Clarify that the rect, phase and polar functions work with radians.
[python.git] / Objects / floatobject.c
blobd93d9f931ff1d804801dde4a718ddc55726dc2fa
2 /* Float object implementation */
4 /* XXX There should be overflow checks here, but it's hard to check
5 for any kind of float exception without losing portability. */
7 #include "Python.h"
8 #include "structseq.h"
10 #include <ctype.h>
11 #include <float.h>
13 #undef MAX
14 #undef MIN
15 #define MAX(x, y) ((x) < (y) ? (y) : (x))
16 #define MIN(x, y) ((x) < (y) ? (x) : (y))
18 #ifdef _OSF_SOURCE
19 /* OSF1 5.1 doesn't make this available with XOPEN_SOURCE_EXTENDED defined */
20 extern int finite(double);
21 #endif
23 /* Special free list -- see comments for same code in intobject.c. */
24 #define BLOCK_SIZE 1000 /* 1K less typical malloc overhead */
25 #define BHEAD_SIZE 8 /* Enough for a 64-bit pointer */
26 #define N_FLOATOBJECTS ((BLOCK_SIZE - BHEAD_SIZE) / sizeof(PyFloatObject))
28 struct _floatblock {
29 struct _floatblock *next;
30 PyFloatObject objects[N_FLOATOBJECTS];
33 typedef struct _floatblock PyFloatBlock;
35 static PyFloatBlock *block_list = NULL;
36 static PyFloatObject *free_list = NULL;
38 static PyFloatObject *
39 fill_free_list(void)
41 PyFloatObject *p, *q;
42 /* XXX Float blocks escape the object heap. Use PyObject_MALLOC ??? */
43 p = (PyFloatObject *) PyMem_MALLOC(sizeof(PyFloatBlock));
44 if (p == NULL)
45 return (PyFloatObject *) PyErr_NoMemory();
46 ((PyFloatBlock *)p)->next = block_list;
47 block_list = (PyFloatBlock *)p;
48 p = &((PyFloatBlock *)p)->objects[0];
49 q = p + N_FLOATOBJECTS;
50 while (--q > p)
51 Py_TYPE(q) = (struct _typeobject *)(q-1);
52 Py_TYPE(q) = NULL;
53 return p + N_FLOATOBJECTS - 1;
56 double
57 PyFloat_GetMax(void)
59 return DBL_MAX;
62 double
63 PyFloat_GetMin(void)
65 return DBL_MIN;
68 static PyTypeObject FloatInfoType = {0, 0, 0, 0, 0, 0};
70 PyDoc_STRVAR(floatinfo__doc__,
71 "sys.float_info\n\
72 \n\
73 A structseq holding information about the float type. It contains low level\n\
74 information about the precision and internal representation. Please study\n\
75 your system's :file:`float.h` for more information.");
77 static PyStructSequence_Field floatinfo_fields[] = {
78 {"max", "DBL_MAX -- maximum representable finite float"},
79 {"max_exp", "DBL_MAX_EXP -- maximum int e such that radix**(e-1) "
80 "is representable"},
81 {"max_10_exp", "DBL_MAX_10_EXP -- maximum int e such that 10**e "
82 "is representable"},
83 {"min", "DBL_MIN -- Minimum positive normalizer float"},
84 {"min_exp", "DBL_MIN_EXP -- minimum int e such that radix**(e-1) "
85 "is a normalized float"},
86 {"min_10_exp", "DBL_MIN_10_EXP -- minimum int e such that 10**e is "
87 "a normalized"},
88 {"dig", "DBL_DIG -- digits"},
89 {"mant_dig", "DBL_MANT_DIG -- mantissa digits"},
90 {"epsilon", "DBL_EPSILON -- Difference between 1 and the next "
91 "representable float"},
92 {"radix", "FLT_RADIX -- radix of exponent"},
93 {"rounds", "FLT_ROUNDS -- addition rounds"},
94 {0}
97 static PyStructSequence_Desc floatinfo_desc = {
98 "sys.float_info", /* name */
99 floatinfo__doc__, /* doc */
100 floatinfo_fields, /* fields */
104 PyObject *
105 PyFloat_GetInfo(void)
107 PyObject* floatinfo;
108 int pos = 0;
110 floatinfo = PyStructSequence_New(&FloatInfoType);
111 if (floatinfo == NULL) {
112 return NULL;
115 #define SetIntFlag(flag) \
116 PyStructSequence_SET_ITEM(floatinfo, pos++, PyInt_FromLong(flag))
117 #define SetDblFlag(flag) \
118 PyStructSequence_SET_ITEM(floatinfo, pos++, PyFloat_FromDouble(flag))
120 SetDblFlag(DBL_MAX);
121 SetIntFlag(DBL_MAX_EXP);
122 SetIntFlag(DBL_MAX_10_EXP);
123 SetDblFlag(DBL_MIN);
124 SetIntFlag(DBL_MIN_EXP);
125 SetIntFlag(DBL_MIN_10_EXP);
126 SetIntFlag(DBL_DIG);
127 SetIntFlag(DBL_MANT_DIG);
128 SetDblFlag(DBL_EPSILON);
129 SetIntFlag(FLT_RADIX);
130 SetIntFlag(FLT_ROUNDS);
131 #undef SetIntFlag
132 #undef SetDblFlag
134 if (PyErr_Occurred()) {
135 Py_CLEAR(floatinfo);
136 return NULL;
138 return floatinfo;
141 PyObject *
142 PyFloat_FromDouble(double fval)
144 register PyFloatObject *op;
145 if (free_list == NULL) {
146 if ((free_list = fill_free_list()) == NULL)
147 return NULL;
149 /* Inline PyObject_New */
150 op = free_list;
151 free_list = (PyFloatObject *)Py_TYPE(op);
152 PyObject_INIT(op, &PyFloat_Type);
153 op->ob_fval = fval;
154 return (PyObject *) op;
157 /**************************************************************************
158 RED_FLAG 22-Sep-2000 tim
159 PyFloat_FromString's pend argument is braindead. Prior to this RED_FLAG,
161 1. If v was a regular string, *pend was set to point to its terminating
162 null byte. That's useless (the caller can find that without any
163 help from this function!).
165 2. If v was a Unicode string, or an object convertible to a character
166 buffer, *pend was set to point into stack trash (the auto temp
167 vector holding the character buffer). That was downright dangerous.
169 Since we can't change the interface of a public API function, pend is
170 still supported but now *officially* useless: if pend is not NULL,
171 *pend is set to NULL.
172 **************************************************************************/
173 PyObject *
174 PyFloat_FromString(PyObject *v, char **pend)
176 const char *s, *last, *end;
177 double x;
178 char buffer[256]; /* for errors */
179 #ifdef Py_USING_UNICODE
180 char *s_buffer = NULL;
181 #endif
182 Py_ssize_t len;
183 PyObject *result = NULL;
185 if (pend)
186 *pend = NULL;
187 if (PyString_Check(v)) {
188 s = PyString_AS_STRING(v);
189 len = PyString_GET_SIZE(v);
191 #ifdef Py_USING_UNICODE
192 else if (PyUnicode_Check(v)) {
193 s_buffer = (char *)PyMem_MALLOC(PyUnicode_GET_SIZE(v)+1);
194 if (s_buffer == NULL)
195 return PyErr_NoMemory();
196 if (PyUnicode_EncodeDecimal(PyUnicode_AS_UNICODE(v),
197 PyUnicode_GET_SIZE(v),
198 s_buffer,
199 NULL))
200 goto error;
201 s = s_buffer;
202 len = strlen(s);
204 #endif
205 else if (PyObject_AsCharBuffer(v, &s, &len)) {
206 PyErr_SetString(PyExc_TypeError,
207 "float() argument must be a string or a number");
208 return NULL;
210 last = s + len;
212 while (Py_ISSPACE(*s))
213 s++;
214 /* We don't care about overflow or underflow. If the platform
215 * supports them, infinities and signed zeroes (on underflow) are
216 * fine. */
217 x = PyOS_string_to_double(s, (char **)&end, NULL);
218 if (x == -1.0 && PyErr_Occurred())
219 goto error;
220 while (Py_ISSPACE(*end))
221 end++;
222 if (end == last)
223 result = PyFloat_FromDouble(x);
224 else {
225 PyOS_snprintf(buffer, sizeof(buffer),
226 "invalid literal for float(): %.200s", s);
227 PyErr_SetString(PyExc_ValueError, buffer);
228 result = NULL;
231 error:
232 #ifdef Py_USING_UNICODE
233 if (s_buffer)
234 PyMem_FREE(s_buffer);
235 #endif
236 return result;
239 static void
240 float_dealloc(PyFloatObject *op)
242 if (PyFloat_CheckExact(op)) {
243 Py_TYPE(op) = (struct _typeobject *)free_list;
244 free_list = op;
246 else
247 Py_TYPE(op)->tp_free((PyObject *)op);
250 double
251 PyFloat_AsDouble(PyObject *op)
253 PyNumberMethods *nb;
254 PyFloatObject *fo;
255 double val;
257 if (op && PyFloat_Check(op))
258 return PyFloat_AS_DOUBLE((PyFloatObject*) op);
260 if (op == NULL) {
261 PyErr_BadArgument();
262 return -1;
265 if ((nb = Py_TYPE(op)->tp_as_number) == NULL || nb->nb_float == NULL) {
266 PyErr_SetString(PyExc_TypeError, "a float is required");
267 return -1;
270 fo = (PyFloatObject*) (*nb->nb_float) (op);
271 if (fo == NULL)
272 return -1;
273 if (!PyFloat_Check(fo)) {
274 PyErr_SetString(PyExc_TypeError,
275 "nb_float should return float object");
276 return -1;
279 val = PyFloat_AS_DOUBLE(fo);
280 Py_DECREF(fo);
282 return val;
285 /* Methods */
287 /* Macro and helper that convert PyObject obj to a C double and store
288 the value in dbl; this replaces the functionality of the coercion
289 slot function. If conversion to double raises an exception, obj is
290 set to NULL, and the function invoking this macro returns NULL. If
291 obj is not of float, int or long type, Py_NotImplemented is incref'ed,
292 stored in obj, and returned from the function invoking this macro.
294 #define CONVERT_TO_DOUBLE(obj, dbl) \
295 if (PyFloat_Check(obj)) \
296 dbl = PyFloat_AS_DOUBLE(obj); \
297 else if (convert_to_double(&(obj), &(dbl)) < 0) \
298 return obj;
300 static int
301 convert_to_double(PyObject **v, double *dbl)
303 register PyObject *obj = *v;
305 if (PyInt_Check(obj)) {
306 *dbl = (double)PyInt_AS_LONG(obj);
308 else if (PyLong_Check(obj)) {
309 *dbl = PyLong_AsDouble(obj);
310 if (*dbl == -1.0 && PyErr_Occurred()) {
311 *v = NULL;
312 return -1;
315 else {
316 Py_INCREF(Py_NotImplemented);
317 *v = Py_NotImplemented;
318 return -1;
320 return 0;
323 /* XXX PyFloat_AsString and PyFloat_AsReprString are deprecated:
324 XXX they pass a char buffer without passing a length.
326 void
327 PyFloat_AsString(char *buf, PyFloatObject *v)
329 char *tmp = PyOS_double_to_string(v->ob_fval, 'g',
330 PyFloat_STR_PRECISION,
331 Py_DTSF_ADD_DOT_0, NULL);
332 strcpy(buf, tmp);
333 PyMem_Free(tmp);
336 void
337 PyFloat_AsReprString(char *buf, PyFloatObject *v)
339 char * tmp = PyOS_double_to_string(v->ob_fval, 'r', 0,
340 Py_DTSF_ADD_DOT_0, NULL);
341 strcpy(buf, tmp);
342 PyMem_Free(tmp);
345 /* ARGSUSED */
346 static int
347 float_print(PyFloatObject *v, FILE *fp, int flags)
349 char *buf;
350 if (flags & Py_PRINT_RAW)
351 buf = PyOS_double_to_string(v->ob_fval,
352 'g', PyFloat_STR_PRECISION,
353 Py_DTSF_ADD_DOT_0, NULL);
354 else
355 buf = PyOS_double_to_string(v->ob_fval,
356 'r', 0, Py_DTSF_ADD_DOT_0, NULL);
357 Py_BEGIN_ALLOW_THREADS
358 fputs(buf, fp);
359 Py_END_ALLOW_THREADS
360 PyMem_Free(buf);
361 return 0;
364 static PyObject *
365 float_str_or_repr(PyFloatObject *v, int precision, char format_code)
367 PyObject *result;
368 char *buf = PyOS_double_to_string(PyFloat_AS_DOUBLE(v),
369 format_code, precision,
370 Py_DTSF_ADD_DOT_0,
371 NULL);
372 if (!buf)
373 return PyErr_NoMemory();
374 result = PyString_FromString(buf);
375 PyMem_Free(buf);
376 return result;
379 static PyObject *
380 float_repr(PyFloatObject *v)
382 return float_str_or_repr(v, 0, 'r');
385 static PyObject *
386 float_str(PyFloatObject *v)
388 return float_str_or_repr(v, PyFloat_STR_PRECISION, 'g');
391 /* Comparison is pretty much a nightmare. When comparing float to float,
392 * we do it as straightforwardly (and long-windedly) as conceivable, so
393 * that, e.g., Python x == y delivers the same result as the platform
394 * C x == y when x and/or y is a NaN.
395 * When mixing float with an integer type, there's no good *uniform* approach.
396 * Converting the double to an integer obviously doesn't work, since we
397 * may lose info from fractional bits. Converting the integer to a double
398 * also has two failure modes: (1) a long int may trigger overflow (too
399 * large to fit in the dynamic range of a C double); (2) even a C long may have
400 * more bits than fit in a C double (e.g., on a a 64-bit box long may have
401 * 63 bits of precision, but a C double probably has only 53), and then
402 * we can falsely claim equality when low-order integer bits are lost by
403 * coercion to double. So this part is painful too.
406 static PyObject*
407 float_richcompare(PyObject *v, PyObject *w, int op)
409 double i, j;
410 int r = 0;
412 assert(PyFloat_Check(v));
413 i = PyFloat_AS_DOUBLE(v);
415 /* Switch on the type of w. Set i and j to doubles to be compared,
416 * and op to the richcomp to use.
418 if (PyFloat_Check(w))
419 j = PyFloat_AS_DOUBLE(w);
421 else if (!Py_IS_FINITE(i)) {
422 if (PyInt_Check(w) || PyLong_Check(w))
423 /* If i is an infinity, its magnitude exceeds any
424 * finite integer, so it doesn't matter which int we
425 * compare i with. If i is a NaN, similarly.
427 j = 0.0;
428 else
429 goto Unimplemented;
432 else if (PyInt_Check(w)) {
433 long jj = PyInt_AS_LONG(w);
434 /* In the worst realistic case I can imagine, C double is a
435 * Cray single with 48 bits of precision, and long has 64
436 * bits.
438 #if SIZEOF_LONG > 6
439 unsigned long abs = (unsigned long)(jj < 0 ? -jj : jj);
440 if (abs >> 48) {
441 /* Needs more than 48 bits. Make it take the
442 * PyLong path.
444 PyObject *result;
445 PyObject *ww = PyLong_FromLong(jj);
447 if (ww == NULL)
448 return NULL;
449 result = float_richcompare(v, ww, op);
450 Py_DECREF(ww);
451 return result;
453 #endif
454 j = (double)jj;
455 assert((long)j == jj);
458 else if (PyLong_Check(w)) {
459 int vsign = i == 0.0 ? 0 : i < 0.0 ? -1 : 1;
460 int wsign = _PyLong_Sign(w);
461 size_t nbits;
462 int exponent;
464 if (vsign != wsign) {
465 /* Magnitudes are irrelevant -- the signs alone
466 * determine the outcome.
468 i = (double)vsign;
469 j = (double)wsign;
470 goto Compare;
472 /* The signs are the same. */
473 /* Convert w to a double if it fits. In particular, 0 fits. */
474 nbits = _PyLong_NumBits(w);
475 if (nbits == (size_t)-1 && PyErr_Occurred()) {
476 /* This long is so large that size_t isn't big enough
477 * to hold the # of bits. Replace with little doubles
478 * that give the same outcome -- w is so large that
479 * its magnitude must exceed the magnitude of any
480 * finite float.
482 PyErr_Clear();
483 i = (double)vsign;
484 assert(wsign != 0);
485 j = wsign * 2.0;
486 goto Compare;
488 if (nbits <= 48) {
489 j = PyLong_AsDouble(w);
490 /* It's impossible that <= 48 bits overflowed. */
491 assert(j != -1.0 || ! PyErr_Occurred());
492 goto Compare;
494 assert(wsign != 0); /* else nbits was 0 */
495 assert(vsign != 0); /* if vsign were 0, then since wsign is
496 * not 0, we would have taken the
497 * vsign != wsign branch at the start */
498 /* We want to work with non-negative numbers. */
499 if (vsign < 0) {
500 /* "Multiply both sides" by -1; this also swaps the
501 * comparator.
503 i = -i;
504 op = _Py_SwappedOp[op];
506 assert(i > 0.0);
507 (void) frexp(i, &exponent);
508 /* exponent is the # of bits in v before the radix point;
509 * we know that nbits (the # of bits in w) > 48 at this point
511 if (exponent < 0 || (size_t)exponent < nbits) {
512 i = 1.0;
513 j = 2.0;
514 goto Compare;
516 if ((size_t)exponent > nbits) {
517 i = 2.0;
518 j = 1.0;
519 goto Compare;
521 /* v and w have the same number of bits before the radix
522 * point. Construct two longs that have the same comparison
523 * outcome.
526 double fracpart;
527 double intpart;
528 PyObject *result = NULL;
529 PyObject *one = NULL;
530 PyObject *vv = NULL;
531 PyObject *ww = w;
533 if (wsign < 0) {
534 ww = PyNumber_Negative(w);
535 if (ww == NULL)
536 goto Error;
538 else
539 Py_INCREF(ww);
541 fracpart = modf(i, &intpart);
542 vv = PyLong_FromDouble(intpart);
543 if (vv == NULL)
544 goto Error;
546 if (fracpart != 0.0) {
547 /* Shift left, and or a 1 bit into vv
548 * to represent the lost fraction.
550 PyObject *temp;
552 one = PyInt_FromLong(1);
553 if (one == NULL)
554 goto Error;
556 temp = PyNumber_Lshift(ww, one);
557 if (temp == NULL)
558 goto Error;
559 Py_DECREF(ww);
560 ww = temp;
562 temp = PyNumber_Lshift(vv, one);
563 if (temp == NULL)
564 goto Error;
565 Py_DECREF(vv);
566 vv = temp;
568 temp = PyNumber_Or(vv, one);
569 if (temp == NULL)
570 goto Error;
571 Py_DECREF(vv);
572 vv = temp;
575 r = PyObject_RichCompareBool(vv, ww, op);
576 if (r < 0)
577 goto Error;
578 result = PyBool_FromLong(r);
579 Error:
580 Py_XDECREF(vv);
581 Py_XDECREF(ww);
582 Py_XDECREF(one);
583 return result;
585 } /* else if (PyLong_Check(w)) */
587 else /* w isn't float, int, or long */
588 goto Unimplemented;
590 Compare:
591 PyFPE_START_PROTECT("richcompare", return NULL)
592 switch (op) {
593 case Py_EQ:
594 r = i == j;
595 break;
596 case Py_NE:
597 r = i != j;
598 break;
599 case Py_LE:
600 r = i <= j;
601 break;
602 case Py_GE:
603 r = i >= j;
604 break;
605 case Py_LT:
606 r = i < j;
607 break;
608 case Py_GT:
609 r = i > j;
610 break;
612 PyFPE_END_PROTECT(r)
613 return PyBool_FromLong(r);
615 Unimplemented:
616 Py_INCREF(Py_NotImplemented);
617 return Py_NotImplemented;
620 static long
621 float_hash(PyFloatObject *v)
623 return _Py_HashDouble(v->ob_fval);
626 static PyObject *
627 float_add(PyObject *v, PyObject *w)
629 double a,b;
630 CONVERT_TO_DOUBLE(v, a);
631 CONVERT_TO_DOUBLE(w, b);
632 PyFPE_START_PROTECT("add", return 0)
633 a = a + b;
634 PyFPE_END_PROTECT(a)
635 return PyFloat_FromDouble(a);
638 static PyObject *
639 float_sub(PyObject *v, PyObject *w)
641 double a,b;
642 CONVERT_TO_DOUBLE(v, a);
643 CONVERT_TO_DOUBLE(w, b);
644 PyFPE_START_PROTECT("subtract", return 0)
645 a = a - b;
646 PyFPE_END_PROTECT(a)
647 return PyFloat_FromDouble(a);
650 static PyObject *
651 float_mul(PyObject *v, PyObject *w)
653 double a,b;
654 CONVERT_TO_DOUBLE(v, a);
655 CONVERT_TO_DOUBLE(w, b);
656 PyFPE_START_PROTECT("multiply", return 0)
657 a = a * b;
658 PyFPE_END_PROTECT(a)
659 return PyFloat_FromDouble(a);
662 static PyObject *
663 float_div(PyObject *v, PyObject *w)
665 double a,b;
666 CONVERT_TO_DOUBLE(v, a);
667 CONVERT_TO_DOUBLE(w, b);
668 #ifdef Py_NAN
669 if (b == 0.0) {
670 PyErr_SetString(PyExc_ZeroDivisionError,
671 "float division");
672 return NULL;
674 #endif
675 PyFPE_START_PROTECT("divide", return 0)
676 a = a / b;
677 PyFPE_END_PROTECT(a)
678 return PyFloat_FromDouble(a);
681 static PyObject *
682 float_classic_div(PyObject *v, PyObject *w)
684 double a,b;
685 CONVERT_TO_DOUBLE(v, a);
686 CONVERT_TO_DOUBLE(w, b);
687 if (Py_DivisionWarningFlag >= 2 &&
688 PyErr_Warn(PyExc_DeprecationWarning, "classic float division") < 0)
689 return NULL;
690 #ifdef Py_NAN
691 if (b == 0.0) {
692 PyErr_SetString(PyExc_ZeroDivisionError,
693 "float division");
694 return NULL;
696 #endif
697 PyFPE_START_PROTECT("divide", return 0)
698 a = a / b;
699 PyFPE_END_PROTECT(a)
700 return PyFloat_FromDouble(a);
703 static PyObject *
704 float_rem(PyObject *v, PyObject *w)
706 double vx, wx;
707 double mod;
708 CONVERT_TO_DOUBLE(v, vx);
709 CONVERT_TO_DOUBLE(w, wx);
710 #ifdef Py_NAN
711 if (wx == 0.0) {
712 PyErr_SetString(PyExc_ZeroDivisionError,
713 "float modulo");
714 return NULL;
716 #endif
717 PyFPE_START_PROTECT("modulo", return 0)
718 mod = fmod(vx, wx);
719 /* note: checking mod*wx < 0 is incorrect -- underflows to
720 0 if wx < sqrt(smallest nonzero double) */
721 if (mod && ((wx < 0) != (mod < 0))) {
722 mod += wx;
724 PyFPE_END_PROTECT(mod)
725 return PyFloat_FromDouble(mod);
728 static PyObject *
729 float_divmod(PyObject *v, PyObject *w)
731 double vx, wx;
732 double div, mod, floordiv;
733 CONVERT_TO_DOUBLE(v, vx);
734 CONVERT_TO_DOUBLE(w, wx);
735 if (wx == 0.0) {
736 PyErr_SetString(PyExc_ZeroDivisionError, "float divmod()");
737 return NULL;
739 PyFPE_START_PROTECT("divmod", return 0)
740 mod = fmod(vx, wx);
741 /* fmod is typically exact, so vx-mod is *mathematically* an
742 exact multiple of wx. But this is fp arithmetic, and fp
743 vx - mod is an approximation; the result is that div may
744 not be an exact integral value after the division, although
745 it will always be very close to one.
747 div = (vx - mod) / wx;
748 if (mod) {
749 /* ensure the remainder has the same sign as the denominator */
750 if ((wx < 0) != (mod < 0)) {
751 mod += wx;
752 div -= 1.0;
755 else {
756 /* the remainder is zero, and in the presence of signed zeroes
757 fmod returns different results across platforms; ensure
758 it has the same sign as the denominator; we'd like to do
759 "mod = wx * 0.0", but that may get optimized away */
760 mod *= mod; /* hide "mod = +0" from optimizer */
761 if (wx < 0.0)
762 mod = -mod;
764 /* snap quotient to nearest integral value */
765 if (div) {
766 floordiv = floor(div);
767 if (div - floordiv > 0.5)
768 floordiv += 1.0;
770 else {
771 /* div is zero - get the same sign as the true quotient */
772 div *= div; /* hide "div = +0" from optimizers */
773 floordiv = div * vx / wx; /* zero w/ sign of vx/wx */
775 PyFPE_END_PROTECT(floordiv)
776 return Py_BuildValue("(dd)", floordiv, mod);
779 static PyObject *
780 float_floor_div(PyObject *v, PyObject *w)
782 PyObject *t, *r;
784 t = float_divmod(v, w);
785 if (t == NULL || t == Py_NotImplemented)
786 return t;
787 assert(PyTuple_CheckExact(t));
788 r = PyTuple_GET_ITEM(t, 0);
789 Py_INCREF(r);
790 Py_DECREF(t);
791 return r;
794 /* determine whether x is an odd integer or not; assumes that
795 x is not an infinity or nan. */
796 #define DOUBLE_IS_ODD_INTEGER(x) (fmod(fabs(x), 2.0) == 1.0)
798 static PyObject *
799 float_pow(PyObject *v, PyObject *w, PyObject *z)
801 double iv, iw, ix;
802 int negate_result = 0;
804 if ((PyObject *)z != Py_None) {
805 PyErr_SetString(PyExc_TypeError, "pow() 3rd argument not "
806 "allowed unless all arguments are integers");
807 return NULL;
810 CONVERT_TO_DOUBLE(v, iv);
811 CONVERT_TO_DOUBLE(w, iw);
813 /* Sort out special cases here instead of relying on pow() */
814 if (iw == 0) { /* v**0 is 1, even 0**0 */
815 return PyFloat_FromDouble(1.0);
817 if (Py_IS_NAN(iv)) { /* nan**w = nan, unless w == 0 */
818 return PyFloat_FromDouble(iv);
820 if (Py_IS_NAN(iw)) { /* v**nan = nan, unless v == 1; 1**nan = 1 */
821 return PyFloat_FromDouble(iv == 1.0 ? 1.0 : iw);
823 if (Py_IS_INFINITY(iw)) {
824 /* v**inf is: 0.0 if abs(v) < 1; 1.0 if abs(v) == 1; inf if
825 * abs(v) > 1 (including case where v infinite)
827 * v**-inf is: inf if abs(v) < 1; 1.0 if abs(v) == 1; 0.0 if
828 * abs(v) > 1 (including case where v infinite)
830 iv = fabs(iv);
831 if (iv == 1.0)
832 return PyFloat_FromDouble(1.0);
833 else if ((iw > 0.0) == (iv > 1.0))
834 return PyFloat_FromDouble(fabs(iw)); /* return inf */
835 else
836 return PyFloat_FromDouble(0.0);
838 if (Py_IS_INFINITY(iv)) {
839 /* (+-inf)**w is: inf for w positive, 0 for w negative; in
840 * both cases, we need to add the appropriate sign if w is
841 * an odd integer.
843 int iw_is_odd = DOUBLE_IS_ODD_INTEGER(iw);
844 if (iw > 0.0)
845 return PyFloat_FromDouble(iw_is_odd ? iv : fabs(iv));
846 else
847 return PyFloat_FromDouble(iw_is_odd ?
848 copysign(0.0, iv) : 0.0);
850 if (iv == 0.0) { /* 0**w is: 0 for w positive, 1 for w zero
851 (already dealt with above), and an error
852 if w is negative. */
853 int iw_is_odd = DOUBLE_IS_ODD_INTEGER(iw);
854 if (iw < 0.0) {
855 PyErr_SetString(PyExc_ZeroDivisionError,
856 "0.0 cannot be raised to a "
857 "negative power");
858 return NULL;
860 /* use correct sign if iw is odd */
861 return PyFloat_FromDouble(iw_is_odd ? iv : 0.0);
864 if (iv < 0.0) {
865 /* Whether this is an error is a mess, and bumps into libm
866 * bugs so we have to figure it out ourselves.
868 if (iw != floor(iw)) {
869 PyErr_SetString(PyExc_ValueError, "negative number "
870 "cannot be raised to a fractional power");
871 return NULL;
873 /* iw is an exact integer, albeit perhaps a very large
874 * one. Replace iv by its absolute value and remember
875 * to negate the pow result if iw is odd.
877 iv = -iv;
878 negate_result = DOUBLE_IS_ODD_INTEGER(iw);
881 if (iv == 1.0) { /* 1**w is 1, even 1**inf and 1**nan */
882 /* (-1) ** large_integer also ends up here. Here's an
883 * extract from the comments for the previous
884 * implementation explaining why this special case is
885 * necessary:
887 * -1 raised to an exact integer should never be exceptional.
888 * Alas, some libms (chiefly glibc as of early 2003) return
889 * NaN and set EDOM on pow(-1, large_int) if the int doesn't
890 * happen to be representable in a *C* integer. That's a
891 * bug.
893 return PyFloat_FromDouble(negate_result ? -1.0 : 1.0);
896 /* Now iv and iw are finite, iw is nonzero, and iv is
897 * positive and not equal to 1.0. We finally allow
898 * the platform pow to step in and do the rest.
900 errno = 0;
901 PyFPE_START_PROTECT("pow", return NULL)
902 ix = pow(iv, iw);
903 PyFPE_END_PROTECT(ix)
904 Py_ADJUST_ERANGE1(ix);
905 if (negate_result)
906 ix = -ix;
908 if (errno != 0) {
909 /* We don't expect any errno value other than ERANGE, but
910 * the range of libm bugs appears unbounded.
912 PyErr_SetFromErrno(errno == ERANGE ? PyExc_OverflowError :
913 PyExc_ValueError);
914 return NULL;
916 return PyFloat_FromDouble(ix);
919 #undef DOUBLE_IS_ODD_INTEGER
921 static PyObject *
922 float_neg(PyFloatObject *v)
924 return PyFloat_FromDouble(-v->ob_fval);
927 static PyObject *
928 float_abs(PyFloatObject *v)
930 return PyFloat_FromDouble(fabs(v->ob_fval));
933 static int
934 float_nonzero(PyFloatObject *v)
936 return v->ob_fval != 0.0;
939 static int
940 float_coerce(PyObject **pv, PyObject **pw)
942 if (PyInt_Check(*pw)) {
943 long x = PyInt_AsLong(*pw);
944 *pw = PyFloat_FromDouble((double)x);
945 Py_INCREF(*pv);
946 return 0;
948 else if (PyLong_Check(*pw)) {
949 double x = PyLong_AsDouble(*pw);
950 if (x == -1.0 && PyErr_Occurred())
951 return -1;
952 *pw = PyFloat_FromDouble(x);
953 Py_INCREF(*pv);
954 return 0;
956 else if (PyFloat_Check(*pw)) {
957 Py_INCREF(*pv);
958 Py_INCREF(*pw);
959 return 0;
961 return 1; /* Can't do it */
964 static PyObject *
965 float_is_integer(PyObject *v)
967 double x = PyFloat_AsDouble(v);
968 PyObject *o;
970 if (x == -1.0 && PyErr_Occurred())
971 return NULL;
972 if (!Py_IS_FINITE(x))
973 Py_RETURN_FALSE;
974 errno = 0;
975 PyFPE_START_PROTECT("is_integer", return NULL)
976 o = (floor(x) == x) ? Py_True : Py_False;
977 PyFPE_END_PROTECT(x)
978 if (errno != 0) {
979 PyErr_SetFromErrno(errno == ERANGE ? PyExc_OverflowError :
980 PyExc_ValueError);
981 return NULL;
983 Py_INCREF(o);
984 return o;
987 #if 0
988 static PyObject *
989 float_is_inf(PyObject *v)
991 double x = PyFloat_AsDouble(v);
992 if (x == -1.0 && PyErr_Occurred())
993 return NULL;
994 return PyBool_FromLong((long)Py_IS_INFINITY(x));
997 static PyObject *
998 float_is_nan(PyObject *v)
1000 double x = PyFloat_AsDouble(v);
1001 if (x == -1.0 && PyErr_Occurred())
1002 return NULL;
1003 return PyBool_FromLong((long)Py_IS_NAN(x));
1006 static PyObject *
1007 float_is_finite(PyObject *v)
1009 double x = PyFloat_AsDouble(v);
1010 if (x == -1.0 && PyErr_Occurred())
1011 return NULL;
1012 return PyBool_FromLong((long)Py_IS_FINITE(x));
1014 #endif
1016 static PyObject *
1017 float_trunc(PyObject *v)
1019 double x = PyFloat_AsDouble(v);
1020 double wholepart; /* integral portion of x, rounded toward 0 */
1022 (void)modf(x, &wholepart);
1023 /* Try to get out cheap if this fits in a Python int. The attempt
1024 * to cast to long must be protected, as C doesn't define what
1025 * happens if the double is too big to fit in a long. Some rare
1026 * systems raise an exception then (RISCOS was mentioned as one,
1027 * and someone using a non-default option on Sun also bumped into
1028 * that). Note that checking for >= and <= LONG_{MIN,MAX} would
1029 * still be vulnerable: if a long has more bits of precision than
1030 * a double, casting MIN/MAX to double may yield an approximation,
1031 * and if that's rounded up, then, e.g., wholepart=LONG_MAX+1 would
1032 * yield true from the C expression wholepart<=LONG_MAX, despite
1033 * that wholepart is actually greater than LONG_MAX.
1035 if (LONG_MIN < wholepart && wholepart < LONG_MAX) {
1036 const long aslong = (long)wholepart;
1037 return PyInt_FromLong(aslong);
1039 return PyLong_FromDouble(wholepart);
1042 static PyObject *
1043 float_long(PyObject *v)
1045 double x = PyFloat_AsDouble(v);
1046 return PyLong_FromDouble(x);
1049 /* _Py_double_round: rounds a finite nonzero double to the closest multiple of
1050 10**-ndigits; here ndigits is within reasonable bounds (typically, -308 <=
1051 ndigits <= 323). Returns a Python float, or sets a Python error and
1052 returns NULL on failure (OverflowError and memory errors are possible). */
1054 #ifndef PY_NO_SHORT_FLOAT_REPR
1055 /* version of _Py_double_round that uses the correctly-rounded string<->double
1056 conversions from Python/dtoa.c */
1058 /* FIVE_POW_LIMIT is the largest k such that 5**k is exactly representable as
1059 a double. Since we're using the code in Python/dtoa.c, it should be safe
1060 to assume that C doubles are IEEE 754 binary64 format. To be on the safe
1061 side, we check this. */
1062 #if DBL_MANT_DIG == 53
1063 #define FIVE_POW_LIMIT 22
1064 #else
1065 #error "C doubles do not appear to be IEEE 754 binary64 format"
1066 #endif
1068 PyObject *
1069 _Py_double_round(double x, int ndigits) {
1071 double rounded, m;
1072 Py_ssize_t buflen, mybuflen=100;
1073 char *buf, *buf_end, shortbuf[100], *mybuf=shortbuf;
1074 int decpt, sign, val, halfway_case;
1075 PyObject *result = NULL;
1077 /* The basic idea is very simple: convert and round the double to a
1078 decimal string using _Py_dg_dtoa, then convert that decimal string
1079 back to a double with _Py_dg_strtod. There's one minor difficulty:
1080 Python 2.x expects round to do round-half-away-from-zero, while
1081 _Py_dg_dtoa does round-half-to-even. So we need some way to detect
1082 and correct the halfway cases.
1084 Detection: a halfway value has the form k * 0.5 * 10**-ndigits for
1085 some odd integer k. Or in other words, a rational number x is
1086 exactly halfway between two multiples of 10**-ndigits if its
1087 2-valuation is exactly -ndigits-1 and its 5-valuation is at least
1088 -ndigits. For ndigits >= 0 the latter condition is automatically
1089 satisfied for a binary float x, since any such float has
1090 nonnegative 5-valuation. For 0 > ndigits >= -22, x needs to be an
1091 integral multiple of 5**-ndigits; we can check this using fmod.
1092 For -22 > ndigits, there are no halfway cases: 5**23 takes 54 bits
1093 to represent exactly, so any odd multiple of 0.5 * 10**n for n >=
1094 23 takes at least 54 bits of precision to represent exactly.
1096 Correction: a simple strategy for dealing with halfway cases is to
1097 (for the halfway cases only) call _Py_dg_dtoa with an argument of
1098 ndigits+1 instead of ndigits (thus doing an exact conversion to
1099 decimal), round the resulting string manually, and then convert
1100 back using _Py_dg_strtod.
1103 /* nans, infinities and zeros should have already been dealt
1104 with by the caller (in this case, builtin_round) */
1105 assert(Py_IS_FINITE(x) && x != 0.0);
1107 /* find 2-valuation val of x */
1108 m = frexp(x, &val);
1109 while (m != floor(m)) {
1110 m *= 2.0;
1111 val--;
1114 /* determine whether this is a halfway case */
1115 if (val == -ndigits-1) {
1116 if (ndigits >= 0)
1117 halfway_case = 1;
1118 else if (ndigits >= -FIVE_POW_LIMIT) {
1119 double five_pow = 1.0;
1120 int i;
1121 for (i=0; i < -ndigits; i++)
1122 five_pow *= 5.0;
1123 halfway_case = fmod(x, five_pow) == 0.0;
1125 else
1126 halfway_case = 0;
1128 else
1129 halfway_case = 0;
1131 /* round to a decimal string; use an extra place for halfway case */
1132 buf = _Py_dg_dtoa(x, 3, ndigits+halfway_case, &decpt, &sign, &buf_end);
1133 if (buf == NULL) {
1134 PyErr_NoMemory();
1135 return NULL;
1137 buflen = buf_end - buf;
1139 /* in halfway case, do the round-half-away-from-zero manually */
1140 if (halfway_case) {
1141 int i, carry;
1142 /* sanity check: _Py_dg_dtoa should not have stripped
1143 any zeros from the result: there should be exactly
1144 ndigits+1 places following the decimal point, and
1145 the last digit in the buffer should be a '5'.*/
1146 assert(buflen - decpt == ndigits+1);
1147 assert(buf[buflen-1] == '5');
1149 /* increment and shift right at the same time. */
1150 decpt += 1;
1151 carry = 1;
1152 for (i=buflen-1; i-- > 0;) {
1153 carry += buf[i] - '0';
1154 buf[i+1] = carry % 10 + '0';
1155 carry /= 10;
1157 buf[0] = carry + '0';
1160 /* Get new buffer if shortbuf is too small. Space needed <= buf_end -
1161 buf + 8: (1 extra for '0', 1 for sign, 5 for exp, 1 for '\0'). */
1162 if (buflen + 8 > mybuflen) {
1163 mybuflen = buflen+8;
1164 mybuf = (char *)PyMem_Malloc(mybuflen);
1165 if (mybuf == NULL) {
1166 PyErr_NoMemory();
1167 goto exit;
1170 /* copy buf to mybuf, adding exponent, sign and leading 0 */
1171 PyOS_snprintf(mybuf, mybuflen, "%s0%se%d", (sign ? "-" : ""),
1172 buf, decpt - (int)buflen);
1174 /* and convert the resulting string back to a double */
1175 errno = 0;
1176 rounded = _Py_dg_strtod(mybuf, NULL);
1177 if (errno == ERANGE && fabs(rounded) >= 1.)
1178 PyErr_SetString(PyExc_OverflowError,
1179 "rounded value too large to represent");
1180 else
1181 result = PyFloat_FromDouble(rounded);
1183 /* done computing value; now clean up */
1184 if (mybuf != shortbuf)
1185 PyMem_Free(mybuf);
1186 exit:
1187 _Py_dg_freedtoa(buf);
1188 return result;
1191 #undef FIVE_POW_LIMIT
1193 #else /* PY_NO_SHORT_FLOAT_REPR */
1195 /* fallback version, to be used when correctly rounded binary<->decimal
1196 conversions aren't available */
1198 PyObject *
1199 _Py_double_round(double x, int ndigits) {
1200 double pow1, pow2, y, z;
1201 if (ndigits >= 0) {
1202 if (ndigits > 22) {
1203 /* pow1 and pow2 are each safe from overflow, but
1204 pow1*pow2 ~= pow(10.0, ndigits) might overflow */
1205 pow1 = pow(10.0, (double)(ndigits-22));
1206 pow2 = 1e22;
1208 else {
1209 pow1 = pow(10.0, (double)ndigits);
1210 pow2 = 1.0;
1212 y = (x*pow1)*pow2;
1213 /* if y overflows, then rounded value is exactly x */
1214 if (!Py_IS_FINITE(y))
1215 return PyFloat_FromDouble(x);
1217 else {
1218 pow1 = pow(10.0, (double)-ndigits);
1219 pow2 = 1.0; /* unused; silences a gcc compiler warning */
1220 y = x / pow1;
1223 z = round(y);
1224 if (fabs(y-z) == 0.5)
1225 /* halfway between two integers; use round-away-from-zero */
1226 z = y + copysign(0.5, y);
1228 if (ndigits >= 0)
1229 z = (z / pow2) / pow1;
1230 else
1231 z *= pow1;
1233 /* if computation resulted in overflow, raise OverflowError */
1234 if (!Py_IS_FINITE(z)) {
1235 PyErr_SetString(PyExc_OverflowError,
1236 "overflow occurred during round");
1237 return NULL;
1240 return PyFloat_FromDouble(z);
1243 #endif /* PY_NO_SHORT_FLOAT_REPR */
1245 static PyObject *
1246 float_float(PyObject *v)
1248 if (PyFloat_CheckExact(v))
1249 Py_INCREF(v);
1250 else
1251 v = PyFloat_FromDouble(((PyFloatObject *)v)->ob_fval);
1252 return v;
1255 /* turn ASCII hex characters into integer values and vice versa */
1257 static char
1258 char_from_hex(int x)
1260 assert(0 <= x && x < 16);
1261 return "0123456789abcdef"[x];
1264 static int
1265 hex_from_char(char c) {
1266 int x;
1267 switch(c) {
1268 case '0':
1269 x = 0;
1270 break;
1271 case '1':
1272 x = 1;
1273 break;
1274 case '2':
1275 x = 2;
1276 break;
1277 case '3':
1278 x = 3;
1279 break;
1280 case '4':
1281 x = 4;
1282 break;
1283 case '5':
1284 x = 5;
1285 break;
1286 case '6':
1287 x = 6;
1288 break;
1289 case '7':
1290 x = 7;
1291 break;
1292 case '8':
1293 x = 8;
1294 break;
1295 case '9':
1296 x = 9;
1297 break;
1298 case 'a':
1299 case 'A':
1300 x = 10;
1301 break;
1302 case 'b':
1303 case 'B':
1304 x = 11;
1305 break;
1306 case 'c':
1307 case 'C':
1308 x = 12;
1309 break;
1310 case 'd':
1311 case 'D':
1312 x = 13;
1313 break;
1314 case 'e':
1315 case 'E':
1316 x = 14;
1317 break;
1318 case 'f':
1319 case 'F':
1320 x = 15;
1321 break;
1322 default:
1323 x = -1;
1324 break;
1326 return x;
1329 /* convert a float to a hexadecimal string */
1331 /* TOHEX_NBITS is DBL_MANT_DIG rounded up to the next integer
1332 of the form 4k+1. */
1333 #define TOHEX_NBITS DBL_MANT_DIG + 3 - (DBL_MANT_DIG+2)%4
1335 static PyObject *
1336 float_hex(PyObject *v)
1338 double x, m;
1339 int e, shift, i, si, esign;
1340 /* Space for 1+(TOHEX_NBITS-1)/4 digits, a decimal point, and the
1341 trailing NUL byte. */
1342 char s[(TOHEX_NBITS-1)/4+3];
1344 CONVERT_TO_DOUBLE(v, x);
1346 if (Py_IS_NAN(x) || Py_IS_INFINITY(x))
1347 return float_str((PyFloatObject *)v);
1349 if (x == 0.0) {
1350 if(copysign(1.0, x) == -1.0)
1351 return PyString_FromString("-0x0.0p+0");
1352 else
1353 return PyString_FromString("0x0.0p+0");
1356 m = frexp(fabs(x), &e);
1357 shift = 1 - MAX(DBL_MIN_EXP - e, 0);
1358 m = ldexp(m, shift);
1359 e -= shift;
1361 si = 0;
1362 s[si] = char_from_hex((int)m);
1363 si++;
1364 m -= (int)m;
1365 s[si] = '.';
1366 si++;
1367 for (i=0; i < (TOHEX_NBITS-1)/4; i++) {
1368 m *= 16.0;
1369 s[si] = char_from_hex((int)m);
1370 si++;
1371 m -= (int)m;
1373 s[si] = '\0';
1375 if (e < 0) {
1376 esign = (int)'-';
1377 e = -e;
1379 else
1380 esign = (int)'+';
1382 if (x < 0.0)
1383 return PyString_FromFormat("-0x%sp%c%d", s, esign, e);
1384 else
1385 return PyString_FromFormat("0x%sp%c%d", s, esign, e);
1388 PyDoc_STRVAR(float_hex_doc,
1389 "float.hex() -> string\n\
1391 Return a hexadecimal representation of a floating-point number.\n\
1392 >>> (-0.1).hex()\n\
1393 '-0x1.999999999999ap-4'\n\
1394 >>> 3.14159.hex()\n\
1395 '0x1.921f9f01b866ep+1'");
1397 /* Case-insensitive locale-independent string match used for nan and inf
1398 detection. t should be lower-case and null-terminated. Return a nonzero
1399 result if the first strlen(t) characters of s match t and 0 otherwise. */
1401 static int
1402 case_insensitive_match(const char *s, const char *t)
1404 while(*t && Py_TOLOWER(*s) == *t) {
1405 s++;
1406 t++;
1408 return *t ? 0 : 1;
1411 /* Convert a hexadecimal string to a float. */
1413 static PyObject *
1414 float_fromhex(PyObject *cls, PyObject *arg)
1416 PyObject *result_as_float, *result;
1417 double x;
1418 long exp, top_exp, lsb, key_digit;
1419 char *s, *coeff_start, *s_store, *coeff_end, *exp_start, *s_end;
1420 int half_eps, digit, round_up, sign=1;
1421 Py_ssize_t length, ndigits, fdigits, i;
1424 * For the sake of simplicity and correctness, we impose an artificial
1425 * limit on ndigits, the total number of hex digits in the coefficient
1426 * The limit is chosen to ensure that, writing exp for the exponent,
1428 * (1) if exp > LONG_MAX/2 then the value of the hex string is
1429 * guaranteed to overflow (provided it's nonzero)
1431 * (2) if exp < LONG_MIN/2 then the value of the hex string is
1432 * guaranteed to underflow to 0.
1434 * (3) if LONG_MIN/2 <= exp <= LONG_MAX/2 then there's no danger of
1435 * overflow in the calculation of exp and top_exp below.
1437 * More specifically, ndigits is assumed to satisfy the following
1438 * inequalities:
1440 * 4*ndigits <= DBL_MIN_EXP - DBL_MANT_DIG - LONG_MIN/2
1441 * 4*ndigits <= LONG_MAX/2 + 1 - DBL_MAX_EXP
1443 * If either of these inequalities is not satisfied, a ValueError is
1444 * raised. Otherwise, write x for the value of the hex string, and
1445 * assume x is nonzero. Then
1447 * 2**(exp-4*ndigits) <= |x| < 2**(exp+4*ndigits).
1449 * Now if exp > LONG_MAX/2 then:
1451 * exp - 4*ndigits >= LONG_MAX/2 + 1 - (LONG_MAX/2 + 1 - DBL_MAX_EXP)
1452 * = DBL_MAX_EXP
1454 * so |x| >= 2**DBL_MAX_EXP, which is too large to be stored in C
1455 * double, so overflows. If exp < LONG_MIN/2, then
1457 * exp + 4*ndigits <= LONG_MIN/2 - 1 + (
1458 * DBL_MIN_EXP - DBL_MANT_DIG - LONG_MIN/2)
1459 * = DBL_MIN_EXP - DBL_MANT_DIG - 1
1461 * and so |x| < 2**(DBL_MIN_EXP-DBL_MANT_DIG-1), hence underflows to 0
1462 * when converted to a C double.
1464 * It's easy to show that if LONG_MIN/2 <= exp <= LONG_MAX/2 then both
1465 * exp+4*ndigits and exp-4*ndigits are within the range of a long.
1468 if (PyString_AsStringAndSize(arg, &s, &length))
1469 return NULL;
1470 s_end = s + length;
1472 /********************
1473 * Parse the string *
1474 ********************/
1476 /* leading whitespace and optional sign */
1477 while (Py_ISSPACE(*s))
1478 s++;
1479 if (*s == '-') {
1480 s++;
1481 sign = -1;
1483 else if (*s == '+')
1484 s++;
1486 /* infinities and nans */
1487 if (*s == 'i' || *s == 'I') {
1488 if (!case_insensitive_match(s+1, "nf"))
1489 goto parse_error;
1490 s += 3;
1491 x = Py_HUGE_VAL;
1492 if (case_insensitive_match(s, "inity"))
1493 s += 5;
1494 goto finished;
1496 if (*s == 'n' || *s == 'N') {
1497 if (!case_insensitive_match(s+1, "an"))
1498 goto parse_error;
1499 s += 3;
1500 x = Py_NAN;
1501 goto finished;
1504 /* [0x] */
1505 s_store = s;
1506 if (*s == '0') {
1507 s++;
1508 if (*s == 'x' || *s == 'X')
1509 s++;
1510 else
1511 s = s_store;
1514 /* coefficient: <integer> [. <fraction>] */
1515 coeff_start = s;
1516 while (hex_from_char(*s) >= 0)
1517 s++;
1518 s_store = s;
1519 if (*s == '.') {
1520 s++;
1521 while (hex_from_char(*s) >= 0)
1522 s++;
1523 coeff_end = s-1;
1525 else
1526 coeff_end = s;
1528 /* ndigits = total # of hex digits; fdigits = # after point */
1529 ndigits = coeff_end - coeff_start;
1530 fdigits = coeff_end - s_store;
1531 if (ndigits == 0)
1532 goto parse_error;
1533 if (ndigits > MIN(DBL_MIN_EXP - DBL_MANT_DIG - LONG_MIN/2,
1534 LONG_MAX/2 + 1 - DBL_MAX_EXP)/4)
1535 goto insane_length_error;
1537 /* [p <exponent>] */
1538 if (*s == 'p' || *s == 'P') {
1539 s++;
1540 exp_start = s;
1541 if (*s == '-' || *s == '+')
1542 s++;
1543 if (!('0' <= *s && *s <= '9'))
1544 goto parse_error;
1545 s++;
1546 while ('0' <= *s && *s <= '9')
1547 s++;
1548 exp = strtol(exp_start, NULL, 10);
1550 else
1551 exp = 0;
1553 /* for 0 <= j < ndigits, HEX_DIGIT(j) gives the jth most significant digit */
1554 #define HEX_DIGIT(j) hex_from_char(*((j) < fdigits ? \
1555 coeff_end-(j) : \
1556 coeff_end-1-(j)))
1558 /*******************************************
1559 * Compute rounded value of the hex string *
1560 *******************************************/
1562 /* Discard leading zeros, and catch extreme overflow and underflow */
1563 while (ndigits > 0 && HEX_DIGIT(ndigits-1) == 0)
1564 ndigits--;
1565 if (ndigits == 0 || exp < LONG_MIN/2) {
1566 x = 0.0;
1567 goto finished;
1569 if (exp > LONG_MAX/2)
1570 goto overflow_error;
1572 /* Adjust exponent for fractional part. */
1573 exp = exp - 4*((long)fdigits);
1575 /* top_exp = 1 more than exponent of most sig. bit of coefficient */
1576 top_exp = exp + 4*((long)ndigits - 1);
1577 for (digit = HEX_DIGIT(ndigits-1); digit != 0; digit /= 2)
1578 top_exp++;
1580 /* catch almost all nonextreme cases of overflow and underflow here */
1581 if (top_exp < DBL_MIN_EXP - DBL_MANT_DIG) {
1582 x = 0.0;
1583 goto finished;
1585 if (top_exp > DBL_MAX_EXP)
1586 goto overflow_error;
1588 /* lsb = exponent of least significant bit of the *rounded* value.
1589 This is top_exp - DBL_MANT_DIG unless result is subnormal. */
1590 lsb = MAX(top_exp, (long)DBL_MIN_EXP) - DBL_MANT_DIG;
1592 x = 0.0;
1593 if (exp >= lsb) {
1594 /* no rounding required */
1595 for (i = ndigits-1; i >= 0; i--)
1596 x = 16.0*x + HEX_DIGIT(i);
1597 x = ldexp(x, (int)(exp));
1598 goto finished;
1600 /* rounding required. key_digit is the index of the hex digit
1601 containing the first bit to be rounded away. */
1602 half_eps = 1 << (int)((lsb - exp - 1) % 4);
1603 key_digit = (lsb - exp - 1) / 4;
1604 for (i = ndigits-1; i > key_digit; i--)
1605 x = 16.0*x + HEX_DIGIT(i);
1606 digit = HEX_DIGIT(key_digit);
1607 x = 16.0*x + (double)(digit & (16-2*half_eps));
1609 /* round-half-even: round up if bit lsb-1 is 1 and at least one of
1610 bits lsb, lsb-2, lsb-3, lsb-4, ... is 1. */
1611 if ((digit & half_eps) != 0) {
1612 round_up = 0;
1613 if ((digit & (3*half_eps-1)) != 0 ||
1614 (half_eps == 8 && (HEX_DIGIT(key_digit+1) & 1) != 0))
1615 round_up = 1;
1616 else
1617 for (i = key_digit-1; i >= 0; i--)
1618 if (HEX_DIGIT(i) != 0) {
1619 round_up = 1;
1620 break;
1622 if (round_up == 1) {
1623 x += 2*half_eps;
1624 if (top_exp == DBL_MAX_EXP &&
1625 x == ldexp((double)(2*half_eps), DBL_MANT_DIG))
1626 /* overflow corner case: pre-rounded value <
1627 2**DBL_MAX_EXP; rounded=2**DBL_MAX_EXP. */
1628 goto overflow_error;
1631 x = ldexp(x, (int)(exp+4*key_digit));
1633 finished:
1634 /* optional trailing whitespace leading to the end of the string */
1635 while (Py_ISSPACE(*s))
1636 s++;
1637 if (s != s_end)
1638 goto parse_error;
1639 result_as_float = Py_BuildValue("(d)", sign * x);
1640 if (result_as_float == NULL)
1641 return NULL;
1642 result = PyObject_CallObject(cls, result_as_float);
1643 Py_DECREF(result_as_float);
1644 return result;
1646 overflow_error:
1647 PyErr_SetString(PyExc_OverflowError,
1648 "hexadecimal value too large to represent as a float");
1649 return NULL;
1651 parse_error:
1652 PyErr_SetString(PyExc_ValueError,
1653 "invalid hexadecimal floating-point string");
1654 return NULL;
1656 insane_length_error:
1657 PyErr_SetString(PyExc_ValueError,
1658 "hexadecimal string too long to convert");
1659 return NULL;
1662 PyDoc_STRVAR(float_fromhex_doc,
1663 "float.fromhex(string) -> float\n\
1665 Create a floating-point number from a hexadecimal string.\n\
1666 >>> float.fromhex('0x1.ffffp10')\n\
1667 2047.984375\n\
1668 >>> float.fromhex('-0x1p-1074')\n\
1669 -4.9406564584124654e-324");
1672 static PyObject *
1673 float_as_integer_ratio(PyObject *v, PyObject *unused)
1675 double self;
1676 double float_part;
1677 int exponent;
1678 int i;
1680 PyObject *prev;
1681 PyObject *py_exponent = NULL;
1682 PyObject *numerator = NULL;
1683 PyObject *denominator = NULL;
1684 PyObject *result_pair = NULL;
1685 PyNumberMethods *long_methods = PyLong_Type.tp_as_number;
1687 #define INPLACE_UPDATE(obj, call) \
1688 prev = obj; \
1689 obj = call; \
1690 Py_DECREF(prev); \
1692 CONVERT_TO_DOUBLE(v, self);
1694 if (Py_IS_INFINITY(self)) {
1695 PyErr_SetString(PyExc_OverflowError,
1696 "Cannot pass infinity to float.as_integer_ratio.");
1697 return NULL;
1699 #ifdef Py_NAN
1700 if (Py_IS_NAN(self)) {
1701 PyErr_SetString(PyExc_ValueError,
1702 "Cannot pass NaN to float.as_integer_ratio.");
1703 return NULL;
1705 #endif
1707 PyFPE_START_PROTECT("as_integer_ratio", goto error);
1708 float_part = frexp(self, &exponent); /* self == float_part * 2**exponent exactly */
1709 PyFPE_END_PROTECT(float_part);
1711 for (i=0; i<300 && float_part != floor(float_part) ; i++) {
1712 float_part *= 2.0;
1713 exponent--;
1715 /* self == float_part * 2**exponent exactly and float_part is integral.
1716 If FLT_RADIX != 2, the 300 steps may leave a tiny fractional part
1717 to be truncated by PyLong_FromDouble(). */
1719 numerator = PyLong_FromDouble(float_part);
1720 if (numerator == NULL) goto error;
1722 /* fold in 2**exponent */
1723 denominator = PyLong_FromLong(1);
1724 py_exponent = PyLong_FromLong(labs((long)exponent));
1725 if (py_exponent == NULL) goto error;
1726 INPLACE_UPDATE(py_exponent,
1727 long_methods->nb_lshift(denominator, py_exponent));
1728 if (py_exponent == NULL) goto error;
1729 if (exponent > 0) {
1730 INPLACE_UPDATE(numerator,
1731 long_methods->nb_multiply(numerator, py_exponent));
1732 if (numerator == NULL) goto error;
1734 else {
1735 Py_DECREF(denominator);
1736 denominator = py_exponent;
1737 py_exponent = NULL;
1740 /* Returns ints instead of longs where possible */
1741 INPLACE_UPDATE(numerator, PyNumber_Int(numerator));
1742 if (numerator == NULL) goto error;
1743 INPLACE_UPDATE(denominator, PyNumber_Int(denominator));
1744 if (denominator == NULL) goto error;
1746 result_pair = PyTuple_Pack(2, numerator, denominator);
1748 #undef INPLACE_UPDATE
1749 error:
1750 Py_XDECREF(py_exponent);
1751 Py_XDECREF(denominator);
1752 Py_XDECREF(numerator);
1753 return result_pair;
1756 PyDoc_STRVAR(float_as_integer_ratio_doc,
1757 "float.as_integer_ratio() -> (int, int)\n"
1758 "\n"
1759 "Returns a pair of integers, whose ratio is exactly equal to the original\n"
1760 "float and with a positive denominator.\n"
1761 "Raises OverflowError on infinities and a ValueError on NaNs.\n"
1762 "\n"
1763 ">>> (10.0).as_integer_ratio()\n"
1764 "(10, 1)\n"
1765 ">>> (0.0).as_integer_ratio()\n"
1766 "(0, 1)\n"
1767 ">>> (-.25).as_integer_ratio()\n"
1768 "(-1, 4)");
1771 static PyObject *
1772 float_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds);
1774 static PyObject *
1775 float_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
1777 PyObject *x = Py_False; /* Integer zero */
1778 static char *kwlist[] = {"x", 0};
1780 if (type != &PyFloat_Type)
1781 return float_subtype_new(type, args, kwds); /* Wimp out */
1782 if (!PyArg_ParseTupleAndKeywords(args, kwds, "|O:float", kwlist, &x))
1783 return NULL;
1784 /* If it's a string, but not a string subclass, use
1785 PyFloat_FromString. */
1786 if (PyString_CheckExact(x))
1787 return PyFloat_FromString(x, NULL);
1788 return PyNumber_Float(x);
1791 /* Wimpy, slow approach to tp_new calls for subtypes of float:
1792 first create a regular float from whatever arguments we got,
1793 then allocate a subtype instance and initialize its ob_fval
1794 from the regular float. The regular float is then thrown away.
1796 static PyObject *
1797 float_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
1799 PyObject *tmp, *newobj;
1801 assert(PyType_IsSubtype(type, &PyFloat_Type));
1802 tmp = float_new(&PyFloat_Type, args, kwds);
1803 if (tmp == NULL)
1804 return NULL;
1805 assert(PyFloat_CheckExact(tmp));
1806 newobj = type->tp_alloc(type, 0);
1807 if (newobj == NULL) {
1808 Py_DECREF(tmp);
1809 return NULL;
1811 ((PyFloatObject *)newobj)->ob_fval = ((PyFloatObject *)tmp)->ob_fval;
1812 Py_DECREF(tmp);
1813 return newobj;
1816 static PyObject *
1817 float_getnewargs(PyFloatObject *v)
1819 return Py_BuildValue("(d)", v->ob_fval);
1822 /* this is for the benefit of the pack/unpack routines below */
1824 typedef enum {
1825 unknown_format, ieee_big_endian_format, ieee_little_endian_format
1826 } float_format_type;
1828 static float_format_type double_format, float_format;
1829 static float_format_type detected_double_format, detected_float_format;
1831 static PyObject *
1832 float_getformat(PyTypeObject *v, PyObject* arg)
1834 char* s;
1835 float_format_type r;
1837 if (!PyString_Check(arg)) {
1838 PyErr_Format(PyExc_TypeError,
1839 "__getformat__() argument must be string, not %.500s",
1840 Py_TYPE(arg)->tp_name);
1841 return NULL;
1843 s = PyString_AS_STRING(arg);
1844 if (strcmp(s, "double") == 0) {
1845 r = double_format;
1847 else if (strcmp(s, "float") == 0) {
1848 r = float_format;
1850 else {
1851 PyErr_SetString(PyExc_ValueError,
1852 "__getformat__() argument 1 must be "
1853 "'double' or 'float'");
1854 return NULL;
1857 switch (r) {
1858 case unknown_format:
1859 return PyString_FromString("unknown");
1860 case ieee_little_endian_format:
1861 return PyString_FromString("IEEE, little-endian");
1862 case ieee_big_endian_format:
1863 return PyString_FromString("IEEE, big-endian");
1864 default:
1865 Py_FatalError("insane float_format or double_format");
1866 return NULL;
1870 PyDoc_STRVAR(float_getformat_doc,
1871 "float.__getformat__(typestr) -> string\n"
1872 "\n"
1873 "You probably don't want to use this function. It exists mainly to be\n"
1874 "used in Python's test suite.\n"
1875 "\n"
1876 "typestr must be 'double' or 'float'. This function returns whichever of\n"
1877 "'unknown', 'IEEE, big-endian' or 'IEEE, little-endian' best describes the\n"
1878 "format of floating point numbers used by the C type named by typestr.");
1880 static PyObject *
1881 float_setformat(PyTypeObject *v, PyObject* args)
1883 char* typestr;
1884 char* format;
1885 float_format_type f;
1886 float_format_type detected;
1887 float_format_type *p;
1889 if (!PyArg_ParseTuple(args, "ss:__setformat__", &typestr, &format))
1890 return NULL;
1892 if (strcmp(typestr, "double") == 0) {
1893 p = &double_format;
1894 detected = detected_double_format;
1896 else if (strcmp(typestr, "float") == 0) {
1897 p = &float_format;
1898 detected = detected_float_format;
1900 else {
1901 PyErr_SetString(PyExc_ValueError,
1902 "__setformat__() argument 1 must "
1903 "be 'double' or 'float'");
1904 return NULL;
1907 if (strcmp(format, "unknown") == 0) {
1908 f = unknown_format;
1910 else if (strcmp(format, "IEEE, little-endian") == 0) {
1911 f = ieee_little_endian_format;
1913 else if (strcmp(format, "IEEE, big-endian") == 0) {
1914 f = ieee_big_endian_format;
1916 else {
1917 PyErr_SetString(PyExc_ValueError,
1918 "__setformat__() argument 2 must be "
1919 "'unknown', 'IEEE, little-endian' or "
1920 "'IEEE, big-endian'");
1921 return NULL;
1925 if (f != unknown_format && f != detected) {
1926 PyErr_Format(PyExc_ValueError,
1927 "can only set %s format to 'unknown' or the "
1928 "detected platform value", typestr);
1929 return NULL;
1932 *p = f;
1933 Py_RETURN_NONE;
1936 PyDoc_STRVAR(float_setformat_doc,
1937 "float.__setformat__(typestr, fmt) -> None\n"
1938 "\n"
1939 "You probably don't want to use this function. It exists mainly to be\n"
1940 "used in Python's test suite.\n"
1941 "\n"
1942 "typestr must be 'double' or 'float'. fmt must be one of 'unknown',\n"
1943 "'IEEE, big-endian' or 'IEEE, little-endian', and in addition can only be\n"
1944 "one of the latter two if it appears to match the underlying C reality.\n"
1945 "\n"
1946 "Overrides the automatic determination of C-level floating point type.\n"
1947 "This affects how floats are converted to and from binary strings.");
1949 static PyObject *
1950 float_getzero(PyObject *v, void *closure)
1952 return PyFloat_FromDouble(0.0);
1955 static PyObject *
1956 float__format__(PyObject *self, PyObject *args)
1958 PyObject *format_spec;
1960 if (!PyArg_ParseTuple(args, "O:__format__", &format_spec))
1961 return NULL;
1962 if (PyBytes_Check(format_spec))
1963 return _PyFloat_FormatAdvanced(self,
1964 PyBytes_AS_STRING(format_spec),
1965 PyBytes_GET_SIZE(format_spec));
1966 if (PyUnicode_Check(format_spec)) {
1967 /* Convert format_spec to a str */
1968 PyObject *result;
1969 PyObject *str_spec = PyObject_Str(format_spec);
1971 if (str_spec == NULL)
1972 return NULL;
1974 result = _PyFloat_FormatAdvanced(self,
1975 PyBytes_AS_STRING(str_spec),
1976 PyBytes_GET_SIZE(str_spec));
1978 Py_DECREF(str_spec);
1979 return result;
1981 PyErr_SetString(PyExc_TypeError, "__format__ requires str or unicode");
1982 return NULL;
1985 PyDoc_STRVAR(float__format__doc,
1986 "float.__format__(format_spec) -> string\n"
1987 "\n"
1988 "Formats the float according to format_spec.");
1991 static PyMethodDef float_methods[] = {
1992 {"conjugate", (PyCFunction)float_float, METH_NOARGS,
1993 "Returns self, the complex conjugate of any float."},
1994 {"__trunc__", (PyCFunction)float_trunc, METH_NOARGS,
1995 "Returns the Integral closest to x between 0 and x."},
1996 {"as_integer_ratio", (PyCFunction)float_as_integer_ratio, METH_NOARGS,
1997 float_as_integer_ratio_doc},
1998 {"fromhex", (PyCFunction)float_fromhex,
1999 METH_O|METH_CLASS, float_fromhex_doc},
2000 {"hex", (PyCFunction)float_hex,
2001 METH_NOARGS, float_hex_doc},
2002 {"is_integer", (PyCFunction)float_is_integer, METH_NOARGS,
2003 "Returns True if the float is an integer."},
2004 #if 0
2005 {"is_inf", (PyCFunction)float_is_inf, METH_NOARGS,
2006 "Returns True if the float is positive or negative infinite."},
2007 {"is_finite", (PyCFunction)float_is_finite, METH_NOARGS,
2008 "Returns True if the float is finite, neither infinite nor NaN."},
2009 {"is_nan", (PyCFunction)float_is_nan, METH_NOARGS,
2010 "Returns True if the float is not a number (NaN)."},
2011 #endif
2012 {"__getnewargs__", (PyCFunction)float_getnewargs, METH_NOARGS},
2013 {"__getformat__", (PyCFunction)float_getformat,
2014 METH_O|METH_CLASS, float_getformat_doc},
2015 {"__setformat__", (PyCFunction)float_setformat,
2016 METH_VARARGS|METH_CLASS, float_setformat_doc},
2017 {"__format__", (PyCFunction)float__format__,
2018 METH_VARARGS, float__format__doc},
2019 {NULL, NULL} /* sentinel */
2022 static PyGetSetDef float_getset[] = {
2023 {"real",
2024 (getter)float_float, (setter)NULL,
2025 "the real part of a complex number",
2026 NULL},
2027 {"imag",
2028 (getter)float_getzero, (setter)NULL,
2029 "the imaginary part of a complex number",
2030 NULL},
2031 {NULL} /* Sentinel */
2034 PyDoc_STRVAR(float_doc,
2035 "float(x) -> floating point number\n\
2037 Convert a string or number to a floating point number, if possible.");
2040 static PyNumberMethods float_as_number = {
2041 float_add, /*nb_add*/
2042 float_sub, /*nb_subtract*/
2043 float_mul, /*nb_multiply*/
2044 float_classic_div, /*nb_divide*/
2045 float_rem, /*nb_remainder*/
2046 float_divmod, /*nb_divmod*/
2047 float_pow, /*nb_power*/
2048 (unaryfunc)float_neg, /*nb_negative*/
2049 (unaryfunc)float_float, /*nb_positive*/
2050 (unaryfunc)float_abs, /*nb_absolute*/
2051 (inquiry)float_nonzero, /*nb_nonzero*/
2052 0, /*nb_invert*/
2053 0, /*nb_lshift*/
2054 0, /*nb_rshift*/
2055 0, /*nb_and*/
2056 0, /*nb_xor*/
2057 0, /*nb_or*/
2058 float_coerce, /*nb_coerce*/
2059 float_trunc, /*nb_int*/
2060 float_long, /*nb_long*/
2061 float_float, /*nb_float*/
2062 0, /* nb_oct */
2063 0, /* nb_hex */
2064 0, /* nb_inplace_add */
2065 0, /* nb_inplace_subtract */
2066 0, /* nb_inplace_multiply */
2067 0, /* nb_inplace_divide */
2068 0, /* nb_inplace_remainder */
2069 0, /* nb_inplace_power */
2070 0, /* nb_inplace_lshift */
2071 0, /* nb_inplace_rshift */
2072 0, /* nb_inplace_and */
2073 0, /* nb_inplace_xor */
2074 0, /* nb_inplace_or */
2075 float_floor_div, /* nb_floor_divide */
2076 float_div, /* nb_true_divide */
2077 0, /* nb_inplace_floor_divide */
2078 0, /* nb_inplace_true_divide */
2081 PyTypeObject PyFloat_Type = {
2082 PyVarObject_HEAD_INIT(&PyType_Type, 0)
2083 "float",
2084 sizeof(PyFloatObject),
2086 (destructor)float_dealloc, /* tp_dealloc */
2087 (printfunc)float_print, /* tp_print */
2088 0, /* tp_getattr */
2089 0, /* tp_setattr */
2090 0, /* tp_compare */
2091 (reprfunc)float_repr, /* tp_repr */
2092 &float_as_number, /* tp_as_number */
2093 0, /* tp_as_sequence */
2094 0, /* tp_as_mapping */
2095 (hashfunc)float_hash, /* tp_hash */
2096 0, /* tp_call */
2097 (reprfunc)float_str, /* tp_str */
2098 PyObject_GenericGetAttr, /* tp_getattro */
2099 0, /* tp_setattro */
2100 0, /* tp_as_buffer */
2101 Py_TPFLAGS_DEFAULT | Py_TPFLAGS_CHECKTYPES |
2102 Py_TPFLAGS_BASETYPE, /* tp_flags */
2103 float_doc, /* tp_doc */
2104 0, /* tp_traverse */
2105 0, /* tp_clear */
2106 float_richcompare, /* tp_richcompare */
2107 0, /* tp_weaklistoffset */
2108 0, /* tp_iter */
2109 0, /* tp_iternext */
2110 float_methods, /* tp_methods */
2111 0, /* tp_members */
2112 float_getset, /* tp_getset */
2113 0, /* tp_base */
2114 0, /* tp_dict */
2115 0, /* tp_descr_get */
2116 0, /* tp_descr_set */
2117 0, /* tp_dictoffset */
2118 0, /* tp_init */
2119 0, /* tp_alloc */
2120 float_new, /* tp_new */
2123 void
2124 _PyFloat_Init(void)
2126 /* We attempt to determine if this machine is using IEEE
2127 floating point formats by peering at the bits of some
2128 carefully chosen values. If it looks like we are on an
2129 IEEE platform, the float packing/unpacking routines can
2130 just copy bits, if not they resort to arithmetic & shifts
2131 and masks. The shifts & masks approach works on all finite
2132 values, but what happens to infinities, NaNs and signed
2133 zeroes on packing is an accident, and attempting to unpack
2134 a NaN or an infinity will raise an exception.
2136 Note that if we're on some whacked-out platform which uses
2137 IEEE formats but isn't strictly little-endian or big-
2138 endian, we will fall back to the portable shifts & masks
2139 method. */
2141 #if SIZEOF_DOUBLE == 8
2143 double x = 9006104071832581.0;
2144 if (memcmp(&x, "\x43\x3f\xff\x01\x02\x03\x04\x05", 8) == 0)
2145 detected_double_format = ieee_big_endian_format;
2146 else if (memcmp(&x, "\x05\x04\x03\x02\x01\xff\x3f\x43", 8) == 0)
2147 detected_double_format = ieee_little_endian_format;
2148 else
2149 detected_double_format = unknown_format;
2151 #else
2152 detected_double_format = unknown_format;
2153 #endif
2155 #if SIZEOF_FLOAT == 4
2157 float y = 16711938.0;
2158 if (memcmp(&y, "\x4b\x7f\x01\x02", 4) == 0)
2159 detected_float_format = ieee_big_endian_format;
2160 else if (memcmp(&y, "\x02\x01\x7f\x4b", 4) == 0)
2161 detected_float_format = ieee_little_endian_format;
2162 else
2163 detected_float_format = unknown_format;
2165 #else
2166 detected_float_format = unknown_format;
2167 #endif
2169 double_format = detected_double_format;
2170 float_format = detected_float_format;
2172 /* Init float info */
2173 if (FloatInfoType.tp_name == 0)
2174 PyStructSequence_InitType(&FloatInfoType, &floatinfo_desc);
2178 PyFloat_ClearFreeList(void)
2180 PyFloatObject *p;
2181 PyFloatBlock *list, *next;
2182 int i;
2183 int u; /* remaining unfreed ints per block */
2184 int freelist_size = 0;
2186 list = block_list;
2187 block_list = NULL;
2188 free_list = NULL;
2189 while (list != NULL) {
2190 u = 0;
2191 for (i = 0, p = &list->objects[0];
2192 i < N_FLOATOBJECTS;
2193 i++, p++) {
2194 if (PyFloat_CheckExact(p) && Py_REFCNT(p) != 0)
2195 u++;
2197 next = list->next;
2198 if (u) {
2199 list->next = block_list;
2200 block_list = list;
2201 for (i = 0, p = &list->objects[0];
2202 i < N_FLOATOBJECTS;
2203 i++, p++) {
2204 if (!PyFloat_CheckExact(p) ||
2205 Py_REFCNT(p) == 0) {
2206 Py_TYPE(p) = (struct _typeobject *)
2207 free_list;
2208 free_list = p;
2212 else {
2213 PyMem_FREE(list);
2215 freelist_size += u;
2216 list = next;
2218 return freelist_size;
2221 void
2222 PyFloat_Fini(void)
2224 PyFloatObject *p;
2225 PyFloatBlock *list;
2226 int i;
2227 int u; /* total unfreed floats per block */
2229 u = PyFloat_ClearFreeList();
2231 if (!Py_VerboseFlag)
2232 return;
2233 fprintf(stderr, "# cleanup floats");
2234 if (!u) {
2235 fprintf(stderr, "\n");
2237 else {
2238 fprintf(stderr,
2239 ": %d unfreed float%s\n",
2240 u, u == 1 ? "" : "s");
2242 if (Py_VerboseFlag > 1) {
2243 list = block_list;
2244 while (list != NULL) {
2245 for (i = 0, p = &list->objects[0];
2246 i < N_FLOATOBJECTS;
2247 i++, p++) {
2248 if (PyFloat_CheckExact(p) &&
2249 Py_REFCNT(p) != 0) {
2250 char *buf = PyOS_double_to_string(
2251 PyFloat_AS_DOUBLE(p), 'r',
2252 0, 0, NULL);
2253 if (buf) {
2254 /* XXX(twouters) cast
2255 refcount to long
2256 until %zd is
2257 universally
2258 available
2260 fprintf(stderr,
2261 "# <float at %p, refcnt=%ld, val=%s>\n",
2262 p, (long)Py_REFCNT(p), buf);
2263 PyMem_Free(buf);
2267 list = list->next;
2272 /*----------------------------------------------------------------------------
2273 * _PyFloat_{Pack,Unpack}{4,8}. See floatobject.h.
2276 _PyFloat_Pack4(double x, unsigned char *p, int le)
2278 if (float_format == unknown_format) {
2279 unsigned char sign;
2280 int e;
2281 double f;
2282 unsigned int fbits;
2283 int incr = 1;
2285 if (le) {
2286 p += 3;
2287 incr = -1;
2290 if (x < 0) {
2291 sign = 1;
2292 x = -x;
2294 else
2295 sign = 0;
2297 f = frexp(x, &e);
2299 /* Normalize f to be in the range [1.0, 2.0) */
2300 if (0.5 <= f && f < 1.0) {
2301 f *= 2.0;
2302 e--;
2304 else if (f == 0.0)
2305 e = 0;
2306 else {
2307 PyErr_SetString(PyExc_SystemError,
2308 "frexp() result out of range");
2309 return -1;
2312 if (e >= 128)
2313 goto Overflow;
2314 else if (e < -126) {
2315 /* Gradual underflow */
2316 f = ldexp(f, 126 + e);
2317 e = 0;
2319 else if (!(e == 0 && f == 0.0)) {
2320 e += 127;
2321 f -= 1.0; /* Get rid of leading 1 */
2324 f *= 8388608.0; /* 2**23 */
2325 fbits = (unsigned int)(f + 0.5); /* Round */
2326 assert(fbits <= 8388608);
2327 if (fbits >> 23) {
2328 /* The carry propagated out of a string of 23 1 bits. */
2329 fbits = 0;
2330 ++e;
2331 if (e >= 255)
2332 goto Overflow;
2335 /* First byte */
2336 *p = (sign << 7) | (e >> 1);
2337 p += incr;
2339 /* Second byte */
2340 *p = (char) (((e & 1) << 7) | (fbits >> 16));
2341 p += incr;
2343 /* Third byte */
2344 *p = (fbits >> 8) & 0xFF;
2345 p += incr;
2347 /* Fourth byte */
2348 *p = fbits & 0xFF;
2350 /* Done */
2351 return 0;
2354 else {
2355 float y = (float)x;
2356 const char *s = (char*)&y;
2357 int i, incr = 1;
2359 if (Py_IS_INFINITY(y) && !Py_IS_INFINITY(x))
2360 goto Overflow;
2362 if ((float_format == ieee_little_endian_format && !le)
2363 || (float_format == ieee_big_endian_format && le)) {
2364 p += 3;
2365 incr = -1;
2368 for (i = 0; i < 4; i++) {
2369 *p = *s++;
2370 p += incr;
2372 return 0;
2374 Overflow:
2375 PyErr_SetString(PyExc_OverflowError,
2376 "float too large to pack with f format");
2377 return -1;
2381 _PyFloat_Pack8(double x, unsigned char *p, int le)
2383 if (double_format == unknown_format) {
2384 unsigned char sign;
2385 int e;
2386 double f;
2387 unsigned int fhi, flo;
2388 int incr = 1;
2390 if (le) {
2391 p += 7;
2392 incr = -1;
2395 if (x < 0) {
2396 sign = 1;
2397 x = -x;
2399 else
2400 sign = 0;
2402 f = frexp(x, &e);
2404 /* Normalize f to be in the range [1.0, 2.0) */
2405 if (0.5 <= f && f < 1.0) {
2406 f *= 2.0;
2407 e--;
2409 else if (f == 0.0)
2410 e = 0;
2411 else {
2412 PyErr_SetString(PyExc_SystemError,
2413 "frexp() result out of range");
2414 return -1;
2417 if (e >= 1024)
2418 goto Overflow;
2419 else if (e < -1022) {
2420 /* Gradual underflow */
2421 f = ldexp(f, 1022 + e);
2422 e = 0;
2424 else if (!(e == 0 && f == 0.0)) {
2425 e += 1023;
2426 f -= 1.0; /* Get rid of leading 1 */
2429 /* fhi receives the high 28 bits; flo the low 24 bits (== 52 bits) */
2430 f *= 268435456.0; /* 2**28 */
2431 fhi = (unsigned int)f; /* Truncate */
2432 assert(fhi < 268435456);
2434 f -= (double)fhi;
2435 f *= 16777216.0; /* 2**24 */
2436 flo = (unsigned int)(f + 0.5); /* Round */
2437 assert(flo <= 16777216);
2438 if (flo >> 24) {
2439 /* The carry propagated out of a string of 24 1 bits. */
2440 flo = 0;
2441 ++fhi;
2442 if (fhi >> 28) {
2443 /* And it also progagated out of the next 28 bits. */
2444 fhi = 0;
2445 ++e;
2446 if (e >= 2047)
2447 goto Overflow;
2451 /* First byte */
2452 *p = (sign << 7) | (e >> 4);
2453 p += incr;
2455 /* Second byte */
2456 *p = (unsigned char) (((e & 0xF) << 4) | (fhi >> 24));
2457 p += incr;
2459 /* Third byte */
2460 *p = (fhi >> 16) & 0xFF;
2461 p += incr;
2463 /* Fourth byte */
2464 *p = (fhi >> 8) & 0xFF;
2465 p += incr;
2467 /* Fifth byte */
2468 *p = fhi & 0xFF;
2469 p += incr;
2471 /* Sixth byte */
2472 *p = (flo >> 16) & 0xFF;
2473 p += incr;
2475 /* Seventh byte */
2476 *p = (flo >> 8) & 0xFF;
2477 p += incr;
2479 /* Eighth byte */
2480 *p = flo & 0xFF;
2481 p += incr;
2483 /* Done */
2484 return 0;
2486 Overflow:
2487 PyErr_SetString(PyExc_OverflowError,
2488 "float too large to pack with d format");
2489 return -1;
2491 else {
2492 const char *s = (char*)&x;
2493 int i, incr = 1;
2495 if ((double_format == ieee_little_endian_format && !le)
2496 || (double_format == ieee_big_endian_format && le)) {
2497 p += 7;
2498 incr = -1;
2501 for (i = 0; i < 8; i++) {
2502 *p = *s++;
2503 p += incr;
2505 return 0;
2509 double
2510 _PyFloat_Unpack4(const unsigned char *p, int le)
2512 if (float_format == unknown_format) {
2513 unsigned char sign;
2514 int e;
2515 unsigned int f;
2516 double x;
2517 int incr = 1;
2519 if (le) {
2520 p += 3;
2521 incr = -1;
2524 /* First byte */
2525 sign = (*p >> 7) & 1;
2526 e = (*p & 0x7F) << 1;
2527 p += incr;
2529 /* Second byte */
2530 e |= (*p >> 7) & 1;
2531 f = (*p & 0x7F) << 16;
2532 p += incr;
2534 if (e == 255) {
2535 PyErr_SetString(
2536 PyExc_ValueError,
2537 "can't unpack IEEE 754 special value "
2538 "on non-IEEE platform");
2539 return -1;
2542 /* Third byte */
2543 f |= *p << 8;
2544 p += incr;
2546 /* Fourth byte */
2547 f |= *p;
2549 x = (double)f / 8388608.0;
2551 /* XXX This sadly ignores Inf/NaN issues */
2552 if (e == 0)
2553 e = -126;
2554 else {
2555 x += 1.0;
2556 e -= 127;
2558 x = ldexp(x, e);
2560 if (sign)
2561 x = -x;
2563 return x;
2565 else {
2566 float x;
2568 if ((float_format == ieee_little_endian_format && !le)
2569 || (float_format == ieee_big_endian_format && le)) {
2570 char buf[4];
2571 char *d = &buf[3];
2572 int i;
2574 for (i = 0; i < 4; i++) {
2575 *d-- = *p++;
2577 memcpy(&x, buf, 4);
2579 else {
2580 memcpy(&x, p, 4);
2583 return x;
2587 double
2588 _PyFloat_Unpack8(const unsigned char *p, int le)
2590 if (double_format == unknown_format) {
2591 unsigned char sign;
2592 int e;
2593 unsigned int fhi, flo;
2594 double x;
2595 int incr = 1;
2597 if (le) {
2598 p += 7;
2599 incr = -1;
2602 /* First byte */
2603 sign = (*p >> 7) & 1;
2604 e = (*p & 0x7F) << 4;
2606 p += incr;
2608 /* Second byte */
2609 e |= (*p >> 4) & 0xF;
2610 fhi = (*p & 0xF) << 24;
2611 p += incr;
2613 if (e == 2047) {
2614 PyErr_SetString(
2615 PyExc_ValueError,
2616 "can't unpack IEEE 754 special value "
2617 "on non-IEEE platform");
2618 return -1.0;
2621 /* Third byte */
2622 fhi |= *p << 16;
2623 p += incr;
2625 /* Fourth byte */
2626 fhi |= *p << 8;
2627 p += incr;
2629 /* Fifth byte */
2630 fhi |= *p;
2631 p += incr;
2633 /* Sixth byte */
2634 flo = *p << 16;
2635 p += incr;
2637 /* Seventh byte */
2638 flo |= *p << 8;
2639 p += incr;
2641 /* Eighth byte */
2642 flo |= *p;
2644 x = (double)fhi + (double)flo / 16777216.0; /* 2**24 */
2645 x /= 268435456.0; /* 2**28 */
2647 if (e == 0)
2648 e = -1022;
2649 else {
2650 x += 1.0;
2651 e -= 1023;
2653 x = ldexp(x, e);
2655 if (sign)
2656 x = -x;
2658 return x;
2660 else {
2661 double x;
2663 if ((double_format == ieee_little_endian_format && !le)
2664 || (double_format == ieee_big_endian_format && le)) {
2665 char buf[8];
2666 char *d = &buf[7];
2667 int i;
2669 for (i = 0; i < 8; i++) {
2670 *d-- = *p++;
2672 memcpy(&x, buf, 8);
2674 else {
2675 memcpy(&x, p, 8);
2678 return x;