Remove use of tuple unpacking and dict.has_key() so as to silence
[python.git] / Include / object.h
blobc00df74e6e154546700d41715601a26d8548b7a1
1 #ifndef Py_OBJECT_H
2 #define Py_OBJECT_H
3 #ifdef __cplusplus
4 extern "C" {
5 #endif
8 /* Object and type object interface */
11 Objects are structures allocated on the heap. Special rules apply to
12 the use of objects to ensure they are properly garbage-collected.
13 Objects are never allocated statically or on the stack; they must be
14 accessed through special macros and functions only. (Type objects are
15 exceptions to the first rule; the standard types are represented by
16 statically initialized type objects, although work on type/class unification
17 for Python 2.2 made it possible to have heap-allocated type objects too).
19 An object has a 'reference count' that is increased or decreased when a
20 pointer to the object is copied or deleted; when the reference count
21 reaches zero there are no references to the object left and it can be
22 removed from the heap.
24 An object has a 'type' that determines what it represents and what kind
25 of data it contains. An object's type is fixed when it is created.
26 Types themselves are represented as objects; an object contains a
27 pointer to the corresponding type object. The type itself has a type
28 pointer pointing to the object representing the type 'type', which
29 contains a pointer to itself!).
31 Objects do not float around in memory; once allocated an object keeps
32 the same size and address. Objects that must hold variable-size data
33 can contain pointers to variable-size parts of the object. Not all
34 objects of the same type have the same size; but the size cannot change
35 after allocation. (These restrictions are made so a reference to an
36 object can be simply a pointer -- moving an object would require
37 updating all the pointers, and changing an object's size would require
38 moving it if there was another object right next to it.)
40 Objects are always accessed through pointers of the type 'PyObject *'.
41 The type 'PyObject' is a structure that only contains the reference count
42 and the type pointer. The actual memory allocated for an object
43 contains other data that can only be accessed after casting the pointer
44 to a pointer to a longer structure type. This longer type must start
45 with the reference count and type fields; the macro PyObject_HEAD should be
46 used for this (to accommodate for future changes). The implementation
47 of a particular object type can cast the object pointer to the proper
48 type and back.
50 A standard interface exists for objects that contain an array of items
51 whose size is determined when the object is allocated.
54 /* Py_DEBUG implies Py_TRACE_REFS. */
55 #if defined(Py_DEBUG) && !defined(Py_TRACE_REFS)
56 #define Py_TRACE_REFS
57 #endif
59 /* Py_TRACE_REFS implies Py_REF_DEBUG. */
60 #if defined(Py_TRACE_REFS) && !defined(Py_REF_DEBUG)
61 #define Py_REF_DEBUG
62 #endif
64 #ifdef Py_TRACE_REFS
65 /* Define pointers to support a doubly-linked list of all live heap objects. */
66 #define _PyObject_HEAD_EXTRA \
67 struct _object *_ob_next; \
68 struct _object *_ob_prev;
70 #define _PyObject_EXTRA_INIT 0, 0,
72 #else
73 #define _PyObject_HEAD_EXTRA
74 #define _PyObject_EXTRA_INIT
75 #endif
77 /* PyObject_HEAD defines the initial segment of every PyObject. */
78 #define PyObject_HEAD \
79 _PyObject_HEAD_EXTRA \
80 Py_ssize_t ob_refcnt; \
81 struct _typeobject *ob_type;
83 #define PyObject_HEAD_INIT(type) \
84 _PyObject_EXTRA_INIT \
85 1, type,
87 #define PyVarObject_HEAD_INIT(type, size) \
88 PyObject_HEAD_INIT(type) size,
90 /* PyObject_VAR_HEAD defines the initial segment of all variable-size
91 * container objects. These end with a declaration of an array with 1
92 * element, but enough space is malloc'ed so that the array actually
93 * has room for ob_size elements. Note that ob_size is an element count,
94 * not necessarily a byte count.
96 #define PyObject_VAR_HEAD \
97 PyObject_HEAD \
98 Py_ssize_t ob_size; /* Number of items in variable part */
99 #define Py_INVALID_SIZE (Py_ssize_t)-1
101 /* Nothing is actually declared to be a PyObject, but every pointer to
102 * a Python object can be cast to a PyObject*. This is inheritance built
103 * by hand. Similarly every pointer to a variable-size Python object can,
104 * in addition, be cast to PyVarObject*.
106 typedef struct _object {
107 PyObject_HEAD
108 } PyObject;
110 typedef struct {
111 PyObject_VAR_HEAD
112 } PyVarObject;
114 #define Py_REFCNT(ob) (((PyObject*)(ob))->ob_refcnt)
115 #define Py_TYPE(ob) (((PyObject*)(ob))->ob_type)
116 #define Py_SIZE(ob) (((PyVarObject*)(ob))->ob_size)
119 Type objects contain a string containing the type name (to help somewhat
120 in debugging), the allocation parameters (see PyObject_New() and
121 PyObject_NewVar()),
122 and methods for accessing objects of the type. Methods are optional, a
123 nil pointer meaning that particular kind of access is not available for
124 this type. The Py_DECREF() macro uses the tp_dealloc method without
125 checking for a nil pointer; it should always be implemented except if
126 the implementation can guarantee that the reference count will never
127 reach zero (e.g., for statically allocated type objects).
129 NB: the methods for certain type groups are now contained in separate
130 method blocks.
133 typedef PyObject * (*unaryfunc)(PyObject *);
134 typedef PyObject * (*binaryfunc)(PyObject *, PyObject *);
135 typedef PyObject * (*ternaryfunc)(PyObject *, PyObject *, PyObject *);
136 typedef int (*inquiry)(PyObject *);
137 typedef Py_ssize_t (*lenfunc)(PyObject *);
138 typedef int (*coercion)(PyObject **, PyObject **);
139 typedef PyObject *(*intargfunc)(PyObject *, int) Py_DEPRECATED(2.5);
140 typedef PyObject *(*intintargfunc)(PyObject *, int, int) Py_DEPRECATED(2.5);
141 typedef PyObject *(*ssizeargfunc)(PyObject *, Py_ssize_t);
142 typedef PyObject *(*ssizessizeargfunc)(PyObject *, Py_ssize_t, Py_ssize_t);
143 typedef int(*intobjargproc)(PyObject *, int, PyObject *);
144 typedef int(*intintobjargproc)(PyObject *, int, int, PyObject *);
145 typedef int(*ssizeobjargproc)(PyObject *, Py_ssize_t, PyObject *);
146 typedef int(*ssizessizeobjargproc)(PyObject *, Py_ssize_t, Py_ssize_t, PyObject *);
147 typedef int(*objobjargproc)(PyObject *, PyObject *, PyObject *);
151 /* int-based buffer interface */
152 typedef int (*getreadbufferproc)(PyObject *, int, void **);
153 typedef int (*getwritebufferproc)(PyObject *, int, void **);
154 typedef int (*getsegcountproc)(PyObject *, int *);
155 typedef int (*getcharbufferproc)(PyObject *, int, char **);
156 /* ssize_t-based buffer interface */
157 typedef Py_ssize_t (*readbufferproc)(PyObject *, Py_ssize_t, void **);
158 typedef Py_ssize_t (*writebufferproc)(PyObject *, Py_ssize_t, void **);
159 typedef Py_ssize_t (*segcountproc)(PyObject *, Py_ssize_t *);
160 typedef Py_ssize_t (*charbufferproc)(PyObject *, Py_ssize_t, char **);
162 /* Py3k buffer interface */
164 typedef struct bufferinfo {
165 void *buf;
166 Py_ssize_t len;
167 Py_ssize_t itemsize; /* This is Py_ssize_t so it can be
168 pointed to by strides in simple case.*/
169 int readonly;
170 int ndim;
171 char *format;
172 Py_ssize_t *shape;
173 Py_ssize_t *strides;
174 Py_ssize_t *suboffsets;
175 void *internal;
176 } Py_buffer;
178 typedef int (*getbufferproc)(PyObject *, Py_buffer *, int);
179 typedef void (*releasebufferproc)(PyObject *, Py_buffer *);
181 /* Flags for getting buffers */
182 #define PyBUF_SIMPLE 0
183 #define PyBUF_WRITABLE 0x0001
184 /* we used to include an E, backwards compatible alias */
185 #define PyBUF_WRITEABLE PyBUF_WRITABLE
186 #define PyBUF_FORMAT 0x0004
187 #define PyBUF_ND 0x0008
188 #define PyBUF_STRIDES (0x0010 | PyBUF_ND)
189 #define PyBUF_C_CONTIGUOUS (0x0020 | PyBUF_STRIDES)
190 #define PyBUF_F_CONTIGUOUS (0x0040 | PyBUF_STRIDES)
191 #define PyBUF_ANY_CONTIGUOUS (0x0080 | PyBUF_STRIDES)
192 #define PyBUF_INDIRECT (0x0100 | PyBUF_STRIDES)
194 #define PyBUF_CONTIG (PyBUF_ND | PyBUF_WRITABLE)
195 #define PyBUF_CONTIG_RO (PyBUF_ND)
197 #define PyBUF_STRIDED (PyBUF_STRIDES | PyBUF_WRITABLE)
198 #define PyBUF_STRIDED_RO (PyBUF_STRIDES)
200 #define PyBUF_RECORDS (PyBUF_STRIDES | PyBUF_WRITABLE | PyBUF_FORMAT)
201 #define PyBUF_RECORDS_RO (PyBUF_STRIDES | PyBUF_FORMAT)
203 #define PyBUF_FULL (PyBUF_INDIRECT | PyBUF_WRITABLE | PyBUF_FORMAT)
204 #define PyBUF_FULL_RO (PyBUF_INDIRECT | PyBUF_FORMAT)
207 #define PyBUF_READ 0x100
208 #define PyBUF_WRITE 0x200
209 #define PyBUF_SHADOW 0x400
210 /* end Py3k buffer interface */
212 typedef int (*objobjproc)(PyObject *, PyObject *);
213 typedef int (*visitproc)(PyObject *, void *);
214 typedef int (*traverseproc)(PyObject *, visitproc, void *);
216 typedef struct {
217 /* For numbers without flag bit Py_TPFLAGS_CHECKTYPES set, all
218 arguments are guaranteed to be of the object's type (modulo
219 coercion hacks -- i.e. if the type's coercion function
220 returns other types, then these are allowed as well). Numbers that
221 have the Py_TPFLAGS_CHECKTYPES flag bit set should check *both*
222 arguments for proper type and implement the necessary conversions
223 in the slot functions themselves. */
225 binaryfunc nb_add;
226 binaryfunc nb_subtract;
227 binaryfunc nb_multiply;
228 binaryfunc nb_divide;
229 binaryfunc nb_remainder;
230 binaryfunc nb_divmod;
231 ternaryfunc nb_power;
232 unaryfunc nb_negative;
233 unaryfunc nb_positive;
234 unaryfunc nb_absolute;
235 inquiry nb_nonzero;
236 unaryfunc nb_invert;
237 binaryfunc nb_lshift;
238 binaryfunc nb_rshift;
239 binaryfunc nb_and;
240 binaryfunc nb_xor;
241 binaryfunc nb_or;
242 coercion nb_coerce;
243 unaryfunc nb_int;
244 unaryfunc nb_long;
245 unaryfunc nb_float;
246 unaryfunc nb_oct;
247 unaryfunc nb_hex;
248 /* Added in release 2.0 */
249 binaryfunc nb_inplace_add;
250 binaryfunc nb_inplace_subtract;
251 binaryfunc nb_inplace_multiply;
252 binaryfunc nb_inplace_divide;
253 binaryfunc nb_inplace_remainder;
254 ternaryfunc nb_inplace_power;
255 binaryfunc nb_inplace_lshift;
256 binaryfunc nb_inplace_rshift;
257 binaryfunc nb_inplace_and;
258 binaryfunc nb_inplace_xor;
259 binaryfunc nb_inplace_or;
261 /* Added in release 2.2 */
262 /* The following require the Py_TPFLAGS_HAVE_CLASS flag */
263 binaryfunc nb_floor_divide;
264 binaryfunc nb_true_divide;
265 binaryfunc nb_inplace_floor_divide;
266 binaryfunc nb_inplace_true_divide;
268 /* Added in release 2.5 */
269 unaryfunc nb_index;
270 } PyNumberMethods;
272 typedef struct {
273 lenfunc sq_length;
274 binaryfunc sq_concat;
275 ssizeargfunc sq_repeat;
276 ssizeargfunc sq_item;
277 ssizessizeargfunc sq_slice;
278 ssizeobjargproc sq_ass_item;
279 ssizessizeobjargproc sq_ass_slice;
280 objobjproc sq_contains;
281 /* Added in release 2.0 */
282 binaryfunc sq_inplace_concat;
283 ssizeargfunc sq_inplace_repeat;
284 } PySequenceMethods;
286 typedef struct {
287 lenfunc mp_length;
288 binaryfunc mp_subscript;
289 objobjargproc mp_ass_subscript;
290 } PyMappingMethods;
292 typedef struct {
293 readbufferproc bf_getreadbuffer;
294 writebufferproc bf_getwritebuffer;
295 segcountproc bf_getsegcount;
296 charbufferproc bf_getcharbuffer;
297 getbufferproc bf_getbuffer;
298 releasebufferproc bf_releasebuffer;
299 } PyBufferProcs;
302 typedef void (*freefunc)(void *);
303 typedef void (*destructor)(PyObject *);
304 typedef int (*printfunc)(PyObject *, FILE *, int);
305 typedef PyObject *(*getattrfunc)(PyObject *, char *);
306 typedef PyObject *(*getattrofunc)(PyObject *, PyObject *);
307 typedef int (*setattrfunc)(PyObject *, char *, PyObject *);
308 typedef int (*setattrofunc)(PyObject *, PyObject *, PyObject *);
309 typedef int (*cmpfunc)(PyObject *, PyObject *);
310 typedef PyObject *(*reprfunc)(PyObject *);
311 typedef long (*hashfunc)(PyObject *);
312 typedef PyObject *(*richcmpfunc) (PyObject *, PyObject *, int);
313 typedef PyObject *(*getiterfunc) (PyObject *);
314 typedef PyObject *(*iternextfunc) (PyObject *);
315 typedef PyObject *(*descrgetfunc) (PyObject *, PyObject *, PyObject *);
316 typedef int (*descrsetfunc) (PyObject *, PyObject *, PyObject *);
317 typedef int (*initproc)(PyObject *, PyObject *, PyObject *);
318 typedef PyObject *(*newfunc)(struct _typeobject *, PyObject *, PyObject *);
319 typedef PyObject *(*allocfunc)(struct _typeobject *, Py_ssize_t);
321 typedef struct _typeobject {
322 PyObject_VAR_HEAD
323 const char *tp_name; /* For printing, in format "<module>.<name>" */
324 Py_ssize_t tp_basicsize, tp_itemsize; /* For allocation */
326 /* Methods to implement standard operations */
328 destructor tp_dealloc;
329 printfunc tp_print;
330 getattrfunc tp_getattr;
331 setattrfunc tp_setattr;
332 cmpfunc tp_compare;
333 reprfunc tp_repr;
335 /* Method suites for standard classes */
337 PyNumberMethods *tp_as_number;
338 PySequenceMethods *tp_as_sequence;
339 PyMappingMethods *tp_as_mapping;
341 /* More standard operations (here for binary compatibility) */
343 hashfunc tp_hash;
344 ternaryfunc tp_call;
345 reprfunc tp_str;
346 getattrofunc tp_getattro;
347 setattrofunc tp_setattro;
349 /* Functions to access object as input/output buffer */
350 PyBufferProcs *tp_as_buffer;
352 /* Flags to define presence of optional/expanded features */
353 long tp_flags;
355 const char *tp_doc; /* Documentation string */
357 /* Assigned meaning in release 2.0 */
358 /* call function for all accessible objects */
359 traverseproc tp_traverse;
361 /* delete references to contained objects */
362 inquiry tp_clear;
364 /* Assigned meaning in release 2.1 */
365 /* rich comparisons */
366 richcmpfunc tp_richcompare;
368 /* weak reference enabler */
369 Py_ssize_t tp_weaklistoffset;
371 /* Added in release 2.2 */
372 /* Iterators */
373 getiterfunc tp_iter;
374 iternextfunc tp_iternext;
376 /* Attribute descriptor and subclassing stuff */
377 struct PyMethodDef *tp_methods;
378 struct PyMemberDef *tp_members;
379 struct PyGetSetDef *tp_getset;
380 struct _typeobject *tp_base;
381 PyObject *tp_dict;
382 descrgetfunc tp_descr_get;
383 descrsetfunc tp_descr_set;
384 Py_ssize_t tp_dictoffset;
385 initproc tp_init;
386 allocfunc tp_alloc;
387 newfunc tp_new;
388 freefunc tp_free; /* Low-level free-memory routine */
389 inquiry tp_is_gc; /* For PyObject_IS_GC */
390 PyObject *tp_bases;
391 PyObject *tp_mro; /* method resolution order */
392 PyObject *tp_cache;
393 PyObject *tp_subclasses;
394 PyObject *tp_weaklist;
395 destructor tp_del;
397 /* Type attribute cache version tag. Added in version 2.6 */
398 unsigned int tp_version_tag;
400 #ifdef COUNT_ALLOCS
401 /* these must be last and never explicitly initialized */
402 Py_ssize_t tp_allocs;
403 Py_ssize_t tp_frees;
404 Py_ssize_t tp_maxalloc;
405 struct _typeobject *tp_prev;
406 struct _typeobject *tp_next;
407 #endif
408 } PyTypeObject;
411 /* The *real* layout of a type object when allocated on the heap */
412 typedef struct _heaptypeobject {
413 /* Note: there's a dependency on the order of these members
414 in slotptr() in typeobject.c . */
415 PyTypeObject ht_type;
416 PyNumberMethods as_number;
417 PyMappingMethods as_mapping;
418 PySequenceMethods as_sequence; /* as_sequence comes after as_mapping,
419 so that the mapping wins when both
420 the mapping and the sequence define
421 a given operator (e.g. __getitem__).
422 see add_operators() in typeobject.c . */
423 PyBufferProcs as_buffer;
424 PyObject *ht_name, *ht_slots;
425 /* here are optional user slots, followed by the members. */
426 } PyHeapTypeObject;
428 /* access macro to the members which are floating "behind" the object */
429 #define PyHeapType_GET_MEMBERS(etype) \
430 ((PyMemberDef *)(((char *)etype) + Py_TYPE(etype)->tp_basicsize))
433 /* Generic type check */
434 PyAPI_FUNC(int) PyType_IsSubtype(PyTypeObject *, PyTypeObject *);
435 #define PyObject_TypeCheck(ob, tp) \
436 (Py_TYPE(ob) == (tp) || PyType_IsSubtype(Py_TYPE(ob), (tp)))
438 PyAPI_DATA(PyTypeObject) PyType_Type; /* built-in 'type' */
439 PyAPI_DATA(PyTypeObject) PyBaseObject_Type; /* built-in 'object' */
440 PyAPI_DATA(PyTypeObject) PySuper_Type; /* built-in 'super' */
442 #define PyType_Check(op) \
443 PyType_FastSubclass(Py_TYPE(op), Py_TPFLAGS_TYPE_SUBCLASS)
444 #define PyType_CheckExact(op) (Py_TYPE(op) == &PyType_Type)
446 PyAPI_FUNC(int) PyType_Ready(PyTypeObject *);
447 PyAPI_FUNC(PyObject *) PyType_GenericAlloc(PyTypeObject *, Py_ssize_t);
448 PyAPI_FUNC(PyObject *) PyType_GenericNew(PyTypeObject *,
449 PyObject *, PyObject *);
450 PyAPI_FUNC(PyObject *) _PyType_Lookup(PyTypeObject *, PyObject *);
451 PyAPI_FUNC(unsigned int) PyType_ClearCache(void);
452 PyAPI_FUNC(void) PyType_Modified(PyTypeObject *);
454 /* Generic operations on objects */
455 PyAPI_FUNC(int) PyObject_Print(PyObject *, FILE *, int);
456 PyAPI_FUNC(void) _PyObject_Dump(PyObject *);
457 PyAPI_FUNC(PyObject *) PyObject_Repr(PyObject *);
458 PyAPI_FUNC(PyObject *) _PyObject_Str(PyObject *);
459 PyAPI_FUNC(PyObject *) PyObject_Str(PyObject *);
460 #ifdef Py_USING_UNICODE
461 PyAPI_FUNC(PyObject *) PyObject_Unicode(PyObject *);
462 #endif
463 PyAPI_FUNC(int) PyObject_Compare(PyObject *, PyObject *);
464 PyAPI_FUNC(PyObject *) PyObject_RichCompare(PyObject *, PyObject *, int);
465 PyAPI_FUNC(int) PyObject_RichCompareBool(PyObject *, PyObject *, int);
466 PyAPI_FUNC(PyObject *) PyObject_GetAttrString(PyObject *, const char *);
467 PyAPI_FUNC(int) PyObject_SetAttrString(PyObject *, const char *, PyObject *);
468 PyAPI_FUNC(int) PyObject_HasAttrString(PyObject *, const char *);
469 PyAPI_FUNC(PyObject *) PyObject_GetAttr(PyObject *, PyObject *);
470 PyAPI_FUNC(int) PyObject_SetAttr(PyObject *, PyObject *, PyObject *);
471 PyAPI_FUNC(int) PyObject_HasAttr(PyObject *, PyObject *);
472 PyAPI_FUNC(PyObject **) _PyObject_GetDictPtr(PyObject *);
473 PyAPI_FUNC(PyObject *) PyObject_SelfIter(PyObject *);
474 PyAPI_FUNC(PyObject *) PyObject_GenericGetAttr(PyObject *, PyObject *);
475 PyAPI_FUNC(int) PyObject_GenericSetAttr(PyObject *,
476 PyObject *, PyObject *);
477 PyAPI_FUNC(long) PyObject_Hash(PyObject *);
478 PyAPI_FUNC(long) PyObject_HashNotImplemented(PyObject *);
479 PyAPI_FUNC(int) PyObject_IsTrue(PyObject *);
480 PyAPI_FUNC(int) PyObject_Not(PyObject *);
481 PyAPI_FUNC(int) PyCallable_Check(PyObject *);
482 PyAPI_FUNC(int) PyNumber_Coerce(PyObject **, PyObject **);
483 PyAPI_FUNC(int) PyNumber_CoerceEx(PyObject **, PyObject **);
485 PyAPI_FUNC(void) PyObject_ClearWeakRefs(PyObject *);
487 /* A slot function whose address we need to compare */
488 extern int _PyObject_SlotCompare(PyObject *, PyObject *);
491 /* PyObject_Dir(obj) acts like Python __builtin__.dir(obj), returning a
492 list of strings. PyObject_Dir(NULL) is like __builtin__.dir(),
493 returning the names of the current locals. In this case, if there are
494 no current locals, NULL is returned, and PyErr_Occurred() is false.
496 PyAPI_FUNC(PyObject *) PyObject_Dir(PyObject *);
499 /* Helpers for printing recursive container types */
500 PyAPI_FUNC(int) Py_ReprEnter(PyObject *);
501 PyAPI_FUNC(void) Py_ReprLeave(PyObject *);
503 /* Helpers for hash functions */
504 PyAPI_FUNC(long) _Py_HashDouble(double);
505 PyAPI_FUNC(long) _Py_HashPointer(void*);
507 /* Helper for passing objects to printf and the like */
508 #define PyObject_REPR(obj) PyString_AS_STRING(PyObject_Repr(obj))
510 /* Flag bits for printing: */
511 #define Py_PRINT_RAW 1 /* No string quotes etc. */
514 `Type flags (tp_flags)
516 These flags are used to extend the type structure in a backwards-compatible
517 fashion. Extensions can use the flags to indicate (and test) when a given
518 type structure contains a new feature. The Python core will use these when
519 introducing new functionality between major revisions (to avoid mid-version
520 changes in the PYTHON_API_VERSION).
522 Arbitration of the flag bit positions will need to be coordinated among
523 all extension writers who publically release their extensions (this will
524 be fewer than you might expect!)..
526 Python 1.5.2 introduced the bf_getcharbuffer slot into PyBufferProcs.
528 Type definitions should use Py_TPFLAGS_DEFAULT for their tp_flags value.
530 Code can use PyType_HasFeature(type_ob, flag_value) to test whether the
531 given type object has a specified feature.
534 /* PyBufferProcs contains bf_getcharbuffer */
535 #define Py_TPFLAGS_HAVE_GETCHARBUFFER (1L<<0)
537 /* PySequenceMethods contains sq_contains */
538 #define Py_TPFLAGS_HAVE_SEQUENCE_IN (1L<<1)
540 /* This is here for backwards compatibility. Extensions that use the old GC
541 * API will still compile but the objects will not be tracked by the GC. */
542 #define Py_TPFLAGS_GC 0 /* used to be (1L<<2) */
544 /* PySequenceMethods and PyNumberMethods contain in-place operators */
545 #define Py_TPFLAGS_HAVE_INPLACEOPS (1L<<3)
547 /* PyNumberMethods do their own coercion */
548 #define Py_TPFLAGS_CHECKTYPES (1L<<4)
550 /* tp_richcompare is defined */
551 #define Py_TPFLAGS_HAVE_RICHCOMPARE (1L<<5)
553 /* Objects which are weakly referencable if their tp_weaklistoffset is >0 */
554 #define Py_TPFLAGS_HAVE_WEAKREFS (1L<<6)
556 /* tp_iter is defined */
557 #define Py_TPFLAGS_HAVE_ITER (1L<<7)
559 /* New members introduced by Python 2.2 exist */
560 #define Py_TPFLAGS_HAVE_CLASS (1L<<8)
562 /* Set if the type object is dynamically allocated */
563 #define Py_TPFLAGS_HEAPTYPE (1L<<9)
565 /* Set if the type allows subclassing */
566 #define Py_TPFLAGS_BASETYPE (1L<<10)
568 /* Set if the type is 'ready' -- fully initialized */
569 #define Py_TPFLAGS_READY (1L<<12)
571 /* Set while the type is being 'readied', to prevent recursive ready calls */
572 #define Py_TPFLAGS_READYING (1L<<13)
574 /* Objects support garbage collection (see objimp.h) */
575 #define Py_TPFLAGS_HAVE_GC (1L<<14)
577 /* These two bits are preserved for Stackless Python, next after this is 17 */
578 #ifdef STACKLESS
579 #define Py_TPFLAGS_HAVE_STACKLESS_EXTENSION (3L<<15)
580 #else
581 #define Py_TPFLAGS_HAVE_STACKLESS_EXTENSION 0
582 #endif
584 /* Objects support nb_index in PyNumberMethods */
585 #define Py_TPFLAGS_HAVE_INDEX (1L<<17)
587 /* Objects support type attribute cache */
588 #define Py_TPFLAGS_HAVE_VERSION_TAG (1L<<18)
589 #define Py_TPFLAGS_VALID_VERSION_TAG (1L<<19)
591 /* Type is abstract and cannot be instantiated */
592 #define Py_TPFLAGS_IS_ABSTRACT (1L<<20)
594 /* Has the new buffer protocol */
595 #define Py_TPFLAGS_HAVE_NEWBUFFER (1L<<21)
597 /* These flags are used to determine if a type is a subclass. */
598 #define Py_TPFLAGS_INT_SUBCLASS (1L<<23)
599 #define Py_TPFLAGS_LONG_SUBCLASS (1L<<24)
600 #define Py_TPFLAGS_LIST_SUBCLASS (1L<<25)
601 #define Py_TPFLAGS_TUPLE_SUBCLASS (1L<<26)
602 #define Py_TPFLAGS_STRING_SUBCLASS (1L<<27)
603 #define Py_TPFLAGS_UNICODE_SUBCLASS (1L<<28)
604 #define Py_TPFLAGS_DICT_SUBCLASS (1L<<29)
605 #define Py_TPFLAGS_BASE_EXC_SUBCLASS (1L<<30)
606 #define Py_TPFLAGS_TYPE_SUBCLASS (1L<<31)
608 #define Py_TPFLAGS_DEFAULT ( \
609 Py_TPFLAGS_HAVE_GETCHARBUFFER | \
610 Py_TPFLAGS_HAVE_SEQUENCE_IN | \
611 Py_TPFLAGS_HAVE_INPLACEOPS | \
612 Py_TPFLAGS_HAVE_RICHCOMPARE | \
613 Py_TPFLAGS_HAVE_WEAKREFS | \
614 Py_TPFLAGS_HAVE_ITER | \
615 Py_TPFLAGS_HAVE_CLASS | \
616 Py_TPFLAGS_HAVE_STACKLESS_EXTENSION | \
617 Py_TPFLAGS_HAVE_INDEX | \
618 Py_TPFLAGS_HAVE_VERSION_TAG | \
621 #define PyType_HasFeature(t,f) (((t)->tp_flags & (f)) != 0)
622 #define PyType_FastSubclass(t,f) PyType_HasFeature(t,f)
626 The macros Py_INCREF(op) and Py_DECREF(op) are used to increment or decrement
627 reference counts. Py_DECREF calls the object's deallocator function when
628 the refcount falls to 0; for
629 objects that don't contain references to other objects or heap memory
630 this can be the standard function free(). Both macros can be used
631 wherever a void expression is allowed. The argument must not be a
632 NULL pointer. If it may be NULL, use Py_XINCREF/Py_XDECREF instead.
633 The macro _Py_NewReference(op) initialize reference counts to 1, and
634 in special builds (Py_REF_DEBUG, Py_TRACE_REFS) performs additional
635 bookkeeping appropriate to the special build.
637 We assume that the reference count field can never overflow; this can
638 be proven when the size of the field is the same as the pointer size, so
639 we ignore the possibility. Provided a C int is at least 32 bits (which
640 is implicitly assumed in many parts of this code), that's enough for
641 about 2**31 references to an object.
643 XXX The following became out of date in Python 2.2, but I'm not sure
644 XXX what the full truth is now. Certainly, heap-allocated type objects
645 XXX can and should be deallocated.
646 Type objects should never be deallocated; the type pointer in an object
647 is not considered to be a reference to the type object, to save
648 complications in the deallocation function. (This is actually a
649 decision that's up to the implementer of each new type so if you want,
650 you can count such references to the type object.)
652 *** WARNING*** The Py_DECREF macro must have a side-effect-free argument
653 since it may evaluate its argument multiple times. (The alternative
654 would be to mace it a proper function or assign it to a global temporary
655 variable first, both of which are slower; and in a multi-threaded
656 environment the global variable trick is not safe.)
659 /* First define a pile of simple helper macros, one set per special
660 * build symbol. These either expand to the obvious things, or to
661 * nothing at all when the special mode isn't in effect. The main
662 * macros can later be defined just once then, yet expand to different
663 * things depending on which special build options are and aren't in effect.
664 * Trust me <wink>: while painful, this is 20x easier to understand than,
665 * e.g, defining _Py_NewReference five different times in a maze of nested
666 * #ifdefs (we used to do that -- it was impenetrable).
668 #ifdef Py_REF_DEBUG
669 PyAPI_DATA(Py_ssize_t) _Py_RefTotal;
670 PyAPI_FUNC(void) _Py_NegativeRefcount(const char *fname,
671 int lineno, PyObject *op);
672 PyAPI_FUNC(PyObject *) _PyDict_Dummy(void);
673 PyAPI_FUNC(PyObject *) _PySet_Dummy(void);
674 PyAPI_FUNC(Py_ssize_t) _Py_GetRefTotal(void);
675 #define _Py_INC_REFTOTAL _Py_RefTotal++
676 #define _Py_DEC_REFTOTAL _Py_RefTotal--
677 #define _Py_REF_DEBUG_COMMA ,
678 #define _Py_CHECK_REFCNT(OP) \
679 { if (((PyObject*)OP)->ob_refcnt < 0) \
680 _Py_NegativeRefcount(__FILE__, __LINE__, \
681 (PyObject *)(OP)); \
683 #else
684 #define _Py_INC_REFTOTAL
685 #define _Py_DEC_REFTOTAL
686 #define _Py_REF_DEBUG_COMMA
687 #define _Py_CHECK_REFCNT(OP) /* a semicolon */;
688 #endif /* Py_REF_DEBUG */
690 #ifdef COUNT_ALLOCS
691 PyAPI_FUNC(void) inc_count(PyTypeObject *);
692 PyAPI_FUNC(void) dec_count(PyTypeObject *);
693 #define _Py_INC_TPALLOCS(OP) inc_count(Py_TYPE(OP))
694 #define _Py_INC_TPFREES(OP) dec_count(Py_TYPE(OP))
695 #define _Py_DEC_TPFREES(OP) Py_TYPE(OP)->tp_frees--
696 #define _Py_COUNT_ALLOCS_COMMA ,
697 #else
698 #define _Py_INC_TPALLOCS(OP)
699 #define _Py_INC_TPFREES(OP)
700 #define _Py_DEC_TPFREES(OP)
701 #define _Py_COUNT_ALLOCS_COMMA
702 #endif /* COUNT_ALLOCS */
704 #ifdef Py_TRACE_REFS
705 /* Py_TRACE_REFS is such major surgery that we call external routines. */
706 PyAPI_FUNC(void) _Py_NewReference(PyObject *);
707 PyAPI_FUNC(void) _Py_ForgetReference(PyObject *);
708 PyAPI_FUNC(void) _Py_Dealloc(PyObject *);
709 PyAPI_FUNC(void) _Py_PrintReferences(FILE *);
710 PyAPI_FUNC(void) _Py_PrintReferenceAddresses(FILE *);
711 PyAPI_FUNC(void) _Py_AddToAllObjects(PyObject *, int force);
713 #else
714 /* Without Py_TRACE_REFS, there's little enough to do that we expand code
715 * inline.
717 #define _Py_NewReference(op) ( \
718 _Py_INC_TPALLOCS(op) _Py_COUNT_ALLOCS_COMMA \
719 _Py_INC_REFTOTAL _Py_REF_DEBUG_COMMA \
720 Py_REFCNT(op) = 1)
722 #define _Py_ForgetReference(op) _Py_INC_TPFREES(op)
724 #define _Py_Dealloc(op) ( \
725 _Py_INC_TPFREES(op) _Py_COUNT_ALLOCS_COMMA \
726 (*Py_TYPE(op)->tp_dealloc)((PyObject *)(op)))
727 #endif /* !Py_TRACE_REFS */
729 #define Py_INCREF(op) ( \
730 _Py_INC_REFTOTAL _Py_REF_DEBUG_COMMA \
731 ((PyObject*)(op))->ob_refcnt++)
733 #define Py_DECREF(op) \
734 if (_Py_DEC_REFTOTAL _Py_REF_DEBUG_COMMA \
735 --((PyObject*)(op))->ob_refcnt != 0) \
736 _Py_CHECK_REFCNT(op) \
737 else \
738 _Py_Dealloc((PyObject *)(op))
740 /* Safely decref `op` and set `op` to NULL, especially useful in tp_clear
741 * and tp_dealloc implementatons.
743 * Note that "the obvious" code can be deadly:
745 * Py_XDECREF(op);
746 * op = NULL;
748 * Typically, `op` is something like self->containee, and `self` is done
749 * using its `containee` member. In the code sequence above, suppose
750 * `containee` is non-NULL with a refcount of 1. Its refcount falls to
751 * 0 on the first line, which can trigger an arbitrary amount of code,
752 * possibly including finalizers (like __del__ methods or weakref callbacks)
753 * coded in Python, which in turn can release the GIL and allow other threads
754 * to run, etc. Such code may even invoke methods of `self` again, or cause
755 * cyclic gc to trigger, but-- oops! --self->containee still points to the
756 * object being torn down, and it may be in an insane state while being torn
757 * down. This has in fact been a rich historic source of miserable (rare &
758 * hard-to-diagnose) segfaulting (and other) bugs.
760 * The safe way is:
762 * Py_CLEAR(op);
764 * That arranges to set `op` to NULL _before_ decref'ing, so that any code
765 * triggered as a side-effect of `op` getting torn down no longer believes
766 * `op` points to a valid object.
768 * There are cases where it's safe to use the naive code, but they're brittle.
769 * For example, if `op` points to a Python integer, you know that destroying
770 * one of those can't cause problems -- but in part that relies on that
771 * Python integers aren't currently weakly referencable. Best practice is
772 * to use Py_CLEAR() even if you can't think of a reason for why you need to.
774 #define Py_CLEAR(op) \
775 do { \
776 if (op) { \
777 PyObject *_py_tmp = (PyObject *)(op); \
778 (op) = NULL; \
779 Py_DECREF(_py_tmp); \
781 } while (0)
783 /* Macros to use in case the object pointer may be NULL: */
784 #define Py_XINCREF(op) if ((op) == NULL) ; else Py_INCREF(op)
785 #define Py_XDECREF(op) if ((op) == NULL) ; else Py_DECREF(op)
788 These are provided as conveniences to Python runtime embedders, so that
789 they can have object code that is not dependent on Python compilation flags.
791 PyAPI_FUNC(void) Py_IncRef(PyObject *);
792 PyAPI_FUNC(void) Py_DecRef(PyObject *);
795 _Py_NoneStruct is an object of undefined type which can be used in contexts
796 where NULL (nil) is not suitable (since NULL often means 'error').
798 Don't forget to apply Py_INCREF() when returning this value!!!
800 PyAPI_DATA(PyObject) _Py_NoneStruct; /* Don't use this directly */
801 #define Py_None (&_Py_NoneStruct)
803 /* Macro for returning Py_None from a function */
804 #define Py_RETURN_NONE return Py_INCREF(Py_None), Py_None
807 Py_NotImplemented is a singleton used to signal that an operation is
808 not implemented for a given type combination.
810 PyAPI_DATA(PyObject) _Py_NotImplementedStruct; /* Don't use this directly */
811 #define Py_NotImplemented (&_Py_NotImplementedStruct)
813 /* Rich comparison opcodes */
814 #define Py_LT 0
815 #define Py_LE 1
816 #define Py_EQ 2
817 #define Py_NE 3
818 #define Py_GT 4
819 #define Py_GE 5
821 /* Maps Py_LT to Py_GT, ..., Py_GE to Py_LE.
822 * Defined in object.c.
824 PyAPI_DATA(int) _Py_SwappedOp[];
827 Define staticforward and statichere for source compatibility with old
828 C extensions.
830 The staticforward define was needed to support certain broken C
831 compilers (notably SCO ODT 3.0, perhaps early AIX as well) botched the
832 static keyword when it was used with a forward declaration of a static
833 initialized structure. Standard C allows the forward declaration with
834 static, and we've decided to stop catering to broken C compilers.
835 (In fact, we expect that the compilers are all fixed eight years later.)
838 #define staticforward static
839 #define statichere static
843 More conventions
844 ================
846 Argument Checking
847 -----------------
849 Functions that take objects as arguments normally don't check for nil
850 arguments, but they do check the type of the argument, and return an
851 error if the function doesn't apply to the type.
853 Failure Modes
854 -------------
856 Functions may fail for a variety of reasons, including running out of
857 memory. This is communicated to the caller in two ways: an error string
858 is set (see errors.h), and the function result differs: functions that
859 normally return a pointer return NULL for failure, functions returning
860 an integer return -1 (which could be a legal return value too!), and
861 other functions return 0 for success and -1 for failure.
862 Callers should always check for errors before using the result. If
863 an error was set, the caller must either explicitly clear it, or pass
864 the error on to its caller.
866 Reference Counts
867 ----------------
869 It takes a while to get used to the proper usage of reference counts.
871 Functions that create an object set the reference count to 1; such new
872 objects must be stored somewhere or destroyed again with Py_DECREF().
873 Some functions that 'store' objects, such as PyTuple_SetItem() and
874 PyList_SetItem(),
875 don't increment the reference count of the object, since the most
876 frequent use is to store a fresh object. Functions that 'retrieve'
877 objects, such as PyTuple_GetItem() and PyDict_GetItemString(), also
878 don't increment
879 the reference count, since most frequently the object is only looked at
880 quickly. Thus, to retrieve an object and store it again, the caller
881 must call Py_INCREF() explicitly.
883 NOTE: functions that 'consume' a reference count, like
884 PyList_SetItem(), consume the reference even if the object wasn't
885 successfully stored, to simplify error handling.
887 It seems attractive to make other functions that take an object as
888 argument consume a reference count; however, this may quickly get
889 confusing (even the current practice is already confusing). Consider
890 it carefully, it may save lots of calls to Py_INCREF() and Py_DECREF() at
891 times.
895 /* Trashcan mechanism, thanks to Christian Tismer.
897 When deallocating a container object, it's possible to trigger an unbounded
898 chain of deallocations, as each Py_DECREF in turn drops the refcount on "the
899 next" object in the chain to 0. This can easily lead to stack faults, and
900 especially in threads (which typically have less stack space to work with).
902 A container object that participates in cyclic gc can avoid this by
903 bracketing the body of its tp_dealloc function with a pair of macros:
905 static void
906 mytype_dealloc(mytype *p)
908 ... declarations go here ...
910 PyObject_GC_UnTrack(p); // must untrack first
911 Py_TRASHCAN_SAFE_BEGIN(p)
912 ... The body of the deallocator goes here, including all calls ...
913 ... to Py_DECREF on contained objects. ...
914 Py_TRASHCAN_SAFE_END(p)
917 CAUTION: Never return from the middle of the body! If the body needs to
918 "get out early", put a label immediately before the Py_TRASHCAN_SAFE_END
919 call, and goto it. Else the call-depth counter (see below) will stay
920 above 0 forever, and the trashcan will never get emptied.
922 How it works: The BEGIN macro increments a call-depth counter. So long
923 as this counter is small, the body of the deallocator is run directly without
924 further ado. But if the counter gets large, it instead adds p to a list of
925 objects to be deallocated later, skips the body of the deallocator, and
926 resumes execution after the END macro. The tp_dealloc routine then returns
927 without deallocating anything (and so unbounded call-stack depth is avoided).
929 When the call stack finishes unwinding again, code generated by the END macro
930 notices this, and calls another routine to deallocate all the objects that
931 may have been added to the list of deferred deallocations. In effect, a
932 chain of N deallocations is broken into N / PyTrash_UNWIND_LEVEL pieces,
933 with the call stack never exceeding a depth of PyTrash_UNWIND_LEVEL.
936 PyAPI_FUNC(void) _PyTrash_deposit_object(PyObject*);
937 PyAPI_FUNC(void) _PyTrash_destroy_chain(void);
938 PyAPI_DATA(int) _PyTrash_delete_nesting;
939 PyAPI_DATA(PyObject *) _PyTrash_delete_later;
941 #define PyTrash_UNWIND_LEVEL 50
943 #define Py_TRASHCAN_SAFE_BEGIN(op) \
944 if (_PyTrash_delete_nesting < PyTrash_UNWIND_LEVEL) { \
945 ++_PyTrash_delete_nesting;
946 /* The body of the deallocator is here. */
947 #define Py_TRASHCAN_SAFE_END(op) \
948 --_PyTrash_delete_nesting; \
949 if (_PyTrash_delete_later && _PyTrash_delete_nesting <= 0) \
950 _PyTrash_destroy_chain(); \
952 else \
953 _PyTrash_deposit_object((PyObject*)op);
955 #ifdef __cplusplus
957 #endif
958 #endif /* !Py_OBJECT_H */