Handle urllib's renaming for Python 3.0:
[python.git] / Python / pymath.c
blob7c0010675a332e3ca816424079a470287715d8de
1 #include "Python.h"
3 #ifndef HAVE_HYPOT
4 double hypot(double x, double y)
6 double yx;
8 x = fabs(x);
9 y = fabs(y);
10 if (x < y) {
11 double temp = x;
12 x = y;
13 y = temp;
15 if (x == 0.)
16 return 0.;
17 else {
18 yx = y/x;
19 return x*sqrt(1.+yx*yx);
22 #endif /* HAVE_HYPOT */
24 #ifndef HAVE_COPYSIGN
25 static double
26 copysign(double x, double y)
28 /* use atan2 to distinguish -0. from 0. */
29 if (y > 0. || (y == 0. && atan2(y, -1.) > 0.)) {
30 return fabs(x);
31 } else {
32 return -fabs(x);
35 #endif /* HAVE_COPYSIGN */
37 #ifndef HAVE_LOG1P
38 double
39 log1p(double x)
41 /* For x small, we use the following approach. Let y be the nearest
42 float to 1+x, then
44 1+x = y * (1 - (y-1-x)/y)
46 so log(1+x) = log(y) + log(1-(y-1-x)/y). Since (y-1-x)/y is tiny,
47 the second term is well approximated by (y-1-x)/y. If abs(x) >=
48 DBL_EPSILON/2 or the rounding-mode is some form of round-to-nearest
49 then y-1-x will be exactly representable, and is computed exactly
50 by (y-1)-x.
52 If abs(x) < DBL_EPSILON/2 and the rounding mode is not known to be
53 round-to-nearest then this method is slightly dangerous: 1+x could
54 be rounded up to 1+DBL_EPSILON instead of down to 1, and in that
55 case y-1-x will not be exactly representable any more and the
56 result can be off by many ulps. But this is easily fixed: for a
57 floating-point number |x| < DBL_EPSILON/2., the closest
58 floating-point number to log(1+x) is exactly x.
61 double y;
62 if (fabs(x) < DBL_EPSILON/2.) {
63 return x;
64 } else if (-0.5 <= x && x <= 1.) {
65 /* WARNING: it's possible than an overeager compiler
66 will incorrectly optimize the following two lines
67 to the equivalent of "return log(1.+x)". If this
68 happens, then results from log1p will be inaccurate
69 for small x. */
70 y = 1.+x;
71 return log(y)-((y-1.)-x)/y;
72 } else {
73 /* NaNs and infinities should end up here */
74 return log(1.+x);
77 #endif /* HAVE_LOG1P */
80 * ====================================================
81 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
83 * Developed at SunPro, a Sun Microsystems, Inc. business.
84 * Permission to use, copy, modify, and distribute this
85 * software is freely granted, provided that this notice
86 * is preserved.
87 * ====================================================
90 static const double ln2 = 6.93147180559945286227E-01;
91 static const double two_pow_m28 = 3.7252902984619141E-09; /* 2**-28 */
92 static const double two_pow_p28 = 268435456.0; /* 2**28 */
93 static const double zero = 0.0;
95 /* asinh(x)
96 * Method :
97 * Based on
98 * asinh(x) = sign(x) * log [ |x| + sqrt(x*x+1) ]
99 * we have
100 * asinh(x) := x if 1+x*x=1,
101 * := sign(x)*(log(x)+ln2)) for large |x|, else
102 * := sign(x)*log(2|x|+1/(|x|+sqrt(x*x+1))) if|x|>2, else
103 * := sign(x)*log1p(|x| + x^2/(1 + sqrt(1+x^2)))
106 #ifndef HAVE_ASINH
107 double
108 asinh(double x)
110 double w;
111 double absx = fabs(x);
113 if (Py_IS_NAN(x) || Py_IS_INFINITY(x)) {
114 return x+x;
116 if (absx < two_pow_m28) { /* |x| < 2**-28 */
117 return x; /* return x inexact except 0 */
119 if (absx > two_pow_p28) { /* |x| > 2**28 */
120 w = log(absx)+ln2;
122 else if (absx > 2.0) { /* 2 < |x| < 2**28 */
123 w = log(2.0*absx + 1.0 / (sqrt(x*x + 1.0) + absx));
125 else { /* 2**-28 <= |x| < 2= */
126 double t = x*x;
127 w = log1p(absx + t / (1.0 + sqrt(1.0 + t)));
129 return copysign(w, x);
132 #endif /* HAVE_ASINH */
134 /* acosh(x)
135 * Method :
136 * Based on
137 * acosh(x) = log [ x + sqrt(x*x-1) ]
138 * we have
139 * acosh(x) := log(x)+ln2, if x is large; else
140 * acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else
141 * acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1.
143 * Special cases:
144 * acosh(x) is NaN with signal if x<1.
145 * acosh(NaN) is NaN without signal.
148 #ifndef HAVE_ACOSH
149 double
150 acosh(double x)
152 if (Py_IS_NAN(x)) {
153 return x+x;
155 if (x < 1.) { /* x < 1; return a signaling NaN */
156 errno = EDOM;
157 #ifdef Py_NAN
158 return Py_NAN;
159 #else
160 return (x-x)/(x-x);
161 #endif
163 else if (x >= two_pow_p28) { /* x > 2**28 */
164 if (Py_IS_INFINITY(x)) {
165 return x+x;
166 } else {
167 return log(x)+ln2; /* acosh(huge)=log(2x) */
170 else if (x == 1.) {
171 return 0.0; /* acosh(1) = 0 */
173 else if (x > 2.) { /* 2 < x < 2**28 */
174 double t = x*x;
175 return log(2.0*x - 1.0 / (x + sqrt(t - 1.0)));
177 else { /* 1 < x <= 2 */
178 double t = x - 1.0;
179 return log1p(t + sqrt(2.0*t + t*t));
182 #endif /* HAVE_ACOSH */
184 /* atanh(x)
185 * Method :
186 * 1.Reduced x to positive by atanh(-x) = -atanh(x)
187 * 2.For x>=0.5
188 * 1 2x x
189 * atanh(x) = --- * log(1 + -------) = 0.5 * log1p(2 * --------)
190 * 2 1 - x 1 - x
192 * For x<0.5
193 * atanh(x) = 0.5*log1p(2x+2x*x/(1-x))
195 * Special cases:
196 * atanh(x) is NaN if |x| >= 1 with signal;
197 * atanh(NaN) is that NaN with no signal;
201 #ifndef HAVE_ATANH
202 double
203 atanh(double x)
205 double absx;
206 double t;
208 if (Py_IS_NAN(x)) {
209 return x+x;
211 absx = fabs(x);
212 if (absx >= 1.) { /* |x| >= 1 */
213 errno = EDOM;
214 #ifdef Py_NAN
215 return Py_NAN;
216 #else
217 return x/zero;
218 #endif
220 if (absx < two_pow_m28) { /* |x| < 2**-28 */
221 return x;
223 if (absx < 0.5) { /* |x| < 0.5 */
224 t = absx+absx;
225 t = 0.5 * log1p(t + t*absx / (1.0 - absx));
227 else { /* 0.5 <= |x| <= 1.0 */
228 t = 0.5 * log1p((absx + absx) / (1.0 - absx));
230 return copysign(t, x);
232 #endif /* HAVE_ATANH */