Remove use of tuple unpacking and dict.has_key() so as to silence
[python.git] / Objects / frameobject.c
blob079c83171b1e891e5128f5a9b164febe9683590b
1 /* Frame object implementation */
3 #include "Python.h"
5 #include "code.h"
6 #include "frameobject.h"
7 #include "opcode.h"
8 #include "structmember.h"
10 #undef MIN
11 #undef MAX
12 #define MIN(a, b) ((a) < (b) ? (a) : (b))
13 #define MAX(a, b) ((a) > (b) ? (a) : (b))
15 #define OFF(x) offsetof(PyFrameObject, x)
17 static PyMemberDef frame_memberlist[] = {
18 {"f_back", T_OBJECT, OFF(f_back), RO},
19 {"f_code", T_OBJECT, OFF(f_code), RO},
20 {"f_builtins", T_OBJECT, OFF(f_builtins),RO},
21 {"f_globals", T_OBJECT, OFF(f_globals), RO},
22 {"f_lasti", T_INT, OFF(f_lasti), RO},
23 {"f_exc_type", T_OBJECT, OFF(f_exc_type)},
24 {"f_exc_value", T_OBJECT, OFF(f_exc_value)},
25 {"f_exc_traceback", T_OBJECT, OFF(f_exc_traceback)},
26 {NULL} /* Sentinel */
29 static PyObject *
30 frame_getlocals(PyFrameObject *f, void *closure)
32 PyFrame_FastToLocals(f);
33 Py_INCREF(f->f_locals);
34 return f->f_locals;
37 static PyObject *
38 frame_getlineno(PyFrameObject *f, void *closure)
40 int lineno;
42 if (f->f_trace)
43 lineno = f->f_lineno;
44 else
45 lineno = PyCode_Addr2Line(f->f_code, f->f_lasti);
47 return PyInt_FromLong(lineno);
50 /* Setter for f_lineno - you can set f_lineno from within a trace function in
51 * order to jump to a given line of code, subject to some restrictions. Most
52 * lines are OK to jump to because they don't make any assumptions about the
53 * state of the stack (obvious because you could remove the line and the code
54 * would still work without any stack errors), but there are some constructs
55 * that limit jumping:
57 * o Lines with an 'except' statement on them can't be jumped to, because
58 * they expect an exception to be on the top of the stack.
59 * o Lines that live in a 'finally' block can't be jumped from or to, since
60 * the END_FINALLY expects to clean up the stack after the 'try' block.
61 * o 'try'/'for'/'while' blocks can't be jumped into because the blockstack
62 * needs to be set up before their code runs, and for 'for' loops the
63 * iterator needs to be on the stack.
65 static int
66 frame_setlineno(PyFrameObject *f, PyObject* p_new_lineno)
68 int new_lineno = 0; /* The new value of f_lineno */
69 int new_lasti = 0; /* The new value of f_lasti */
70 int new_iblock = 0; /* The new value of f_iblock */
71 unsigned char *code = NULL; /* The bytecode for the frame... */
72 Py_ssize_t code_len = 0; /* ...and its length */
73 char *lnotab = NULL; /* Iterating over co_lnotab */
74 Py_ssize_t lnotab_len = 0; /* (ditto) */
75 int offset = 0; /* (ditto) */
76 int line = 0; /* (ditto) */
77 int addr = 0; /* (ditto) */
78 int min_addr = 0; /* Scanning the SETUPs and POPs */
79 int max_addr = 0; /* (ditto) */
80 int delta_iblock = 0; /* (ditto) */
81 int min_delta_iblock = 0; /* (ditto) */
82 int min_iblock = 0; /* (ditto) */
83 int f_lasti_setup_addr = 0; /* Policing no-jump-into-finally */
84 int new_lasti_setup_addr = 0; /* (ditto) */
85 int blockstack[CO_MAXBLOCKS]; /* Walking the 'finally' blocks */
86 int in_finally[CO_MAXBLOCKS]; /* (ditto) */
87 int blockstack_top = 0; /* (ditto) */
88 unsigned char setup_op = 0; /* (ditto) */
90 /* f_lineno must be an integer. */
91 if (!PyInt_Check(p_new_lineno)) {
92 PyErr_SetString(PyExc_ValueError,
93 "lineno must be an integer");
94 return -1;
97 /* You can only do this from within a trace function, not via
98 * _getframe or similar hackery. */
99 if (!f->f_trace)
101 PyErr_Format(PyExc_ValueError,
102 "f_lineno can only be set by a trace function");
103 return -1;
106 /* Fail if the line comes before the start of the code block. */
107 new_lineno = (int) PyInt_AsLong(p_new_lineno);
108 if (new_lineno < f->f_code->co_firstlineno) {
109 PyErr_Format(PyExc_ValueError,
110 "line %d comes before the current code block",
111 new_lineno);
112 return -1;
115 /* Find the bytecode offset for the start of the given line, or the
116 * first code-owning line after it. */
117 PyString_AsStringAndSize(f->f_code->co_lnotab, &lnotab, &lnotab_len);
118 addr = 0;
119 line = f->f_code->co_firstlineno;
120 new_lasti = -1;
121 for (offset = 0; offset < lnotab_len; offset += 2) {
122 addr += lnotab[offset];
123 line += lnotab[offset+1];
124 if (line >= new_lineno) {
125 new_lasti = addr;
126 new_lineno = line;
127 break;
131 /* If we didn't reach the requested line, return an error. */
132 if (new_lasti == -1) {
133 PyErr_Format(PyExc_ValueError,
134 "line %d comes after the current code block",
135 new_lineno);
136 return -1;
139 /* We're now ready to look at the bytecode. */
140 PyString_AsStringAndSize(f->f_code->co_code, (char **)&code, &code_len);
141 min_addr = MIN(new_lasti, f->f_lasti);
142 max_addr = MAX(new_lasti, f->f_lasti);
144 /* You can't jump onto a line with an 'except' statement on it -
145 * they expect to have an exception on the top of the stack, which
146 * won't be true if you jump to them. They always start with code
147 * that either pops the exception using POP_TOP (plain 'except:'
148 * lines do this) or duplicates the exception on the stack using
149 * DUP_TOP (if there's an exception type specified). See compile.c,
150 * 'com_try_except' for the full details. There aren't any other
151 * cases (AFAIK) where a line's code can start with DUP_TOP or
152 * POP_TOP, but if any ever appear, they'll be subject to the same
153 * restriction (but with a different error message). */
154 if (code[new_lasti] == DUP_TOP || code[new_lasti] == POP_TOP) {
155 PyErr_SetString(PyExc_ValueError,
156 "can't jump to 'except' line as there's no exception");
157 return -1;
160 /* You can't jump into or out of a 'finally' block because the 'try'
161 * block leaves something on the stack for the END_FINALLY to clean
162 * up. So we walk the bytecode, maintaining a simulated blockstack.
163 * When we reach the old or new address and it's in a 'finally' block
164 * we note the address of the corresponding SETUP_FINALLY. The jump
165 * is only legal if neither address is in a 'finally' block or
166 * they're both in the same one. 'blockstack' is a stack of the
167 * bytecode addresses of the SETUP_X opcodes, and 'in_finally' tracks
168 * whether we're in a 'finally' block at each blockstack level. */
169 f_lasti_setup_addr = -1;
170 new_lasti_setup_addr = -1;
171 memset(blockstack, '\0', sizeof(blockstack));
172 memset(in_finally, '\0', sizeof(in_finally));
173 blockstack_top = 0;
174 for (addr = 0; addr < code_len; addr++) {
175 unsigned char op = code[addr];
176 switch (op) {
177 case SETUP_LOOP:
178 case SETUP_EXCEPT:
179 case SETUP_FINALLY:
180 blockstack[blockstack_top++] = addr;
181 in_finally[blockstack_top-1] = 0;
182 break;
184 case POP_BLOCK:
185 assert(blockstack_top > 0);
186 setup_op = code[blockstack[blockstack_top-1]];
187 if (setup_op == SETUP_FINALLY) {
188 in_finally[blockstack_top-1] = 1;
190 else {
191 blockstack_top--;
193 break;
195 case END_FINALLY:
196 /* Ignore END_FINALLYs for SETUP_EXCEPTs - they exist
197 * in the bytecode but don't correspond to an actual
198 * 'finally' block. (If blockstack_top is 0, we must
199 * be seeing such an END_FINALLY.) */
200 if (blockstack_top > 0) {
201 setup_op = code[blockstack[blockstack_top-1]];
202 if (setup_op == SETUP_FINALLY) {
203 blockstack_top--;
206 break;
209 /* For the addresses we're interested in, see whether they're
210 * within a 'finally' block and if so, remember the address
211 * of the SETUP_FINALLY. */
212 if (addr == new_lasti || addr == f->f_lasti) {
213 int i = 0;
214 int setup_addr = -1;
215 for (i = blockstack_top-1; i >= 0; i--) {
216 if (in_finally[i]) {
217 setup_addr = blockstack[i];
218 break;
222 if (setup_addr != -1) {
223 if (addr == new_lasti) {
224 new_lasti_setup_addr = setup_addr;
227 if (addr == f->f_lasti) {
228 f_lasti_setup_addr = setup_addr;
233 if (op >= HAVE_ARGUMENT) {
234 addr += 2;
238 /* Verify that the blockstack tracking code didn't get lost. */
239 assert(blockstack_top == 0);
241 /* After all that, are we jumping into / out of a 'finally' block? */
242 if (new_lasti_setup_addr != f_lasti_setup_addr) {
243 PyErr_SetString(PyExc_ValueError,
244 "can't jump into or out of a 'finally' block");
245 return -1;
249 /* Police block-jumping (you can't jump into the middle of a block)
250 * and ensure that the blockstack finishes up in a sensible state (by
251 * popping any blocks we're jumping out of). We look at all the
252 * blockstack operations between the current position and the new
253 * one, and keep track of how many blocks we drop out of on the way.
254 * By also keeping track of the lowest blockstack position we see, we
255 * can tell whether the jump goes into any blocks without coming out
256 * again - in that case we raise an exception below. */
257 delta_iblock = 0;
258 for (addr = min_addr; addr < max_addr; addr++) {
259 unsigned char op = code[addr];
260 switch (op) {
261 case SETUP_LOOP:
262 case SETUP_EXCEPT:
263 case SETUP_FINALLY:
264 delta_iblock++;
265 break;
267 case POP_BLOCK:
268 delta_iblock--;
269 break;
272 min_delta_iblock = MIN(min_delta_iblock, delta_iblock);
274 if (op >= HAVE_ARGUMENT) {
275 addr += 2;
279 /* Derive the absolute iblock values from the deltas. */
280 min_iblock = f->f_iblock + min_delta_iblock;
281 if (new_lasti > f->f_lasti) {
282 /* Forwards jump. */
283 new_iblock = f->f_iblock + delta_iblock;
285 else {
286 /* Backwards jump. */
287 new_iblock = f->f_iblock - delta_iblock;
290 /* Are we jumping into a block? */
291 if (new_iblock > min_iblock) {
292 PyErr_SetString(PyExc_ValueError,
293 "can't jump into the middle of a block");
294 return -1;
297 /* Pop any blocks that we're jumping out of. */
298 while (f->f_iblock > new_iblock) {
299 PyTryBlock *b = &f->f_blockstack[--f->f_iblock];
300 while ((f->f_stacktop - f->f_valuestack) > b->b_level) {
301 PyObject *v = (*--f->f_stacktop);
302 Py_DECREF(v);
306 /* Finally set the new f_lineno and f_lasti and return OK. */
307 f->f_lineno = new_lineno;
308 f->f_lasti = new_lasti;
309 return 0;
312 static PyObject *
313 frame_gettrace(PyFrameObject *f, void *closure)
315 PyObject* trace = f->f_trace;
317 if (trace == NULL)
318 trace = Py_None;
320 Py_INCREF(trace);
322 return trace;
325 static int
326 frame_settrace(PyFrameObject *f, PyObject* v, void *closure)
328 /* We rely on f_lineno being accurate when f_trace is set. */
330 PyObject* old_value = f->f_trace;
332 Py_XINCREF(v);
333 f->f_trace = v;
335 if (v != NULL)
336 f->f_lineno = PyCode_Addr2Line(f->f_code, f->f_lasti);
338 Py_XDECREF(old_value);
340 return 0;
343 static PyObject *
344 frame_getrestricted(PyFrameObject *f, void *closure)
346 return PyBool_FromLong(PyFrame_IsRestricted(f));
349 static PyGetSetDef frame_getsetlist[] = {
350 {"f_locals", (getter)frame_getlocals, NULL, NULL},
351 {"f_lineno", (getter)frame_getlineno,
352 (setter)frame_setlineno, NULL},
353 {"f_trace", (getter)frame_gettrace, (setter)frame_settrace, NULL},
354 {"f_restricted",(getter)frame_getrestricted,NULL, NULL},
358 /* Stack frames are allocated and deallocated at a considerable rate.
359 In an attempt to improve the speed of function calls, we:
361 1. Hold a single "zombie" frame on each code object. This retains
362 the allocated and initialised frame object from an invocation of
363 the code object. The zombie is reanimated the next time we need a
364 frame object for that code object. Doing this saves the malloc/
365 realloc required when using a free_list frame that isn't the
366 correct size. It also saves some field initialisation.
368 In zombie mode, no field of PyFrameObject holds a reference, but
369 the following fields are still valid:
371 * ob_type, ob_size, f_code, f_valuestack;
373 * f_locals, f_trace,
374 f_exc_type, f_exc_value, f_exc_traceback are NULL;
376 * f_localsplus does not require re-allocation and
377 the local variables in f_localsplus are NULL.
379 2. We also maintain a separate free list of stack frames (just like
380 integers are allocated in a special way -- see intobject.c). When
381 a stack frame is on the free list, only the following members have
382 a meaning:
383 ob_type == &Frametype
384 f_back next item on free list, or NULL
385 f_stacksize size of value stack
386 ob_size size of localsplus
387 Note that the value and block stacks are preserved -- this can save
388 another malloc() call or two (and two free() calls as well!).
389 Also note that, unlike for integers, each frame object is a
390 malloc'ed object in its own right -- it is only the actual calls to
391 malloc() that we are trying to save here, not the administration.
392 After all, while a typical program may make millions of calls, a
393 call depth of more than 20 or 30 is probably already exceptional
394 unless the program contains run-away recursion. I hope.
396 Later, PyFrame_MAXFREELIST was added to bound the # of frames saved on
397 free_list. Else programs creating lots of cyclic trash involving
398 frames could provoke free_list into growing without bound.
401 static PyFrameObject *free_list = NULL;
402 static int numfree = 0; /* number of frames currently in free_list */
403 /* max value for numfree */
404 #define PyFrame_MAXFREELIST 200
406 static void
407 frame_dealloc(PyFrameObject *f)
409 PyObject **p, **valuestack;
410 PyCodeObject *co;
412 PyObject_GC_UnTrack(f);
413 Py_TRASHCAN_SAFE_BEGIN(f)
414 /* Kill all local variables */
415 valuestack = f->f_valuestack;
416 for (p = f->f_localsplus; p < valuestack; p++)
417 Py_CLEAR(*p);
419 /* Free stack */
420 if (f->f_stacktop != NULL) {
421 for (p = valuestack; p < f->f_stacktop; p++)
422 Py_XDECREF(*p);
425 Py_XDECREF(f->f_back);
426 Py_DECREF(f->f_builtins);
427 Py_DECREF(f->f_globals);
428 Py_CLEAR(f->f_locals);
429 Py_CLEAR(f->f_trace);
430 Py_CLEAR(f->f_exc_type);
431 Py_CLEAR(f->f_exc_value);
432 Py_CLEAR(f->f_exc_traceback);
434 co = f->f_code;
435 if (co->co_zombieframe == NULL)
436 co->co_zombieframe = f;
437 else if (numfree < PyFrame_MAXFREELIST) {
438 ++numfree;
439 f->f_back = free_list;
440 free_list = f;
442 else
443 PyObject_GC_Del(f);
445 Py_DECREF(co);
446 Py_TRASHCAN_SAFE_END(f)
449 static int
450 frame_traverse(PyFrameObject *f, visitproc visit, void *arg)
452 PyObject **fastlocals, **p;
453 int i, slots;
455 Py_VISIT(f->f_back);
456 Py_VISIT(f->f_code);
457 Py_VISIT(f->f_builtins);
458 Py_VISIT(f->f_globals);
459 Py_VISIT(f->f_locals);
460 Py_VISIT(f->f_trace);
461 Py_VISIT(f->f_exc_type);
462 Py_VISIT(f->f_exc_value);
463 Py_VISIT(f->f_exc_traceback);
465 /* locals */
466 slots = f->f_code->co_nlocals + PyTuple_GET_SIZE(f->f_code->co_cellvars) + PyTuple_GET_SIZE(f->f_code->co_freevars);
467 fastlocals = f->f_localsplus;
468 for (i = slots; --i >= 0; ++fastlocals)
469 Py_VISIT(*fastlocals);
471 /* stack */
472 if (f->f_stacktop != NULL) {
473 for (p = f->f_valuestack; p < f->f_stacktop; p++)
474 Py_VISIT(*p);
476 return 0;
479 static void
480 frame_clear(PyFrameObject *f)
482 PyObject **fastlocals, **p, **oldtop;
483 int i, slots;
485 /* Before anything else, make sure that this frame is clearly marked
486 * as being defunct! Else, e.g., a generator reachable from this
487 * frame may also point to this frame, believe itself to still be
488 * active, and try cleaning up this frame again.
490 oldtop = f->f_stacktop;
491 f->f_stacktop = NULL;
493 Py_CLEAR(f->f_exc_type);
494 Py_CLEAR(f->f_exc_value);
495 Py_CLEAR(f->f_exc_traceback);
496 Py_CLEAR(f->f_trace);
498 /* locals */
499 slots = f->f_code->co_nlocals + PyTuple_GET_SIZE(f->f_code->co_cellvars) + PyTuple_GET_SIZE(f->f_code->co_freevars);
500 fastlocals = f->f_localsplus;
501 for (i = slots; --i >= 0; ++fastlocals)
502 Py_CLEAR(*fastlocals);
504 /* stack */
505 if (oldtop != NULL) {
506 for (p = f->f_valuestack; p < oldtop; p++)
507 Py_CLEAR(*p);
511 static PyObject *
512 frame_sizeof(PyFrameObject *f)
514 Py_ssize_t res, extras, ncells, nfrees;
516 ncells = PyTuple_GET_SIZE(f->f_code->co_cellvars);
517 nfrees = PyTuple_GET_SIZE(f->f_code->co_freevars);
518 extras = f->f_code->co_stacksize + f->f_code->co_nlocals +
519 ncells + nfrees;
520 // subtract one as it is already included in PyFrameObject
521 res = sizeof(PyFrameObject) + (extras-1) * sizeof(PyObject *);
523 return PyInt_FromSsize_t(res);
526 PyDoc_STRVAR(sizeof__doc__,
527 "F.__sizeof__() -> size of F in memory, in bytes");
529 static PyMethodDef frame_methods[] = {
530 {"__sizeof__", (PyCFunction)frame_sizeof, METH_NOARGS,
531 sizeof__doc__},
532 {NULL, NULL} /* sentinel */
535 PyTypeObject PyFrame_Type = {
536 PyVarObject_HEAD_INIT(&PyType_Type, 0)
537 "frame",
538 sizeof(PyFrameObject),
539 sizeof(PyObject *),
540 (destructor)frame_dealloc, /* tp_dealloc */
541 0, /* tp_print */
542 0, /* tp_getattr */
543 0, /* tp_setattr */
544 0, /* tp_compare */
545 0, /* tp_repr */
546 0, /* tp_as_number */
547 0, /* tp_as_sequence */
548 0, /* tp_as_mapping */
549 0, /* tp_hash */
550 0, /* tp_call */
551 0, /* tp_str */
552 PyObject_GenericGetAttr, /* tp_getattro */
553 PyObject_GenericSetAttr, /* tp_setattro */
554 0, /* tp_as_buffer */
555 Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,/* tp_flags */
556 0, /* tp_doc */
557 (traverseproc)frame_traverse, /* tp_traverse */
558 (inquiry)frame_clear, /* tp_clear */
559 0, /* tp_richcompare */
560 0, /* tp_weaklistoffset */
561 0, /* tp_iter */
562 0, /* tp_iternext */
563 frame_methods, /* tp_methods */
564 frame_memberlist, /* tp_members */
565 frame_getsetlist, /* tp_getset */
566 0, /* tp_base */
567 0, /* tp_dict */
570 static PyObject *builtin_object;
572 int _PyFrame_Init()
574 builtin_object = PyString_InternFromString("__builtins__");
575 return (builtin_object != NULL);
578 PyFrameObject *
579 PyFrame_New(PyThreadState *tstate, PyCodeObject *code, PyObject *globals,
580 PyObject *locals)
582 PyFrameObject *back = tstate->frame;
583 PyFrameObject *f;
584 PyObject *builtins;
585 Py_ssize_t i;
587 #ifdef Py_DEBUG
588 if (code == NULL || globals == NULL || !PyDict_Check(globals) ||
589 (locals != NULL && !PyMapping_Check(locals))) {
590 PyErr_BadInternalCall();
591 return NULL;
593 #endif
594 if (back == NULL || back->f_globals != globals) {
595 builtins = PyDict_GetItem(globals, builtin_object);
596 if (builtins) {
597 if (PyModule_Check(builtins)) {
598 builtins = PyModule_GetDict(builtins);
599 assert(!builtins || PyDict_Check(builtins));
601 else if (!PyDict_Check(builtins))
602 builtins = NULL;
604 if (builtins == NULL) {
605 /* No builtins! Make up a minimal one
606 Give them 'None', at least. */
607 builtins = PyDict_New();
608 if (builtins == NULL ||
609 PyDict_SetItemString(
610 builtins, "None", Py_None) < 0)
611 return NULL;
613 else
614 Py_INCREF(builtins);
617 else {
618 /* If we share the globals, we share the builtins.
619 Save a lookup and a call. */
620 builtins = back->f_builtins;
621 assert(builtins != NULL && PyDict_Check(builtins));
622 Py_INCREF(builtins);
624 if (code->co_zombieframe != NULL) {
625 f = code->co_zombieframe;
626 code->co_zombieframe = NULL;
627 _Py_NewReference((PyObject *)f);
628 assert(f->f_code == code);
630 else {
631 Py_ssize_t extras, ncells, nfrees;
632 ncells = PyTuple_GET_SIZE(code->co_cellvars);
633 nfrees = PyTuple_GET_SIZE(code->co_freevars);
634 extras = code->co_stacksize + code->co_nlocals + ncells +
635 nfrees;
636 if (free_list == NULL) {
637 f = PyObject_GC_NewVar(PyFrameObject, &PyFrame_Type,
638 extras);
639 if (f == NULL) {
640 Py_DECREF(builtins);
641 return NULL;
644 else {
645 assert(numfree > 0);
646 --numfree;
647 f = free_list;
648 free_list = free_list->f_back;
649 if (Py_SIZE(f) < extras) {
650 f = PyObject_GC_Resize(PyFrameObject, f, extras);
651 if (f == NULL) {
652 Py_DECREF(builtins);
653 return NULL;
656 _Py_NewReference((PyObject *)f);
659 f->f_code = code;
660 extras = code->co_nlocals + ncells + nfrees;
661 f->f_valuestack = f->f_localsplus + extras;
662 for (i=0; i<extras; i++)
663 f->f_localsplus[i] = NULL;
664 f->f_locals = NULL;
665 f->f_trace = NULL;
666 f->f_exc_type = f->f_exc_value = f->f_exc_traceback = NULL;
668 f->f_stacktop = f->f_valuestack;
669 f->f_builtins = builtins;
670 Py_XINCREF(back);
671 f->f_back = back;
672 Py_INCREF(code);
673 Py_INCREF(globals);
674 f->f_globals = globals;
675 /* Most functions have CO_NEWLOCALS and CO_OPTIMIZED set. */
676 if ((code->co_flags & (CO_NEWLOCALS | CO_OPTIMIZED)) ==
677 (CO_NEWLOCALS | CO_OPTIMIZED))
678 ; /* f_locals = NULL; will be set by PyFrame_FastToLocals() */
679 else if (code->co_flags & CO_NEWLOCALS) {
680 locals = PyDict_New();
681 if (locals == NULL) {
682 Py_DECREF(f);
683 return NULL;
685 f->f_locals = locals;
687 else {
688 if (locals == NULL)
689 locals = globals;
690 Py_INCREF(locals);
691 f->f_locals = locals;
693 f->f_tstate = tstate;
695 f->f_lasti = -1;
696 f->f_lineno = code->co_firstlineno;
697 f->f_iblock = 0;
699 _PyObject_GC_TRACK(f);
700 return f;
703 /* Block management */
705 void
706 PyFrame_BlockSetup(PyFrameObject *f, int type, int handler, int level)
708 PyTryBlock *b;
709 if (f->f_iblock >= CO_MAXBLOCKS)
710 Py_FatalError("XXX block stack overflow");
711 b = &f->f_blockstack[f->f_iblock++];
712 b->b_type = type;
713 b->b_level = level;
714 b->b_handler = handler;
717 PyTryBlock *
718 PyFrame_BlockPop(PyFrameObject *f)
720 PyTryBlock *b;
721 if (f->f_iblock <= 0)
722 Py_FatalError("XXX block stack underflow");
723 b = &f->f_blockstack[--f->f_iblock];
724 return b;
727 /* Convert between "fast" version of locals and dictionary version.
729 map and values are input arguments. map is a tuple of strings.
730 values is an array of PyObject*. At index i, map[i] is the name of
731 the variable with value values[i]. The function copies the first
732 nmap variable from map/values into dict. If values[i] is NULL,
733 the variable is deleted from dict.
735 If deref is true, then the values being copied are cell variables
736 and the value is extracted from the cell variable before being put
737 in dict.
739 Exceptions raised while modifying the dict are silently ignored,
740 because there is no good way to report them.
743 static void
744 map_to_dict(PyObject *map, Py_ssize_t nmap, PyObject *dict, PyObject **values,
745 int deref)
747 Py_ssize_t j;
748 assert(PyTuple_Check(map));
749 assert(PyDict_Check(dict));
750 assert(PyTuple_Size(map) >= nmap);
751 for (j = nmap; --j >= 0; ) {
752 PyObject *key = PyTuple_GET_ITEM(map, j);
753 PyObject *value = values[j];
754 assert(PyString_Check(key));
755 if (deref) {
756 assert(PyCell_Check(value));
757 value = PyCell_GET(value);
759 if (value == NULL) {
760 if (PyObject_DelItem(dict, key) != 0)
761 PyErr_Clear();
763 else {
764 if (PyObject_SetItem(dict, key, value) != 0)
765 PyErr_Clear();
770 /* Copy values from the "locals" dict into the fast locals.
772 dict is an input argument containing string keys representing
773 variables names and arbitrary PyObject* as values.
775 map and values are input arguments. map is a tuple of strings.
776 values is an array of PyObject*. At index i, map[i] is the name of
777 the variable with value values[i]. The function copies the first
778 nmap variable from map/values into dict. If values[i] is NULL,
779 the variable is deleted from dict.
781 If deref is true, then the values being copied are cell variables
782 and the value is extracted from the cell variable before being put
783 in dict. If clear is true, then variables in map but not in dict
784 are set to NULL in map; if clear is false, variables missing in
785 dict are ignored.
787 Exceptions raised while modifying the dict are silently ignored,
788 because there is no good way to report them.
791 static void
792 dict_to_map(PyObject *map, Py_ssize_t nmap, PyObject *dict, PyObject **values,
793 int deref, int clear)
795 Py_ssize_t j;
796 assert(PyTuple_Check(map));
797 assert(PyDict_Check(dict));
798 assert(PyTuple_Size(map) >= nmap);
799 for (j = nmap; --j >= 0; ) {
800 PyObject *key = PyTuple_GET_ITEM(map, j);
801 PyObject *value = PyObject_GetItem(dict, key);
802 assert(PyString_Check(key));
803 /* We only care about NULLs if clear is true. */
804 if (value == NULL) {
805 PyErr_Clear();
806 if (!clear)
807 continue;
809 if (deref) {
810 assert(PyCell_Check(values[j]));
811 if (PyCell_GET(values[j]) != value) {
812 if (PyCell_Set(values[j], value) < 0)
813 PyErr_Clear();
815 } else if (values[j] != value) {
816 Py_XINCREF(value);
817 Py_XDECREF(values[j]);
818 values[j] = value;
820 Py_XDECREF(value);
824 void
825 PyFrame_FastToLocals(PyFrameObject *f)
827 /* Merge fast locals into f->f_locals */
828 PyObject *locals, *map;
829 PyObject **fast;
830 PyObject *error_type, *error_value, *error_traceback;
831 PyCodeObject *co;
832 Py_ssize_t j;
833 int ncells, nfreevars;
834 if (f == NULL)
835 return;
836 locals = f->f_locals;
837 if (locals == NULL) {
838 locals = f->f_locals = PyDict_New();
839 if (locals == NULL) {
840 PyErr_Clear(); /* Can't report it :-( */
841 return;
844 co = f->f_code;
845 map = co->co_varnames;
846 if (!PyTuple_Check(map))
847 return;
848 PyErr_Fetch(&error_type, &error_value, &error_traceback);
849 fast = f->f_localsplus;
850 j = PyTuple_GET_SIZE(map);
851 if (j > co->co_nlocals)
852 j = co->co_nlocals;
853 if (co->co_nlocals)
854 map_to_dict(map, j, locals, fast, 0);
855 ncells = PyTuple_GET_SIZE(co->co_cellvars);
856 nfreevars = PyTuple_GET_SIZE(co->co_freevars);
857 if (ncells || nfreevars) {
858 map_to_dict(co->co_cellvars, ncells,
859 locals, fast + co->co_nlocals, 1);
860 /* If the namespace is unoptimized, then one of the
861 following cases applies:
862 1. It does not contain free variables, because it
863 uses import * or is a top-level namespace.
864 2. It is a class namespace.
865 We don't want to accidentally copy free variables
866 into the locals dict used by the class.
868 if (co->co_flags & CO_OPTIMIZED) {
869 map_to_dict(co->co_freevars, nfreevars,
870 locals, fast + co->co_nlocals + ncells, 1);
873 PyErr_Restore(error_type, error_value, error_traceback);
876 void
877 PyFrame_LocalsToFast(PyFrameObject *f, int clear)
879 /* Merge f->f_locals into fast locals */
880 PyObject *locals, *map;
881 PyObject **fast;
882 PyObject *error_type, *error_value, *error_traceback;
883 PyCodeObject *co;
884 Py_ssize_t j;
885 int ncells, nfreevars;
886 if (f == NULL)
887 return;
888 locals = f->f_locals;
889 co = f->f_code;
890 map = co->co_varnames;
891 if (locals == NULL)
892 return;
893 if (!PyTuple_Check(map))
894 return;
895 PyErr_Fetch(&error_type, &error_value, &error_traceback);
896 fast = f->f_localsplus;
897 j = PyTuple_GET_SIZE(map);
898 if (j > co->co_nlocals)
899 j = co->co_nlocals;
900 if (co->co_nlocals)
901 dict_to_map(co->co_varnames, j, locals, fast, 0, clear);
902 ncells = PyTuple_GET_SIZE(co->co_cellvars);
903 nfreevars = PyTuple_GET_SIZE(co->co_freevars);
904 if (ncells || nfreevars) {
905 dict_to_map(co->co_cellvars, ncells,
906 locals, fast + co->co_nlocals, 1, clear);
907 /* Same test as in PyFrame_FastToLocals() above. */
908 if (co->co_flags & CO_OPTIMIZED) {
909 dict_to_map(co->co_freevars, nfreevars,
910 locals, fast + co->co_nlocals + ncells, 1,
911 clear);
914 PyErr_Restore(error_type, error_value, error_traceback);
917 /* Clear out the free list */
919 PyFrame_ClearFreeList(void)
921 int freelist_size = numfree;
923 while (free_list != NULL) {
924 PyFrameObject *f = free_list;
925 free_list = free_list->f_back;
926 PyObject_GC_Del(f);
927 --numfree;
929 assert(numfree == 0);
930 return freelist_size;
933 void
934 PyFrame_Fini(void)
936 (void)PyFrame_ClearFreeList();
937 Py_XDECREF(builtin_object);
938 builtin_object = NULL;