpow) {
1441 tenpow *= 10;
1442 strlen++;
1444 str = PyString_FromStringAndSize(NULL, strlen);
1445 if (str == NULL) {
1446 Py_DECREF(scratch);
1447 return NULL;
1450 /* fill the string right-to-left */
1451 p = PyString_AS_STRING(str) + strlen;
1452 *p = '\0';
1453 if (addL)
1454 *--p = 'L';
1455 /* pout[0] through pout[size-2] contribute exactly
1456 _PyLong_DECIMAL_SHIFT digits each */
1457 for (i=0; i < size - 1; i++) {
1458 rem = pout[i];
1459 for (j = 0; j < _PyLong_DECIMAL_SHIFT; j++) {
1460 *--p = '0' + rem % 10;
1461 rem /= 10;
1464 /* pout[size-1]: always produce at least one decimal digit */
1465 rem = pout[i];
1466 do {
1467 *--p = '0' + rem % 10;
1468 rem /= 10;
1469 } while (rem != 0);
1471 /* and sign */
1472 if (negative)
1473 *--p = '-';
1475 /* check we've counted correctly */
1476 assert(p == PyString_AS_STRING(str));
1477 Py_DECREF(scratch);
1478 return (PyObject *)str;
1481 /* Convert the long to a string object with given base,
1482 appending a base prefix of 0[box] if base is 2, 8 or 16.
1483 Add a trailing "L" if addL is non-zero.
1484 If newstyle is zero, then use the pre-2.6 behavior of octal having
1485 a leading "0", instead of the prefix "0o" */
1486 PyAPI_FUNC(PyObject *)
1487 _PyLong_Format(PyObject *aa, int base, int addL, int newstyle)
1489 register PyLongObject *a = (PyLongObject *)aa;
1490 PyStringObject *str;
1491 Py_ssize_t i, sz;
1492 Py_ssize_t size_a;
1493 char *p;
1494 int bits;
1495 char sign = '\0';
1497 if (base == 10)
1498 return long_to_decimal_string((PyObject *)a, addL);
1500 if (a == NULL || !PyLong_Check(a)) {
1501 PyErr_BadInternalCall();
1502 return NULL;
1504 assert(base >= 2 && base <= 36);
1505 size_a = ABS(Py_SIZE(a));
1507 /* Compute a rough upper bound for the length of the string */
1508 i = base;
1509 bits = 0;
1510 while (i > 1) {
1511 ++bits;
1512 i >>= 1;
1514 i = 5 + (addL ? 1 : 0);
1515 /* ensure we don't get signed overflow in sz calculation */
1516 if (size_a > (PY_SSIZE_T_MAX - i) / PyLong_SHIFT) {
1517 PyErr_SetString(PyExc_OverflowError,
1518 "long is too large to format");
1519 return NULL;
1521 sz = i + 1 + (size_a * PyLong_SHIFT - 1) / bits;
1522 assert(sz >= 0);
1523 str = (PyStringObject *) PyString_FromStringAndSize((char *)0, sz);
1524 if (str == NULL)
1525 return NULL;
1526 p = PyString_AS_STRING(str) + sz;
1527 *p = '\0';
1528 if (addL)
1529 *--p = 'L';
1530 if (a->ob_size < 0)
1531 sign = '-';
1533 if (a->ob_size == 0) {
1534 *--p = '0';
1536 else if ((base & (base - 1)) == 0) {
1537 /* JRH: special case for power-of-2 bases */
1538 twodigits accum = 0;
1539 int accumbits = 0; /* # of bits in accum */
1540 int basebits = 1; /* # of bits in base-1 */
1541 i = base;
1542 while ((i >>= 1) > 1)
1543 ++basebits;
1545 for (i = 0; i < size_a; ++i) {
1546 accum |= (twodigits)a->ob_digit[i] << accumbits;
1547 accumbits += PyLong_SHIFT;
1548 assert(accumbits >= basebits);
1549 do {
1550 char cdigit = (char)(accum & (base - 1));
1551 cdigit += (cdigit < 10) ? '0' : 'a'-10;
1552 assert(p > PyString_AS_STRING(str));
1553 *--p = cdigit;
1554 accumbits -= basebits;
1555 accum >>= basebits;
1556 } while (i < size_a-1 ? accumbits >= basebits :
1557 accum > 0);
1560 else {
1561 /* Not 0, and base not a power of 2. Divide repeatedly by
1562 base, but for speed use the highest power of base that
1563 fits in a digit. */
1564 Py_ssize_t size = size_a;
1565 digit *pin = a->ob_digit;
1566 PyLongObject *scratch;
1567 /* powbasw <- largest power of base that fits in a digit. */
1568 digit powbase = base; /* powbase == base ** power */
1569 int power = 1;
1570 for (;;) {
1571 twodigits newpow = powbase * (twodigits)base;
1572 if (newpow >> PyLong_SHIFT)
1573 /* doesn't fit in a digit */
1574 break;
1575 powbase = (digit)newpow;
1576 ++power;
1579 /* Get a scratch area for repeated division. */
1580 scratch = _PyLong_New(size);
1581 if (scratch == NULL) {
1582 Py_DECREF(str);
1583 return NULL;
1586 /* Repeatedly divide by powbase. */
1587 do {
1588 int ntostore = power;
1589 digit rem = inplace_divrem1(scratch->ob_digit,
1590 pin, size, powbase);
1591 pin = scratch->ob_digit; /* no need to use a again */
1592 if (pin[size - 1] == 0)
1593 --size;
1594 SIGCHECK({
1595 Py_DECREF(scratch);
1596 Py_DECREF(str);
1597 return NULL;
1600 /* Break rem into digits. */
1601 assert(ntostore > 0);
1602 do {
1603 digit nextrem = (digit)(rem / base);
1604 char c = (char)(rem - nextrem * base);
1605 assert(p > PyString_AS_STRING(str));
1606 c += (c < 10) ? '0' : 'a'-10;
1607 *--p = c;
1608 rem = nextrem;
1609 --ntostore;
1610 /* Termination is a bit delicate: must not
1611 store leading zeroes, so must get out if
1612 remaining quotient and rem are both 0. */
1613 } while (ntostore && (size || rem));
1614 } while (size != 0);
1615 Py_DECREF(scratch);
1618 if (base == 2) {
1619 *--p = 'b';
1620 *--p = '0';
1622 else if (base == 8) {
1623 if (newstyle) {
1624 *--p = 'o';
1625 *--p = '0';
1627 else
1628 if (size_a != 0)
1629 *--p = '0';
1631 else if (base == 16) {
1632 *--p = 'x';
1633 *--p = '0';
1635 else if (base != 10) {
1636 *--p = '#';
1637 *--p = '0' + base%10;
1638 if (base > 10)
1639 *--p = '0' + base/10;
1641 if (sign)
1642 *--p = sign;
1643 if (p != PyString_AS_STRING(str)) {
1644 char *q = PyString_AS_STRING(str);
1645 assert(p > q);
1646 do {
1647 } while ((*q++ = *p++) != '\0');
1648 q--;
1649 _PyString_Resize((PyObject **)&str,
1650 (Py_ssize_t) (q - PyString_AS_STRING(str)));
1652 return (PyObject *)str;
1655 /* Table of digit values for 8-bit string -> integer conversion.
1656 * '0' maps to 0, ..., '9' maps to 9.
1657 * 'a' and 'A' map to 10, ..., 'z' and 'Z' map to 35.
1658 * All other indices map to 37.
1659 * Note that when converting a base B string, a char c is a legitimate
1660 * base B digit iff _PyLong_DigitValue[Py_CHARMASK(c)] < B.
1662 int _PyLong_DigitValue[256] = {
1663 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
1664 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
1665 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
1666 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 37, 37, 37, 37, 37, 37,
1667 37, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
1668 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 37, 37, 37, 37,
1669 37, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
1670 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 37, 37, 37, 37,
1671 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
1672 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
1673 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
1674 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
1675 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
1676 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
1677 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
1678 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
1681 /* *str points to the first digit in a string of base `base` digits. base
1682 * is a power of 2 (2, 4, 8, 16, or 32). *str is set to point to the first
1683 * non-digit (which may be *str!). A normalized long is returned.
1684 * The point to this routine is that it takes time linear in the number of
1685 * string characters.
1687 static PyLongObject *
1688 long_from_binary_base(char **str, int base)
1690 char *p = *str;
1691 char *start = p;
1692 int bits_per_char;
1693 Py_ssize_t n;
1694 PyLongObject *z;
1695 twodigits accum;
1696 int bits_in_accum;
1697 digit *pdigit;
1699 assert(base >= 2 && base <= 32 && (base & (base - 1)) == 0);
1700 n = base;
1701 for (bits_per_char = -1; n; ++bits_per_char)
1702 n >>= 1;
1703 /* n <- total # of bits needed, while setting p to end-of-string */
1704 while (_PyLong_DigitValue[Py_CHARMASK(*p)] < base)
1705 ++p;
1706 *str = p;
1707 /* n <- # of Python digits needed, = ceiling(n/PyLong_SHIFT). */
1708 n = (p - start) * bits_per_char + PyLong_SHIFT - 1;
1709 if (n / bits_per_char < p - start) {
1710 PyErr_SetString(PyExc_ValueError,
1711 "long string too large to convert");
1712 return NULL;
1714 n = n / PyLong_SHIFT;
1715 z = _PyLong_New(n);
1716 if (z == NULL)
1717 return NULL;
1718 /* Read string from right, and fill in long from left; i.e.,
1719 * from least to most significant in both.
1721 accum = 0;
1722 bits_in_accum = 0;
1723 pdigit = z->ob_digit;
1724 while (--p >= start) {
1725 int k = _PyLong_DigitValue[Py_CHARMASK(*p)];
1726 assert(k >= 0 && k < base);
1727 accum |= (twodigits)k << bits_in_accum;
1728 bits_in_accum += bits_per_char;
1729 if (bits_in_accum >= PyLong_SHIFT) {
1730 *pdigit++ = (digit)(accum & PyLong_MASK);
1731 assert(pdigit - z->ob_digit <= n);
1732 accum >>= PyLong_SHIFT;
1733 bits_in_accum -= PyLong_SHIFT;
1734 assert(bits_in_accum < PyLong_SHIFT);
1737 if (bits_in_accum) {
1738 assert(bits_in_accum <= PyLong_SHIFT);
1739 *pdigit++ = (digit)accum;
1740 assert(pdigit - z->ob_digit <= n);
1742 while (pdigit - z->ob_digit < n)
1743 *pdigit++ = 0;
1744 return long_normalize(z);
1747 PyObject *
1748 PyLong_FromString(char *str, char **pend, int base)
1750 int sign = 1;
1751 char *start, *orig_str = str;
1752 PyLongObject *z;
1753 PyObject *strobj, *strrepr;
1754 Py_ssize_t slen;
1756 if ((base != 0 && base < 2) || base > 36) {
1757 PyErr_SetString(PyExc_ValueError,
1758 "long() arg 2 must be >= 2 and <= 36");
1759 return NULL;
1761 while (*str != '\0' && isspace(Py_CHARMASK(*str)))
1762 str++;
1763 if (*str == '+')
1764 ++str;
1765 else if (*str == '-') {
1766 ++str;
1767 sign = -1;
1769 while (*str != '\0' && isspace(Py_CHARMASK(*str)))
1770 str++;
1771 if (base == 0) {
1772 /* No base given. Deduce the base from the contents
1773 of the string */
1774 if (str[0] != '0')
1775 base = 10;
1776 else if (str[1] == 'x' || str[1] == 'X')
1777 base = 16;
1778 else if (str[1] == 'o' || str[1] == 'O')
1779 base = 8;
1780 else if (str[1] == 'b' || str[1] == 'B')
1781 base = 2;
1782 else
1783 /* "old" (C-style) octal literal, still valid in
1784 2.x, although illegal in 3.x */
1785 base = 8;
1787 /* Whether or not we were deducing the base, skip leading chars
1788 as needed */
1789 if (str[0] == '0' &&
1790 ((base == 16 && (str[1] == 'x' || str[1] == 'X')) ||
1791 (base == 8 && (str[1] == 'o' || str[1] == 'O')) ||
1792 (base == 2 && (str[1] == 'b' || str[1] == 'B'))))
1793 str += 2;
1795 start = str;
1796 if ((base & (base - 1)) == 0)
1797 z = long_from_binary_base(&str, base);
1798 else {
1799 /***
1800 Binary bases can be converted in time linear in the number of digits, because
1801 Python's representation base is binary. Other bases (including decimal!) use
1802 the simple quadratic-time algorithm below, complicated by some speed tricks.
1804 First some math: the largest integer that can be expressed in N base-B digits
1805 is B**N-1. Consequently, if we have an N-digit input in base B, the worst-
1806 case number of Python digits needed to hold it is the smallest integer n s.t.
1808 PyLong_BASE**n-1 >= B**N-1 [or, adding 1 to both sides]
1809 PyLong_BASE**n >= B**N [taking logs to base PyLong_BASE]
1810 n >= log(B**N)/log(PyLong_BASE) = N * log(B)/log(PyLong_BASE)
1812 The static array log_base_PyLong_BASE[base] == log(base)/log(PyLong_BASE) so we can compute
1813 this quickly. A Python long with that much space is reserved near the start,
1814 and the result is computed into it.
1816 The input string is actually treated as being in base base**i (i.e., i digits
1817 are processed at a time), where two more static arrays hold:
1819 convwidth_base[base] = the largest integer i such that base**i <= PyLong_BASE
1820 convmultmax_base[base] = base ** convwidth_base[base]
1822 The first of these is the largest i such that i consecutive input digits
1823 must fit in a single Python digit. The second is effectively the input
1824 base we're really using.
1826 Viewing the input as a sequence <c0, c1, ..., c_n-1> of digits in base
1827 convmultmax_base[base], the result is "simply"
1829 (((c0*B + c1)*B + c2)*B + c3)*B + ... ))) + c_n-1
1831 where B = convmultmax_base[base].
1833 Error analysis: as above, the number of Python digits `n` needed is worst-
1834 case
1836 n >= N * log(B)/log(PyLong_BASE)
1838 where `N` is the number of input digits in base `B`. This is computed via
1840 size_z = (Py_ssize_t)((scan - str) * log_base_PyLong_BASE[base]) + 1;
1842 below. Two numeric concerns are how much space this can waste, and whether
1843 the computed result can be too small. To be concrete, assume PyLong_BASE = 2**15,
1844 which is the default (and it's unlikely anyone changes that).
1846 Waste isn't a problem: provided the first input digit isn't 0, the difference
1847 between the worst-case input with N digits and the smallest input with N
1848 digits is about a factor of B, but B is small compared to PyLong_BASE so at most
1849 one allocated Python digit can remain unused on that count. If
1850 N*log(B)/log(PyLong_BASE) is mathematically an exact integer, then truncating that
1851 and adding 1 returns a result 1 larger than necessary. However, that can't
1852 happen: whenever B is a power of 2, long_from_binary_base() is called
1853 instead, and it's impossible for B**i to be an integer power of 2**15 when
1854 B is not a power of 2 (i.e., it's impossible for N*log(B)/log(PyLong_BASE) to be
1855 an exact integer when B is not a power of 2, since B**i has a prime factor
1856 other than 2 in that case, but (2**15)**j's only prime factor is 2).
1858 The computed result can be too small if the true value of N*log(B)/log(PyLong_BASE)
1859 is a little bit larger than an exact integer, but due to roundoff errors (in
1860 computing log(B), log(PyLong_BASE), their quotient, and/or multiplying that by N)
1861 yields a numeric result a little less than that integer. Unfortunately, "how
1862 close can a transcendental function get to an integer over some range?"
1863 questions are generally theoretically intractable. Computer analysis via
1864 continued fractions is practical: expand log(B)/log(PyLong_BASE) via continued
1865 fractions, giving a sequence i/j of "the best" rational approximations. Then
1866 j*log(B)/log(PyLong_BASE) is approximately equal to (the integer) i. This shows that
1867 we can get very close to being in trouble, but very rarely. For example,
1868 76573 is a denominator in one of the continued-fraction approximations to
1869 log(10)/log(2**15), and indeed:
1871 >>> log(10)/log(2**15)*76573
1872 16958.000000654003
1874 is very close to an integer. If we were working with IEEE single-precision,
1875 rounding errors could kill us. Finding worst cases in IEEE double-precision
1876 requires better-than-double-precision log() functions, and Tim didn't bother.
1877 Instead the code checks to see whether the allocated space is enough as each
1878 new Python digit is added, and copies the whole thing to a larger long if not.
1879 This should happen extremely rarely, and in fact I don't have a test case
1880 that triggers it(!). Instead the code was tested by artificially allocating
1881 just 1 digit at the start, so that the copying code was exercised for every
1882 digit beyond the first.
1883 ***/
1884 register twodigits c; /* current input character */
1885 Py_ssize_t size_z;
1886 int i;
1887 int convwidth;
1888 twodigits convmultmax, convmult;
1889 digit *pz, *pzstop;
1890 char* scan;
1892 static double log_base_PyLong_BASE[37] = {0.0e0,};
1893 static int convwidth_base[37] = {0,};
1894 static twodigits convmultmax_base[37] = {0,};
1896 if (log_base_PyLong_BASE[base] == 0.0) {
1897 twodigits convmax = base;
1898 int i = 1;
1900 log_base_PyLong_BASE[base] = log((double)base) /
1901 log((double)PyLong_BASE);
1902 for (;;) {
1903 twodigits next = convmax * base;
1904 if (next > PyLong_BASE)
1905 break;
1906 convmax = next;
1907 ++i;
1909 convmultmax_base[base] = convmax;
1910 assert(i > 0);
1911 convwidth_base[base] = i;
1914 /* Find length of the string of numeric characters. */
1915 scan = str;
1916 while (_PyLong_DigitValue[Py_CHARMASK(*scan)] < base)
1917 ++scan;
1919 /* Create a long object that can contain the largest possible
1920 * integer with this base and length. Note that there's no
1921 * need to initialize z->ob_digit -- no slot is read up before
1922 * being stored into.
1924 size_z = (Py_ssize_t)((scan - str) * log_base_PyLong_BASE[base]) + 1;
1925 /* Uncomment next line to test exceedingly rare copy code */
1926 /* size_z = 1; */
1927 assert(size_z > 0);
1928 z = _PyLong_New(size_z);
1929 if (z == NULL)
1930 return NULL;
1931 Py_SIZE(z) = 0;
1933 /* `convwidth` consecutive input digits are treated as a single
1934 * digit in base `convmultmax`.
1936 convwidth = convwidth_base[base];
1937 convmultmax = convmultmax_base[base];
1939 /* Work ;-) */
1940 while (str < scan) {
1941 /* grab up to convwidth digits from the input string */
1942 c = (digit)_PyLong_DigitValue[Py_CHARMASK(*str++)];
1943 for (i = 1; i < convwidth && str != scan; ++i, ++str) {
1944 c = (twodigits)(c * base +
1945 _PyLong_DigitValue[Py_CHARMASK(*str)]);
1946 assert(c < PyLong_BASE);
1949 convmult = convmultmax;
1950 /* Calculate the shift only if we couldn't get
1951 * convwidth digits.
1953 if (i != convwidth) {
1954 convmult = base;
1955 for ( ; i > 1; --i)
1956 convmult *= base;
1959 /* Multiply z by convmult, and add c. */
1960 pz = z->ob_digit;
1961 pzstop = pz + Py_SIZE(z);
1962 for (; pz < pzstop; ++pz) {
1963 c += (twodigits)*pz * convmult;
1964 *pz = (digit)(c & PyLong_MASK);
1965 c >>= PyLong_SHIFT;
1967 /* carry off the current end? */
1968 if (c) {
1969 assert(c < PyLong_BASE);
1970 if (Py_SIZE(z) < size_z) {
1971 *pz = (digit)c;
1972 ++Py_SIZE(z);
1974 else {
1975 PyLongObject *tmp;
1976 /* Extremely rare. Get more space. */
1977 assert(Py_SIZE(z) == size_z);
1978 tmp = _PyLong_New(size_z + 1);
1979 if (tmp == NULL) {
1980 Py_DECREF(z);
1981 return NULL;
1983 memcpy(tmp->ob_digit,
1984 z->ob_digit,
1985 sizeof(digit) * size_z);
1986 Py_DECREF(z);
1987 z = tmp;
1988 z->ob_digit[size_z] = (digit)c;
1989 ++size_z;
1994 if (z == NULL)
1995 return NULL;
1996 if (str == start)
1997 goto onError;
1998 if (sign < 0)
1999 Py_SIZE(z) = -(Py_SIZE(z));
2000 if (*str == 'L' || *str == 'l')
2001 str++;
2002 while (*str && isspace(Py_CHARMASK(*str)))
2003 str++;
2004 if (*str != '\0')
2005 goto onError;
2006 if (pend)
2007 *pend = str;
2008 return (PyObject *) z;
2010 onError:
2011 Py_XDECREF(z);
2012 slen = strlen(orig_str) < 200 ? strlen(orig_str) : 200;
2013 strobj = PyString_FromStringAndSize(orig_str, slen);
2014 if (strobj == NULL)
2015 return NULL;
2016 strrepr = PyObject_Repr(strobj);
2017 Py_DECREF(strobj);
2018 if (strrepr == NULL)
2019 return NULL;
2020 PyErr_Format(PyExc_ValueError,
2021 "invalid literal for long() with base %d: %s",
2022 base, PyString_AS_STRING(strrepr));
2023 Py_DECREF(strrepr);
2024 return NULL;
2027 #ifdef Py_USING_UNICODE
2028 PyObject *
2029 PyLong_FromUnicode(Py_UNICODE *u, Py_ssize_t length, int base)
2031 PyObject *result;
2032 char *buffer = (char *)PyMem_MALLOC(length+1);
2034 if (buffer == NULL)
2035 return NULL;
2037 if (PyUnicode_EncodeDecimal(u, length, buffer, NULL)) {
2038 PyMem_FREE(buffer);
2039 return NULL;
2041 result = PyLong_FromString(buffer, NULL, base);
2042 PyMem_FREE(buffer);
2043 return result;
2045 #endif
2047 /* forward */
2048 static PyLongObject *x_divrem
2049 (PyLongObject *, PyLongObject *, PyLongObject **);
2050 static PyObject *long_long(PyObject *v);
2052 /* Long division with remainder, top-level routine */
2054 static int
2055 long_divrem(PyLongObject *a, PyLongObject *b,
2056 PyLongObject **pdiv, PyLongObject **prem)
2058 Py_ssize_t size_a = ABS(Py_SIZE(a)), size_b = ABS(Py_SIZE(b));
2059 PyLongObject *z;
2061 if (size_b == 0) {
2062 PyErr_SetString(PyExc_ZeroDivisionError,
2063 "long division or modulo by zero");
2064 return -1;
2066 if (size_a < size_b ||
2067 (size_a == size_b &&
2068 a->ob_digit[size_a-1] < b->ob_digit[size_b-1])) {
2069 /* |a| < |b|. */
2070 *pdiv = _PyLong_New(0);
2071 if (*pdiv == NULL)
2072 return -1;
2073 Py_INCREF(a);
2074 *prem = (PyLongObject *) a;
2075 return 0;
2077 if (size_b == 1) {
2078 digit rem = 0;
2079 z = divrem1(a, b->ob_digit[0], &rem);
2080 if (z == NULL)
2081 return -1;
2082 *prem = (PyLongObject *) PyLong_FromLong((long)rem);
2083 if (*prem == NULL) {
2084 Py_DECREF(z);
2085 return -1;
2088 else {
2089 z = x_divrem(a, b, prem);
2090 if (z == NULL)
2091 return -1;
2093 /* Set the signs.
2094 The quotient z has the sign of a*b;
2095 the remainder r has the sign of a,
2096 so a = b*z + r. */
2097 if ((a->ob_size < 0) != (b->ob_size < 0))
2098 z->ob_size = -(z->ob_size);
2099 if (a->ob_size < 0 && (*prem)->ob_size != 0)
2100 (*prem)->ob_size = -((*prem)->ob_size);
2101 *pdiv = z;
2102 return 0;
2105 /* Unsigned long division with remainder -- the algorithm. The arguments v1
2106 and w1 should satisfy 2 <= ABS(Py_SIZE(w1)) <= ABS(Py_SIZE(v1)). */
2108 static PyLongObject *
2109 x_divrem(PyLongObject *v1, PyLongObject *w1, PyLongObject **prem)
2111 PyLongObject *v, *w, *a;
2112 Py_ssize_t i, k, size_v, size_w;
2113 int d;
2114 digit wm1, wm2, carry, q, r, vtop, *v0, *vk, *w0, *ak;
2115 twodigits vv;
2116 sdigit zhi;
2117 stwodigits z;
2119 /* We follow Knuth [The Art of Computer Programming, Vol. 2 (3rd
2120 edn.), section 4.3.1, Algorithm D], except that we don't explicitly
2121 handle the special case when the initial estimate q for a quotient
2122 digit is >= PyLong_BASE: the max value for q is PyLong_BASE+1, and
2123 that won't overflow a digit. */
2125 /* allocate space; w will also be used to hold the final remainder */
2126 size_v = ABS(Py_SIZE(v1));
2127 size_w = ABS(Py_SIZE(w1));
2128 assert(size_v >= size_w && size_w >= 2); /* Assert checks by div() */
2129 v = _PyLong_New(size_v+1);
2130 if (v == NULL) {
2131 *prem = NULL;
2132 return NULL;
2134 w = _PyLong_New(size_w);
2135 if (w == NULL) {
2136 Py_DECREF(v);
2137 *prem = NULL;
2138 return NULL;
2141 /* normalize: shift w1 left so that its top digit is >= PyLong_BASE/2.
2142 shift v1 left by the same amount. Results go into w and v. */
2143 d = PyLong_SHIFT - bits_in_digit(w1->ob_digit[size_w-1]);
2144 carry = v_lshift(w->ob_digit, w1->ob_digit, size_w, d);
2145 assert(carry == 0);
2146 carry = v_lshift(v->ob_digit, v1->ob_digit, size_v, d);
2147 if (carry != 0 || v->ob_digit[size_v-1] >= w->ob_digit[size_w-1]) {
2148 v->ob_digit[size_v] = carry;
2149 size_v++;
2152 /* Now v->ob_digit[size_v-1] < w->ob_digit[size_w-1], so quotient has
2153 at most (and usually exactly) k = size_v - size_w digits. */
2154 k = size_v - size_w;
2155 assert(k >= 0);
2156 a = _PyLong_New(k);
2157 if (a == NULL) {
2158 Py_DECREF(w);
2159 Py_DECREF(v);
2160 *prem = NULL;
2161 return NULL;
2163 v0 = v->ob_digit;
2164 w0 = w->ob_digit;
2165 wm1 = w0[size_w-1];
2166 wm2 = w0[size_w-2];
2167 for (vk = v0+k, ak = a->ob_digit + k; vk-- > v0;) {
2168 /* inner loop: divide vk[0:size_w+1] by w0[0:size_w], giving
2169 single-digit quotient q, remainder in vk[0:size_w]. */
2171 SIGCHECK({
2172 Py_DECREF(a);
2173 Py_DECREF(w);
2174 Py_DECREF(v);
2175 *prem = NULL;
2176 return NULL;
2179 /* estimate quotient digit q; may overestimate by 1 (rare) */
2180 vtop = vk[size_w];
2181 assert(vtop <= wm1);
2182 vv = ((twodigits)vtop << PyLong_SHIFT) | vk[size_w-1];
2183 q = (digit)(vv / wm1);
2184 r = (digit)(vv - (twodigits)wm1 * q); /* r = vv % wm1 */
2185 while ((twodigits)wm2 * q > (((twodigits)r << PyLong_SHIFT)
2186 | vk[size_w-2])) {
2187 --q;
2188 r += wm1;
2189 if (r >= PyLong_BASE)
2190 break;
2192 assert(q <= PyLong_BASE);
2194 /* subtract q*w0[0:size_w] from vk[0:size_w+1] */
2195 zhi = 0;
2196 for (i = 0; i < size_w; ++i) {
2197 /* invariants: -PyLong_BASE <= -q <= zhi <= 0;
2198 -PyLong_BASE * q <= z < PyLong_BASE */
2199 z = (sdigit)vk[i] + zhi -
2200 (stwodigits)q * (stwodigits)w0[i];
2201 vk[i] = (digit)z & PyLong_MASK;
2202 zhi = (sdigit)Py_ARITHMETIC_RIGHT_SHIFT(stwodigits,
2203 z, PyLong_SHIFT);
2206 /* add w back if q was too large (this branch taken rarely) */
2207 assert((sdigit)vtop + zhi == -1 || (sdigit)vtop + zhi == 0);
2208 if ((sdigit)vtop + zhi < 0) {
2209 carry = 0;
2210 for (i = 0; i < size_w; ++i) {
2211 carry += vk[i] + w0[i];
2212 vk[i] = carry & PyLong_MASK;
2213 carry >>= PyLong_SHIFT;
2215 --q;
2218 /* store quotient digit */
2219 assert(q < PyLong_BASE);
2220 *--ak = q;
2223 /* unshift remainder; we reuse w to store the result */
2224 carry = v_rshift(w0, v0, size_w, d);
2225 assert(carry==0);
2226 Py_DECREF(v);
2228 *prem = long_normalize(w);
2229 return long_normalize(a);
2232 /* Methods */
2234 static void
2235 long_dealloc(PyObject *v)
2237 Py_TYPE(v)->tp_free(v);
2240 static PyObject *
2241 long_repr(PyObject *v)
2243 return _PyLong_Format(v, 10, 1, 0);
2246 static PyObject *
2247 long_str(PyObject *v)
2249 return _PyLong_Format(v, 10, 0, 0);
2252 static int
2253 long_compare(PyLongObject *a, PyLongObject *b)
2255 Py_ssize_t sign;
2257 if (Py_SIZE(a) != Py_SIZE(b)) {
2258 if (ABS(Py_SIZE(a)) == 0 && ABS(Py_SIZE(b)) == 0)
2259 sign = 0;
2260 else
2261 sign = Py_SIZE(a) - Py_SIZE(b);
2263 else {
2264 Py_ssize_t i = ABS(Py_SIZE(a));
2265 while (--i >= 0 && a->ob_digit[i] == b->ob_digit[i])
2267 if (i < 0)
2268 sign = 0;
2269 else {
2270 sign = (sdigit)a->ob_digit[i] - (sdigit)b->ob_digit[i];
2271 if (Py_SIZE(a) < 0)
2272 sign = -sign;
2275 return sign < 0 ? -1 : sign > 0 ? 1 : 0;
2278 static long
2279 long_hash(PyLongObject *v)
2281 unsigned long x;
2282 Py_ssize_t i;
2283 int sign;
2285 /* This is designed so that Python ints and longs with the
2286 same value hash to the same value, otherwise comparisons
2287 of mapping keys will turn out weird */
2288 i = v->ob_size;
2289 sign = 1;
2290 x = 0;
2291 if (i < 0) {
2292 sign = -1;
2293 i = -(i);
2295 /* The following loop produces a C unsigned long x such that x is
2296 congruent to the absolute value of v modulo ULONG_MAX. The
2297 resulting x is nonzero if and only if v is. */
2298 while (--i >= 0) {
2299 /* Force a native long #-bits (32 or 64) circular shift */
2300 x = (x >> (8*SIZEOF_LONG-PyLong_SHIFT)) | (x << PyLong_SHIFT);
2301 x += v->ob_digit[i];
2302 /* If the addition above overflowed we compensate by
2303 incrementing. This preserves the value modulo
2304 ULONG_MAX. */
2305 if (x < v->ob_digit[i])
2306 x++;
2308 x = x * sign;
2309 if (x == (unsigned long)-1)
2310 x = (unsigned long)-2;
2311 return (long)x;
2315 /* Add the absolute values of two long integers. */
2317 static PyLongObject *
2318 x_add(PyLongObject *a, PyLongObject *b)
2320 Py_ssize_t size_a = ABS(Py_SIZE(a)), size_b = ABS(Py_SIZE(b));
2321 PyLongObject *z;
2322 Py_ssize_t i;
2323 digit carry = 0;
2325 /* Ensure a is the larger of the two: */
2326 if (size_a < size_b) {
2327 { PyLongObject *temp = a; a = b; b = temp; }
2328 { Py_ssize_t size_temp = size_a;
2329 size_a = size_b;
2330 size_b = size_temp; }
2332 z = _PyLong_New(size_a+1);
2333 if (z == NULL)
2334 return NULL;
2335 for (i = 0; i < size_b; ++i) {
2336 carry += a->ob_digit[i] + b->ob_digit[i];
2337 z->ob_digit[i] = carry & PyLong_MASK;
2338 carry >>= PyLong_SHIFT;
2340 for (; i < size_a; ++i) {
2341 carry += a->ob_digit[i];
2342 z->ob_digit[i] = carry & PyLong_MASK;
2343 carry >>= PyLong_SHIFT;
2345 z->ob_digit[i] = carry;
2346 return long_normalize(z);
2349 /* Subtract the absolute values of two integers. */
2351 static PyLongObject *
2352 x_sub(PyLongObject *a, PyLongObject *b)
2354 Py_ssize_t size_a = ABS(Py_SIZE(a)), size_b = ABS(Py_SIZE(b));
2355 PyLongObject *z;
2356 Py_ssize_t i;
2357 int sign = 1;
2358 digit borrow = 0;
2360 /* Ensure a is the larger of the two: */
2361 if (size_a < size_b) {
2362 sign = -1;
2363 { PyLongObject *temp = a; a = b; b = temp; }
2364 { Py_ssize_t size_temp = size_a;
2365 size_a = size_b;
2366 size_b = size_temp; }
2368 else if (size_a == size_b) {
2369 /* Find highest digit where a and b differ: */
2370 i = size_a;
2371 while (--i >= 0 && a->ob_digit[i] == b->ob_digit[i])
2373 if (i < 0)
2374 return _PyLong_New(0);
2375 if (a->ob_digit[i] < b->ob_digit[i]) {
2376 sign = -1;
2377 { PyLongObject *temp = a; a = b; b = temp; }
2379 size_a = size_b = i+1;
2381 z = _PyLong_New(size_a);
2382 if (z == NULL)
2383 return NULL;
2384 for (i = 0; i < size_b; ++i) {
2385 /* The following assumes unsigned arithmetic
2386 works module 2**N for some N>PyLong_SHIFT. */
2387 borrow = a->ob_digit[i] - b->ob_digit[i] - borrow;
2388 z->ob_digit[i] = borrow & PyLong_MASK;
2389 borrow >>= PyLong_SHIFT;
2390 borrow &= 1; /* Keep only one sign bit */
2392 for (; i < size_a; ++i) {
2393 borrow = a->ob_digit[i] - borrow;
2394 z->ob_digit[i] = borrow & PyLong_MASK;
2395 borrow >>= PyLong_SHIFT;
2396 borrow &= 1; /* Keep only one sign bit */
2398 assert(borrow == 0);
2399 if (sign < 0)
2400 z->ob_size = -(z->ob_size);
2401 return long_normalize(z);
2404 static PyObject *
2405 long_add(PyLongObject *v, PyLongObject *w)
2407 PyLongObject *a, *b, *z;
2409 CONVERT_BINOP((PyObject *)v, (PyObject *)w, &a, &b);
2411 if (a->ob_size < 0) {
2412 if (b->ob_size < 0) {
2413 z = x_add(a, b);
2414 if (z != NULL && z->ob_size != 0)
2415 z->ob_size = -(z->ob_size);
2417 else
2418 z = x_sub(b, a);
2420 else {
2421 if (b->ob_size < 0)
2422 z = x_sub(a, b);
2423 else
2424 z = x_add(a, b);
2426 Py_DECREF(a);
2427 Py_DECREF(b);
2428 return (PyObject *)z;
2431 static PyObject *
2432 long_sub(PyLongObject *v, PyLongObject *w)
2434 PyLongObject *a, *b, *z;
2436 CONVERT_BINOP((PyObject *)v, (PyObject *)w, &a, &b);
2438 if (a->ob_size < 0) {
2439 if (b->ob_size < 0)
2440 z = x_sub(a, b);
2441 else
2442 z = x_add(a, b);
2443 if (z != NULL && z->ob_size != 0)
2444 z->ob_size = -(z->ob_size);
2446 else {
2447 if (b->ob_size < 0)
2448 z = x_add(a, b);
2449 else
2450 z = x_sub(a, b);
2452 Py_DECREF(a);
2453 Py_DECREF(b);
2454 return (PyObject *)z;
2457 /* Grade school multiplication, ignoring the signs.
2458 * Returns the absolute value of the product, or NULL if error.
2460 static PyLongObject *
2461 x_mul(PyLongObject *a, PyLongObject *b)
2463 PyLongObject *z;
2464 Py_ssize_t size_a = ABS(Py_SIZE(a));
2465 Py_ssize_t size_b = ABS(Py_SIZE(b));
2466 Py_ssize_t i;
2468 z = _PyLong_New(size_a + size_b);
2469 if (z == NULL)
2470 return NULL;
2472 memset(z->ob_digit, 0, Py_SIZE(z) * sizeof(digit));
2473 if (a == b) {
2474 /* Efficient squaring per HAC, Algorithm 14.16:
2475 * http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf
2476 * Gives slightly less than a 2x speedup when a == b,
2477 * via exploiting that each entry in the multiplication
2478 * pyramid appears twice (except for the size_a squares).
2480 for (i = 0; i < size_a; ++i) {
2481 twodigits carry;
2482 twodigits f = a->ob_digit[i];
2483 digit *pz = z->ob_digit + (i << 1);
2484 digit *pa = a->ob_digit + i + 1;
2485 digit *paend = a->ob_digit + size_a;
2487 SIGCHECK({
2488 Py_DECREF(z);
2489 return NULL;
2492 carry = *pz + f * f;
2493 *pz++ = (digit)(carry & PyLong_MASK);
2494 carry >>= PyLong_SHIFT;
2495 assert(carry <= PyLong_MASK);
2497 /* Now f is added in twice in each column of the
2498 * pyramid it appears. Same as adding f<<1 once.
2500 f <<= 1;
2501 while (pa < paend) {
2502 carry += *pz + *pa++ * f;
2503 *pz++ = (digit)(carry & PyLong_MASK);
2504 carry >>= PyLong_SHIFT;
2505 assert(carry <= (PyLong_MASK << 1));
2507 if (carry) {
2508 carry += *pz;
2509 *pz++ = (digit)(carry & PyLong_MASK);
2510 carry >>= PyLong_SHIFT;
2512 if (carry)
2513 *pz += (digit)(carry & PyLong_MASK);
2514 assert((carry >> PyLong_SHIFT) == 0);
2517 else { /* a is not the same as b -- gradeschool long mult */
2518 for (i = 0; i < size_a; ++i) {
2519 twodigits carry = 0;
2520 twodigits f = a->ob_digit[i];
2521 digit *pz = z->ob_digit + i;
2522 digit *pb = b->ob_digit;
2523 digit *pbend = b->ob_digit + size_b;
2525 SIGCHECK({
2526 Py_DECREF(z);
2527 return NULL;
2530 while (pb < pbend) {
2531 carry += *pz + *pb++ * f;
2532 *pz++ = (digit)(carry & PyLong_MASK);
2533 carry >>= PyLong_SHIFT;
2534 assert(carry <= PyLong_MASK);
2536 if (carry)
2537 *pz += (digit)(carry & PyLong_MASK);
2538 assert((carry >> PyLong_SHIFT) == 0);
2541 return long_normalize(z);
2544 /* A helper for Karatsuba multiplication (k_mul).
2545 Takes a long "n" and an integer "size" representing the place to
2546 split, and sets low and high such that abs(n) == (high << size) + low,
2547 viewing the shift as being by digits. The sign bit is ignored, and
2548 the return values are >= 0.
2549 Returns 0 on success, -1 on failure.
2551 static int
2552 kmul_split(PyLongObject *n, Py_ssize_t size, PyLongObject **high, PyLongObject **low)
2554 PyLongObject *hi, *lo;
2555 Py_ssize_t size_lo, size_hi;
2556 const Py_ssize_t size_n = ABS(Py_SIZE(n));
2558 size_lo = MIN(size_n, size);
2559 size_hi = size_n - size_lo;
2561 if ((hi = _PyLong_New(size_hi)) == NULL)
2562 return -1;
2563 if ((lo = _PyLong_New(size_lo)) == NULL) {
2564 Py_DECREF(hi);
2565 return -1;
2568 memcpy(lo->ob_digit, n->ob_digit, size_lo * sizeof(digit));
2569 memcpy(hi->ob_digit, n->ob_digit + size_lo, size_hi * sizeof(digit));
2571 *high = long_normalize(hi);
2572 *low = long_normalize(lo);
2573 return 0;
2576 static PyLongObject *k_lopsided_mul(PyLongObject *a, PyLongObject *b);
2578 /* Karatsuba multiplication. Ignores the input signs, and returns the
2579 * absolute value of the product (or NULL if error).
2580 * See Knuth Vol. 2 Chapter 4.3.3 (Pp. 294-295).
2582 static PyLongObject *
2583 k_mul(PyLongObject *a, PyLongObject *b)
2585 Py_ssize_t asize = ABS(Py_SIZE(a));
2586 Py_ssize_t bsize = ABS(Py_SIZE(b));
2587 PyLongObject *ah = NULL;
2588 PyLongObject *al = NULL;
2589 PyLongObject *bh = NULL;
2590 PyLongObject *bl = NULL;
2591 PyLongObject *ret = NULL;
2592 PyLongObject *t1, *t2, *t3;
2593 Py_ssize_t shift; /* the number of digits we split off */
2594 Py_ssize_t i;
2596 /* (ah*X+al)(bh*X+bl) = ah*bh*X*X + (ah*bl + al*bh)*X + al*bl
2597 * Let k = (ah+al)*(bh+bl) = ah*bl + al*bh + ah*bh + al*bl
2598 * Then the original product is
2599 * ah*bh*X*X + (k - ah*bh - al*bl)*X + al*bl
2600 * By picking X to be a power of 2, "*X" is just shifting, and it's
2601 * been reduced to 3 multiplies on numbers half the size.
2604 /* We want to split based on the larger number; fiddle so that b
2605 * is largest.
2607 if (asize > bsize) {
2608 t1 = a;
2609 a = b;
2610 b = t1;
2612 i = asize;
2613 asize = bsize;
2614 bsize = i;
2617 /* Use gradeschool math when either number is too small. */
2618 i = a == b ? KARATSUBA_SQUARE_CUTOFF : KARATSUBA_CUTOFF;
2619 if (asize <= i) {
2620 if (asize == 0)
2621 return _PyLong_New(0);
2622 else
2623 return x_mul(a, b);
2626 /* If a is small compared to b, splitting on b gives a degenerate
2627 * case with ah==0, and Karatsuba may be (even much) less efficient
2628 * than "grade school" then. However, we can still win, by viewing
2629 * b as a string of "big digits", each of width a->ob_size. That
2630 * leads to a sequence of balanced calls to k_mul.
2632 if (2 * asize <= bsize)
2633 return k_lopsided_mul(a, b);
2635 /* Split a & b into hi & lo pieces. */
2636 shift = bsize >> 1;
2637 if (kmul_split(a, shift, &ah, &al) < 0) goto fail;
2638 assert(Py_SIZE(ah) > 0); /* the split isn't degenerate */
2640 if (a == b) {
2641 bh = ah;
2642 bl = al;
2643 Py_INCREF(bh);
2644 Py_INCREF(bl);
2646 else if (kmul_split(b, shift, &bh, &bl) < 0) goto fail;
2648 /* The plan:
2649 * 1. Allocate result space (asize + bsize digits: that's always
2650 * enough).
2651 * 2. Compute ah*bh, and copy into result at 2*shift.
2652 * 3. Compute al*bl, and copy into result at 0. Note that this
2653 * can't overlap with #2.
2654 * 4. Subtract al*bl from the result, starting at shift. This may
2655 * underflow (borrow out of the high digit), but we don't care:
2656 * we're effectively doing unsigned arithmetic mod
2657 * PyLong_BASE**(sizea + sizeb), and so long as the *final* result fits,
2658 * borrows and carries out of the high digit can be ignored.
2659 * 5. Subtract ah*bh from the result, starting at shift.
2660 * 6. Compute (ah+al)*(bh+bl), and add it into the result starting
2661 * at shift.
2664 /* 1. Allocate result space. */
2665 ret = _PyLong_New(asize + bsize);
2666 if (ret == NULL) goto fail;
2667 #ifdef Py_DEBUG
2668 /* Fill with trash, to catch reference to uninitialized digits. */
2669 memset(ret->ob_digit, 0xDF, Py_SIZE(ret) * sizeof(digit));
2670 #endif
2672 /* 2. t1 <- ah*bh, and copy into high digits of result. */
2673 if ((t1 = k_mul(ah, bh)) == NULL) goto fail;
2674 assert(Py_SIZE(t1) >= 0);
2675 assert(2*shift + Py_SIZE(t1) <= Py_SIZE(ret));
2676 memcpy(ret->ob_digit + 2*shift, t1->ob_digit,
2677 Py_SIZE(t1) * sizeof(digit));
2679 /* Zero-out the digits higher than the ah*bh copy. */
2680 i = Py_SIZE(ret) - 2*shift - Py_SIZE(t1);
2681 if (i)
2682 memset(ret->ob_digit + 2*shift + Py_SIZE(t1), 0,
2683 i * sizeof(digit));
2685 /* 3. t2 <- al*bl, and copy into the low digits. */
2686 if ((t2 = k_mul(al, bl)) == NULL) {
2687 Py_DECREF(t1);
2688 goto fail;
2690 assert(Py_SIZE(t2) >= 0);
2691 assert(Py_SIZE(t2) <= 2*shift); /* no overlap with high digits */
2692 memcpy(ret->ob_digit, t2->ob_digit, Py_SIZE(t2) * sizeof(digit));
2694 /* Zero out remaining digits. */
2695 i = 2*shift - Py_SIZE(t2); /* number of uninitialized digits */
2696 if (i)
2697 memset(ret->ob_digit + Py_SIZE(t2), 0, i * sizeof(digit));
2699 /* 4 & 5. Subtract ah*bh (t1) and al*bl (t2). We do al*bl first
2700 * because it's fresher in cache.
2702 i = Py_SIZE(ret) - shift; /* # digits after shift */
2703 (void)v_isub(ret->ob_digit + shift, i, t2->ob_digit, Py_SIZE(t2));
2704 Py_DECREF(t2);
2706 (void)v_isub(ret->ob_digit + shift, i, t1->ob_digit, Py_SIZE(t1));
2707 Py_DECREF(t1);
2709 /* 6. t3 <- (ah+al)(bh+bl), and add into result. */
2710 if ((t1 = x_add(ah, al)) == NULL) goto fail;
2711 Py_DECREF(ah);
2712 Py_DECREF(al);
2713 ah = al = NULL;
2715 if (a == b) {
2716 t2 = t1;
2717 Py_INCREF(t2);
2719 else if ((t2 = x_add(bh, bl)) == NULL) {
2720 Py_DECREF(t1);
2721 goto fail;
2723 Py_DECREF(bh);
2724 Py_DECREF(bl);
2725 bh = bl = NULL;
2727 t3 = k_mul(t1, t2);
2728 Py_DECREF(t1);
2729 Py_DECREF(t2);
2730 if (t3 == NULL) goto fail;
2731 assert(Py_SIZE(t3) >= 0);
2733 /* Add t3. It's not obvious why we can't run out of room here.
2734 * See the (*) comment after this function.
2736 (void)v_iadd(ret->ob_digit + shift, i, t3->ob_digit, Py_SIZE(t3));
2737 Py_DECREF(t3);
2739 return long_normalize(ret);
2741 fail:
2742 Py_XDECREF(ret);
2743 Py_XDECREF(ah);
2744 Py_XDECREF(al);
2745 Py_XDECREF(bh);
2746 Py_XDECREF(bl);
2747 return NULL;
2750 /* (*) Why adding t3 can't "run out of room" above.
2752 Let f(x) mean the floor of x and c(x) mean the ceiling of x. Some facts
2753 to start with:
2755 1. For any integer i, i = c(i/2) + f(i/2). In particular,
2756 bsize = c(bsize/2) + f(bsize/2).
2757 2. shift = f(bsize/2)
2758 3. asize <= bsize
2759 4. Since we call k_lopsided_mul if asize*2 <= bsize, asize*2 > bsize in this
2760 routine, so asize > bsize/2 >= f(bsize/2) in this routine.
2762 We allocated asize + bsize result digits, and add t3 into them at an offset
2763 of shift. This leaves asize+bsize-shift allocated digit positions for t3
2764 to fit into, = (by #1 and #2) asize + f(bsize/2) + c(bsize/2) - f(bsize/2) =
2765 asize + c(bsize/2) available digit positions.
2767 bh has c(bsize/2) digits, and bl at most f(size/2) digits. So bh+hl has
2768 at most c(bsize/2) digits + 1 bit.
2770 If asize == bsize, ah has c(bsize/2) digits, else ah has at most f(bsize/2)
2771 digits, and al has at most f(bsize/2) digits in any case. So ah+al has at
2772 most (asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 1 bit.
2774 The product (ah+al)*(bh+bl) therefore has at most
2776 c(bsize/2) + (asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 2 bits
2778 and we have asize + c(bsize/2) available digit positions. We need to show
2779 this is always enough. An instance of c(bsize/2) cancels out in both, so
2780 the question reduces to whether asize digits is enough to hold
2781 (asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 2 bits. If asize < bsize,
2782 then we're asking whether asize digits >= f(bsize/2) digits + 2 bits. By #4,
2783 asize is at least f(bsize/2)+1 digits, so this in turn reduces to whether 1
2784 digit is enough to hold 2 bits. This is so since PyLong_SHIFT=15 >= 2. If
2785 asize == bsize, then we're asking whether bsize digits is enough to hold
2786 c(bsize/2) digits + 2 bits, or equivalently (by #1) whether f(bsize/2) digits
2787 is enough to hold 2 bits. This is so if bsize >= 2, which holds because
2788 bsize >= KARATSUBA_CUTOFF >= 2.
2790 Note that since there's always enough room for (ah+al)*(bh+bl), and that's
2791 clearly >= each of ah*bh and al*bl, there's always enough room to subtract
2792 ah*bh and al*bl too.
2795 /* b has at least twice the digits of a, and a is big enough that Karatsuba
2796 * would pay off *if* the inputs had balanced sizes. View b as a sequence
2797 * of slices, each with a->ob_size digits, and multiply the slices by a,
2798 * one at a time. This gives k_mul balanced inputs to work with, and is
2799 * also cache-friendly (we compute one double-width slice of the result
2800 * at a time, then move on, never bactracking except for the helpful
2801 * single-width slice overlap between successive partial sums).
2803 static PyLongObject *
2804 k_lopsided_mul(PyLongObject *a, PyLongObject *b)
2806 const Py_ssize_t asize = ABS(Py_SIZE(a));
2807 Py_ssize_t bsize = ABS(Py_SIZE(b));
2808 Py_ssize_t nbdone; /* # of b digits already multiplied */
2809 PyLongObject *ret;
2810 PyLongObject *bslice = NULL;
2812 assert(asize > KARATSUBA_CUTOFF);
2813 assert(2 * asize <= bsize);
2815 /* Allocate result space, and zero it out. */
2816 ret = _PyLong_New(asize + bsize);
2817 if (ret == NULL)
2818 return NULL;
2819 memset(ret->ob_digit, 0, Py_SIZE(ret) * sizeof(digit));
2821 /* Successive slices of b are copied into bslice. */
2822 bslice = _PyLong_New(asize);
2823 if (bslice == NULL)
2824 goto fail;
2826 nbdone = 0;
2827 while (bsize > 0) {
2828 PyLongObject *product;
2829 const Py_ssize_t nbtouse = MIN(bsize, asize);
2831 /* Multiply the next slice of b by a. */
2832 memcpy(bslice->ob_digit, b->ob_digit + nbdone,
2833 nbtouse * sizeof(digit));
2834 Py_SIZE(bslice) = nbtouse;
2835 product = k_mul(a, bslice);
2836 if (product == NULL)
2837 goto fail;
2839 /* Add into result. */
2840 (void)v_iadd(ret->ob_digit + nbdone, Py_SIZE(ret) - nbdone,
2841 product->ob_digit, Py_SIZE(product));
2842 Py_DECREF(product);
2844 bsize -= nbtouse;
2845 nbdone += nbtouse;
2848 Py_DECREF(bslice);
2849 return long_normalize(ret);
2851 fail:
2852 Py_DECREF(ret);
2853 Py_XDECREF(bslice);
2854 return NULL;
2857 static PyObject *
2858 long_mul(PyLongObject *v, PyLongObject *w)
2860 PyLongObject *a, *b, *z;
2862 if (!convert_binop((PyObject *)v, (PyObject *)w, &a, &b)) {
2863 Py_INCREF(Py_NotImplemented);
2864 return Py_NotImplemented;
2867 z = k_mul(a, b);
2868 /* Negate if exactly one of the inputs is negative. */
2869 if (((a->ob_size ^ b->ob_size) < 0) && z)
2870 z->ob_size = -(z->ob_size);
2871 Py_DECREF(a);
2872 Py_DECREF(b);
2873 return (PyObject *)z;
2876 /* The / and % operators are now defined in terms of divmod().
2877 The expression a mod b has the value a - b*floor(a/b).
2878 The long_divrem function gives the remainder after division of
2879 |a| by |b|, with the sign of a. This is also expressed
2880 as a - b*trunc(a/b), if trunc truncates towards zero.
2881 Some examples:
2882 a b a rem b a mod b
2883 13 10 3 3
2884 -13 10 -3 7
2885 13 -10 3 -7
2886 -13 -10 -3 -3
2887 So, to get from rem to mod, we have to add b if a and b
2888 have different signs. We then subtract one from the 'div'
2889 part of the outcome to keep the invariant intact. */
2891 /* Compute
2892 * *pdiv, *pmod = divmod(v, w)
2893 * NULL can be passed for pdiv or pmod, in which case that part of
2894 * the result is simply thrown away. The caller owns a reference to
2895 * each of these it requests (does not pass NULL for).
2897 static int
2898 l_divmod(PyLongObject *v, PyLongObject *w,
2899 PyLongObject **pdiv, PyLongObject **pmod)
2901 PyLongObject *div, *mod;
2903 if (long_divrem(v, w, &div, &mod) < 0)
2904 return -1;
2905 if ((Py_SIZE(mod) < 0 && Py_SIZE(w) > 0) ||
2906 (Py_SIZE(mod) > 0 && Py_SIZE(w) < 0)) {
2907 PyLongObject *temp;
2908 PyLongObject *one;
2909 temp = (PyLongObject *) long_add(mod, w);
2910 Py_DECREF(mod);
2911 mod = temp;
2912 if (mod == NULL) {
2913 Py_DECREF(div);
2914 return -1;
2916 one = (PyLongObject *) PyLong_FromLong(1L);
2917 if (one == NULL ||
2918 (temp = (PyLongObject *) long_sub(div, one)) == NULL) {
2919 Py_DECREF(mod);
2920 Py_DECREF(div);
2921 Py_XDECREF(one);
2922 return -1;
2924 Py_DECREF(one);
2925 Py_DECREF(div);
2926 div = temp;
2928 if (pdiv != NULL)
2929 *pdiv = div;
2930 else
2931 Py_DECREF(div);
2933 if (pmod != NULL)
2934 *pmod = mod;
2935 else
2936 Py_DECREF(mod);
2938 return 0;
2941 static PyObject *
2942 long_div(PyObject *v, PyObject *w)
2944 PyLongObject *a, *b, *div;
2946 CONVERT_BINOP(v, w, &a, &b);
2947 if (l_divmod(a, b, &div, NULL) < 0)
2948 div = NULL;
2949 Py_DECREF(a);
2950 Py_DECREF(b);
2951 return (PyObject *)div;
2954 static PyObject *
2955 long_classic_div(PyObject *v, PyObject *w)
2957 PyLongObject *a, *b, *div;
2959 CONVERT_BINOP(v, w, &a, &b);
2960 if (Py_DivisionWarningFlag &&
2961 PyErr_Warn(PyExc_DeprecationWarning, "classic long division") < 0)
2962 div = NULL;
2963 else if (l_divmod(a, b, &div, NULL) < 0)
2964 div = NULL;
2965 Py_DECREF(a);
2966 Py_DECREF(b);
2967 return (PyObject *)div;
2970 static PyObject *
2971 long_true_divide(PyObject *v, PyObject *w)
2973 PyLongObject *a, *b;
2974 double ad, bd;
2975 int failed, aexp = -1, bexp = -1;
2977 CONVERT_BINOP(v, w, &a, &b);
2978 ad = _PyLong_AsScaledDouble((PyObject *)a, &aexp);
2979 bd = _PyLong_AsScaledDouble((PyObject *)b, &bexp);
2980 failed = (ad == -1.0 || bd == -1.0) && PyErr_Occurred();
2981 Py_DECREF(a);
2982 Py_DECREF(b);
2983 if (failed)
2984 return NULL;
2985 /* 'aexp' and 'bexp' were initialized to -1 to silence gcc-4.0.x,
2986 but should really be set correctly after sucessful calls to
2987 _PyLong_AsScaledDouble() */
2988 assert(aexp >= 0 && bexp >= 0);
2990 if (bd == 0.0) {
2991 PyErr_SetString(PyExc_ZeroDivisionError,
2992 "long division or modulo by zero");
2993 return NULL;
2996 /* True value is very close to ad/bd * 2**(PyLong_SHIFT*(aexp-bexp)) */
2997 ad /= bd; /* overflow/underflow impossible here */
2998 aexp -= bexp;
2999 if (aexp > INT_MAX / PyLong_SHIFT)
3000 goto overflow;
3001 else if (aexp < -(INT_MAX / PyLong_SHIFT))
3002 return PyFloat_FromDouble(0.0); /* underflow to 0 */
3003 errno = 0;
3004 ad = ldexp(ad, aexp * PyLong_SHIFT);
3005 if (Py_OVERFLOWED(ad)) /* ignore underflow to 0.0 */
3006 goto overflow;
3007 return PyFloat_FromDouble(ad);
3009 overflow:
3010 PyErr_SetString(PyExc_OverflowError,
3011 "long/long too large for a float");
3012 return NULL;
3016 static PyObject *
3017 long_mod(PyObject *v, PyObject *w)
3019 PyLongObject *a, *b, *mod;
3021 CONVERT_BINOP(v, w, &a, &b);
3023 if (l_divmod(a, b, NULL, &mod) < 0)
3024 mod = NULL;
3025 Py_DECREF(a);
3026 Py_DECREF(b);
3027 return (PyObject *)mod;
3030 static PyObject *
3031 long_divmod(PyObject *v, PyObject *w)
3033 PyLongObject *a, *b, *div, *mod;
3034 PyObject *z;
3036 CONVERT_BINOP(v, w, &a, &b);
3038 if (l_divmod(a, b, &div, &mod) < 0) {
3039 Py_DECREF(a);
3040 Py_DECREF(b);
3041 return NULL;
3043 z = PyTuple_New(2);
3044 if (z != NULL) {
3045 PyTuple_SetItem(z, 0, (PyObject *) div);
3046 PyTuple_SetItem(z, 1, (PyObject *) mod);
3048 else {
3049 Py_DECREF(div);
3050 Py_DECREF(mod);
3052 Py_DECREF(a);
3053 Py_DECREF(b);
3054 return z;
3057 /* pow(v, w, x) */
3058 static PyObject *
3059 long_pow(PyObject *v, PyObject *w, PyObject *x)
3061 PyLongObject *a, *b, *c; /* a,b,c = v,w,x */
3062 int negativeOutput = 0; /* if x<0 return negative output */
3064 PyLongObject *z = NULL; /* accumulated result */
3065 Py_ssize_t i, j, k; /* counters */
3066 PyLongObject *temp = NULL;
3068 /* 5-ary values. If the exponent is large enough, table is
3069 * precomputed so that table[i] == a**i % c for i in range(32).
3071 PyLongObject *table[32] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
3072 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
3074 /* a, b, c = v, w, x */
3075 CONVERT_BINOP(v, w, &a, &b);
3076 if (PyLong_Check(x)) {
3077 c = (PyLongObject *)x;
3078 Py_INCREF(x);
3080 else if (PyInt_Check(x)) {
3081 c = (PyLongObject *)PyLong_FromLong(PyInt_AS_LONG(x));
3082 if (c == NULL)
3083 goto Error;
3085 else if (x == Py_None)
3086 c = NULL;
3087 else {
3088 Py_DECREF(a);
3089 Py_DECREF(b);
3090 Py_INCREF(Py_NotImplemented);
3091 return Py_NotImplemented;
3094 if (Py_SIZE(b) < 0) { /* if exponent is negative */
3095 if (c) {
3096 PyErr_SetString(PyExc_TypeError, "pow() 2nd argument "
3097 "cannot be negative when 3rd argument specified");
3098 goto Error;
3100 else {
3101 /* else return a float. This works because we know
3102 that this calls float_pow() which converts its
3103 arguments to double. */
3104 Py_DECREF(a);
3105 Py_DECREF(b);
3106 return PyFloat_Type.tp_as_number->nb_power(v, w, x);
3110 if (c) {
3111 /* if modulus == 0:
3112 raise ValueError() */
3113 if (Py_SIZE(c) == 0) {
3114 PyErr_SetString(PyExc_ValueError,
3115 "pow() 3rd argument cannot be 0");
3116 goto Error;
3119 /* if modulus < 0:
3120 negativeOutput = True
3121 modulus = -modulus */
3122 if (Py_SIZE(c) < 0) {
3123 negativeOutput = 1;
3124 temp = (PyLongObject *)_PyLong_Copy(c);
3125 if (temp == NULL)
3126 goto Error;
3127 Py_DECREF(c);
3128 c = temp;
3129 temp = NULL;
3130 c->ob_size = - c->ob_size;
3133 /* if modulus == 1:
3134 return 0 */
3135 if ((Py_SIZE(c) == 1) && (c->ob_digit[0] == 1)) {
3136 z = (PyLongObject *)PyLong_FromLong(0L);
3137 goto Done;
3140 /* if base < 0:
3141 base = base % modulus
3142 Having the base positive just makes things easier. */
3143 if (Py_SIZE(a) < 0) {
3144 if (l_divmod(a, c, NULL, &temp) < 0)
3145 goto Error;
3146 Py_DECREF(a);
3147 a = temp;
3148 temp = NULL;
3152 /* At this point a, b, and c are guaranteed non-negative UNLESS
3153 c is NULL, in which case a may be negative. */
3155 z = (PyLongObject *)PyLong_FromLong(1L);
3156 if (z == NULL)
3157 goto Error;
3159 /* Perform a modular reduction, X = X % c, but leave X alone if c
3160 * is NULL.
3162 #define REDUCE(X) \
3163 if (c != NULL) { \
3164 if (l_divmod(X, c, NULL, &temp) < 0) \
3165 goto Error; \
3166 Py_XDECREF(X); \
3167 X = temp; \
3168 temp = NULL; \
3171 /* Multiply two values, then reduce the result:
3172 result = X*Y % c. If c is NULL, skip the mod. */
3173 #define MULT(X, Y, result) \
3175 temp = (PyLongObject *)long_mul(X, Y); \
3176 if (temp == NULL) \
3177 goto Error; \
3178 Py_XDECREF(result); \
3179 result = temp; \
3180 temp = NULL; \
3181 REDUCE(result) \
3184 if (Py_SIZE(b) <= FIVEARY_CUTOFF) {
3185 /* Left-to-right binary exponentiation (HAC Algorithm 14.79) */
3186 /* http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf */
3187 for (i = Py_SIZE(b) - 1; i >= 0; --i) {
3188 digit bi = b->ob_digit[i];
3190 for (j = (digit)1 << (PyLong_SHIFT-1); j != 0; j >>= 1) {
3191 MULT(z, z, z)
3192 if (bi & j)
3193 MULT(z, a, z)
3197 else {
3198 /* Left-to-right 5-ary exponentiation (HAC Algorithm 14.82) */
3199 Py_INCREF(z); /* still holds 1L */
3200 table[0] = z;
3201 for (i = 1; i < 32; ++i)
3202 MULT(table[i-1], a, table[i])
3204 for (i = Py_SIZE(b) - 1; i >= 0; --i) {
3205 const digit bi = b->ob_digit[i];
3207 for (j = PyLong_SHIFT - 5; j >= 0; j -= 5) {
3208 const int index = (bi >> j) & 0x1f;
3209 for (k = 0; k < 5; ++k)
3210 MULT(z, z, z)
3211 if (index)
3212 MULT(z, table[index], z)
3217 if (negativeOutput && (Py_SIZE(z) != 0)) {
3218 temp = (PyLongObject *)long_sub(z, c);
3219 if (temp == NULL)
3220 goto Error;
3221 Py_DECREF(z);
3222 z = temp;
3223 temp = NULL;
3225 goto Done;
3227 Error:
3228 if (z != NULL) {
3229 Py_DECREF(z);
3230 z = NULL;
3232 /* fall through */
3233 Done:
3234 if (Py_SIZE(b) > FIVEARY_CUTOFF) {
3235 for (i = 0; i < 32; ++i)
3236 Py_XDECREF(table[i]);
3238 Py_DECREF(a);
3239 Py_DECREF(b);
3240 Py_XDECREF(c);
3241 Py_XDECREF(temp);
3242 return (PyObject *)z;
3245 static PyObject *
3246 long_invert(PyLongObject *v)
3248 /* Implement ~x as -(x+1) */
3249 PyLongObject *x;
3250 PyLongObject *w;
3251 w = (PyLongObject *)PyLong_FromLong(1L);
3252 if (w == NULL)
3253 return NULL;
3254 x = (PyLongObject *) long_add(v, w);
3255 Py_DECREF(w);
3256 if (x == NULL)
3257 return NULL;
3258 Py_SIZE(x) = -(Py_SIZE(x));
3259 return (PyObject *)x;
3262 static PyObject *
3263 long_neg(PyLongObject *v)
3265 PyLongObject *z;
3266 if (v->ob_size == 0 && PyLong_CheckExact(v)) {
3267 /* -0 == 0 */
3268 Py_INCREF(v);
3269 return (PyObject *) v;
3271 z = (PyLongObject *)_PyLong_Copy(v);
3272 if (z != NULL)
3273 z->ob_size = -(v->ob_size);
3274 return (PyObject *)z;
3277 static PyObject *
3278 long_abs(PyLongObject *v)
3280 if (v->ob_size < 0)
3281 return long_neg(v);
3282 else
3283 return long_long((PyObject *)v);
3286 static int
3287 long_nonzero(PyLongObject *v)
3289 return ABS(Py_SIZE(v)) != 0;
3292 static PyObject *
3293 long_rshift(PyLongObject *v, PyLongObject *w)
3295 PyLongObject *a, *b;
3296 PyLongObject *z = NULL;
3297 long shiftby;
3298 Py_ssize_t newsize, wordshift, loshift, hishift, i, j;
3299 digit lomask, himask;
3301 CONVERT_BINOP((PyObject *)v, (PyObject *)w, &a, &b);
3303 if (Py_SIZE(a) < 0) {
3304 /* Right shifting negative numbers is harder */
3305 PyLongObject *a1, *a2;
3306 a1 = (PyLongObject *) long_invert(a);
3307 if (a1 == NULL)
3308 goto rshift_error;
3309 a2 = (PyLongObject *) long_rshift(a1, b);
3310 Py_DECREF(a1);
3311 if (a2 == NULL)
3312 goto rshift_error;
3313 z = (PyLongObject *) long_invert(a2);
3314 Py_DECREF(a2);
3316 else {
3318 shiftby = PyLong_AsLong((PyObject *)b);
3319 if (shiftby == -1L && PyErr_Occurred())
3320 goto rshift_error;
3321 if (shiftby < 0) {
3322 PyErr_SetString(PyExc_ValueError,
3323 "negative shift count");
3324 goto rshift_error;
3326 wordshift = shiftby / PyLong_SHIFT;
3327 newsize = ABS(Py_SIZE(a)) - wordshift;
3328 if (newsize <= 0) {
3329 z = _PyLong_New(0);
3330 Py_DECREF(a);
3331 Py_DECREF(b);
3332 return (PyObject *)z;
3334 loshift = shiftby % PyLong_SHIFT;
3335 hishift = PyLong_SHIFT - loshift;
3336 lomask = ((digit)1 << hishift) - 1;
3337 himask = PyLong_MASK ^ lomask;
3338 z = _PyLong_New(newsize);
3339 if (z == NULL)
3340 goto rshift_error;
3341 if (Py_SIZE(a) < 0)
3342 Py_SIZE(z) = -(Py_SIZE(z));
3343 for (i = 0, j = wordshift; i < newsize; i++, j++) {
3344 z->ob_digit[i] = (a->ob_digit[j] >> loshift) & lomask;
3345 if (i+1 < newsize)
3346 z->ob_digit[i] |=
3347 (a->ob_digit[j+1] << hishift) & himask;
3349 z = long_normalize(z);
3351 rshift_error:
3352 Py_DECREF(a);
3353 Py_DECREF(b);
3354 return (PyObject *) z;
3358 static PyObject *
3359 long_lshift(PyObject *v, PyObject *w)
3361 /* This version due to Tim Peters */
3362 PyLongObject *a, *b;
3363 PyLongObject *z = NULL;
3364 long shiftby;
3365 Py_ssize_t oldsize, newsize, wordshift, remshift, i, j;
3366 twodigits accum;
3368 CONVERT_BINOP(v, w, &a, &b);
3370 shiftby = PyLong_AsLong((PyObject *)b);
3371 if (shiftby == -1L && PyErr_Occurred())
3372 goto lshift_error;
3373 if (shiftby < 0) {
3374 PyErr_SetString(PyExc_ValueError, "negative shift count");
3375 goto lshift_error;
3377 if ((long)(int)shiftby != shiftby) {
3378 PyErr_SetString(PyExc_ValueError,
3379 "outrageous left shift count");
3380 goto lshift_error;
3382 /* wordshift, remshift = divmod(shiftby, PyLong_SHIFT) */
3383 wordshift = (int)shiftby / PyLong_SHIFT;
3384 remshift = (int)shiftby - wordshift * PyLong_SHIFT;
3386 oldsize = ABS(a->ob_size);
3387 newsize = oldsize + wordshift;
3388 if (remshift)
3389 ++newsize;
3390 z = _PyLong_New(newsize);
3391 if (z == NULL)
3392 goto lshift_error;
3393 if (a->ob_size < 0)
3394 z->ob_size = -(z->ob_size);
3395 for (i = 0; i < wordshift; i++)
3396 z->ob_digit[i] = 0;
3397 accum = 0;
3398 for (i = wordshift, j = 0; j < oldsize; i++, j++) {
3399 accum |= (twodigits)a->ob_digit[j] << remshift;
3400 z->ob_digit[i] = (digit)(accum & PyLong_MASK);
3401 accum >>= PyLong_SHIFT;
3403 if (remshift)
3404 z->ob_digit[newsize-1] = (digit)accum;
3405 else
3406 assert(!accum);
3407 z = long_normalize(z);
3408 lshift_error:
3409 Py_DECREF(a);
3410 Py_DECREF(b);
3411 return (PyObject *) z;
3414 /* Compute two's complement of digit vector a[0:m], writing result to
3415 z[0:m]. The digit vector a need not be normalized, but should not
3416 be entirely zero. a and z may point to the same digit vector. */
3418 static void
3419 v_complement(digit *z, digit *a, Py_ssize_t m)
3421 Py_ssize_t i;
3422 digit carry = 1;
3423 for (i = 0; i < m; ++i) {
3424 carry += a[i] ^ PyLong_MASK;
3425 z[i] = carry & PyLong_MASK;
3426 carry >>= PyLong_SHIFT;
3428 assert(carry == 0);
3431 /* Bitwise and/xor/or operations */
3433 static PyObject *
3434 long_bitwise(PyLongObject *a,
3435 int op, /* '&', '|', '^' */
3436 PyLongObject *b)
3438 int nega, negb, negz;
3439 Py_ssize_t size_a, size_b, size_z, i;
3440 PyLongObject *z;
3442 /* Bitwise operations for negative numbers operate as though
3443 on a two's complement representation. So convert arguments
3444 from sign-magnitude to two's complement, and convert the
3445 result back to sign-magnitude at the end. */
3447 /* If a is negative, replace it by its two's complement. */
3448 size_a = ABS(Py_SIZE(a));
3449 nega = Py_SIZE(a) < 0;
3450 if (nega) {
3451 z = _PyLong_New(size_a);
3452 if (z == NULL)
3453 return NULL;
3454 v_complement(z->ob_digit, a->ob_digit, size_a);
3455 a = z;
3457 else
3458 /* Keep reference count consistent. */
3459 Py_INCREF(a);
3461 /* Same for b. */
3462 size_b = ABS(Py_SIZE(b));
3463 negb = Py_SIZE(b) < 0;
3464 if (negb) {
3465 z = _PyLong_New(size_b);
3466 if (z == NULL) {
3467 Py_DECREF(a);
3468 return NULL;
3470 v_complement(z->ob_digit, b->ob_digit, size_b);
3471 b = z;
3473 else
3474 Py_INCREF(b);
3476 /* Swap a and b if necessary to ensure size_a >= size_b. */
3477 if (size_a < size_b) {
3478 z = a; a = b; b = z;
3479 size_z = size_a; size_a = size_b; size_b = size_z;
3480 negz = nega; nega = negb; negb = negz;
3483 /* JRH: The original logic here was to allocate the result value (z)
3484 as the longer of the two operands. However, there are some cases
3485 where the result is guaranteed to be shorter than that: AND of two
3486 positives, OR of two negatives: use the shorter number. AND with
3487 mixed signs: use the positive number. OR with mixed signs: use the
3488 negative number.
3490 switch (op) {
3491 case '^':
3492 negz = nega ^ negb;
3493 size_z = size_a;
3494 break;
3495 case '&':
3496 negz = nega & negb;
3497 size_z = negb ? size_a : size_b;
3498 break;
3499 case '|':
3500 negz = nega | negb;
3501 size_z = negb ? size_b : size_a;
3502 break;
3503 default:
3504 PyErr_BadArgument();
3505 return NULL;
3508 /* We allow an extra digit if z is negative, to make sure that
3509 the final two's complement of z doesn't overflow. */
3510 z = _PyLong_New(size_z + negz);
3511 if (z == NULL) {
3512 Py_DECREF(a);
3513 Py_DECREF(b);
3514 return NULL;
3517 /* Compute digits for overlap of a and b. */
3518 switch(op) {
3519 case '&':
3520 for (i = 0; i < size_b; ++i)
3521 z->ob_digit[i] = a->ob_digit[i] & b->ob_digit[i];
3522 break;
3523 case '|':
3524 for (i = 0; i < size_b; ++i)
3525 z->ob_digit[i] = a->ob_digit[i] | b->ob_digit[i];
3526 break;
3527 case '^':
3528 for (i = 0; i < size_b; ++i)
3529 z->ob_digit[i] = a->ob_digit[i] ^ b->ob_digit[i];
3530 break;
3531 default:
3532 PyErr_BadArgument();
3533 return NULL;
3536 /* Copy any remaining digits of a, inverting if necessary. */
3537 if (op == '^' && negb)
3538 for (; i < size_z; ++i)
3539 z->ob_digit[i] = a->ob_digit[i] ^ PyLong_MASK;
3540 else if (i < size_z)
3541 memcpy(&z->ob_digit[i], &a->ob_digit[i],
3542 (size_z-i)*sizeof(digit));
3544 /* Complement result if negative. */
3545 if (negz) {
3546 Py_SIZE(z) = -(Py_SIZE(z));
3547 z->ob_digit[size_z] = PyLong_MASK;
3548 v_complement(z->ob_digit, z->ob_digit, size_z+1);
3551 Py_DECREF(a);
3552 Py_DECREF(b);
3553 return (PyObject *)long_normalize(z);
3556 static PyObject *
3557 long_and(PyObject *v, PyObject *w)
3559 PyLongObject *a, *b;
3560 PyObject *c;
3561 CONVERT_BINOP(v, w, &a, &b);
3562 c = long_bitwise(a, '&', b);
3563 Py_DECREF(a);
3564 Py_DECREF(b);
3565 return c;
3568 static PyObject *
3569 long_xor(PyObject *v, PyObject *w)
3571 PyLongObject *a, *b;
3572 PyObject *c;
3573 CONVERT_BINOP(v, w, &a, &b);
3574 c = long_bitwise(a, '^', b);
3575 Py_DECREF(a);
3576 Py_DECREF(b);
3577 return c;
3580 static PyObject *
3581 long_or(PyObject *v, PyObject *w)
3583 PyLongObject *a, *b;
3584 PyObject *c;
3585 CONVERT_BINOP(v, w, &a, &b);
3586 c = long_bitwise(a, '|', b);
3587 Py_DECREF(a);
3588 Py_DECREF(b);
3589 return c;
3592 static int
3593 long_coerce(PyObject **pv, PyObject **pw)
3595 if (PyInt_Check(*pw)) {
3596 *pw = PyLong_FromLong(PyInt_AS_LONG(*pw));
3597 if (*pw == NULL)
3598 return -1;
3599 Py_INCREF(*pv);
3600 return 0;
3602 else if (PyLong_Check(*pw)) {
3603 Py_INCREF(*pv);
3604 Py_INCREF(*pw);
3605 return 0;
3607 return 1; /* Can't do it */
3610 static PyObject *
3611 long_long(PyObject *v)
3613 if (PyLong_CheckExact(v))
3614 Py_INCREF(v);
3615 else
3616 v = _PyLong_Copy((PyLongObject *)v);
3617 return v;
3620 static PyObject *
3621 long_int(PyObject *v)
3623 long x;
3624 x = PyLong_AsLong(v);
3625 if (PyErr_Occurred()) {
3626 if (PyErr_ExceptionMatches(PyExc_OverflowError)) {
3627 PyErr_Clear();
3628 if (PyLong_CheckExact(v)) {
3629 Py_INCREF(v);
3630 return v;
3632 else
3633 return _PyLong_Copy((PyLongObject *)v);
3635 else
3636 return NULL;
3638 return PyInt_FromLong(x);
3641 static PyObject *
3642 long_float(PyObject *v)
3644 double result;
3645 result = PyLong_AsDouble(v);
3646 if (result == -1.0 && PyErr_Occurred())
3647 return NULL;
3648 return PyFloat_FromDouble(result);
3651 static PyObject *
3652 long_oct(PyObject *v)
3654 return _PyLong_Format(v, 8, 1, 0);
3657 static PyObject *
3658 long_hex(PyObject *v)
3660 return _PyLong_Format(v, 16, 1, 0);
3663 static PyObject *
3664 long_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds);
3666 static PyObject *
3667 long_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
3669 PyObject *x = NULL;
3670 int base = -909; /* unlikely! */
3671 static char *kwlist[] = {"x", "base", 0};
3673 if (type != &PyLong_Type)
3674 return long_subtype_new(type, args, kwds); /* Wimp out */
3675 if (!PyArg_ParseTupleAndKeywords(args, kwds, "|Oi:long", kwlist,
3676 &x, &base))
3677 return NULL;
3678 if (x == NULL)
3679 return PyLong_FromLong(0L);
3680 if (base == -909)
3681 return PyNumber_Long(x);
3682 else if (PyString_Check(x)) {
3683 /* Since PyLong_FromString doesn't have a length parameter,
3684 * check here for possible NULs in the string. */
3685 char *string = PyString_AS_STRING(x);
3686 if (strlen(string) != (size_t)PyString_Size(x)) {
3687 /* create a repr() of the input string,
3688 * just like PyLong_FromString does. */
3689 PyObject *srepr;
3690 srepr = PyObject_Repr(x);
3691 if (srepr == NULL)
3692 return NULL;
3693 PyErr_Format(PyExc_ValueError,
3694 "invalid literal for long() with base %d: %s",
3695 base, PyString_AS_STRING(srepr));
3696 Py_DECREF(srepr);
3697 return NULL;
3699 return PyLong_FromString(PyString_AS_STRING(x), NULL, base);
3701 #ifdef Py_USING_UNICODE
3702 else if (PyUnicode_Check(x))
3703 return PyLong_FromUnicode(PyUnicode_AS_UNICODE(x),
3704 PyUnicode_GET_SIZE(x),
3705 base);
3706 #endif
3707 else {
3708 PyErr_SetString(PyExc_TypeError,
3709 "long() can't convert non-string with explicit base");
3710 return NULL;
3714 /* Wimpy, slow approach to tp_new calls for subtypes of long:
3715 first create a regular long from whatever arguments we got,
3716 then allocate a subtype instance and initialize it from
3717 the regular long. The regular long is then thrown away.
3719 static PyObject *
3720 long_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
3722 PyLongObject *tmp, *newobj;
3723 Py_ssize_t i, n;
3725 assert(PyType_IsSubtype(type, &PyLong_Type));
3726 tmp = (PyLongObject *)long_new(&PyLong_Type, args, kwds);
3727 if (tmp == NULL)
3728 return NULL;
3729 assert(PyLong_CheckExact(tmp));
3730 n = Py_SIZE(tmp);
3731 if (n < 0)
3732 n = -n;
3733 newobj = (PyLongObject *)type->tp_alloc(type, n);
3734 if (newobj == NULL) {
3735 Py_DECREF(tmp);
3736 return NULL;
3738 assert(PyLong_Check(newobj));
3739 Py_SIZE(newobj) = Py_SIZE(tmp);
3740 for (i = 0; i < n; i++)
3741 newobj->ob_digit[i] = tmp->ob_digit[i];
3742 Py_DECREF(tmp);
3743 return (PyObject *)newobj;
3746 static PyObject *
3747 long_getnewargs(PyLongObject *v)
3749 return Py_BuildValue("(N)", _PyLong_Copy(v));
3752 static PyObject *
3753 long_get0(PyLongObject *v, void *context) {
3754 return PyLong_FromLong(0L);
3757 static PyObject *
3758 long_get1(PyLongObject *v, void *context) {
3759 return PyLong_FromLong(1L);
3762 static PyObject *
3763 long__format__(PyObject *self, PyObject *args)
3765 PyObject *format_spec;
3767 if (!PyArg_ParseTuple(args, "O:__format__", &format_spec))
3768 return NULL;
3769 if (PyBytes_Check(format_spec))
3770 return _PyLong_FormatAdvanced(self,
3771 PyBytes_AS_STRING(format_spec),
3772 PyBytes_GET_SIZE(format_spec));
3773 if (PyUnicode_Check(format_spec)) {
3774 /* Convert format_spec to a str */
3775 PyObject *result;
3776 PyObject *str_spec = PyObject_Str(format_spec);
3778 if (str_spec == NULL)
3779 return NULL;
3781 result = _PyLong_FormatAdvanced(self,
3782 PyBytes_AS_STRING(str_spec),
3783 PyBytes_GET_SIZE(str_spec));
3785 Py_DECREF(str_spec);
3786 return result;
3788 PyErr_SetString(PyExc_TypeError, "__format__ requires str or unicode");
3789 return NULL;
3792 static PyObject *
3793 long_sizeof(PyLongObject *v)
3795 Py_ssize_t res;
3797 res = v->ob_type->tp_basicsize + ABS(Py_SIZE(v))*sizeof(digit);
3798 return PyInt_FromSsize_t(res);
3801 static PyObject *
3802 long_bit_length(PyLongObject *v)
3804 PyLongObject *result, *x, *y;
3805 Py_ssize_t ndigits, msd_bits = 0;
3806 digit msd;
3808 assert(v != NULL);
3809 assert(PyLong_Check(v));
3811 ndigits = ABS(Py_SIZE(v));
3812 if (ndigits == 0)
3813 return PyInt_FromLong(0);
3815 msd = v->ob_digit[ndigits-1];
3816 while (msd >= 32) {
3817 msd_bits += 6;
3818 msd >>= 6;
3820 msd_bits += (long)(BitLengthTable[msd]);
3822 if (ndigits <= PY_SSIZE_T_MAX/PyLong_SHIFT)
3823 return PyInt_FromSsize_t((ndigits-1)*PyLong_SHIFT + msd_bits);
3825 /* expression above may overflow; use Python integers instead */
3826 result = (PyLongObject *)PyLong_FromSsize_t(ndigits - 1);
3827 if (result == NULL)
3828 return NULL;
3829 x = (PyLongObject *)PyLong_FromLong(PyLong_SHIFT);
3830 if (x == NULL)
3831 goto error;
3832 y = (PyLongObject *)long_mul(result, x);
3833 Py_DECREF(x);
3834 if (y == NULL)
3835 goto error;
3836 Py_DECREF(result);
3837 result = y;
3839 x = (PyLongObject *)PyLong_FromLong(msd_bits);
3840 if (x == NULL)
3841 goto error;
3842 y = (PyLongObject *)long_add(result, x);
3843 Py_DECREF(x);
3844 if (y == NULL)
3845 goto error;
3846 Py_DECREF(result);
3847 result = y;
3849 return (PyObject *)result;
3851 error:
3852 Py_DECREF(result);
3853 return NULL;
3856 PyDoc_STRVAR(long_bit_length_doc,
3857 "long.bit_length() -> int or long\n\
3859 Number of bits necessary to represent self in binary.\n\
3860 >>> bin(37L)\n\
3861 '0b100101'\n\
3862 >>> (37L).bit_length()\n\
3863 6");
3865 #if 0
3866 static PyObject *
3867 long_is_finite(PyObject *v)
3869 Py_RETURN_TRUE;
3871 #endif
3873 static PyMethodDef long_methods[] = {
3874 {"conjugate", (PyCFunction)long_long, METH_NOARGS,
3875 "Returns self, the complex conjugate of any long."},
3876 {"bit_length", (PyCFunction)long_bit_length, METH_NOARGS,
3877 long_bit_length_doc},
3878 #if 0
3879 {"is_finite", (PyCFunction)long_is_finite, METH_NOARGS,
3880 "Returns always True."},
3881 #endif
3882 {"__trunc__", (PyCFunction)long_long, METH_NOARGS,
3883 "Truncating an Integral returns itself."},
3884 {"__getnewargs__", (PyCFunction)long_getnewargs, METH_NOARGS},
3885 {"__format__", (PyCFunction)long__format__, METH_VARARGS},
3886 {"__sizeof__", (PyCFunction)long_sizeof, METH_NOARGS,
3887 "Returns size in memory, in bytes"},
3888 {NULL, NULL} /* sentinel */
3891 static PyGetSetDef long_getset[] = {
3892 {"real",
3893 (getter)long_long, (setter)NULL,
3894 "the real part of a complex number",
3895 NULL},
3896 {"imag",
3897 (getter)long_get0, (setter)NULL,
3898 "the imaginary part of a complex number",
3899 NULL},
3900 {"numerator",
3901 (getter)long_long, (setter)NULL,
3902 "the numerator of a rational number in lowest terms",
3903 NULL},
3904 {"denominator",
3905 (getter)long_get1, (setter)NULL,
3906 "the denominator of a rational number in lowest terms",
3907 NULL},
3908 {NULL} /* Sentinel */
3911 PyDoc_STRVAR(long_doc,
3912 "long(x[, base]) -> integer\n\
3914 Convert a string or number to a long integer, if possible. A floating\n\
3915 point argument will be truncated towards zero (this does not include a\n\
3916 string representation of a floating point number!) When converting a\n\
3917 string, use the optional base. It is an error to supply a base when\n\
3918 converting a non-string.");
3920 static PyNumberMethods long_as_number = {
3921 (binaryfunc) long_add, /*nb_add*/
3922 (binaryfunc) long_sub, /*nb_subtract*/
3923 (binaryfunc) long_mul, /*nb_multiply*/
3924 long_classic_div, /*nb_divide*/
3925 long_mod, /*nb_remainder*/
3926 long_divmod, /*nb_divmod*/
3927 long_pow, /*nb_power*/
3928 (unaryfunc) long_neg, /*nb_negative*/
3929 (unaryfunc) long_long, /*tp_positive*/
3930 (unaryfunc) long_abs, /*tp_absolute*/
3931 (inquiry) long_nonzero, /*tp_nonzero*/
3932 (unaryfunc) long_invert, /*nb_invert*/
3933 long_lshift, /*nb_lshift*/
3934 (binaryfunc) long_rshift, /*nb_rshift*/
3935 long_and, /*nb_and*/
3936 long_xor, /*nb_xor*/
3937 long_or, /*nb_or*/
3938 long_coerce, /*nb_coerce*/
3939 long_int, /*nb_int*/
3940 long_long, /*nb_long*/
3941 long_float, /*nb_float*/
3942 long_oct, /*nb_oct*/
3943 long_hex, /*nb_hex*/
3944 0, /* nb_inplace_add */
3945 0, /* nb_inplace_subtract */
3946 0, /* nb_inplace_multiply */
3947 0, /* nb_inplace_divide */
3948 0, /* nb_inplace_remainder */
3949 0, /* nb_inplace_power */
3950 0, /* nb_inplace_lshift */
3951 0, /* nb_inplace_rshift */
3952 0, /* nb_inplace_and */
3953 0, /* nb_inplace_xor */
3954 0, /* nb_inplace_or */
3955 long_div, /* nb_floor_divide */
3956 long_true_divide, /* nb_true_divide */
3957 0, /* nb_inplace_floor_divide */
3958 0, /* nb_inplace_true_divide */
3959 long_long, /* nb_index */
3962 PyTypeObject PyLong_Type = {
3963 PyObject_HEAD_INIT(&PyType_Type)
3964 0, /* ob_size */
3965 "long", /* tp_name */
3966 offsetof(PyLongObject, ob_digit), /* tp_basicsize */
3967 sizeof(digit), /* tp_itemsize */
3968 long_dealloc, /* tp_dealloc */
3969 0, /* tp_print */
3970 0, /* tp_getattr */
3971 0, /* tp_setattr */
3972 (cmpfunc)long_compare, /* tp_compare */
3973 long_repr, /* tp_repr */
3974 &long_as_number, /* tp_as_number */
3975 0, /* tp_as_sequence */
3976 0, /* tp_as_mapping */
3977 (hashfunc)long_hash, /* tp_hash */
3978 0, /* tp_call */
3979 long_str, /* tp_str */
3980 PyObject_GenericGetAttr, /* tp_getattro */
3981 0, /* tp_setattro */
3982 0, /* tp_as_buffer */
3983 Py_TPFLAGS_DEFAULT | Py_TPFLAGS_CHECKTYPES |
3984 Py_TPFLAGS_BASETYPE | Py_TPFLAGS_LONG_SUBCLASS, /* tp_flags */
3985 long_doc, /* tp_doc */
3986 0, /* tp_traverse */
3987 0, /* tp_clear */
3988 0, /* tp_richcompare */
3989 0, /* tp_weaklistoffset */
3990 0, /* tp_iter */
3991 0, /* tp_iternext */
3992 long_methods, /* tp_methods */
3993 0, /* tp_members */
3994 long_getset, /* tp_getset */
3995 0, /* tp_base */
3996 0, /* tp_dict */
3997 0, /* tp_descr_get */
3998 0, /* tp_descr_set */
3999 0, /* tp_dictoffset */
4000 0, /* tp_init */
4001 0, /* tp_alloc */
4002 long_new, /* tp_new */
4003 PyObject_Del, /* tp_free */
4006 static PyTypeObject Long_InfoType;
4008 PyDoc_STRVAR(long_info__doc__,
4009 "sys.long_info\n\
4011 A struct sequence that holds information about Python's\n\
4012 internal representation of integers. The attributes are read only.");
4014 static PyStructSequence_Field long_info_fields[] = {
4015 {"bits_per_digit", "size of a digit in bits"},
4016 {"sizeof_digit", "size in bytes of the C type used to "
4017 "represent a digit"},
4018 {NULL, NULL}
4021 static PyStructSequence_Desc long_info_desc = {
4022 "sys.long_info", /* name */
4023 long_info__doc__, /* doc */
4024 long_info_fields, /* fields */
4025 2 /* number of fields */
4028 PyObject *
4029 PyLong_GetInfo(void)
4031 PyObject* long_info;
4032 int field = 0;
4033 long_info = PyStructSequence_New(&Long_InfoType);
4034 if (long_info == NULL)
4035 return NULL;
4036 PyStructSequence_SET_ITEM(long_info, field++,
4037 PyInt_FromLong(PyLong_SHIFT));
4038 PyStructSequence_SET_ITEM(long_info, field++,
4039 PyInt_FromLong(sizeof(digit)));
4040 if (PyErr_Occurred()) {
4041 Py_CLEAR(long_info);
4042 return NULL;
4044 return long_info;
4048 _PyLong_Init(void)
4050 /* initialize long_info */
4051 if (Long_InfoType.tp_name == 0)
4052 PyStructSequence_InitType(&Long_InfoType, &long_info_desc);
4053 return 1;