Updates of recent changes to logging.
[python.git] / Modules / datetimemodule.c
blob1f132384ab3a9e1186f18c678178b35f5b649dd6
1 /* C implementation for the date/time type documented at
2 * http://www.zope.org/Members/fdrake/DateTimeWiki/FrontPage
3 */
5 #include "Python.h"
6 #include "modsupport.h"
7 #include "structmember.h"
9 #include <time.h>
11 #include "timefuncs.h"
13 /* Differentiate between building the core module and building extension
14 * modules.
16 #ifndef Py_BUILD_CORE
17 #define Py_BUILD_CORE
18 #endif
19 #include "datetime.h"
20 #undef Py_BUILD_CORE
22 /* We require that C int be at least 32 bits, and use int virtually
23 * everywhere. In just a few cases we use a temp long, where a Python
24 * API returns a C long. In such cases, we have to ensure that the
25 * final result fits in a C int (this can be an issue on 64-bit boxes).
27 #if SIZEOF_INT < 4
28 # error "datetime.c requires that C int have at least 32 bits"
29 #endif
31 #define MINYEAR 1
32 #define MAXYEAR 9999
34 /* Nine decimal digits is easy to communicate, and leaves enough room
35 * so that two delta days can be added w/o fear of overflowing a signed
36 * 32-bit int, and with plenty of room left over to absorb any possible
37 * carries from adding seconds.
39 #define MAX_DELTA_DAYS 999999999
41 /* Rename the long macros in datetime.h to more reasonable short names. */
42 #define GET_YEAR PyDateTime_GET_YEAR
43 #define GET_MONTH PyDateTime_GET_MONTH
44 #define GET_DAY PyDateTime_GET_DAY
45 #define DATE_GET_HOUR PyDateTime_DATE_GET_HOUR
46 #define DATE_GET_MINUTE PyDateTime_DATE_GET_MINUTE
47 #define DATE_GET_SECOND PyDateTime_DATE_GET_SECOND
48 #define DATE_GET_MICROSECOND PyDateTime_DATE_GET_MICROSECOND
50 /* Date accessors for date and datetime. */
51 #define SET_YEAR(o, v) (((o)->data[0] = ((v) & 0xff00) >> 8), \
52 ((o)->data[1] = ((v) & 0x00ff)))
53 #define SET_MONTH(o, v) (PyDateTime_GET_MONTH(o) = (v))
54 #define SET_DAY(o, v) (PyDateTime_GET_DAY(o) = (v))
56 /* Date/Time accessors for datetime. */
57 #define DATE_SET_HOUR(o, v) (PyDateTime_DATE_GET_HOUR(o) = (v))
58 #define DATE_SET_MINUTE(o, v) (PyDateTime_DATE_GET_MINUTE(o) = (v))
59 #define DATE_SET_SECOND(o, v) (PyDateTime_DATE_GET_SECOND(o) = (v))
60 #define DATE_SET_MICROSECOND(o, v) \
61 (((o)->data[7] = ((v) & 0xff0000) >> 16), \
62 ((o)->data[8] = ((v) & 0x00ff00) >> 8), \
63 ((o)->data[9] = ((v) & 0x0000ff)))
65 /* Time accessors for time. */
66 #define TIME_GET_HOUR PyDateTime_TIME_GET_HOUR
67 #define TIME_GET_MINUTE PyDateTime_TIME_GET_MINUTE
68 #define TIME_GET_SECOND PyDateTime_TIME_GET_SECOND
69 #define TIME_GET_MICROSECOND PyDateTime_TIME_GET_MICROSECOND
70 #define TIME_SET_HOUR(o, v) (PyDateTime_TIME_GET_HOUR(o) = (v))
71 #define TIME_SET_MINUTE(o, v) (PyDateTime_TIME_GET_MINUTE(o) = (v))
72 #define TIME_SET_SECOND(o, v) (PyDateTime_TIME_GET_SECOND(o) = (v))
73 #define TIME_SET_MICROSECOND(o, v) \
74 (((o)->data[3] = ((v) & 0xff0000) >> 16), \
75 ((o)->data[4] = ((v) & 0x00ff00) >> 8), \
76 ((o)->data[5] = ((v) & 0x0000ff)))
78 /* Delta accessors for timedelta. */
79 #define GET_TD_DAYS(o) (((PyDateTime_Delta *)(o))->days)
80 #define GET_TD_SECONDS(o) (((PyDateTime_Delta *)(o))->seconds)
81 #define GET_TD_MICROSECONDS(o) (((PyDateTime_Delta *)(o))->microseconds)
83 #define SET_TD_DAYS(o, v) ((o)->days = (v))
84 #define SET_TD_SECONDS(o, v) ((o)->seconds = (v))
85 #define SET_TD_MICROSECONDS(o, v) ((o)->microseconds = (v))
87 /* p is a pointer to a time or a datetime object; HASTZINFO(p) returns
88 * p->hastzinfo.
90 #define HASTZINFO(p) (((_PyDateTime_BaseTZInfo *)(p))->hastzinfo)
92 /* M is a char or int claiming to be a valid month. The macro is equivalent
93 * to the two-sided Python test
94 * 1 <= M <= 12
96 #define MONTH_IS_SANE(M) ((unsigned int)(M) - 1 < 12)
98 /* Forward declarations. */
99 static PyTypeObject PyDateTime_DateType;
100 static PyTypeObject PyDateTime_DateTimeType;
101 static PyTypeObject PyDateTime_DeltaType;
102 static PyTypeObject PyDateTime_TimeType;
103 static PyTypeObject PyDateTime_TZInfoType;
105 /* ---------------------------------------------------------------------------
106 * Math utilities.
109 /* k = i+j overflows iff k differs in sign from both inputs,
110 * iff k^i has sign bit set and k^j has sign bit set,
111 * iff (k^i)&(k^j) has sign bit set.
113 #define SIGNED_ADD_OVERFLOWED(RESULT, I, J) \
114 ((((RESULT) ^ (I)) & ((RESULT) ^ (J))) < 0)
116 /* Compute Python divmod(x, y), returning the quotient and storing the
117 * remainder into *r. The quotient is the floor of x/y, and that's
118 * the real point of this. C will probably truncate instead (C99
119 * requires truncation; C89 left it implementation-defined).
120 * Simplification: we *require* that y > 0 here. That's appropriate
121 * for all the uses made of it. This simplifies the code and makes
122 * the overflow case impossible (divmod(LONG_MIN, -1) is the only
123 * overflow case).
125 static int
126 divmod(int x, int y, int *r)
128 int quo;
130 assert(y > 0);
131 quo = x / y;
132 *r = x - quo * y;
133 if (*r < 0) {
134 --quo;
135 *r += y;
137 assert(0 <= *r && *r < y);
138 return quo;
141 /* Round a double to the nearest long. |x| must be small enough to fit
142 * in a C long; this is not checked.
144 static long
145 round_to_long(double x)
147 if (x >= 0.0)
148 x = floor(x + 0.5);
149 else
150 x = ceil(x - 0.5);
151 return (long)x;
154 /* ---------------------------------------------------------------------------
155 * General calendrical helper functions
158 /* For each month ordinal in 1..12, the number of days in that month,
159 * and the number of days before that month in the same year. These
160 * are correct for non-leap years only.
162 static int _days_in_month[] = {
163 0, /* unused; this vector uses 1-based indexing */
164 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
167 static int _days_before_month[] = {
168 0, /* unused; this vector uses 1-based indexing */
169 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334
172 /* year -> 1 if leap year, else 0. */
173 static int
174 is_leap(int year)
176 /* Cast year to unsigned. The result is the same either way, but
177 * C can generate faster code for unsigned mod than for signed
178 * mod (especially for % 4 -- a good compiler should just grab
179 * the last 2 bits when the LHS is unsigned).
181 const unsigned int ayear = (unsigned int)year;
182 return ayear % 4 == 0 && (ayear % 100 != 0 || ayear % 400 == 0);
185 /* year, month -> number of days in that month in that year */
186 static int
187 days_in_month(int year, int month)
189 assert(month >= 1);
190 assert(month <= 12);
191 if (month == 2 && is_leap(year))
192 return 29;
193 else
194 return _days_in_month[month];
197 /* year, month -> number of days in year preceeding first day of month */
198 static int
199 days_before_month(int year, int month)
201 int days;
203 assert(month >= 1);
204 assert(month <= 12);
205 days = _days_before_month[month];
206 if (month > 2 && is_leap(year))
207 ++days;
208 return days;
211 /* year -> number of days before January 1st of year. Remember that we
212 * start with year 1, so days_before_year(1) == 0.
214 static int
215 days_before_year(int year)
217 int y = year - 1;
218 /* This is incorrect if year <= 0; we really want the floor
219 * here. But so long as MINYEAR is 1, the smallest year this
220 * can see is 0 (this can happen in some normalization endcases),
221 * so we'll just special-case that.
223 assert (year >= 0);
224 if (y >= 0)
225 return y*365 + y/4 - y/100 + y/400;
226 else {
227 assert(y == -1);
228 return -366;
232 /* Number of days in 4, 100, and 400 year cycles. That these have
233 * the correct values is asserted in the module init function.
235 #define DI4Y 1461 /* days_before_year(5); days in 4 years */
236 #define DI100Y 36524 /* days_before_year(101); days in 100 years */
237 #define DI400Y 146097 /* days_before_year(401); days in 400 years */
239 /* ordinal -> year, month, day, considering 01-Jan-0001 as day 1. */
240 static void
241 ord_to_ymd(int ordinal, int *year, int *month, int *day)
243 int n, n1, n4, n100, n400, leapyear, preceding;
245 /* ordinal is a 1-based index, starting at 1-Jan-1. The pattern of
246 * leap years repeats exactly every 400 years. The basic strategy is
247 * to find the closest 400-year boundary at or before ordinal, then
248 * work with the offset from that boundary to ordinal. Life is much
249 * clearer if we subtract 1 from ordinal first -- then the values
250 * of ordinal at 400-year boundaries are exactly those divisible
251 * by DI400Y:
253 * D M Y n n-1
254 * -- --- ---- ---------- ----------------
255 * 31 Dec -400 -DI400Y -DI400Y -1
256 * 1 Jan -399 -DI400Y +1 -DI400Y 400-year boundary
257 * ...
258 * 30 Dec 000 -1 -2
259 * 31 Dec 000 0 -1
260 * 1 Jan 001 1 0 400-year boundary
261 * 2 Jan 001 2 1
262 * 3 Jan 001 3 2
263 * ...
264 * 31 Dec 400 DI400Y DI400Y -1
265 * 1 Jan 401 DI400Y +1 DI400Y 400-year boundary
267 assert(ordinal >= 1);
268 --ordinal;
269 n400 = ordinal / DI400Y;
270 n = ordinal % DI400Y;
271 *year = n400 * 400 + 1;
273 /* Now n is the (non-negative) offset, in days, from January 1 of
274 * year, to the desired date. Now compute how many 100-year cycles
275 * precede n.
276 * Note that it's possible for n100 to equal 4! In that case 4 full
277 * 100-year cycles precede the desired day, which implies the
278 * desired day is December 31 at the end of a 400-year cycle.
280 n100 = n / DI100Y;
281 n = n % DI100Y;
283 /* Now compute how many 4-year cycles precede it. */
284 n4 = n / DI4Y;
285 n = n % DI4Y;
287 /* And now how many single years. Again n1 can be 4, and again
288 * meaning that the desired day is December 31 at the end of the
289 * 4-year cycle.
291 n1 = n / 365;
292 n = n % 365;
294 *year += n100 * 100 + n4 * 4 + n1;
295 if (n1 == 4 || n100 == 4) {
296 assert(n == 0);
297 *year -= 1;
298 *month = 12;
299 *day = 31;
300 return;
303 /* Now the year is correct, and n is the offset from January 1. We
304 * find the month via an estimate that's either exact or one too
305 * large.
307 leapyear = n1 == 3 && (n4 != 24 || n100 == 3);
308 assert(leapyear == is_leap(*year));
309 *month = (n + 50) >> 5;
310 preceding = (_days_before_month[*month] + (*month > 2 && leapyear));
311 if (preceding > n) {
312 /* estimate is too large */
313 *month -= 1;
314 preceding -= days_in_month(*year, *month);
316 n -= preceding;
317 assert(0 <= n);
318 assert(n < days_in_month(*year, *month));
320 *day = n + 1;
323 /* year, month, day -> ordinal, considering 01-Jan-0001 as day 1. */
324 static int
325 ymd_to_ord(int year, int month, int day)
327 return days_before_year(year) + days_before_month(year, month) + day;
330 /* Day of week, where Monday==0, ..., Sunday==6. 1/1/1 was a Monday. */
331 static int
332 weekday(int year, int month, int day)
334 return (ymd_to_ord(year, month, day) + 6) % 7;
337 /* Ordinal of the Monday starting week 1 of the ISO year. Week 1 is the
338 * first calendar week containing a Thursday.
340 static int
341 iso_week1_monday(int year)
343 int first_day = ymd_to_ord(year, 1, 1); /* ord of 1/1 */
344 /* 0 if 1/1 is a Monday, 1 if a Tue, etc. */
345 int first_weekday = (first_day + 6) % 7;
346 /* ordinal of closest Monday at or before 1/1 */
347 int week1_monday = first_day - first_weekday;
349 if (first_weekday > 3) /* if 1/1 was Fri, Sat, Sun */
350 week1_monday += 7;
351 return week1_monday;
354 /* ---------------------------------------------------------------------------
355 * Range checkers.
358 /* Check that -MAX_DELTA_DAYS <= days <= MAX_DELTA_DAYS. If so, return 0.
359 * If not, raise OverflowError and return -1.
361 static int
362 check_delta_day_range(int days)
364 if (-MAX_DELTA_DAYS <= days && days <= MAX_DELTA_DAYS)
365 return 0;
366 PyErr_Format(PyExc_OverflowError,
367 "days=%d; must have magnitude <= %d",
368 days, MAX_DELTA_DAYS);
369 return -1;
372 /* Check that date arguments are in range. Return 0 if they are. If they
373 * aren't, raise ValueError and return -1.
375 static int
376 check_date_args(int year, int month, int day)
379 if (year < MINYEAR || year > MAXYEAR) {
380 PyErr_SetString(PyExc_ValueError,
381 "year is out of range");
382 return -1;
384 if (month < 1 || month > 12) {
385 PyErr_SetString(PyExc_ValueError,
386 "month must be in 1..12");
387 return -1;
389 if (day < 1 || day > days_in_month(year, month)) {
390 PyErr_SetString(PyExc_ValueError,
391 "day is out of range for month");
392 return -1;
394 return 0;
397 /* Check that time arguments are in range. Return 0 if they are. If they
398 * aren't, raise ValueError and return -1.
400 static int
401 check_time_args(int h, int m, int s, int us)
403 if (h < 0 || h > 23) {
404 PyErr_SetString(PyExc_ValueError,
405 "hour must be in 0..23");
406 return -1;
408 if (m < 0 || m > 59) {
409 PyErr_SetString(PyExc_ValueError,
410 "minute must be in 0..59");
411 return -1;
413 if (s < 0 || s > 59) {
414 PyErr_SetString(PyExc_ValueError,
415 "second must be in 0..59");
416 return -1;
418 if (us < 0 || us > 999999) {
419 PyErr_SetString(PyExc_ValueError,
420 "microsecond must be in 0..999999");
421 return -1;
423 return 0;
426 /* ---------------------------------------------------------------------------
427 * Normalization utilities.
430 /* One step of a mixed-radix conversion. A "hi" unit is equivalent to
431 * factor "lo" units. factor must be > 0. If *lo is less than 0, or
432 * at least factor, enough of *lo is converted into "hi" units so that
433 * 0 <= *lo < factor. The input values must be such that int overflow
434 * is impossible.
436 static void
437 normalize_pair(int *hi, int *lo, int factor)
439 assert(factor > 0);
440 assert(lo != hi);
441 if (*lo < 0 || *lo >= factor) {
442 const int num_hi = divmod(*lo, factor, lo);
443 const int new_hi = *hi + num_hi;
444 assert(! SIGNED_ADD_OVERFLOWED(new_hi, *hi, num_hi));
445 *hi = new_hi;
447 assert(0 <= *lo && *lo < factor);
450 /* Fiddle days (d), seconds (s), and microseconds (us) so that
451 * 0 <= *s < 24*3600
452 * 0 <= *us < 1000000
453 * The input values must be such that the internals don't overflow.
454 * The way this routine is used, we don't get close.
456 static void
457 normalize_d_s_us(int *d, int *s, int *us)
459 if (*us < 0 || *us >= 1000000) {
460 normalize_pair(s, us, 1000000);
461 /* |s| can't be bigger than about
462 * |original s| + |original us|/1000000 now.
466 if (*s < 0 || *s >= 24*3600) {
467 normalize_pair(d, s, 24*3600);
468 /* |d| can't be bigger than about
469 * |original d| +
470 * (|original s| + |original us|/1000000) / (24*3600) now.
473 assert(0 <= *s && *s < 24*3600);
474 assert(0 <= *us && *us < 1000000);
477 /* Fiddle years (y), months (m), and days (d) so that
478 * 1 <= *m <= 12
479 * 1 <= *d <= days_in_month(*y, *m)
480 * The input values must be such that the internals don't overflow.
481 * The way this routine is used, we don't get close.
483 static void
484 normalize_y_m_d(int *y, int *m, int *d)
486 int dim; /* # of days in month */
488 /* This gets muddy: the proper range for day can't be determined
489 * without knowing the correct month and year, but if day is, e.g.,
490 * plus or minus a million, the current month and year values make
491 * no sense (and may also be out of bounds themselves).
492 * Saying 12 months == 1 year should be non-controversial.
494 if (*m < 1 || *m > 12) {
495 --*m;
496 normalize_pair(y, m, 12);
497 ++*m;
498 /* |y| can't be bigger than about
499 * |original y| + |original m|/12 now.
502 assert(1 <= *m && *m <= 12);
504 /* Now only day can be out of bounds (year may also be out of bounds
505 * for a datetime object, but we don't care about that here).
506 * If day is out of bounds, what to do is arguable, but at least the
507 * method here is principled and explainable.
509 dim = days_in_month(*y, *m);
510 if (*d < 1 || *d > dim) {
511 /* Move day-1 days from the first of the month. First try to
512 * get off cheap if we're only one day out of range
513 * (adjustments for timezone alone can't be worse than that).
515 if (*d == 0) {
516 --*m;
517 if (*m > 0)
518 *d = days_in_month(*y, *m);
519 else {
520 --*y;
521 *m = 12;
522 *d = 31;
525 else if (*d == dim + 1) {
526 /* move forward a day */
527 ++*m;
528 *d = 1;
529 if (*m > 12) {
530 *m = 1;
531 ++*y;
534 else {
535 int ordinal = ymd_to_ord(*y, *m, 1) +
536 *d - 1;
537 ord_to_ymd(ordinal, y, m, d);
540 assert(*m > 0);
541 assert(*d > 0);
544 /* Fiddle out-of-bounds months and days so that the result makes some kind
545 * of sense. The parameters are both inputs and outputs. Returns < 0 on
546 * failure, where failure means the adjusted year is out of bounds.
548 static int
549 normalize_date(int *year, int *month, int *day)
551 int result;
553 normalize_y_m_d(year, month, day);
554 if (MINYEAR <= *year && *year <= MAXYEAR)
555 result = 0;
556 else {
557 PyErr_SetString(PyExc_OverflowError,
558 "date value out of range");
559 result = -1;
561 return result;
564 /* Force all the datetime fields into range. The parameters are both
565 * inputs and outputs. Returns < 0 on error.
567 static int
568 normalize_datetime(int *year, int *month, int *day,
569 int *hour, int *minute, int *second,
570 int *microsecond)
572 normalize_pair(second, microsecond, 1000000);
573 normalize_pair(minute, second, 60);
574 normalize_pair(hour, minute, 60);
575 normalize_pair(day, hour, 24);
576 return normalize_date(year, month, day);
579 /* ---------------------------------------------------------------------------
580 * Basic object allocation: tp_alloc implementations. These allocate
581 * Python objects of the right size and type, and do the Python object-
582 * initialization bit. If there's not enough memory, they return NULL after
583 * setting MemoryError. All data members remain uninitialized trash.
585 * We abuse the tp_alloc "nitems" argument to communicate whether a tzinfo
586 * member is needed. This is ugly, imprecise, and possibly insecure.
587 * tp_basicsize for the time and datetime types is set to the size of the
588 * struct that has room for the tzinfo member, so subclasses in Python will
589 * allocate enough space for a tzinfo member whether or not one is actually
590 * needed. That's the "ugly and imprecise" parts. The "possibly insecure"
591 * part is that PyType_GenericAlloc() (which subclasses in Python end up
592 * using) just happens today to effectively ignore the nitems argument
593 * when tp_itemsize is 0, which it is for these type objects. If that
594 * changes, perhaps the callers of tp_alloc slots in this file should
595 * be changed to force a 0 nitems argument unless the type being allocated
596 * is a base type implemented in this file (so that tp_alloc is time_alloc
597 * or datetime_alloc below, which know about the nitems abuse).
600 static PyObject *
601 time_alloc(PyTypeObject *type, Py_ssize_t aware)
603 PyObject *self;
605 self = (PyObject *)
606 PyObject_MALLOC(aware ?
607 sizeof(PyDateTime_Time) :
608 sizeof(_PyDateTime_BaseTime));
609 if (self == NULL)
610 return (PyObject *)PyErr_NoMemory();
611 PyObject_INIT(self, type);
612 return self;
615 static PyObject *
616 datetime_alloc(PyTypeObject *type, Py_ssize_t aware)
618 PyObject *self;
620 self = (PyObject *)
621 PyObject_MALLOC(aware ?
622 sizeof(PyDateTime_DateTime) :
623 sizeof(_PyDateTime_BaseDateTime));
624 if (self == NULL)
625 return (PyObject *)PyErr_NoMemory();
626 PyObject_INIT(self, type);
627 return self;
630 /* ---------------------------------------------------------------------------
631 * Helpers for setting object fields. These work on pointers to the
632 * appropriate base class.
635 /* For date and datetime. */
636 static void
637 set_date_fields(PyDateTime_Date *self, int y, int m, int d)
639 self->hashcode = -1;
640 SET_YEAR(self, y);
641 SET_MONTH(self, m);
642 SET_DAY(self, d);
645 /* ---------------------------------------------------------------------------
646 * Create various objects, mostly without range checking.
649 /* Create a date instance with no range checking. */
650 static PyObject *
651 new_date_ex(int year, int month, int day, PyTypeObject *type)
653 PyDateTime_Date *self;
655 self = (PyDateTime_Date *) (type->tp_alloc(type, 0));
656 if (self != NULL)
657 set_date_fields(self, year, month, day);
658 return (PyObject *) self;
661 #define new_date(year, month, day) \
662 new_date_ex(year, month, day, &PyDateTime_DateType)
664 /* Create a datetime instance with no range checking. */
665 static PyObject *
666 new_datetime_ex(int year, int month, int day, int hour, int minute,
667 int second, int usecond, PyObject *tzinfo, PyTypeObject *type)
669 PyDateTime_DateTime *self;
670 char aware = tzinfo != Py_None;
672 self = (PyDateTime_DateTime *) (type->tp_alloc(type, aware));
673 if (self != NULL) {
674 self->hastzinfo = aware;
675 set_date_fields((PyDateTime_Date *)self, year, month, day);
676 DATE_SET_HOUR(self, hour);
677 DATE_SET_MINUTE(self, minute);
678 DATE_SET_SECOND(self, second);
679 DATE_SET_MICROSECOND(self, usecond);
680 if (aware) {
681 Py_INCREF(tzinfo);
682 self->tzinfo = tzinfo;
685 return (PyObject *)self;
688 #define new_datetime(y, m, d, hh, mm, ss, us, tzinfo) \
689 new_datetime_ex(y, m, d, hh, mm, ss, us, tzinfo, \
690 &PyDateTime_DateTimeType)
692 /* Create a time instance with no range checking. */
693 static PyObject *
694 new_time_ex(int hour, int minute, int second, int usecond,
695 PyObject *tzinfo, PyTypeObject *type)
697 PyDateTime_Time *self;
698 char aware = tzinfo != Py_None;
700 self = (PyDateTime_Time *) (type->tp_alloc(type, aware));
701 if (self != NULL) {
702 self->hastzinfo = aware;
703 self->hashcode = -1;
704 TIME_SET_HOUR(self, hour);
705 TIME_SET_MINUTE(self, minute);
706 TIME_SET_SECOND(self, second);
707 TIME_SET_MICROSECOND(self, usecond);
708 if (aware) {
709 Py_INCREF(tzinfo);
710 self->tzinfo = tzinfo;
713 return (PyObject *)self;
716 #define new_time(hh, mm, ss, us, tzinfo) \
717 new_time_ex(hh, mm, ss, us, tzinfo, &PyDateTime_TimeType)
719 /* Create a timedelta instance. Normalize the members iff normalize is
720 * true. Passing false is a speed optimization, if you know for sure
721 * that seconds and microseconds are already in their proper ranges. In any
722 * case, raises OverflowError and returns NULL if the normalized days is out
723 * of range).
725 static PyObject *
726 new_delta_ex(int days, int seconds, int microseconds, int normalize,
727 PyTypeObject *type)
729 PyDateTime_Delta *self;
731 if (normalize)
732 normalize_d_s_us(&days, &seconds, &microseconds);
733 assert(0 <= seconds && seconds < 24*3600);
734 assert(0 <= microseconds && microseconds < 1000000);
736 if (check_delta_day_range(days) < 0)
737 return NULL;
739 self = (PyDateTime_Delta *) (type->tp_alloc(type, 0));
740 if (self != NULL) {
741 self->hashcode = -1;
742 SET_TD_DAYS(self, days);
743 SET_TD_SECONDS(self, seconds);
744 SET_TD_MICROSECONDS(self, microseconds);
746 return (PyObject *) self;
749 #define new_delta(d, s, us, normalize) \
750 new_delta_ex(d, s, us, normalize, &PyDateTime_DeltaType)
752 /* ---------------------------------------------------------------------------
753 * tzinfo helpers.
756 /* Ensure that p is None or of a tzinfo subclass. Return 0 if OK; if not
757 * raise TypeError and return -1.
759 static int
760 check_tzinfo_subclass(PyObject *p)
762 if (p == Py_None || PyTZInfo_Check(p))
763 return 0;
764 PyErr_Format(PyExc_TypeError,
765 "tzinfo argument must be None or of a tzinfo subclass, "
766 "not type '%s'",
767 p->ob_type->tp_name);
768 return -1;
771 /* Return tzinfo.methname(tzinfoarg), without any checking of results.
772 * If tzinfo is None, returns None.
774 static PyObject *
775 call_tzinfo_method(PyObject *tzinfo, char *methname, PyObject *tzinfoarg)
777 PyObject *result;
779 assert(tzinfo && methname && tzinfoarg);
780 assert(check_tzinfo_subclass(tzinfo) >= 0);
781 if (tzinfo == Py_None) {
782 result = Py_None;
783 Py_INCREF(result);
785 else
786 result = PyObject_CallMethod(tzinfo, methname, "O", tzinfoarg);
787 return result;
790 /* If self has a tzinfo member, return a BORROWED reference to it. Else
791 * return NULL, which is NOT AN ERROR. There are no error returns here,
792 * and the caller must not decref the result.
794 static PyObject *
795 get_tzinfo_member(PyObject *self)
797 PyObject *tzinfo = NULL;
799 if (PyDateTime_Check(self) && HASTZINFO(self))
800 tzinfo = ((PyDateTime_DateTime *)self)->tzinfo;
801 else if (PyTime_Check(self) && HASTZINFO(self))
802 tzinfo = ((PyDateTime_Time *)self)->tzinfo;
804 return tzinfo;
807 /* Call getattr(tzinfo, name)(tzinfoarg), and extract an int from the
808 * result. tzinfo must be an instance of the tzinfo class. If the method
809 * returns None, this returns 0 and sets *none to 1. If the method doesn't
810 * return None or timedelta, TypeError is raised and this returns -1. If it
811 * returnsa timedelta and the value is out of range or isn't a whole number
812 * of minutes, ValueError is raised and this returns -1.
813 * Else *none is set to 0 and the integer method result is returned.
815 static int
816 call_utc_tzinfo_method(PyObject *tzinfo, char *name, PyObject *tzinfoarg,
817 int *none)
819 PyObject *u;
820 int result = -1;
822 assert(tzinfo != NULL);
823 assert(PyTZInfo_Check(tzinfo));
824 assert(tzinfoarg != NULL);
826 *none = 0;
827 u = call_tzinfo_method(tzinfo, name, tzinfoarg);
828 if (u == NULL)
829 return -1;
831 else if (u == Py_None) {
832 result = 0;
833 *none = 1;
835 else if (PyDelta_Check(u)) {
836 const int days = GET_TD_DAYS(u);
837 if (days < -1 || days > 0)
838 result = 24*60; /* trigger ValueError below */
839 else {
840 /* next line can't overflow because we know days
841 * is -1 or 0 now
843 int ss = days * 24 * 3600 + GET_TD_SECONDS(u);
844 result = divmod(ss, 60, &ss);
845 if (ss || GET_TD_MICROSECONDS(u)) {
846 PyErr_Format(PyExc_ValueError,
847 "tzinfo.%s() must return a "
848 "whole number of minutes",
849 name);
850 result = -1;
854 else {
855 PyErr_Format(PyExc_TypeError,
856 "tzinfo.%s() must return None or "
857 "timedelta, not '%s'",
858 name, u->ob_type->tp_name);
861 Py_DECREF(u);
862 if (result < -1439 || result > 1439) {
863 PyErr_Format(PyExc_ValueError,
864 "tzinfo.%s() returned %d; must be in "
865 "-1439 .. 1439",
866 name, result);
867 result = -1;
869 return result;
872 /* Call tzinfo.utcoffset(tzinfoarg), and extract an integer from the
873 * result. tzinfo must be an instance of the tzinfo class. If utcoffset()
874 * returns None, call_utcoffset returns 0 and sets *none to 1. If uctoffset()
875 * doesn't return None or timedelta, TypeError is raised and this returns -1.
876 * If utcoffset() returns an invalid timedelta (out of range, or not a whole
877 * # of minutes), ValueError is raised and this returns -1. Else *none is
878 * set to 0 and the offset is returned (as int # of minutes east of UTC).
880 static int
881 call_utcoffset(PyObject *tzinfo, PyObject *tzinfoarg, int *none)
883 return call_utc_tzinfo_method(tzinfo, "utcoffset", tzinfoarg, none);
886 /* Call tzinfo.name(tzinfoarg), and return the offset as a timedelta or None.
888 static PyObject *
889 offset_as_timedelta(PyObject *tzinfo, char *name, PyObject *tzinfoarg) {
890 PyObject *result;
892 assert(tzinfo && name && tzinfoarg);
893 if (tzinfo == Py_None) {
894 result = Py_None;
895 Py_INCREF(result);
897 else {
898 int none;
899 int offset = call_utc_tzinfo_method(tzinfo, name, tzinfoarg,
900 &none);
901 if (offset < 0 && PyErr_Occurred())
902 return NULL;
903 if (none) {
904 result = Py_None;
905 Py_INCREF(result);
907 else
908 result = new_delta(0, offset * 60, 0, 1);
910 return result;
913 /* Call tzinfo.dst(tzinfoarg), and extract an integer from the
914 * result. tzinfo must be an instance of the tzinfo class. If dst()
915 * returns None, call_dst returns 0 and sets *none to 1. If dst()
916 & doesn't return None or timedelta, TypeError is raised and this
917 * returns -1. If dst() returns an invalid timedelta for a UTC offset,
918 * ValueError is raised and this returns -1. Else *none is set to 0 and
919 * the offset is returned (as an int # of minutes east of UTC).
921 static int
922 call_dst(PyObject *tzinfo, PyObject *tzinfoarg, int *none)
924 return call_utc_tzinfo_method(tzinfo, "dst", tzinfoarg, none);
927 /* Call tzinfo.tzname(tzinfoarg), and return the result. tzinfo must be
928 * an instance of the tzinfo class or None. If tzinfo isn't None, and
929 * tzname() doesn't return None or a string, TypeError is raised and this
930 * returns NULL.
932 static PyObject *
933 call_tzname(PyObject *tzinfo, PyObject *tzinfoarg)
935 PyObject *result;
937 assert(tzinfo != NULL);
938 assert(check_tzinfo_subclass(tzinfo) >= 0);
939 assert(tzinfoarg != NULL);
941 if (tzinfo == Py_None) {
942 result = Py_None;
943 Py_INCREF(result);
945 else
946 result = PyObject_CallMethod(tzinfo, "tzname", "O", tzinfoarg);
948 if (result != NULL && result != Py_None && ! PyString_Check(result)) {
949 PyErr_Format(PyExc_TypeError, "tzinfo.tzname() must "
950 "return None or a string, not '%s'",
951 result->ob_type->tp_name);
952 Py_DECREF(result);
953 result = NULL;
955 return result;
958 typedef enum {
959 /* an exception has been set; the caller should pass it on */
960 OFFSET_ERROR,
962 /* type isn't date, datetime, or time subclass */
963 OFFSET_UNKNOWN,
965 /* date,
966 * datetime with !hastzinfo
967 * datetime with None tzinfo,
968 * datetime where utcoffset() returns None
969 * time with !hastzinfo
970 * time with None tzinfo,
971 * time where utcoffset() returns None
973 OFFSET_NAIVE,
975 /* time or datetime where utcoffset() doesn't return None */
976 OFFSET_AWARE
977 } naivety;
979 /* Classify an object as to whether it's naive or offset-aware. See
980 * the "naivety" typedef for details. If the type is aware, *offset is set
981 * to minutes east of UTC (as returned by the tzinfo.utcoffset() method).
982 * If the type is offset-naive (or unknown, or error), *offset is set to 0.
983 * tzinfoarg is the argument to pass to the tzinfo.utcoffset() method.
985 static naivety
986 classify_utcoffset(PyObject *op, PyObject *tzinfoarg, int *offset)
988 int none;
989 PyObject *tzinfo;
991 assert(tzinfoarg != NULL);
992 *offset = 0;
993 tzinfo = get_tzinfo_member(op); /* NULL means no tzinfo, not error */
994 if (tzinfo == Py_None)
995 return OFFSET_NAIVE;
996 if (tzinfo == NULL) {
997 /* note that a datetime passes the PyDate_Check test */
998 return (PyTime_Check(op) || PyDate_Check(op)) ?
999 OFFSET_NAIVE : OFFSET_UNKNOWN;
1001 *offset = call_utcoffset(tzinfo, tzinfoarg, &none);
1002 if (*offset == -1 && PyErr_Occurred())
1003 return OFFSET_ERROR;
1004 return none ? OFFSET_NAIVE : OFFSET_AWARE;
1007 /* Classify two objects as to whether they're naive or offset-aware.
1008 * This isn't quite the same as calling classify_utcoffset() twice: for
1009 * binary operations (comparison and subtraction), we generally want to
1010 * ignore the tzinfo members if they're identical. This is by design,
1011 * so that results match "naive" expectations when mixing objects from a
1012 * single timezone. So in that case, this sets both offsets to 0 and
1013 * both naiveties to OFFSET_NAIVE.
1014 * The function returns 0 if everything's OK, and -1 on error.
1016 static int
1017 classify_two_utcoffsets(PyObject *o1, int *offset1, naivety *n1,
1018 PyObject *tzinfoarg1,
1019 PyObject *o2, int *offset2, naivety *n2,
1020 PyObject *tzinfoarg2)
1022 if (get_tzinfo_member(o1) == get_tzinfo_member(o2)) {
1023 *offset1 = *offset2 = 0;
1024 *n1 = *n2 = OFFSET_NAIVE;
1026 else {
1027 *n1 = classify_utcoffset(o1, tzinfoarg1, offset1);
1028 if (*n1 == OFFSET_ERROR)
1029 return -1;
1030 *n2 = classify_utcoffset(o2, tzinfoarg2, offset2);
1031 if (*n2 == OFFSET_ERROR)
1032 return -1;
1034 return 0;
1037 /* repr is like "someclass(arg1, arg2)". If tzinfo isn't None,
1038 * stuff
1039 * ", tzinfo=" + repr(tzinfo)
1040 * before the closing ")".
1042 static PyObject *
1043 append_keyword_tzinfo(PyObject *repr, PyObject *tzinfo)
1045 PyObject *temp;
1047 assert(PyString_Check(repr));
1048 assert(tzinfo);
1049 if (tzinfo == Py_None)
1050 return repr;
1051 /* Get rid of the trailing ')'. */
1052 assert(PyString_AsString(repr)[PyString_Size(repr)-1] == ')');
1053 temp = PyString_FromStringAndSize(PyString_AsString(repr),
1054 PyString_Size(repr) - 1);
1055 Py_DECREF(repr);
1056 if (temp == NULL)
1057 return NULL;
1058 repr = temp;
1060 /* Append ", tzinfo=". */
1061 PyString_ConcatAndDel(&repr, PyString_FromString(", tzinfo="));
1063 /* Append repr(tzinfo). */
1064 PyString_ConcatAndDel(&repr, PyObject_Repr(tzinfo));
1066 /* Add a closing paren. */
1067 PyString_ConcatAndDel(&repr, PyString_FromString(")"));
1068 return repr;
1071 /* ---------------------------------------------------------------------------
1072 * String format helpers.
1075 static PyObject *
1076 format_ctime(PyDateTime_Date *date, int hours, int minutes, int seconds)
1078 static const char *DayNames[] = {
1079 "Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"
1081 static const char *MonthNames[] = {
1082 "Jan", "Feb", "Mar", "Apr", "May", "Jun",
1083 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"
1086 char buffer[128];
1087 int wday = weekday(GET_YEAR(date), GET_MONTH(date), GET_DAY(date));
1089 PyOS_snprintf(buffer, sizeof(buffer), "%s %s %2d %02d:%02d:%02d %04d",
1090 DayNames[wday], MonthNames[GET_MONTH(date) - 1],
1091 GET_DAY(date), hours, minutes, seconds,
1092 GET_YEAR(date));
1093 return PyString_FromString(buffer);
1096 /* Add an hours & minutes UTC offset string to buf. buf has no more than
1097 * buflen bytes remaining. The UTC offset is gotten by calling
1098 * tzinfo.uctoffset(tzinfoarg). If that returns None, \0 is stored into
1099 * *buf, and that's all. Else the returned value is checked for sanity (an
1100 * integer in range), and if that's OK it's converted to an hours & minutes
1101 * string of the form
1102 * sign HH sep MM
1103 * Returns 0 if everything is OK. If the return value from utcoffset() is
1104 * bogus, an appropriate exception is set and -1 is returned.
1106 static int
1107 format_utcoffset(char *buf, size_t buflen, const char *sep,
1108 PyObject *tzinfo, PyObject *tzinfoarg)
1110 int offset;
1111 int hours;
1112 int minutes;
1113 char sign;
1114 int none;
1116 offset = call_utcoffset(tzinfo, tzinfoarg, &none);
1117 if (offset == -1 && PyErr_Occurred())
1118 return -1;
1119 if (none) {
1120 *buf = '\0';
1121 return 0;
1123 sign = '+';
1124 if (offset < 0) {
1125 sign = '-';
1126 offset = - offset;
1128 hours = divmod(offset, 60, &minutes);
1129 PyOS_snprintf(buf, buflen, "%c%02d%s%02d", sign, hours, sep, minutes);
1130 return 0;
1133 /* I sure don't want to reproduce the strftime code from the time module,
1134 * so this imports the module and calls it. All the hair is due to
1135 * giving special meanings to the %z and %Z format codes via a preprocessing
1136 * step on the format string.
1137 * tzinfoarg is the argument to pass to the object's tzinfo method, if
1138 * needed.
1140 static PyObject *
1141 wrap_strftime(PyObject *object, PyObject *format, PyObject *timetuple,
1142 PyObject *tzinfoarg)
1144 PyObject *result = NULL; /* guilty until proved innocent */
1146 PyObject *zreplacement = NULL; /* py string, replacement for %z */
1147 PyObject *Zreplacement = NULL; /* py string, replacement for %Z */
1149 char *pin; /* pointer to next char in input format */
1150 char ch; /* next char in input format */
1152 PyObject *newfmt = NULL; /* py string, the output format */
1153 char *pnew; /* pointer to available byte in output format */
1154 int totalnew; /* number bytes total in output format buffer,
1155 exclusive of trailing \0 */
1156 int usednew; /* number bytes used so far in output format buffer */
1158 char *ptoappend; /* pointer to string to append to output buffer */
1159 int ntoappend; /* # of bytes to append to output buffer */
1161 assert(object && format && timetuple);
1162 assert(PyString_Check(format));
1164 /* Give up if the year is before 1900.
1165 * Python strftime() plays games with the year, and different
1166 * games depending on whether envar PYTHON2K is set. This makes
1167 * years before 1900 a nightmare, even if the platform strftime
1168 * supports them (and not all do).
1169 * We could get a lot farther here by avoiding Python's strftime
1170 * wrapper and calling the C strftime() directly, but that isn't
1171 * an option in the Python implementation of this module.
1174 long year;
1175 PyObject *pyyear = PySequence_GetItem(timetuple, 0);
1176 if (pyyear == NULL) return NULL;
1177 assert(PyInt_Check(pyyear));
1178 year = PyInt_AsLong(pyyear);
1179 Py_DECREF(pyyear);
1180 if (year < 1900) {
1181 PyErr_Format(PyExc_ValueError, "year=%ld is before "
1182 "1900; the datetime strftime() "
1183 "methods require year >= 1900",
1184 year);
1185 return NULL;
1189 /* Scan the input format, looking for %z and %Z escapes, building
1190 * a new format. Since computing the replacements for those codes
1191 * is expensive, don't unless they're actually used.
1193 totalnew = PyString_Size(format) + 1; /* realistic if no %z/%Z */
1194 newfmt = PyString_FromStringAndSize(NULL, totalnew);
1195 if (newfmt == NULL) goto Done;
1196 pnew = PyString_AsString(newfmt);
1197 usednew = 0;
1199 pin = PyString_AsString(format);
1200 while ((ch = *pin++) != '\0') {
1201 if (ch != '%') {
1202 ptoappend = pin - 1;
1203 ntoappend = 1;
1205 else if ((ch = *pin++) == '\0') {
1206 /* There's a lone trailing %; doesn't make sense. */
1207 PyErr_SetString(PyExc_ValueError, "strftime format "
1208 "ends with raw %");
1209 goto Done;
1211 /* A % has been seen and ch is the character after it. */
1212 else if (ch == 'z') {
1213 if (zreplacement == NULL) {
1214 /* format utcoffset */
1215 char buf[100];
1216 PyObject *tzinfo = get_tzinfo_member(object);
1217 zreplacement = PyString_FromString("");
1218 if (zreplacement == NULL) goto Done;
1219 if (tzinfo != Py_None && tzinfo != NULL) {
1220 assert(tzinfoarg != NULL);
1221 if (format_utcoffset(buf,
1222 sizeof(buf),
1224 tzinfo,
1225 tzinfoarg) < 0)
1226 goto Done;
1227 Py_DECREF(zreplacement);
1228 zreplacement = PyString_FromString(buf);
1229 if (zreplacement == NULL) goto Done;
1232 assert(zreplacement != NULL);
1233 ptoappend = PyString_AS_STRING(zreplacement);
1234 ntoappend = PyString_GET_SIZE(zreplacement);
1236 else if (ch == 'Z') {
1237 /* format tzname */
1238 if (Zreplacement == NULL) {
1239 PyObject *tzinfo = get_tzinfo_member(object);
1240 Zreplacement = PyString_FromString("");
1241 if (Zreplacement == NULL) goto Done;
1242 if (tzinfo != Py_None && tzinfo != NULL) {
1243 PyObject *temp;
1244 assert(tzinfoarg != NULL);
1245 temp = call_tzname(tzinfo, tzinfoarg);
1246 if (temp == NULL) goto Done;
1247 if (temp != Py_None) {
1248 assert(PyString_Check(temp));
1249 /* Since the tzname is getting
1250 * stuffed into the format, we
1251 * have to double any % signs
1252 * so that strftime doesn't
1253 * treat them as format codes.
1255 Py_DECREF(Zreplacement);
1256 Zreplacement = PyObject_CallMethod(
1257 temp, "replace",
1258 "ss", "%", "%%");
1259 Py_DECREF(temp);
1260 if (Zreplacement == NULL)
1261 goto Done;
1262 if (!PyString_Check(Zreplacement)) {
1263 PyErr_SetString(PyExc_TypeError, "tzname.replace() did not return a string");
1264 goto Done;
1267 else
1268 Py_DECREF(temp);
1271 assert(Zreplacement != NULL);
1272 ptoappend = PyString_AS_STRING(Zreplacement);
1273 ntoappend = PyString_GET_SIZE(Zreplacement);
1275 else {
1276 /* percent followed by neither z nor Z */
1277 ptoappend = pin - 2;
1278 ntoappend = 2;
1281 /* Append the ntoappend chars starting at ptoappend to
1282 * the new format.
1284 assert(ptoappend != NULL);
1285 assert(ntoappend >= 0);
1286 if (ntoappend == 0)
1287 continue;
1288 while (usednew + ntoappend > totalnew) {
1289 int bigger = totalnew << 1;
1290 if ((bigger >> 1) != totalnew) { /* overflow */
1291 PyErr_NoMemory();
1292 goto Done;
1294 if (_PyString_Resize(&newfmt, bigger) < 0)
1295 goto Done;
1296 totalnew = bigger;
1297 pnew = PyString_AsString(newfmt) + usednew;
1299 memcpy(pnew, ptoappend, ntoappend);
1300 pnew += ntoappend;
1301 usednew += ntoappend;
1302 assert(usednew <= totalnew);
1303 } /* end while() */
1305 if (_PyString_Resize(&newfmt, usednew) < 0)
1306 goto Done;
1308 PyObject *time = PyImport_ImportModule("time");
1309 if (time == NULL)
1310 goto Done;
1311 result = PyObject_CallMethod(time, "strftime", "OO",
1312 newfmt, timetuple);
1313 Py_DECREF(time);
1315 Done:
1316 Py_XDECREF(zreplacement);
1317 Py_XDECREF(Zreplacement);
1318 Py_XDECREF(newfmt);
1319 return result;
1322 static char *
1323 isoformat_date(PyDateTime_Date *dt, char buffer[], int bufflen)
1325 int x;
1326 x = PyOS_snprintf(buffer, bufflen,
1327 "%04d-%02d-%02d",
1328 GET_YEAR(dt), GET_MONTH(dt), GET_DAY(dt));
1329 return buffer + x;
1332 static void
1333 isoformat_time(PyDateTime_DateTime *dt, char buffer[], int bufflen)
1335 int us = DATE_GET_MICROSECOND(dt);
1337 PyOS_snprintf(buffer, bufflen,
1338 "%02d:%02d:%02d", /* 8 characters */
1339 DATE_GET_HOUR(dt),
1340 DATE_GET_MINUTE(dt),
1341 DATE_GET_SECOND(dt));
1342 if (us)
1343 PyOS_snprintf(buffer + 8, bufflen - 8, ".%06d", us);
1346 /* ---------------------------------------------------------------------------
1347 * Wrap functions from the time module. These aren't directly available
1348 * from C. Perhaps they should be.
1351 /* Call time.time() and return its result (a Python float). */
1352 static PyObject *
1353 time_time(void)
1355 PyObject *result = NULL;
1356 PyObject *time = PyImport_ImportModule("time");
1358 if (time != NULL) {
1359 result = PyObject_CallMethod(time, "time", "()");
1360 Py_DECREF(time);
1362 return result;
1365 /* Build a time.struct_time. The weekday and day number are automatically
1366 * computed from the y,m,d args.
1368 static PyObject *
1369 build_struct_time(int y, int m, int d, int hh, int mm, int ss, int dstflag)
1371 PyObject *time;
1372 PyObject *result = NULL;
1374 time = PyImport_ImportModule("time");
1375 if (time != NULL) {
1376 result = PyObject_CallMethod(time, "struct_time",
1377 "((iiiiiiiii))",
1378 y, m, d,
1379 hh, mm, ss,
1380 weekday(y, m, d),
1381 days_before_month(y, m) + d,
1382 dstflag);
1383 Py_DECREF(time);
1385 return result;
1388 /* ---------------------------------------------------------------------------
1389 * Miscellaneous helpers.
1392 /* For obscure reasons, we need to use tp_richcompare instead of tp_compare.
1393 * The comparisons here all most naturally compute a cmp()-like result.
1394 * This little helper turns that into a bool result for rich comparisons.
1396 static PyObject *
1397 diff_to_bool(int diff, int op)
1399 PyObject *result;
1400 int istrue;
1402 switch (op) {
1403 case Py_EQ: istrue = diff == 0; break;
1404 case Py_NE: istrue = diff != 0; break;
1405 case Py_LE: istrue = diff <= 0; break;
1406 case Py_GE: istrue = diff >= 0; break;
1407 case Py_LT: istrue = diff < 0; break;
1408 case Py_GT: istrue = diff > 0; break;
1409 default:
1410 assert(! "op unknown");
1411 istrue = 0; /* To shut up compiler */
1413 result = istrue ? Py_True : Py_False;
1414 Py_INCREF(result);
1415 return result;
1418 /* Raises a "can't compare" TypeError and returns NULL. */
1419 static PyObject *
1420 cmperror(PyObject *a, PyObject *b)
1422 PyErr_Format(PyExc_TypeError,
1423 "can't compare %s to %s",
1424 a->ob_type->tp_name, b->ob_type->tp_name);
1425 return NULL;
1428 /* ---------------------------------------------------------------------------
1429 * Cached Python objects; these are set by the module init function.
1432 /* Conversion factors. */
1433 static PyObject *us_per_us = NULL; /* 1 */
1434 static PyObject *us_per_ms = NULL; /* 1000 */
1435 static PyObject *us_per_second = NULL; /* 1000000 */
1436 static PyObject *us_per_minute = NULL; /* 1e6 * 60 as Python int */
1437 static PyObject *us_per_hour = NULL; /* 1e6 * 3600 as Python long */
1438 static PyObject *us_per_day = NULL; /* 1e6 * 3600 * 24 as Python long */
1439 static PyObject *us_per_week = NULL; /* 1e6*3600*24*7 as Python long */
1440 static PyObject *seconds_per_day = NULL; /* 3600*24 as Python int */
1442 /* ---------------------------------------------------------------------------
1443 * Class implementations.
1447 * PyDateTime_Delta implementation.
1450 /* Convert a timedelta to a number of us,
1451 * (24*3600*self.days + self.seconds)*1000000 + self.microseconds
1452 * as a Python int or long.
1453 * Doing mixed-radix arithmetic by hand instead is excruciating in C,
1454 * due to ubiquitous overflow possibilities.
1456 static PyObject *
1457 delta_to_microseconds(PyDateTime_Delta *self)
1459 PyObject *x1 = NULL;
1460 PyObject *x2 = NULL;
1461 PyObject *x3 = NULL;
1462 PyObject *result = NULL;
1464 x1 = PyInt_FromLong(GET_TD_DAYS(self));
1465 if (x1 == NULL)
1466 goto Done;
1467 x2 = PyNumber_Multiply(x1, seconds_per_day); /* days in seconds */
1468 if (x2 == NULL)
1469 goto Done;
1470 Py_DECREF(x1);
1471 x1 = NULL;
1473 /* x2 has days in seconds */
1474 x1 = PyInt_FromLong(GET_TD_SECONDS(self)); /* seconds */
1475 if (x1 == NULL)
1476 goto Done;
1477 x3 = PyNumber_Add(x1, x2); /* days and seconds in seconds */
1478 if (x3 == NULL)
1479 goto Done;
1480 Py_DECREF(x1);
1481 Py_DECREF(x2);
1482 x1 = x2 = NULL;
1484 /* x3 has days+seconds in seconds */
1485 x1 = PyNumber_Multiply(x3, us_per_second); /* us */
1486 if (x1 == NULL)
1487 goto Done;
1488 Py_DECREF(x3);
1489 x3 = NULL;
1491 /* x1 has days+seconds in us */
1492 x2 = PyInt_FromLong(GET_TD_MICROSECONDS(self));
1493 if (x2 == NULL)
1494 goto Done;
1495 result = PyNumber_Add(x1, x2);
1497 Done:
1498 Py_XDECREF(x1);
1499 Py_XDECREF(x2);
1500 Py_XDECREF(x3);
1501 return result;
1504 /* Convert a number of us (as a Python int or long) to a timedelta.
1506 static PyObject *
1507 microseconds_to_delta_ex(PyObject *pyus, PyTypeObject *type)
1509 int us;
1510 int s;
1511 int d;
1512 long temp;
1514 PyObject *tuple = NULL;
1515 PyObject *num = NULL;
1516 PyObject *result = NULL;
1518 tuple = PyNumber_Divmod(pyus, us_per_second);
1519 if (tuple == NULL)
1520 goto Done;
1522 num = PyTuple_GetItem(tuple, 1); /* us */
1523 if (num == NULL)
1524 goto Done;
1525 temp = PyLong_AsLong(num);
1526 num = NULL;
1527 if (temp == -1 && PyErr_Occurred())
1528 goto Done;
1529 assert(0 <= temp && temp < 1000000);
1530 us = (int)temp;
1531 if (us < 0) {
1532 /* The divisor was positive, so this must be an error. */
1533 assert(PyErr_Occurred());
1534 goto Done;
1537 num = PyTuple_GetItem(tuple, 0); /* leftover seconds */
1538 if (num == NULL)
1539 goto Done;
1540 Py_INCREF(num);
1541 Py_DECREF(tuple);
1543 tuple = PyNumber_Divmod(num, seconds_per_day);
1544 if (tuple == NULL)
1545 goto Done;
1546 Py_DECREF(num);
1548 num = PyTuple_GetItem(tuple, 1); /* seconds */
1549 if (num == NULL)
1550 goto Done;
1551 temp = PyLong_AsLong(num);
1552 num = NULL;
1553 if (temp == -1 && PyErr_Occurred())
1554 goto Done;
1555 assert(0 <= temp && temp < 24*3600);
1556 s = (int)temp;
1558 if (s < 0) {
1559 /* The divisor was positive, so this must be an error. */
1560 assert(PyErr_Occurred());
1561 goto Done;
1564 num = PyTuple_GetItem(tuple, 0); /* leftover days */
1565 if (num == NULL)
1566 goto Done;
1567 Py_INCREF(num);
1568 temp = PyLong_AsLong(num);
1569 if (temp == -1 && PyErr_Occurred())
1570 goto Done;
1571 d = (int)temp;
1572 if ((long)d != temp) {
1573 PyErr_SetString(PyExc_OverflowError, "normalized days too "
1574 "large to fit in a C int");
1575 goto Done;
1577 result = new_delta_ex(d, s, us, 0, type);
1579 Done:
1580 Py_XDECREF(tuple);
1581 Py_XDECREF(num);
1582 return result;
1585 #define microseconds_to_delta(pymicros) \
1586 microseconds_to_delta_ex(pymicros, &PyDateTime_DeltaType)
1588 static PyObject *
1589 multiply_int_timedelta(PyObject *intobj, PyDateTime_Delta *delta)
1591 PyObject *pyus_in;
1592 PyObject *pyus_out;
1593 PyObject *result;
1595 pyus_in = delta_to_microseconds(delta);
1596 if (pyus_in == NULL)
1597 return NULL;
1599 pyus_out = PyNumber_Multiply(pyus_in, intobj);
1600 Py_DECREF(pyus_in);
1601 if (pyus_out == NULL)
1602 return NULL;
1604 result = microseconds_to_delta(pyus_out);
1605 Py_DECREF(pyus_out);
1606 return result;
1609 static PyObject *
1610 divide_timedelta_int(PyDateTime_Delta *delta, PyObject *intobj)
1612 PyObject *pyus_in;
1613 PyObject *pyus_out;
1614 PyObject *result;
1616 pyus_in = delta_to_microseconds(delta);
1617 if (pyus_in == NULL)
1618 return NULL;
1620 pyus_out = PyNumber_FloorDivide(pyus_in, intobj);
1621 Py_DECREF(pyus_in);
1622 if (pyus_out == NULL)
1623 return NULL;
1625 result = microseconds_to_delta(pyus_out);
1626 Py_DECREF(pyus_out);
1627 return result;
1630 static PyObject *
1631 delta_add(PyObject *left, PyObject *right)
1633 PyObject *result = Py_NotImplemented;
1635 if (PyDelta_Check(left) && PyDelta_Check(right)) {
1636 /* delta + delta */
1637 /* The C-level additions can't overflow because of the
1638 * invariant bounds.
1640 int days = GET_TD_DAYS(left) + GET_TD_DAYS(right);
1641 int seconds = GET_TD_SECONDS(left) + GET_TD_SECONDS(right);
1642 int microseconds = GET_TD_MICROSECONDS(left) +
1643 GET_TD_MICROSECONDS(right);
1644 result = new_delta(days, seconds, microseconds, 1);
1647 if (result == Py_NotImplemented)
1648 Py_INCREF(result);
1649 return result;
1652 static PyObject *
1653 delta_negative(PyDateTime_Delta *self)
1655 return new_delta(-GET_TD_DAYS(self),
1656 -GET_TD_SECONDS(self),
1657 -GET_TD_MICROSECONDS(self),
1661 static PyObject *
1662 delta_positive(PyDateTime_Delta *self)
1664 /* Could optimize this (by returning self) if this isn't a
1665 * subclass -- but who uses unary + ? Approximately nobody.
1667 return new_delta(GET_TD_DAYS(self),
1668 GET_TD_SECONDS(self),
1669 GET_TD_MICROSECONDS(self),
1673 static PyObject *
1674 delta_abs(PyDateTime_Delta *self)
1676 PyObject *result;
1678 assert(GET_TD_MICROSECONDS(self) >= 0);
1679 assert(GET_TD_SECONDS(self) >= 0);
1681 if (GET_TD_DAYS(self) < 0)
1682 result = delta_negative(self);
1683 else
1684 result = delta_positive(self);
1686 return result;
1689 static PyObject *
1690 delta_subtract(PyObject *left, PyObject *right)
1692 PyObject *result = Py_NotImplemented;
1694 if (PyDelta_Check(left) && PyDelta_Check(right)) {
1695 /* delta - delta */
1696 PyObject *minus_right = PyNumber_Negative(right);
1697 if (minus_right) {
1698 result = delta_add(left, minus_right);
1699 Py_DECREF(minus_right);
1701 else
1702 result = NULL;
1705 if (result == Py_NotImplemented)
1706 Py_INCREF(result);
1707 return result;
1710 /* This is more natural as a tp_compare, but doesn't work then: for whatever
1711 * reason, Python's try_3way_compare ignores tp_compare unless
1712 * PyInstance_Check returns true, but these aren't old-style classes.
1714 static PyObject *
1715 delta_richcompare(PyDateTime_Delta *self, PyObject *other, int op)
1717 int diff = 42; /* nonsense */
1719 if (PyDelta_Check(other)) {
1720 diff = GET_TD_DAYS(self) - GET_TD_DAYS(other);
1721 if (diff == 0) {
1722 diff = GET_TD_SECONDS(self) - GET_TD_SECONDS(other);
1723 if (diff == 0)
1724 diff = GET_TD_MICROSECONDS(self) -
1725 GET_TD_MICROSECONDS(other);
1728 else if (op == Py_EQ || op == Py_NE)
1729 diff = 1; /* any non-zero value will do */
1731 else /* stop this from falling back to address comparison */
1732 return cmperror((PyObject *)self, other);
1734 return diff_to_bool(diff, op);
1737 static PyObject *delta_getstate(PyDateTime_Delta *self);
1739 static long
1740 delta_hash(PyDateTime_Delta *self)
1742 if (self->hashcode == -1) {
1743 PyObject *temp = delta_getstate(self);
1744 if (temp != NULL) {
1745 self->hashcode = PyObject_Hash(temp);
1746 Py_DECREF(temp);
1749 return self->hashcode;
1752 static PyObject *
1753 delta_multiply(PyObject *left, PyObject *right)
1755 PyObject *result = Py_NotImplemented;
1757 if (PyDelta_Check(left)) {
1758 /* delta * ??? */
1759 if (PyInt_Check(right) || PyLong_Check(right))
1760 result = multiply_int_timedelta(right,
1761 (PyDateTime_Delta *) left);
1763 else if (PyInt_Check(left) || PyLong_Check(left))
1764 result = multiply_int_timedelta(left,
1765 (PyDateTime_Delta *) right);
1767 if (result == Py_NotImplemented)
1768 Py_INCREF(result);
1769 return result;
1772 static PyObject *
1773 delta_divide(PyObject *left, PyObject *right)
1775 PyObject *result = Py_NotImplemented;
1777 if (PyDelta_Check(left)) {
1778 /* delta * ??? */
1779 if (PyInt_Check(right) || PyLong_Check(right))
1780 result = divide_timedelta_int(
1781 (PyDateTime_Delta *)left,
1782 right);
1785 if (result == Py_NotImplemented)
1786 Py_INCREF(result);
1787 return result;
1790 /* Fold in the value of the tag ("seconds", "weeks", etc) component of a
1791 * timedelta constructor. sofar is the # of microseconds accounted for
1792 * so far, and there are factor microseconds per current unit, the number
1793 * of which is given by num. num * factor is added to sofar in a
1794 * numerically careful way, and that's the result. Any fractional
1795 * microseconds left over (this can happen if num is a float type) are
1796 * added into *leftover.
1797 * Note that there are many ways this can give an error (NULL) return.
1799 static PyObject *
1800 accum(const char* tag, PyObject *sofar, PyObject *num, PyObject *factor,
1801 double *leftover)
1803 PyObject *prod;
1804 PyObject *sum;
1806 assert(num != NULL);
1808 if (PyInt_Check(num) || PyLong_Check(num)) {
1809 prod = PyNumber_Multiply(num, factor);
1810 if (prod == NULL)
1811 return NULL;
1812 sum = PyNumber_Add(sofar, prod);
1813 Py_DECREF(prod);
1814 return sum;
1817 if (PyFloat_Check(num)) {
1818 double dnum;
1819 double fracpart;
1820 double intpart;
1821 PyObject *x;
1822 PyObject *y;
1824 /* The Plan: decompose num into an integer part and a
1825 * fractional part, num = intpart + fracpart.
1826 * Then num * factor ==
1827 * intpart * factor + fracpart * factor
1828 * and the LHS can be computed exactly in long arithmetic.
1829 * The RHS is again broken into an int part and frac part.
1830 * and the frac part is added into *leftover.
1832 dnum = PyFloat_AsDouble(num);
1833 if (dnum == -1.0 && PyErr_Occurred())
1834 return NULL;
1835 fracpart = modf(dnum, &intpart);
1836 x = PyLong_FromDouble(intpart);
1837 if (x == NULL)
1838 return NULL;
1840 prod = PyNumber_Multiply(x, factor);
1841 Py_DECREF(x);
1842 if (prod == NULL)
1843 return NULL;
1845 sum = PyNumber_Add(sofar, prod);
1846 Py_DECREF(prod);
1847 if (sum == NULL)
1848 return NULL;
1850 if (fracpart == 0.0)
1851 return sum;
1852 /* So far we've lost no information. Dealing with the
1853 * fractional part requires float arithmetic, and may
1854 * lose a little info.
1856 assert(PyInt_Check(factor) || PyLong_Check(factor));
1857 if (PyInt_Check(factor))
1858 dnum = (double)PyInt_AsLong(factor);
1859 else
1860 dnum = PyLong_AsDouble(factor);
1862 dnum *= fracpart;
1863 fracpart = modf(dnum, &intpart);
1864 x = PyLong_FromDouble(intpart);
1865 if (x == NULL) {
1866 Py_DECREF(sum);
1867 return NULL;
1870 y = PyNumber_Add(sum, x);
1871 Py_DECREF(sum);
1872 Py_DECREF(x);
1873 *leftover += fracpart;
1874 return y;
1877 PyErr_Format(PyExc_TypeError,
1878 "unsupported type for timedelta %s component: %s",
1879 tag, num->ob_type->tp_name);
1880 return NULL;
1883 static PyObject *
1884 delta_new(PyTypeObject *type, PyObject *args, PyObject *kw)
1886 PyObject *self = NULL;
1888 /* Argument objects. */
1889 PyObject *day = NULL;
1890 PyObject *second = NULL;
1891 PyObject *us = NULL;
1892 PyObject *ms = NULL;
1893 PyObject *minute = NULL;
1894 PyObject *hour = NULL;
1895 PyObject *week = NULL;
1897 PyObject *x = NULL; /* running sum of microseconds */
1898 PyObject *y = NULL; /* temp sum of microseconds */
1899 double leftover_us = 0.0;
1901 static char *keywords[] = {
1902 "days", "seconds", "microseconds", "milliseconds",
1903 "minutes", "hours", "weeks", NULL
1906 if (PyArg_ParseTupleAndKeywords(args, kw, "|OOOOOOO:__new__",
1907 keywords,
1908 &day, &second, &us,
1909 &ms, &minute, &hour, &week) == 0)
1910 goto Done;
1912 x = PyInt_FromLong(0);
1913 if (x == NULL)
1914 goto Done;
1916 #define CLEANUP \
1917 Py_DECREF(x); \
1918 x = y; \
1919 if (x == NULL) \
1920 goto Done
1922 if (us) {
1923 y = accum("microseconds", x, us, us_per_us, &leftover_us);
1924 CLEANUP;
1926 if (ms) {
1927 y = accum("milliseconds", x, ms, us_per_ms, &leftover_us);
1928 CLEANUP;
1930 if (second) {
1931 y = accum("seconds", x, second, us_per_second, &leftover_us);
1932 CLEANUP;
1934 if (minute) {
1935 y = accum("minutes", x, minute, us_per_minute, &leftover_us);
1936 CLEANUP;
1938 if (hour) {
1939 y = accum("hours", x, hour, us_per_hour, &leftover_us);
1940 CLEANUP;
1942 if (day) {
1943 y = accum("days", x, day, us_per_day, &leftover_us);
1944 CLEANUP;
1946 if (week) {
1947 y = accum("weeks", x, week, us_per_week, &leftover_us);
1948 CLEANUP;
1950 if (leftover_us) {
1951 /* Round to nearest whole # of us, and add into x. */
1952 PyObject *temp = PyLong_FromLong(round_to_long(leftover_us));
1953 if (temp == NULL) {
1954 Py_DECREF(x);
1955 goto Done;
1957 y = PyNumber_Add(x, temp);
1958 Py_DECREF(temp);
1959 CLEANUP;
1962 self = microseconds_to_delta_ex(x, type);
1963 Py_DECREF(x);
1964 Done:
1965 return self;
1967 #undef CLEANUP
1970 static int
1971 delta_nonzero(PyDateTime_Delta *self)
1973 return (GET_TD_DAYS(self) != 0
1974 || GET_TD_SECONDS(self) != 0
1975 || GET_TD_MICROSECONDS(self) != 0);
1978 static PyObject *
1979 delta_repr(PyDateTime_Delta *self)
1981 if (GET_TD_MICROSECONDS(self) != 0)
1982 return PyString_FromFormat("%s(%d, %d, %d)",
1983 self->ob_type->tp_name,
1984 GET_TD_DAYS(self),
1985 GET_TD_SECONDS(self),
1986 GET_TD_MICROSECONDS(self));
1987 if (GET_TD_SECONDS(self) != 0)
1988 return PyString_FromFormat("%s(%d, %d)",
1989 self->ob_type->tp_name,
1990 GET_TD_DAYS(self),
1991 GET_TD_SECONDS(self));
1993 return PyString_FromFormat("%s(%d)",
1994 self->ob_type->tp_name,
1995 GET_TD_DAYS(self));
1998 static PyObject *
1999 delta_str(PyDateTime_Delta *self)
2001 int days = GET_TD_DAYS(self);
2002 int seconds = GET_TD_SECONDS(self);
2003 int us = GET_TD_MICROSECONDS(self);
2004 int hours;
2005 int minutes;
2006 char buf[100];
2007 char *pbuf = buf;
2008 size_t buflen = sizeof(buf);
2009 int n;
2011 minutes = divmod(seconds, 60, &seconds);
2012 hours = divmod(minutes, 60, &minutes);
2014 if (days) {
2015 n = PyOS_snprintf(pbuf, buflen, "%d day%s, ", days,
2016 (days == 1 || days == -1) ? "" : "s");
2017 if (n < 0 || (size_t)n >= buflen)
2018 goto Fail;
2019 pbuf += n;
2020 buflen -= (size_t)n;
2023 n = PyOS_snprintf(pbuf, buflen, "%d:%02d:%02d",
2024 hours, minutes, seconds);
2025 if (n < 0 || (size_t)n >= buflen)
2026 goto Fail;
2027 pbuf += n;
2028 buflen -= (size_t)n;
2030 if (us) {
2031 n = PyOS_snprintf(pbuf, buflen, ".%06d", us);
2032 if (n < 0 || (size_t)n >= buflen)
2033 goto Fail;
2034 pbuf += n;
2037 return PyString_FromStringAndSize(buf, pbuf - buf);
2039 Fail:
2040 PyErr_SetString(PyExc_SystemError, "goofy result from PyOS_snprintf");
2041 return NULL;
2044 /* Pickle support, a simple use of __reduce__. */
2046 /* __getstate__ isn't exposed */
2047 static PyObject *
2048 delta_getstate(PyDateTime_Delta *self)
2050 return Py_BuildValue("iii", GET_TD_DAYS(self),
2051 GET_TD_SECONDS(self),
2052 GET_TD_MICROSECONDS(self));
2055 static PyObject *
2056 delta_reduce(PyDateTime_Delta* self)
2058 return Py_BuildValue("ON", self->ob_type, delta_getstate(self));
2061 #define OFFSET(field) offsetof(PyDateTime_Delta, field)
2063 static PyMemberDef delta_members[] = {
2065 {"days", T_INT, OFFSET(days), READONLY,
2066 PyDoc_STR("Number of days.")},
2068 {"seconds", T_INT, OFFSET(seconds), READONLY,
2069 PyDoc_STR("Number of seconds (>= 0 and less than 1 day).")},
2071 {"microseconds", T_INT, OFFSET(microseconds), READONLY,
2072 PyDoc_STR("Number of microseconds (>= 0 and less than 1 second).")},
2073 {NULL}
2076 static PyMethodDef delta_methods[] = {
2077 {"__reduce__", (PyCFunction)delta_reduce, METH_NOARGS,
2078 PyDoc_STR("__reduce__() -> (cls, state)")},
2080 {NULL, NULL},
2083 static char delta_doc[] =
2084 PyDoc_STR("Difference between two datetime values.");
2086 static PyNumberMethods delta_as_number = {
2087 delta_add, /* nb_add */
2088 delta_subtract, /* nb_subtract */
2089 delta_multiply, /* nb_multiply */
2090 delta_divide, /* nb_divide */
2091 0, /* nb_remainder */
2092 0, /* nb_divmod */
2093 0, /* nb_power */
2094 (unaryfunc)delta_negative, /* nb_negative */
2095 (unaryfunc)delta_positive, /* nb_positive */
2096 (unaryfunc)delta_abs, /* nb_absolute */
2097 (inquiry)delta_nonzero, /* nb_nonzero */
2098 0, /*nb_invert*/
2099 0, /*nb_lshift*/
2100 0, /*nb_rshift*/
2101 0, /*nb_and*/
2102 0, /*nb_xor*/
2103 0, /*nb_or*/
2104 0, /*nb_coerce*/
2105 0, /*nb_int*/
2106 0, /*nb_long*/
2107 0, /*nb_float*/
2108 0, /*nb_oct*/
2109 0, /*nb_hex*/
2110 0, /*nb_inplace_add*/
2111 0, /*nb_inplace_subtract*/
2112 0, /*nb_inplace_multiply*/
2113 0, /*nb_inplace_divide*/
2114 0, /*nb_inplace_remainder*/
2115 0, /*nb_inplace_power*/
2116 0, /*nb_inplace_lshift*/
2117 0, /*nb_inplace_rshift*/
2118 0, /*nb_inplace_and*/
2119 0, /*nb_inplace_xor*/
2120 0, /*nb_inplace_or*/
2121 delta_divide, /* nb_floor_divide */
2122 0, /* nb_true_divide */
2123 0, /* nb_inplace_floor_divide */
2124 0, /* nb_inplace_true_divide */
2127 static PyTypeObject PyDateTime_DeltaType = {
2128 PyObject_HEAD_INIT(NULL)
2129 0, /* ob_size */
2130 "datetime.timedelta", /* tp_name */
2131 sizeof(PyDateTime_Delta), /* tp_basicsize */
2132 0, /* tp_itemsize */
2133 0, /* tp_dealloc */
2134 0, /* tp_print */
2135 0, /* tp_getattr */
2136 0, /* tp_setattr */
2137 0, /* tp_compare */
2138 (reprfunc)delta_repr, /* tp_repr */
2139 &delta_as_number, /* tp_as_number */
2140 0, /* tp_as_sequence */
2141 0, /* tp_as_mapping */
2142 (hashfunc)delta_hash, /* tp_hash */
2143 0, /* tp_call */
2144 (reprfunc)delta_str, /* tp_str */
2145 PyObject_GenericGetAttr, /* tp_getattro */
2146 0, /* tp_setattro */
2147 0, /* tp_as_buffer */
2148 Py_TPFLAGS_DEFAULT | Py_TPFLAGS_CHECKTYPES |
2149 Py_TPFLAGS_BASETYPE, /* tp_flags */
2150 delta_doc, /* tp_doc */
2151 0, /* tp_traverse */
2152 0, /* tp_clear */
2153 (richcmpfunc)delta_richcompare, /* tp_richcompare */
2154 0, /* tp_weaklistoffset */
2155 0, /* tp_iter */
2156 0, /* tp_iternext */
2157 delta_methods, /* tp_methods */
2158 delta_members, /* tp_members */
2159 0, /* tp_getset */
2160 0, /* tp_base */
2161 0, /* tp_dict */
2162 0, /* tp_descr_get */
2163 0, /* tp_descr_set */
2164 0, /* tp_dictoffset */
2165 0, /* tp_init */
2166 0, /* tp_alloc */
2167 delta_new, /* tp_new */
2168 0, /* tp_free */
2172 * PyDateTime_Date implementation.
2175 /* Accessor properties. */
2177 static PyObject *
2178 date_year(PyDateTime_Date *self, void *unused)
2180 return PyInt_FromLong(GET_YEAR(self));
2183 static PyObject *
2184 date_month(PyDateTime_Date *self, void *unused)
2186 return PyInt_FromLong(GET_MONTH(self));
2189 static PyObject *
2190 date_day(PyDateTime_Date *self, void *unused)
2192 return PyInt_FromLong(GET_DAY(self));
2195 static PyGetSetDef date_getset[] = {
2196 {"year", (getter)date_year},
2197 {"month", (getter)date_month},
2198 {"day", (getter)date_day},
2199 {NULL}
2202 /* Constructors. */
2204 static char *date_kws[] = {"year", "month", "day", NULL};
2206 static PyObject *
2207 date_new(PyTypeObject *type, PyObject *args, PyObject *kw)
2209 PyObject *self = NULL;
2210 PyObject *state;
2211 int year;
2212 int month;
2213 int day;
2215 /* Check for invocation from pickle with __getstate__ state */
2216 if (PyTuple_GET_SIZE(args) == 1 &&
2217 PyString_Check(state = PyTuple_GET_ITEM(args, 0)) &&
2218 PyString_GET_SIZE(state) == _PyDateTime_DATE_DATASIZE &&
2219 MONTH_IS_SANE(PyString_AS_STRING(state)[2]))
2221 PyDateTime_Date *me;
2223 me = (PyDateTime_Date *) (type->tp_alloc(type, 0));
2224 if (me != NULL) {
2225 char *pdata = PyString_AS_STRING(state);
2226 memcpy(me->data, pdata, _PyDateTime_DATE_DATASIZE);
2227 me->hashcode = -1;
2229 return (PyObject *)me;
2232 if (PyArg_ParseTupleAndKeywords(args, kw, "iii", date_kws,
2233 &year, &month, &day)) {
2234 if (check_date_args(year, month, day) < 0)
2235 return NULL;
2236 self = new_date_ex(year, month, day, type);
2238 return self;
2241 /* Return new date from localtime(t). */
2242 static PyObject *
2243 date_local_from_time_t(PyObject *cls, double ts)
2245 struct tm *tm;
2246 time_t t;
2247 PyObject *result = NULL;
2249 t = _PyTime_DoubleToTimet(ts);
2250 if (t == (time_t)-1 && PyErr_Occurred())
2251 return NULL;
2252 tm = localtime(&t);
2253 if (tm)
2254 result = PyObject_CallFunction(cls, "iii",
2255 tm->tm_year + 1900,
2256 tm->tm_mon + 1,
2257 tm->tm_mday);
2258 else
2259 PyErr_SetString(PyExc_ValueError,
2260 "timestamp out of range for "
2261 "platform localtime() function");
2262 return result;
2265 /* Return new date from current time.
2266 * We say this is equivalent to fromtimestamp(time.time()), and the
2267 * only way to be sure of that is to *call* time.time(). That's not
2268 * generally the same as calling C's time.
2270 static PyObject *
2271 date_today(PyObject *cls, PyObject *dummy)
2273 PyObject *time;
2274 PyObject *result;
2276 time = time_time();
2277 if (time == NULL)
2278 return NULL;
2280 /* Note well: today() is a class method, so this may not call
2281 * date.fromtimestamp. For example, it may call
2282 * datetime.fromtimestamp. That's why we need all the accuracy
2283 * time.time() delivers; if someone were gonzo about optimization,
2284 * date.today() could get away with plain C time().
2286 result = PyObject_CallMethod(cls, "fromtimestamp", "O", time);
2287 Py_DECREF(time);
2288 return result;
2291 /* Return new date from given timestamp (Python timestamp -- a double). */
2292 static PyObject *
2293 date_fromtimestamp(PyObject *cls, PyObject *args)
2295 double timestamp;
2296 PyObject *result = NULL;
2298 if (PyArg_ParseTuple(args, "d:fromtimestamp", &timestamp))
2299 result = date_local_from_time_t(cls, timestamp);
2300 return result;
2303 /* Return new date from proleptic Gregorian ordinal. Raises ValueError if
2304 * the ordinal is out of range.
2306 static PyObject *
2307 date_fromordinal(PyObject *cls, PyObject *args)
2309 PyObject *result = NULL;
2310 int ordinal;
2312 if (PyArg_ParseTuple(args, "i:fromordinal", &ordinal)) {
2313 int year;
2314 int month;
2315 int day;
2317 if (ordinal < 1)
2318 PyErr_SetString(PyExc_ValueError, "ordinal must be "
2319 ">= 1");
2320 else {
2321 ord_to_ymd(ordinal, &year, &month, &day);
2322 result = PyObject_CallFunction(cls, "iii",
2323 year, month, day);
2326 return result;
2330 * Date arithmetic.
2333 /* date + timedelta -> date. If arg negate is true, subtract the timedelta
2334 * instead.
2336 static PyObject *
2337 add_date_timedelta(PyDateTime_Date *date, PyDateTime_Delta *delta, int negate)
2339 PyObject *result = NULL;
2340 int year = GET_YEAR(date);
2341 int month = GET_MONTH(date);
2342 int deltadays = GET_TD_DAYS(delta);
2343 /* C-level overflow is impossible because |deltadays| < 1e9. */
2344 int day = GET_DAY(date) + (negate ? -deltadays : deltadays);
2346 if (normalize_date(&year, &month, &day) >= 0)
2347 result = new_date(year, month, day);
2348 return result;
2351 static PyObject *
2352 date_add(PyObject *left, PyObject *right)
2354 if (PyDateTime_Check(left) || PyDateTime_Check(right)) {
2355 Py_INCREF(Py_NotImplemented);
2356 return Py_NotImplemented;
2358 if (PyDate_Check(left)) {
2359 /* date + ??? */
2360 if (PyDelta_Check(right))
2361 /* date + delta */
2362 return add_date_timedelta((PyDateTime_Date *) left,
2363 (PyDateTime_Delta *) right,
2366 else {
2367 /* ??? + date
2368 * 'right' must be one of us, or we wouldn't have been called
2370 if (PyDelta_Check(left))
2371 /* delta + date */
2372 return add_date_timedelta((PyDateTime_Date *) right,
2373 (PyDateTime_Delta *) left,
2376 Py_INCREF(Py_NotImplemented);
2377 return Py_NotImplemented;
2380 static PyObject *
2381 date_subtract(PyObject *left, PyObject *right)
2383 if (PyDateTime_Check(left) || PyDateTime_Check(right)) {
2384 Py_INCREF(Py_NotImplemented);
2385 return Py_NotImplemented;
2387 if (PyDate_Check(left)) {
2388 if (PyDate_Check(right)) {
2389 /* date - date */
2390 int left_ord = ymd_to_ord(GET_YEAR(left),
2391 GET_MONTH(left),
2392 GET_DAY(left));
2393 int right_ord = ymd_to_ord(GET_YEAR(right),
2394 GET_MONTH(right),
2395 GET_DAY(right));
2396 return new_delta(left_ord - right_ord, 0, 0, 0);
2398 if (PyDelta_Check(right)) {
2399 /* date - delta */
2400 return add_date_timedelta((PyDateTime_Date *) left,
2401 (PyDateTime_Delta *) right,
2405 Py_INCREF(Py_NotImplemented);
2406 return Py_NotImplemented;
2410 /* Various ways to turn a date into a string. */
2412 static PyObject *
2413 date_repr(PyDateTime_Date *self)
2415 char buffer[1028];
2416 const char *type_name;
2418 type_name = self->ob_type->tp_name;
2419 PyOS_snprintf(buffer, sizeof(buffer), "%s(%d, %d, %d)",
2420 type_name,
2421 GET_YEAR(self), GET_MONTH(self), GET_DAY(self));
2423 return PyString_FromString(buffer);
2426 static PyObject *
2427 date_isoformat(PyDateTime_Date *self)
2429 char buffer[128];
2431 isoformat_date(self, buffer, sizeof(buffer));
2432 return PyString_FromString(buffer);
2435 /* str() calls the appropriate isoformat() method. */
2436 static PyObject *
2437 date_str(PyDateTime_Date *self)
2439 return PyObject_CallMethod((PyObject *)self, "isoformat", "()");
2443 static PyObject *
2444 date_ctime(PyDateTime_Date *self)
2446 return format_ctime(self, 0, 0, 0);
2449 static PyObject *
2450 date_strftime(PyDateTime_Date *self, PyObject *args, PyObject *kw)
2452 /* This method can be inherited, and needs to call the
2453 * timetuple() method appropriate to self's class.
2455 PyObject *result;
2456 PyObject *format;
2457 PyObject *tuple;
2458 static char *keywords[] = {"format", NULL};
2460 if (! PyArg_ParseTupleAndKeywords(args, kw, "O!:strftime", keywords,
2461 &PyString_Type, &format))
2462 return NULL;
2464 tuple = PyObject_CallMethod((PyObject *)self, "timetuple", "()");
2465 if (tuple == NULL)
2466 return NULL;
2467 result = wrap_strftime((PyObject *)self, format, tuple,
2468 (PyObject *)self);
2469 Py_DECREF(tuple);
2470 return result;
2473 /* ISO methods. */
2475 static PyObject *
2476 date_isoweekday(PyDateTime_Date *self)
2478 int dow = weekday(GET_YEAR(self), GET_MONTH(self), GET_DAY(self));
2480 return PyInt_FromLong(dow + 1);
2483 static PyObject *
2484 date_isocalendar(PyDateTime_Date *self)
2486 int year = GET_YEAR(self);
2487 int week1_monday = iso_week1_monday(year);
2488 int today = ymd_to_ord(year, GET_MONTH(self), GET_DAY(self));
2489 int week;
2490 int day;
2492 week = divmod(today - week1_monday, 7, &day);
2493 if (week < 0) {
2494 --year;
2495 week1_monday = iso_week1_monday(year);
2496 week = divmod(today - week1_monday, 7, &day);
2498 else if (week >= 52 && today >= iso_week1_monday(year + 1)) {
2499 ++year;
2500 week = 0;
2502 return Py_BuildValue("iii", year, week + 1, day + 1);
2505 /* Miscellaneous methods. */
2507 /* This is more natural as a tp_compare, but doesn't work then: for whatever
2508 * reason, Python's try_3way_compare ignores tp_compare unless
2509 * PyInstance_Check returns true, but these aren't old-style classes.
2511 static PyObject *
2512 date_richcompare(PyDateTime_Date *self, PyObject *other, int op)
2514 int diff = 42; /* nonsense */
2516 if (PyDate_Check(other))
2517 diff = memcmp(self->data, ((PyDateTime_Date *)other)->data,
2518 _PyDateTime_DATE_DATASIZE);
2520 else if (PyObject_HasAttrString(other, "timetuple")) {
2521 /* A hook for other kinds of date objects. */
2522 Py_INCREF(Py_NotImplemented);
2523 return Py_NotImplemented;
2525 else if (op == Py_EQ || op == Py_NE)
2526 diff = 1; /* any non-zero value will do */
2528 else /* stop this from falling back to address comparison */
2529 return cmperror((PyObject *)self, other);
2531 return diff_to_bool(diff, op);
2534 static PyObject *
2535 date_timetuple(PyDateTime_Date *self)
2537 return build_struct_time(GET_YEAR(self),
2538 GET_MONTH(self),
2539 GET_DAY(self),
2540 0, 0, 0, -1);
2543 static PyObject *
2544 date_replace(PyDateTime_Date *self, PyObject *args, PyObject *kw)
2546 PyObject *clone;
2547 PyObject *tuple;
2548 int year = GET_YEAR(self);
2549 int month = GET_MONTH(self);
2550 int day = GET_DAY(self);
2552 if (! PyArg_ParseTupleAndKeywords(args, kw, "|iii:replace", date_kws,
2553 &year, &month, &day))
2554 return NULL;
2555 tuple = Py_BuildValue("iii", year, month, day);
2556 if (tuple == NULL)
2557 return NULL;
2558 clone = date_new(self->ob_type, tuple, NULL);
2559 Py_DECREF(tuple);
2560 return clone;
2563 static PyObject *date_getstate(PyDateTime_Date *self);
2565 static long
2566 date_hash(PyDateTime_Date *self)
2568 if (self->hashcode == -1) {
2569 PyObject *temp = date_getstate(self);
2570 if (temp != NULL) {
2571 self->hashcode = PyObject_Hash(temp);
2572 Py_DECREF(temp);
2575 return self->hashcode;
2578 static PyObject *
2579 date_toordinal(PyDateTime_Date *self)
2581 return PyInt_FromLong(ymd_to_ord(GET_YEAR(self), GET_MONTH(self),
2582 GET_DAY(self)));
2585 static PyObject *
2586 date_weekday(PyDateTime_Date *self)
2588 int dow = weekday(GET_YEAR(self), GET_MONTH(self), GET_DAY(self));
2590 return PyInt_FromLong(dow);
2593 /* Pickle support, a simple use of __reduce__. */
2595 /* __getstate__ isn't exposed */
2596 static PyObject *
2597 date_getstate(PyDateTime_Date *self)
2599 return Py_BuildValue(
2600 "(N)",
2601 PyString_FromStringAndSize((char *)self->data,
2602 _PyDateTime_DATE_DATASIZE));
2605 static PyObject *
2606 date_reduce(PyDateTime_Date *self, PyObject *arg)
2608 return Py_BuildValue("(ON)", self->ob_type, date_getstate(self));
2611 static PyMethodDef date_methods[] = {
2613 /* Class methods: */
2615 {"fromtimestamp", (PyCFunction)date_fromtimestamp, METH_VARARGS |
2616 METH_CLASS,
2617 PyDoc_STR("timestamp -> local date from a POSIX timestamp (like "
2618 "time.time()).")},
2620 {"fromordinal", (PyCFunction)date_fromordinal, METH_VARARGS |
2621 METH_CLASS,
2622 PyDoc_STR("int -> date corresponding to a proleptic Gregorian "
2623 "ordinal.")},
2625 {"today", (PyCFunction)date_today, METH_NOARGS | METH_CLASS,
2626 PyDoc_STR("Current date or datetime: same as "
2627 "self.__class__.fromtimestamp(time.time()).")},
2629 /* Instance methods: */
2631 {"ctime", (PyCFunction)date_ctime, METH_NOARGS,
2632 PyDoc_STR("Return ctime() style string.")},
2634 {"strftime", (PyCFunction)date_strftime, METH_KEYWORDS,
2635 PyDoc_STR("format -> strftime() style string.")},
2637 {"timetuple", (PyCFunction)date_timetuple, METH_NOARGS,
2638 PyDoc_STR("Return time tuple, compatible with time.localtime().")},
2640 {"isocalendar", (PyCFunction)date_isocalendar, METH_NOARGS,
2641 PyDoc_STR("Return a 3-tuple containing ISO year, week number, and "
2642 "weekday.")},
2644 {"isoformat", (PyCFunction)date_isoformat, METH_NOARGS,
2645 PyDoc_STR("Return string in ISO 8601 format, YYYY-MM-DD.")},
2647 {"isoweekday", (PyCFunction)date_isoweekday, METH_NOARGS,
2648 PyDoc_STR("Return the day of the week represented by the date.\n"
2649 "Monday == 1 ... Sunday == 7")},
2651 {"toordinal", (PyCFunction)date_toordinal, METH_NOARGS,
2652 PyDoc_STR("Return proleptic Gregorian ordinal. January 1 of year "
2653 "1 is day 1.")},
2655 {"weekday", (PyCFunction)date_weekday, METH_NOARGS,
2656 PyDoc_STR("Return the day of the week represented by the date.\n"
2657 "Monday == 0 ... Sunday == 6")},
2659 {"replace", (PyCFunction)date_replace, METH_KEYWORDS,
2660 PyDoc_STR("Return date with new specified fields.")},
2662 {"__reduce__", (PyCFunction)date_reduce, METH_NOARGS,
2663 PyDoc_STR("__reduce__() -> (cls, state)")},
2665 {NULL, NULL}
2668 static char date_doc[] =
2669 PyDoc_STR("date(year, month, day) --> date object");
2671 static PyNumberMethods date_as_number = {
2672 date_add, /* nb_add */
2673 date_subtract, /* nb_subtract */
2674 0, /* nb_multiply */
2675 0, /* nb_divide */
2676 0, /* nb_remainder */
2677 0, /* nb_divmod */
2678 0, /* nb_power */
2679 0, /* nb_negative */
2680 0, /* nb_positive */
2681 0, /* nb_absolute */
2682 0, /* nb_nonzero */
2685 static PyTypeObject PyDateTime_DateType = {
2686 PyObject_HEAD_INIT(NULL)
2687 0, /* ob_size */
2688 "datetime.date", /* tp_name */
2689 sizeof(PyDateTime_Date), /* tp_basicsize */
2690 0, /* tp_itemsize */
2691 0, /* tp_dealloc */
2692 0, /* tp_print */
2693 0, /* tp_getattr */
2694 0, /* tp_setattr */
2695 0, /* tp_compare */
2696 (reprfunc)date_repr, /* tp_repr */
2697 &date_as_number, /* tp_as_number */
2698 0, /* tp_as_sequence */
2699 0, /* tp_as_mapping */
2700 (hashfunc)date_hash, /* tp_hash */
2701 0, /* tp_call */
2702 (reprfunc)date_str, /* tp_str */
2703 PyObject_GenericGetAttr, /* tp_getattro */
2704 0, /* tp_setattro */
2705 0, /* tp_as_buffer */
2706 Py_TPFLAGS_DEFAULT | Py_TPFLAGS_CHECKTYPES |
2707 Py_TPFLAGS_BASETYPE, /* tp_flags */
2708 date_doc, /* tp_doc */
2709 0, /* tp_traverse */
2710 0, /* tp_clear */
2711 (richcmpfunc)date_richcompare, /* tp_richcompare */
2712 0, /* tp_weaklistoffset */
2713 0, /* tp_iter */
2714 0, /* tp_iternext */
2715 date_methods, /* tp_methods */
2716 0, /* tp_members */
2717 date_getset, /* tp_getset */
2718 0, /* tp_base */
2719 0, /* tp_dict */
2720 0, /* tp_descr_get */
2721 0, /* tp_descr_set */
2722 0, /* tp_dictoffset */
2723 0, /* tp_init */
2724 0, /* tp_alloc */
2725 date_new, /* tp_new */
2726 0, /* tp_free */
2730 * PyDateTime_TZInfo implementation.
2733 /* This is a pure abstract base class, so doesn't do anything beyond
2734 * raising NotImplemented exceptions. Real tzinfo classes need
2735 * to derive from this. This is mostly for clarity, and for efficiency in
2736 * datetime and time constructors (their tzinfo arguments need to
2737 * be subclasses of this tzinfo class, which is easy and quick to check).
2739 * Note: For reasons having to do with pickling of subclasses, we have
2740 * to allow tzinfo objects to be instantiated. This wasn't an issue
2741 * in the Python implementation (__init__() could raise NotImplementedError
2742 * there without ill effect), but doing so in the C implementation hit a
2743 * brick wall.
2746 static PyObject *
2747 tzinfo_nogo(const char* methodname)
2749 PyErr_Format(PyExc_NotImplementedError,
2750 "a tzinfo subclass must implement %s()",
2751 methodname);
2752 return NULL;
2755 /* Methods. A subclass must implement these. */
2757 static PyObject *
2758 tzinfo_tzname(PyDateTime_TZInfo *self, PyObject *dt)
2760 return tzinfo_nogo("tzname");
2763 static PyObject *
2764 tzinfo_utcoffset(PyDateTime_TZInfo *self, PyObject *dt)
2766 return tzinfo_nogo("utcoffset");
2769 static PyObject *
2770 tzinfo_dst(PyDateTime_TZInfo *self, PyObject *dt)
2772 return tzinfo_nogo("dst");
2775 static PyObject *
2776 tzinfo_fromutc(PyDateTime_TZInfo *self, PyDateTime_DateTime *dt)
2778 int y, m, d, hh, mm, ss, us;
2780 PyObject *result;
2781 int off, dst;
2782 int none;
2783 int delta;
2785 if (! PyDateTime_Check(dt)) {
2786 PyErr_SetString(PyExc_TypeError,
2787 "fromutc: argument must be a datetime");
2788 return NULL;
2790 if (! HASTZINFO(dt) || dt->tzinfo != (PyObject *)self) {
2791 PyErr_SetString(PyExc_ValueError, "fromutc: dt.tzinfo "
2792 "is not self");
2793 return NULL;
2796 off = call_utcoffset(dt->tzinfo, (PyObject *)dt, &none);
2797 if (off == -1 && PyErr_Occurred())
2798 return NULL;
2799 if (none) {
2800 PyErr_SetString(PyExc_ValueError, "fromutc: non-None "
2801 "utcoffset() result required");
2802 return NULL;
2805 dst = call_dst(dt->tzinfo, (PyObject *)dt, &none);
2806 if (dst == -1 && PyErr_Occurred())
2807 return NULL;
2808 if (none) {
2809 PyErr_SetString(PyExc_ValueError, "fromutc: non-None "
2810 "dst() result required");
2811 return NULL;
2814 y = GET_YEAR(dt);
2815 m = GET_MONTH(dt);
2816 d = GET_DAY(dt);
2817 hh = DATE_GET_HOUR(dt);
2818 mm = DATE_GET_MINUTE(dt);
2819 ss = DATE_GET_SECOND(dt);
2820 us = DATE_GET_MICROSECOND(dt);
2822 delta = off - dst;
2823 mm += delta;
2824 if ((mm < 0 || mm >= 60) &&
2825 normalize_datetime(&y, &m, &d, &hh, &mm, &ss, &us) < 0)
2826 return NULL;
2827 result = new_datetime(y, m, d, hh, mm, ss, us, dt->tzinfo);
2828 if (result == NULL)
2829 return result;
2831 dst = call_dst(dt->tzinfo, result, &none);
2832 if (dst == -1 && PyErr_Occurred())
2833 goto Fail;
2834 if (none)
2835 goto Inconsistent;
2836 if (dst == 0)
2837 return result;
2839 mm += dst;
2840 if ((mm < 0 || mm >= 60) &&
2841 normalize_datetime(&y, &m, &d, &hh, &mm, &ss, &us) < 0)
2842 goto Fail;
2843 Py_DECREF(result);
2844 result = new_datetime(y, m, d, hh, mm, ss, us, dt->tzinfo);
2845 return result;
2847 Inconsistent:
2848 PyErr_SetString(PyExc_ValueError, "fromutc: tz.dst() gave"
2849 "inconsistent results; cannot convert");
2851 /* fall thru to failure */
2852 Fail:
2853 Py_DECREF(result);
2854 return NULL;
2858 * Pickle support. This is solely so that tzinfo subclasses can use
2859 * pickling -- tzinfo itself is supposed to be uninstantiable.
2862 static PyObject *
2863 tzinfo_reduce(PyObject *self)
2865 PyObject *args, *state, *tmp;
2866 PyObject *getinitargs, *getstate;
2868 tmp = PyTuple_New(0);
2869 if (tmp == NULL)
2870 return NULL;
2872 getinitargs = PyObject_GetAttrString(self, "__getinitargs__");
2873 if (getinitargs != NULL) {
2874 args = PyObject_CallObject(getinitargs, tmp);
2875 Py_DECREF(getinitargs);
2876 if (args == NULL) {
2877 Py_DECREF(tmp);
2878 return NULL;
2881 else {
2882 PyErr_Clear();
2883 args = tmp;
2884 Py_INCREF(args);
2887 getstate = PyObject_GetAttrString(self, "__getstate__");
2888 if (getstate != NULL) {
2889 state = PyObject_CallObject(getstate, tmp);
2890 Py_DECREF(getstate);
2891 if (state == NULL) {
2892 Py_DECREF(args);
2893 Py_DECREF(tmp);
2894 return NULL;
2897 else {
2898 PyObject **dictptr;
2899 PyErr_Clear();
2900 state = Py_None;
2901 dictptr = _PyObject_GetDictPtr(self);
2902 if (dictptr && *dictptr && PyDict_Size(*dictptr))
2903 state = *dictptr;
2904 Py_INCREF(state);
2907 Py_DECREF(tmp);
2909 if (state == Py_None) {
2910 Py_DECREF(state);
2911 return Py_BuildValue("(ON)", self->ob_type, args);
2913 else
2914 return Py_BuildValue("(ONN)", self->ob_type, args, state);
2917 static PyMethodDef tzinfo_methods[] = {
2919 {"tzname", (PyCFunction)tzinfo_tzname, METH_O,
2920 PyDoc_STR("datetime -> string name of time zone.")},
2922 {"utcoffset", (PyCFunction)tzinfo_utcoffset, METH_O,
2923 PyDoc_STR("datetime -> minutes east of UTC (negative for "
2924 "west of UTC).")},
2926 {"dst", (PyCFunction)tzinfo_dst, METH_O,
2927 PyDoc_STR("datetime -> DST offset in minutes east of UTC.")},
2929 {"fromutc", (PyCFunction)tzinfo_fromutc, METH_O,
2930 PyDoc_STR("datetime in UTC -> datetime in local time.")},
2932 {"__reduce__", (PyCFunction)tzinfo_reduce, METH_NOARGS,
2933 PyDoc_STR("-> (cls, state)")},
2935 {NULL, NULL}
2938 static char tzinfo_doc[] =
2939 PyDoc_STR("Abstract base class for time zone info objects.");
2941 statichere PyTypeObject PyDateTime_TZInfoType = {
2942 PyObject_HEAD_INIT(NULL)
2943 0, /* ob_size */
2944 "datetime.tzinfo", /* tp_name */
2945 sizeof(PyDateTime_TZInfo), /* tp_basicsize */
2946 0, /* tp_itemsize */
2947 0, /* tp_dealloc */
2948 0, /* tp_print */
2949 0, /* tp_getattr */
2950 0, /* tp_setattr */
2951 0, /* tp_compare */
2952 0, /* tp_repr */
2953 0, /* tp_as_number */
2954 0, /* tp_as_sequence */
2955 0, /* tp_as_mapping */
2956 0, /* tp_hash */
2957 0, /* tp_call */
2958 0, /* tp_str */
2959 PyObject_GenericGetAttr, /* tp_getattro */
2960 0, /* tp_setattro */
2961 0, /* tp_as_buffer */
2962 Py_TPFLAGS_DEFAULT | Py_TPFLAGS_CHECKTYPES |
2963 Py_TPFLAGS_BASETYPE, /* tp_flags */
2964 tzinfo_doc, /* tp_doc */
2965 0, /* tp_traverse */
2966 0, /* tp_clear */
2967 0, /* tp_richcompare */
2968 0, /* tp_weaklistoffset */
2969 0, /* tp_iter */
2970 0, /* tp_iternext */
2971 tzinfo_methods, /* tp_methods */
2972 0, /* tp_members */
2973 0, /* tp_getset */
2974 0, /* tp_base */
2975 0, /* tp_dict */
2976 0, /* tp_descr_get */
2977 0, /* tp_descr_set */
2978 0, /* tp_dictoffset */
2979 0, /* tp_init */
2980 0, /* tp_alloc */
2981 PyType_GenericNew, /* tp_new */
2982 0, /* tp_free */
2986 * PyDateTime_Time implementation.
2989 /* Accessor properties.
2992 static PyObject *
2993 time_hour(PyDateTime_Time *self, void *unused)
2995 return PyInt_FromLong(TIME_GET_HOUR(self));
2998 static PyObject *
2999 time_minute(PyDateTime_Time *self, void *unused)
3001 return PyInt_FromLong(TIME_GET_MINUTE(self));
3004 /* The name time_second conflicted with some platform header file. */
3005 static PyObject *
3006 py_time_second(PyDateTime_Time *self, void *unused)
3008 return PyInt_FromLong(TIME_GET_SECOND(self));
3011 static PyObject *
3012 time_microsecond(PyDateTime_Time *self, void *unused)
3014 return PyInt_FromLong(TIME_GET_MICROSECOND(self));
3017 static PyObject *
3018 time_tzinfo(PyDateTime_Time *self, void *unused)
3020 PyObject *result = HASTZINFO(self) ? self->tzinfo : Py_None;
3021 Py_INCREF(result);
3022 return result;
3025 static PyGetSetDef time_getset[] = {
3026 {"hour", (getter)time_hour},
3027 {"minute", (getter)time_minute},
3028 {"second", (getter)py_time_second},
3029 {"microsecond", (getter)time_microsecond},
3030 {"tzinfo", (getter)time_tzinfo},
3031 {NULL}
3035 * Constructors.
3038 static char *time_kws[] = {"hour", "minute", "second", "microsecond",
3039 "tzinfo", NULL};
3041 static PyObject *
3042 time_new(PyTypeObject *type, PyObject *args, PyObject *kw)
3044 PyObject *self = NULL;
3045 PyObject *state;
3046 int hour = 0;
3047 int minute = 0;
3048 int second = 0;
3049 int usecond = 0;
3050 PyObject *tzinfo = Py_None;
3052 /* Check for invocation from pickle with __getstate__ state */
3053 if (PyTuple_GET_SIZE(args) >= 1 &&
3054 PyTuple_GET_SIZE(args) <= 2 &&
3055 PyString_Check(state = PyTuple_GET_ITEM(args, 0)) &&
3056 PyString_GET_SIZE(state) == _PyDateTime_TIME_DATASIZE &&
3057 ((unsigned char) (PyString_AS_STRING(state)[0])) < 24)
3059 PyDateTime_Time *me;
3060 char aware;
3062 if (PyTuple_GET_SIZE(args) == 2) {
3063 tzinfo = PyTuple_GET_ITEM(args, 1);
3064 if (check_tzinfo_subclass(tzinfo) < 0) {
3065 PyErr_SetString(PyExc_TypeError, "bad "
3066 "tzinfo state arg");
3067 return NULL;
3070 aware = (char)(tzinfo != Py_None);
3071 me = (PyDateTime_Time *) (type->tp_alloc(type, aware));
3072 if (me != NULL) {
3073 char *pdata = PyString_AS_STRING(state);
3075 memcpy(me->data, pdata, _PyDateTime_TIME_DATASIZE);
3076 me->hashcode = -1;
3077 me->hastzinfo = aware;
3078 if (aware) {
3079 Py_INCREF(tzinfo);
3080 me->tzinfo = tzinfo;
3083 return (PyObject *)me;
3086 if (PyArg_ParseTupleAndKeywords(args, kw, "|iiiiO", time_kws,
3087 &hour, &minute, &second, &usecond,
3088 &tzinfo)) {
3089 if (check_time_args(hour, minute, second, usecond) < 0)
3090 return NULL;
3091 if (check_tzinfo_subclass(tzinfo) < 0)
3092 return NULL;
3093 self = new_time_ex(hour, minute, second, usecond, tzinfo,
3094 type);
3096 return self;
3100 * Destructor.
3103 static void
3104 time_dealloc(PyDateTime_Time *self)
3106 if (HASTZINFO(self)) {
3107 Py_XDECREF(self->tzinfo);
3109 self->ob_type->tp_free((PyObject *)self);
3113 * Indirect access to tzinfo methods.
3116 /* These are all METH_NOARGS, so don't need to check the arglist. */
3117 static PyObject *
3118 time_utcoffset(PyDateTime_Time *self, PyObject *unused) {
3119 return offset_as_timedelta(HASTZINFO(self) ? self->tzinfo : Py_None,
3120 "utcoffset", Py_None);
3123 static PyObject *
3124 time_dst(PyDateTime_Time *self, PyObject *unused) {
3125 return offset_as_timedelta(HASTZINFO(self) ? self->tzinfo : Py_None,
3126 "dst", Py_None);
3129 static PyObject *
3130 time_tzname(PyDateTime_Time *self, PyObject *unused) {
3131 return call_tzname(HASTZINFO(self) ? self->tzinfo : Py_None,
3132 Py_None);
3136 * Various ways to turn a time into a string.
3139 static PyObject *
3140 time_repr(PyDateTime_Time *self)
3142 char buffer[100];
3143 const char *type_name = self->ob_type->tp_name;
3144 int h = TIME_GET_HOUR(self);
3145 int m = TIME_GET_MINUTE(self);
3146 int s = TIME_GET_SECOND(self);
3147 int us = TIME_GET_MICROSECOND(self);
3148 PyObject *result = NULL;
3150 if (us)
3151 PyOS_snprintf(buffer, sizeof(buffer),
3152 "%s(%d, %d, %d, %d)", type_name, h, m, s, us);
3153 else if (s)
3154 PyOS_snprintf(buffer, sizeof(buffer),
3155 "%s(%d, %d, %d)", type_name, h, m, s);
3156 else
3157 PyOS_snprintf(buffer, sizeof(buffer),
3158 "%s(%d, %d)", type_name, h, m);
3159 result = PyString_FromString(buffer);
3160 if (result != NULL && HASTZINFO(self))
3161 result = append_keyword_tzinfo(result, self->tzinfo);
3162 return result;
3165 static PyObject *
3166 time_str(PyDateTime_Time *self)
3168 return PyObject_CallMethod((PyObject *)self, "isoformat", "()");
3171 static PyObject *
3172 time_isoformat(PyDateTime_Time *self, PyObject *unused)
3174 char buf[100];
3175 PyObject *result;
3176 /* Reuse the time format code from the datetime type. */
3177 PyDateTime_DateTime datetime;
3178 PyDateTime_DateTime *pdatetime = &datetime;
3180 /* Copy over just the time bytes. */
3181 memcpy(pdatetime->data + _PyDateTime_DATE_DATASIZE,
3182 self->data,
3183 _PyDateTime_TIME_DATASIZE);
3185 isoformat_time(pdatetime, buf, sizeof(buf));
3186 result = PyString_FromString(buf);
3187 if (result == NULL || ! HASTZINFO(self) || self->tzinfo == Py_None)
3188 return result;
3190 /* We need to append the UTC offset. */
3191 if (format_utcoffset(buf, sizeof(buf), ":", self->tzinfo,
3192 Py_None) < 0) {
3193 Py_DECREF(result);
3194 return NULL;
3196 PyString_ConcatAndDel(&result, PyString_FromString(buf));
3197 return result;
3200 static PyObject *
3201 time_strftime(PyDateTime_Time *self, PyObject *args, PyObject *kw)
3203 PyObject *result;
3204 PyObject *format;
3205 PyObject *tuple;
3206 static char *keywords[] = {"format", NULL};
3208 if (! PyArg_ParseTupleAndKeywords(args, kw, "O!:strftime", keywords,
3209 &PyString_Type, &format))
3210 return NULL;
3212 /* Python's strftime does insane things with the year part of the
3213 * timetuple. The year is forced to (the otherwise nonsensical)
3214 * 1900 to worm around that.
3216 tuple = Py_BuildValue("iiiiiiiii",
3217 1900, 1, 1, /* year, month, day */
3218 TIME_GET_HOUR(self),
3219 TIME_GET_MINUTE(self),
3220 TIME_GET_SECOND(self),
3221 0, 1, -1); /* weekday, daynum, dst */
3222 if (tuple == NULL)
3223 return NULL;
3224 assert(PyTuple_Size(tuple) == 9);
3225 result = wrap_strftime((PyObject *)self, format, tuple, Py_None);
3226 Py_DECREF(tuple);
3227 return result;
3231 * Miscellaneous methods.
3234 /* This is more natural as a tp_compare, but doesn't work then: for whatever
3235 * reason, Python's try_3way_compare ignores tp_compare unless
3236 * PyInstance_Check returns true, but these aren't old-style classes.
3238 static PyObject *
3239 time_richcompare(PyDateTime_Time *self, PyObject *other, int op)
3241 int diff;
3242 naivety n1, n2;
3243 int offset1, offset2;
3245 if (! PyTime_Check(other)) {
3246 if (op == Py_EQ || op == Py_NE) {
3247 PyObject *result = op == Py_EQ ? Py_False : Py_True;
3248 Py_INCREF(result);
3249 return result;
3251 /* Stop this from falling back to address comparison. */
3252 return cmperror((PyObject *)self, other);
3254 if (classify_two_utcoffsets((PyObject *)self, &offset1, &n1, Py_None,
3255 other, &offset2, &n2, Py_None) < 0)
3256 return NULL;
3257 assert(n1 != OFFSET_UNKNOWN && n2 != OFFSET_UNKNOWN);
3258 /* If they're both naive, or both aware and have the same offsets,
3259 * we get off cheap. Note that if they're both naive, offset1 ==
3260 * offset2 == 0 at this point.
3262 if (n1 == n2 && offset1 == offset2) {
3263 diff = memcmp(self->data, ((PyDateTime_Time *)other)->data,
3264 _PyDateTime_TIME_DATASIZE);
3265 return diff_to_bool(diff, op);
3268 if (n1 == OFFSET_AWARE && n2 == OFFSET_AWARE) {
3269 assert(offset1 != offset2); /* else last "if" handled it */
3270 /* Convert everything except microseconds to seconds. These
3271 * can't overflow (no more than the # of seconds in 2 days).
3273 offset1 = TIME_GET_HOUR(self) * 3600 +
3274 (TIME_GET_MINUTE(self) - offset1) * 60 +
3275 TIME_GET_SECOND(self);
3276 offset2 = TIME_GET_HOUR(other) * 3600 +
3277 (TIME_GET_MINUTE(other) - offset2) * 60 +
3278 TIME_GET_SECOND(other);
3279 diff = offset1 - offset2;
3280 if (diff == 0)
3281 diff = TIME_GET_MICROSECOND(self) -
3282 TIME_GET_MICROSECOND(other);
3283 return diff_to_bool(diff, op);
3286 assert(n1 != n2);
3287 PyErr_SetString(PyExc_TypeError,
3288 "can't compare offset-naive and "
3289 "offset-aware times");
3290 return NULL;
3293 static long
3294 time_hash(PyDateTime_Time *self)
3296 if (self->hashcode == -1) {
3297 naivety n;
3298 int offset;
3299 PyObject *temp;
3301 n = classify_utcoffset((PyObject *)self, Py_None, &offset);
3302 assert(n != OFFSET_UNKNOWN);
3303 if (n == OFFSET_ERROR)
3304 return -1;
3306 /* Reduce this to a hash of another object. */
3307 if (offset == 0)
3308 temp = PyString_FromStringAndSize((char *)self->data,
3309 _PyDateTime_TIME_DATASIZE);
3310 else {
3311 int hour;
3312 int minute;
3314 assert(n == OFFSET_AWARE);
3315 assert(HASTZINFO(self));
3316 hour = divmod(TIME_GET_HOUR(self) * 60 +
3317 TIME_GET_MINUTE(self) - offset,
3319 &minute);
3320 if (0 <= hour && hour < 24)
3321 temp = new_time(hour, minute,
3322 TIME_GET_SECOND(self),
3323 TIME_GET_MICROSECOND(self),
3324 Py_None);
3325 else
3326 temp = Py_BuildValue("iiii",
3327 hour, minute,
3328 TIME_GET_SECOND(self),
3329 TIME_GET_MICROSECOND(self));
3331 if (temp != NULL) {
3332 self->hashcode = PyObject_Hash(temp);
3333 Py_DECREF(temp);
3336 return self->hashcode;
3339 static PyObject *
3340 time_replace(PyDateTime_Time *self, PyObject *args, PyObject *kw)
3342 PyObject *clone;
3343 PyObject *tuple;
3344 int hh = TIME_GET_HOUR(self);
3345 int mm = TIME_GET_MINUTE(self);
3346 int ss = TIME_GET_SECOND(self);
3347 int us = TIME_GET_MICROSECOND(self);
3348 PyObject *tzinfo = HASTZINFO(self) ? self->tzinfo : Py_None;
3350 if (! PyArg_ParseTupleAndKeywords(args, kw, "|iiiiO:replace",
3351 time_kws,
3352 &hh, &mm, &ss, &us, &tzinfo))
3353 return NULL;
3354 tuple = Py_BuildValue("iiiiO", hh, mm, ss, us, tzinfo);
3355 if (tuple == NULL)
3356 return NULL;
3357 clone = time_new(self->ob_type, tuple, NULL);
3358 Py_DECREF(tuple);
3359 return clone;
3362 static int
3363 time_nonzero(PyDateTime_Time *self)
3365 int offset;
3366 int none;
3368 if (TIME_GET_SECOND(self) || TIME_GET_MICROSECOND(self)) {
3369 /* Since utcoffset is in whole minutes, nothing can
3370 * alter the conclusion that this is nonzero.
3372 return 1;
3374 offset = 0;
3375 if (HASTZINFO(self) && self->tzinfo != Py_None) {
3376 offset = call_utcoffset(self->tzinfo, Py_None, &none);
3377 if (offset == -1 && PyErr_Occurred())
3378 return -1;
3380 return (TIME_GET_MINUTE(self) - offset + TIME_GET_HOUR(self)*60) != 0;
3383 /* Pickle support, a simple use of __reduce__. */
3385 /* Let basestate be the non-tzinfo data string.
3386 * If tzinfo is None, this returns (basestate,), else (basestate, tzinfo).
3387 * So it's a tuple in any (non-error) case.
3388 * __getstate__ isn't exposed.
3390 static PyObject *
3391 time_getstate(PyDateTime_Time *self)
3393 PyObject *basestate;
3394 PyObject *result = NULL;
3396 basestate = PyString_FromStringAndSize((char *)self->data,
3397 _PyDateTime_TIME_DATASIZE);
3398 if (basestate != NULL) {
3399 if (! HASTZINFO(self) || self->tzinfo == Py_None)
3400 result = PyTuple_Pack(1, basestate);
3401 else
3402 result = PyTuple_Pack(2, basestate, self->tzinfo);
3403 Py_DECREF(basestate);
3405 return result;
3408 static PyObject *
3409 time_reduce(PyDateTime_Time *self, PyObject *arg)
3411 return Py_BuildValue("(ON)", self->ob_type, time_getstate(self));
3414 static PyMethodDef time_methods[] = {
3416 {"isoformat", (PyCFunction)time_isoformat, METH_NOARGS,
3417 PyDoc_STR("Return string in ISO 8601 format, HH:MM:SS[.mmmmmm]"
3418 "[+HH:MM].")},
3420 {"strftime", (PyCFunction)time_strftime, METH_KEYWORDS,
3421 PyDoc_STR("format -> strftime() style string.")},
3423 {"utcoffset", (PyCFunction)time_utcoffset, METH_NOARGS,
3424 PyDoc_STR("Return self.tzinfo.utcoffset(self).")},
3426 {"tzname", (PyCFunction)time_tzname, METH_NOARGS,
3427 PyDoc_STR("Return self.tzinfo.tzname(self).")},
3429 {"dst", (PyCFunction)time_dst, METH_NOARGS,
3430 PyDoc_STR("Return self.tzinfo.dst(self).")},
3432 {"replace", (PyCFunction)time_replace, METH_KEYWORDS,
3433 PyDoc_STR("Return time with new specified fields.")},
3435 {"__reduce__", (PyCFunction)time_reduce, METH_NOARGS,
3436 PyDoc_STR("__reduce__() -> (cls, state)")},
3438 {NULL, NULL}
3441 static char time_doc[] =
3442 PyDoc_STR("time([hour[, minute[, second[, microsecond[, tzinfo]]]]]) --> a time object\n\
3444 All arguments are optional. tzinfo may be None, or an instance of\n\
3445 a tzinfo subclass. The remaining arguments may be ints or longs.\n");
3447 static PyNumberMethods time_as_number = {
3448 0, /* nb_add */
3449 0, /* nb_subtract */
3450 0, /* nb_multiply */
3451 0, /* nb_divide */
3452 0, /* nb_remainder */
3453 0, /* nb_divmod */
3454 0, /* nb_power */
3455 0, /* nb_negative */
3456 0, /* nb_positive */
3457 0, /* nb_absolute */
3458 (inquiry)time_nonzero, /* nb_nonzero */
3461 statichere PyTypeObject PyDateTime_TimeType = {
3462 PyObject_HEAD_INIT(NULL)
3463 0, /* ob_size */
3464 "datetime.time", /* tp_name */
3465 sizeof(PyDateTime_Time), /* tp_basicsize */
3466 0, /* tp_itemsize */
3467 (destructor)time_dealloc, /* tp_dealloc */
3468 0, /* tp_print */
3469 0, /* tp_getattr */
3470 0, /* tp_setattr */
3471 0, /* tp_compare */
3472 (reprfunc)time_repr, /* tp_repr */
3473 &time_as_number, /* tp_as_number */
3474 0, /* tp_as_sequence */
3475 0, /* tp_as_mapping */
3476 (hashfunc)time_hash, /* tp_hash */
3477 0, /* tp_call */
3478 (reprfunc)time_str, /* tp_str */
3479 PyObject_GenericGetAttr, /* tp_getattro */
3480 0, /* tp_setattro */
3481 0, /* tp_as_buffer */
3482 Py_TPFLAGS_DEFAULT | Py_TPFLAGS_CHECKTYPES |
3483 Py_TPFLAGS_BASETYPE, /* tp_flags */
3484 time_doc, /* tp_doc */
3485 0, /* tp_traverse */
3486 0, /* tp_clear */
3487 (richcmpfunc)time_richcompare, /* tp_richcompare */
3488 0, /* tp_weaklistoffset */
3489 0, /* tp_iter */
3490 0, /* tp_iternext */
3491 time_methods, /* tp_methods */
3492 0, /* tp_members */
3493 time_getset, /* tp_getset */
3494 0, /* tp_base */
3495 0, /* tp_dict */
3496 0, /* tp_descr_get */
3497 0, /* tp_descr_set */
3498 0, /* tp_dictoffset */
3499 0, /* tp_init */
3500 time_alloc, /* tp_alloc */
3501 time_new, /* tp_new */
3502 0, /* tp_free */
3506 * PyDateTime_DateTime implementation.
3509 /* Accessor properties. Properties for day, month, and year are inherited
3510 * from date.
3513 static PyObject *
3514 datetime_hour(PyDateTime_DateTime *self, void *unused)
3516 return PyInt_FromLong(DATE_GET_HOUR(self));
3519 static PyObject *
3520 datetime_minute(PyDateTime_DateTime *self, void *unused)
3522 return PyInt_FromLong(DATE_GET_MINUTE(self));
3525 static PyObject *
3526 datetime_second(PyDateTime_DateTime *self, void *unused)
3528 return PyInt_FromLong(DATE_GET_SECOND(self));
3531 static PyObject *
3532 datetime_microsecond(PyDateTime_DateTime *self, void *unused)
3534 return PyInt_FromLong(DATE_GET_MICROSECOND(self));
3537 static PyObject *
3538 datetime_tzinfo(PyDateTime_DateTime *self, void *unused)
3540 PyObject *result = HASTZINFO(self) ? self->tzinfo : Py_None;
3541 Py_INCREF(result);
3542 return result;
3545 static PyGetSetDef datetime_getset[] = {
3546 {"hour", (getter)datetime_hour},
3547 {"minute", (getter)datetime_minute},
3548 {"second", (getter)datetime_second},
3549 {"microsecond", (getter)datetime_microsecond},
3550 {"tzinfo", (getter)datetime_tzinfo},
3551 {NULL}
3555 * Constructors.
3558 static char *datetime_kws[] = {
3559 "year", "month", "day", "hour", "minute", "second",
3560 "microsecond", "tzinfo", NULL
3563 static PyObject *
3564 datetime_new(PyTypeObject *type, PyObject *args, PyObject *kw)
3566 PyObject *self = NULL;
3567 PyObject *state;
3568 int year;
3569 int month;
3570 int day;
3571 int hour = 0;
3572 int minute = 0;
3573 int second = 0;
3574 int usecond = 0;
3575 PyObject *tzinfo = Py_None;
3577 /* Check for invocation from pickle with __getstate__ state */
3578 if (PyTuple_GET_SIZE(args) >= 1 &&
3579 PyTuple_GET_SIZE(args) <= 2 &&
3580 PyString_Check(state = PyTuple_GET_ITEM(args, 0)) &&
3581 PyString_GET_SIZE(state) == _PyDateTime_DATETIME_DATASIZE &&
3582 MONTH_IS_SANE(PyString_AS_STRING(state)[2]))
3584 PyDateTime_DateTime *me;
3585 char aware;
3587 if (PyTuple_GET_SIZE(args) == 2) {
3588 tzinfo = PyTuple_GET_ITEM(args, 1);
3589 if (check_tzinfo_subclass(tzinfo) < 0) {
3590 PyErr_SetString(PyExc_TypeError, "bad "
3591 "tzinfo state arg");
3592 return NULL;
3595 aware = (char)(tzinfo != Py_None);
3596 me = (PyDateTime_DateTime *) (type->tp_alloc(type , aware));
3597 if (me != NULL) {
3598 char *pdata = PyString_AS_STRING(state);
3600 memcpy(me->data, pdata, _PyDateTime_DATETIME_DATASIZE);
3601 me->hashcode = -1;
3602 me->hastzinfo = aware;
3603 if (aware) {
3604 Py_INCREF(tzinfo);
3605 me->tzinfo = tzinfo;
3608 return (PyObject *)me;
3611 if (PyArg_ParseTupleAndKeywords(args, kw, "iii|iiiiO", datetime_kws,
3612 &year, &month, &day, &hour, &minute,
3613 &second, &usecond, &tzinfo)) {
3614 if (check_date_args(year, month, day) < 0)
3615 return NULL;
3616 if (check_time_args(hour, minute, second, usecond) < 0)
3617 return NULL;
3618 if (check_tzinfo_subclass(tzinfo) < 0)
3619 return NULL;
3620 self = new_datetime_ex(year, month, day,
3621 hour, minute, second, usecond,
3622 tzinfo, type);
3624 return self;
3627 /* TM_FUNC is the shared type of localtime() and gmtime(). */
3628 typedef struct tm *(*TM_FUNC)(const time_t *timer);
3630 /* Internal helper.
3631 * Build datetime from a time_t and a distinct count of microseconds.
3632 * Pass localtime or gmtime for f, to control the interpretation of timet.
3634 static PyObject *
3635 datetime_from_timet_and_us(PyObject *cls, TM_FUNC f, time_t timet, int us,
3636 PyObject *tzinfo)
3638 struct tm *tm;
3639 PyObject *result = NULL;
3641 tm = f(&timet);
3642 if (tm) {
3643 /* The platform localtime/gmtime may insert leap seconds,
3644 * indicated by tm->tm_sec > 59. We don't care about them,
3645 * except to the extent that passing them on to the datetime
3646 * constructor would raise ValueError for a reason that
3647 * made no sense to the user.
3649 if (tm->tm_sec > 59)
3650 tm->tm_sec = 59;
3651 result = PyObject_CallFunction(cls, "iiiiiiiO",
3652 tm->tm_year + 1900,
3653 tm->tm_mon + 1,
3654 tm->tm_mday,
3655 tm->tm_hour,
3656 tm->tm_min,
3657 tm->tm_sec,
3659 tzinfo);
3661 else
3662 PyErr_SetString(PyExc_ValueError,
3663 "timestamp out of range for "
3664 "platform localtime()/gmtime() function");
3665 return result;
3668 /* Internal helper.
3669 * Build datetime from a Python timestamp. Pass localtime or gmtime for f,
3670 * to control the interpretation of the timestamp. Since a double doesn't
3671 * have enough bits to cover a datetime's full range of precision, it's
3672 * better to call datetime_from_timet_and_us provided you have a way
3673 * to get that much precision (e.g., C time() isn't good enough).
3675 static PyObject *
3676 datetime_from_timestamp(PyObject *cls, TM_FUNC f, double timestamp,
3677 PyObject *tzinfo)
3679 time_t timet;
3680 double fraction;
3681 int us;
3683 timet = _PyTime_DoubleToTimet(timestamp);
3684 if (timet == (time_t)-1 && PyErr_Occurred())
3685 return NULL;
3686 fraction = timestamp - (double)timet;
3687 us = (int)round_to_long(fraction * 1e6);
3688 if (us < 0) {
3689 /* Truncation towards zero is not what we wanted
3690 for negative numbers (Python's mod semantics) */
3691 timet -= 1;
3692 us += 1000000;
3694 /* If timestamp is less than one microsecond smaller than a
3695 * full second, round up. Otherwise, ValueErrors are raised
3696 * for some floats. */
3697 if (us == 1000000) {
3698 timet += 1;
3699 us = 0;
3701 return datetime_from_timet_and_us(cls, f, timet, us, tzinfo);
3704 /* Internal helper.
3705 * Build most accurate possible datetime for current time. Pass localtime or
3706 * gmtime for f as appropriate.
3708 static PyObject *
3709 datetime_best_possible(PyObject *cls, TM_FUNC f, PyObject *tzinfo)
3711 #ifdef HAVE_GETTIMEOFDAY
3712 struct timeval t;
3714 #ifdef GETTIMEOFDAY_NO_TZ
3715 gettimeofday(&t);
3716 #else
3717 gettimeofday(&t, (struct timezone *)NULL);
3718 #endif
3719 return datetime_from_timet_and_us(cls, f, t.tv_sec, (int)t.tv_usec,
3720 tzinfo);
3722 #else /* ! HAVE_GETTIMEOFDAY */
3723 /* No flavor of gettimeofday exists on this platform. Python's
3724 * time.time() does a lot of other platform tricks to get the
3725 * best time it can on the platform, and we're not going to do
3726 * better than that (if we could, the better code would belong
3727 * in time.time()!) We're limited by the precision of a double,
3728 * though.
3730 PyObject *time;
3731 double dtime;
3733 time = time_time();
3734 if (time == NULL)
3735 return NULL;
3736 dtime = PyFloat_AsDouble(time);
3737 Py_DECREF(time);
3738 if (dtime == -1.0 && PyErr_Occurred())
3739 return NULL;
3740 return datetime_from_timestamp(cls, f, dtime, tzinfo);
3741 #endif /* ! HAVE_GETTIMEOFDAY */
3744 /* Return best possible local time -- this isn't constrained by the
3745 * precision of a timestamp.
3747 static PyObject *
3748 datetime_now(PyObject *cls, PyObject *args, PyObject *kw)
3750 PyObject *self;
3751 PyObject *tzinfo = Py_None;
3752 static char *keywords[] = {"tz", NULL};
3754 if (! PyArg_ParseTupleAndKeywords(args, kw, "|O:now", keywords,
3755 &tzinfo))
3756 return NULL;
3757 if (check_tzinfo_subclass(tzinfo) < 0)
3758 return NULL;
3760 self = datetime_best_possible(cls,
3761 tzinfo == Py_None ? localtime : gmtime,
3762 tzinfo);
3763 if (self != NULL && tzinfo != Py_None) {
3764 /* Convert UTC to tzinfo's zone. */
3765 PyObject *temp = self;
3766 self = PyObject_CallMethod(tzinfo, "fromutc", "O", self);
3767 Py_DECREF(temp);
3769 return self;
3772 /* Return best possible UTC time -- this isn't constrained by the
3773 * precision of a timestamp.
3775 static PyObject *
3776 datetime_utcnow(PyObject *cls, PyObject *dummy)
3778 return datetime_best_possible(cls, gmtime, Py_None);
3781 /* Return new local datetime from timestamp (Python timestamp -- a double). */
3782 static PyObject *
3783 datetime_fromtimestamp(PyObject *cls, PyObject *args, PyObject *kw)
3785 PyObject *self;
3786 double timestamp;
3787 PyObject *tzinfo = Py_None;
3788 static char *keywords[] = {"timestamp", "tz", NULL};
3790 if (! PyArg_ParseTupleAndKeywords(args, kw, "d|O:fromtimestamp",
3791 keywords, &timestamp, &tzinfo))
3792 return NULL;
3793 if (check_tzinfo_subclass(tzinfo) < 0)
3794 return NULL;
3796 self = datetime_from_timestamp(cls,
3797 tzinfo == Py_None ? localtime : gmtime,
3798 timestamp,
3799 tzinfo);
3800 if (self != NULL && tzinfo != Py_None) {
3801 /* Convert UTC to tzinfo's zone. */
3802 PyObject *temp = self;
3803 self = PyObject_CallMethod(tzinfo, "fromutc", "O", self);
3804 Py_DECREF(temp);
3806 return self;
3809 /* Return new UTC datetime from timestamp (Python timestamp -- a double). */
3810 static PyObject *
3811 datetime_utcfromtimestamp(PyObject *cls, PyObject *args)
3813 double timestamp;
3814 PyObject *result = NULL;
3816 if (PyArg_ParseTuple(args, "d:utcfromtimestamp", &timestamp))
3817 result = datetime_from_timestamp(cls, gmtime, timestamp,
3818 Py_None);
3819 return result;
3822 /* Return new datetime from time.strptime(). */
3823 static PyObject *
3824 datetime_strptime(PyObject *cls, PyObject *args)
3826 PyObject *result = NULL, *obj, *module;
3827 const char *string, *format;
3829 if (!PyArg_ParseTuple(args, "ss:strptime", &string, &format))
3830 return NULL;
3832 if ((module = PyImport_ImportModule("time")) == NULL)
3833 return NULL;
3834 obj = PyObject_CallMethod(module, "strptime", "ss", string, format);
3835 Py_DECREF(module);
3837 if (obj != NULL) {
3838 int i, good_timetuple = 1;
3839 long int ia[6];
3840 if (PySequence_Check(obj) && PySequence_Size(obj) >= 6)
3841 for (i=0; i < 6; i++) {
3842 PyObject *p = PySequence_GetItem(obj, i);
3843 if (p == NULL) {
3844 Py_DECREF(obj);
3845 return NULL;
3847 if (PyInt_Check(p))
3848 ia[i] = PyInt_AsLong(p);
3849 else
3850 good_timetuple = 0;
3851 Py_DECREF(p);
3853 else
3854 good_timetuple = 0;
3855 if (good_timetuple)
3856 result = PyObject_CallFunction(cls, "iiiiii",
3857 ia[0], ia[1], ia[2], ia[3], ia[4], ia[5]);
3858 else
3859 PyErr_SetString(PyExc_ValueError,
3860 "unexpected value from time.strptime");
3861 Py_DECREF(obj);
3863 return result;
3866 /* Return new datetime from date/datetime and time arguments. */
3867 static PyObject *
3868 datetime_combine(PyObject *cls, PyObject *args, PyObject *kw)
3870 static char *keywords[] = {"date", "time", NULL};
3871 PyObject *date;
3872 PyObject *time;
3873 PyObject *result = NULL;
3875 if (PyArg_ParseTupleAndKeywords(args, kw, "O!O!:combine", keywords,
3876 &PyDateTime_DateType, &date,
3877 &PyDateTime_TimeType, &time)) {
3878 PyObject *tzinfo = Py_None;
3880 if (HASTZINFO(time))
3881 tzinfo = ((PyDateTime_Time *)time)->tzinfo;
3882 result = PyObject_CallFunction(cls, "iiiiiiiO",
3883 GET_YEAR(date),
3884 GET_MONTH(date),
3885 GET_DAY(date),
3886 TIME_GET_HOUR(time),
3887 TIME_GET_MINUTE(time),
3888 TIME_GET_SECOND(time),
3889 TIME_GET_MICROSECOND(time),
3890 tzinfo);
3892 return result;
3896 * Destructor.
3899 static void
3900 datetime_dealloc(PyDateTime_DateTime *self)
3902 if (HASTZINFO(self)) {
3903 Py_XDECREF(self->tzinfo);
3905 self->ob_type->tp_free((PyObject *)self);
3909 * Indirect access to tzinfo methods.
3912 /* These are all METH_NOARGS, so don't need to check the arglist. */
3913 static PyObject *
3914 datetime_utcoffset(PyDateTime_DateTime *self, PyObject *unused) {
3915 return offset_as_timedelta(HASTZINFO(self) ? self->tzinfo : Py_None,
3916 "utcoffset", (PyObject *)self);
3919 static PyObject *
3920 datetime_dst(PyDateTime_DateTime *self, PyObject *unused) {
3921 return offset_as_timedelta(HASTZINFO(self) ? self->tzinfo : Py_None,
3922 "dst", (PyObject *)self);
3925 static PyObject *
3926 datetime_tzname(PyDateTime_DateTime *self, PyObject *unused) {
3927 return call_tzname(HASTZINFO(self) ? self->tzinfo : Py_None,
3928 (PyObject *)self);
3932 * datetime arithmetic.
3935 /* factor must be 1 (to add) or -1 (to subtract). The result inherits
3936 * the tzinfo state of date.
3938 static PyObject *
3939 add_datetime_timedelta(PyDateTime_DateTime *date, PyDateTime_Delta *delta,
3940 int factor)
3942 /* Note that the C-level additions can't overflow, because of
3943 * invariant bounds on the member values.
3945 int year = GET_YEAR(date);
3946 int month = GET_MONTH(date);
3947 int day = GET_DAY(date) + GET_TD_DAYS(delta) * factor;
3948 int hour = DATE_GET_HOUR(date);
3949 int minute = DATE_GET_MINUTE(date);
3950 int second = DATE_GET_SECOND(date) + GET_TD_SECONDS(delta) * factor;
3951 int microsecond = DATE_GET_MICROSECOND(date) +
3952 GET_TD_MICROSECONDS(delta) * factor;
3954 assert(factor == 1 || factor == -1);
3955 if (normalize_datetime(&year, &month, &day,
3956 &hour, &minute, &second, &microsecond) < 0)
3957 return NULL;
3958 else
3959 return new_datetime(year, month, day,
3960 hour, minute, second, microsecond,
3961 HASTZINFO(date) ? date->tzinfo : Py_None);
3964 static PyObject *
3965 datetime_add(PyObject *left, PyObject *right)
3967 if (PyDateTime_Check(left)) {
3968 /* datetime + ??? */
3969 if (PyDelta_Check(right))
3970 /* datetime + delta */
3971 return add_datetime_timedelta(
3972 (PyDateTime_DateTime *)left,
3973 (PyDateTime_Delta *)right,
3976 else if (PyDelta_Check(left)) {
3977 /* delta + datetime */
3978 return add_datetime_timedelta((PyDateTime_DateTime *) right,
3979 (PyDateTime_Delta *) left,
3982 Py_INCREF(Py_NotImplemented);
3983 return Py_NotImplemented;
3986 static PyObject *
3987 datetime_subtract(PyObject *left, PyObject *right)
3989 PyObject *result = Py_NotImplemented;
3991 if (PyDateTime_Check(left)) {
3992 /* datetime - ??? */
3993 if (PyDateTime_Check(right)) {
3994 /* datetime - datetime */
3995 naivety n1, n2;
3996 int offset1, offset2;
3997 int delta_d, delta_s, delta_us;
3999 if (classify_two_utcoffsets(left, &offset1, &n1, left,
4000 right, &offset2, &n2,
4001 right) < 0)
4002 return NULL;
4003 assert(n1 != OFFSET_UNKNOWN && n2 != OFFSET_UNKNOWN);
4004 if (n1 != n2) {
4005 PyErr_SetString(PyExc_TypeError,
4006 "can't subtract offset-naive and "
4007 "offset-aware datetimes");
4008 return NULL;
4010 delta_d = ymd_to_ord(GET_YEAR(left),
4011 GET_MONTH(left),
4012 GET_DAY(left)) -
4013 ymd_to_ord(GET_YEAR(right),
4014 GET_MONTH(right),
4015 GET_DAY(right));
4016 /* These can't overflow, since the values are
4017 * normalized. At most this gives the number of
4018 * seconds in one day.
4020 delta_s = (DATE_GET_HOUR(left) -
4021 DATE_GET_HOUR(right)) * 3600 +
4022 (DATE_GET_MINUTE(left) -
4023 DATE_GET_MINUTE(right)) * 60 +
4024 (DATE_GET_SECOND(left) -
4025 DATE_GET_SECOND(right));
4026 delta_us = DATE_GET_MICROSECOND(left) -
4027 DATE_GET_MICROSECOND(right);
4028 /* (left - offset1) - (right - offset2) =
4029 * (left - right) + (offset2 - offset1)
4031 delta_s += (offset2 - offset1) * 60;
4032 result = new_delta(delta_d, delta_s, delta_us, 1);
4034 else if (PyDelta_Check(right)) {
4035 /* datetime - delta */
4036 result = add_datetime_timedelta(
4037 (PyDateTime_DateTime *)left,
4038 (PyDateTime_Delta *)right,
4039 -1);
4043 if (result == Py_NotImplemented)
4044 Py_INCREF(result);
4045 return result;
4048 /* Various ways to turn a datetime into a string. */
4050 static PyObject *
4051 datetime_repr(PyDateTime_DateTime *self)
4053 char buffer[1000];
4054 const char *type_name = self->ob_type->tp_name;
4055 PyObject *baserepr;
4057 if (DATE_GET_MICROSECOND(self)) {
4058 PyOS_snprintf(buffer, sizeof(buffer),
4059 "%s(%d, %d, %d, %d, %d, %d, %d)",
4060 type_name,
4061 GET_YEAR(self), GET_MONTH(self), GET_DAY(self),
4062 DATE_GET_HOUR(self), DATE_GET_MINUTE(self),
4063 DATE_GET_SECOND(self),
4064 DATE_GET_MICROSECOND(self));
4066 else if (DATE_GET_SECOND(self)) {
4067 PyOS_snprintf(buffer, sizeof(buffer),
4068 "%s(%d, %d, %d, %d, %d, %d)",
4069 type_name,
4070 GET_YEAR(self), GET_MONTH(self), GET_DAY(self),
4071 DATE_GET_HOUR(self), DATE_GET_MINUTE(self),
4072 DATE_GET_SECOND(self));
4074 else {
4075 PyOS_snprintf(buffer, sizeof(buffer),
4076 "%s(%d, %d, %d, %d, %d)",
4077 type_name,
4078 GET_YEAR(self), GET_MONTH(self), GET_DAY(self),
4079 DATE_GET_HOUR(self), DATE_GET_MINUTE(self));
4081 baserepr = PyString_FromString(buffer);
4082 if (baserepr == NULL || ! HASTZINFO(self))
4083 return baserepr;
4084 return append_keyword_tzinfo(baserepr, self->tzinfo);
4087 static PyObject *
4088 datetime_str(PyDateTime_DateTime *self)
4090 return PyObject_CallMethod((PyObject *)self, "isoformat", "(s)", " ");
4093 static PyObject *
4094 datetime_isoformat(PyDateTime_DateTime *self, PyObject *args, PyObject *kw)
4096 char sep = 'T';
4097 static char *keywords[] = {"sep", NULL};
4098 char buffer[100];
4099 char *cp;
4100 PyObject *result;
4102 if (!PyArg_ParseTupleAndKeywords(args, kw, "|c:isoformat", keywords,
4103 &sep))
4104 return NULL;
4105 cp = isoformat_date((PyDateTime_Date *)self, buffer, sizeof(buffer));
4106 assert(cp != NULL);
4107 *cp++ = sep;
4108 isoformat_time(self, cp, sizeof(buffer) - (cp - buffer));
4109 result = PyString_FromString(buffer);
4110 if (result == NULL || ! HASTZINFO(self))
4111 return result;
4113 /* We need to append the UTC offset. */
4114 if (format_utcoffset(buffer, sizeof(buffer), ":", self->tzinfo,
4115 (PyObject *)self) < 0) {
4116 Py_DECREF(result);
4117 return NULL;
4119 PyString_ConcatAndDel(&result, PyString_FromString(buffer));
4120 return result;
4123 static PyObject *
4124 datetime_ctime(PyDateTime_DateTime *self)
4126 return format_ctime((PyDateTime_Date *)self,
4127 DATE_GET_HOUR(self),
4128 DATE_GET_MINUTE(self),
4129 DATE_GET_SECOND(self));
4132 /* Miscellaneous methods. */
4134 /* This is more natural as a tp_compare, but doesn't work then: for whatever
4135 * reason, Python's try_3way_compare ignores tp_compare unless
4136 * PyInstance_Check returns true, but these aren't old-style classes.
4138 static PyObject *
4139 datetime_richcompare(PyDateTime_DateTime *self, PyObject *other, int op)
4141 int diff;
4142 naivety n1, n2;
4143 int offset1, offset2;
4145 if (! PyDateTime_Check(other)) {
4146 /* If other has a "timetuple" attr, that's an advertised
4147 * hook for other classes to ask to get comparison control.
4148 * However, date instances have a timetuple attr, and we
4149 * don't want to allow that comparison. Because datetime
4150 * is a subclass of date, when mixing date and datetime
4151 * in a comparison, Python gives datetime the first shot
4152 * (it's the more specific subtype). So we can stop that
4153 * combination here reliably.
4155 if (PyObject_HasAttrString(other, "timetuple") &&
4156 ! PyDate_Check(other)) {
4157 /* A hook for other kinds of datetime objects. */
4158 Py_INCREF(Py_NotImplemented);
4159 return Py_NotImplemented;
4161 if (op == Py_EQ || op == Py_NE) {
4162 PyObject *result = op == Py_EQ ? Py_False : Py_True;
4163 Py_INCREF(result);
4164 return result;
4166 /* Stop this from falling back to address comparison. */
4167 return cmperror((PyObject *)self, other);
4170 if (classify_two_utcoffsets((PyObject *)self, &offset1, &n1,
4171 (PyObject *)self,
4172 other, &offset2, &n2,
4173 other) < 0)
4174 return NULL;
4175 assert(n1 != OFFSET_UNKNOWN && n2 != OFFSET_UNKNOWN);
4176 /* If they're both naive, or both aware and have the same offsets,
4177 * we get off cheap. Note that if they're both naive, offset1 ==
4178 * offset2 == 0 at this point.
4180 if (n1 == n2 && offset1 == offset2) {
4181 diff = memcmp(self->data, ((PyDateTime_DateTime *)other)->data,
4182 _PyDateTime_DATETIME_DATASIZE);
4183 return diff_to_bool(diff, op);
4186 if (n1 == OFFSET_AWARE && n2 == OFFSET_AWARE) {
4187 PyDateTime_Delta *delta;
4189 assert(offset1 != offset2); /* else last "if" handled it */
4190 delta = (PyDateTime_Delta *)datetime_subtract((PyObject *)self,
4191 other);
4192 if (delta == NULL)
4193 return NULL;
4194 diff = GET_TD_DAYS(delta);
4195 if (diff == 0)
4196 diff = GET_TD_SECONDS(delta) |
4197 GET_TD_MICROSECONDS(delta);
4198 Py_DECREF(delta);
4199 return diff_to_bool(diff, op);
4202 assert(n1 != n2);
4203 PyErr_SetString(PyExc_TypeError,
4204 "can't compare offset-naive and "
4205 "offset-aware datetimes");
4206 return NULL;
4209 static long
4210 datetime_hash(PyDateTime_DateTime *self)
4212 if (self->hashcode == -1) {
4213 naivety n;
4214 int offset;
4215 PyObject *temp;
4217 n = classify_utcoffset((PyObject *)self, (PyObject *)self,
4218 &offset);
4219 assert(n != OFFSET_UNKNOWN);
4220 if (n == OFFSET_ERROR)
4221 return -1;
4223 /* Reduce this to a hash of another object. */
4224 if (n == OFFSET_NAIVE)
4225 temp = PyString_FromStringAndSize(
4226 (char *)self->data,
4227 _PyDateTime_DATETIME_DATASIZE);
4228 else {
4229 int days;
4230 int seconds;
4232 assert(n == OFFSET_AWARE);
4233 assert(HASTZINFO(self));
4234 days = ymd_to_ord(GET_YEAR(self),
4235 GET_MONTH(self),
4236 GET_DAY(self));
4237 seconds = DATE_GET_HOUR(self) * 3600 +
4238 (DATE_GET_MINUTE(self) - offset) * 60 +
4239 DATE_GET_SECOND(self);
4240 temp = new_delta(days,
4241 seconds,
4242 DATE_GET_MICROSECOND(self),
4245 if (temp != NULL) {
4246 self->hashcode = PyObject_Hash(temp);
4247 Py_DECREF(temp);
4250 return self->hashcode;
4253 static PyObject *
4254 datetime_replace(PyDateTime_DateTime *self, PyObject *args, PyObject *kw)
4256 PyObject *clone;
4257 PyObject *tuple;
4258 int y = GET_YEAR(self);
4259 int m = GET_MONTH(self);
4260 int d = GET_DAY(self);
4261 int hh = DATE_GET_HOUR(self);
4262 int mm = DATE_GET_MINUTE(self);
4263 int ss = DATE_GET_SECOND(self);
4264 int us = DATE_GET_MICROSECOND(self);
4265 PyObject *tzinfo = HASTZINFO(self) ? self->tzinfo : Py_None;
4267 if (! PyArg_ParseTupleAndKeywords(args, kw, "|iiiiiiiO:replace",
4268 datetime_kws,
4269 &y, &m, &d, &hh, &mm, &ss, &us,
4270 &tzinfo))
4271 return NULL;
4272 tuple = Py_BuildValue("iiiiiiiO", y, m, d, hh, mm, ss, us, tzinfo);
4273 if (tuple == NULL)
4274 return NULL;
4275 clone = datetime_new(self->ob_type, tuple, NULL);
4276 Py_DECREF(tuple);
4277 return clone;
4280 static PyObject *
4281 datetime_astimezone(PyDateTime_DateTime *self, PyObject *args, PyObject *kw)
4283 int y, m, d, hh, mm, ss, us;
4284 PyObject *result;
4285 int offset, none;
4287 PyObject *tzinfo;
4288 static char *keywords[] = {"tz", NULL};
4290 if (! PyArg_ParseTupleAndKeywords(args, kw, "O!:astimezone", keywords,
4291 &PyDateTime_TZInfoType, &tzinfo))
4292 return NULL;
4294 if (!HASTZINFO(self) || self->tzinfo == Py_None)
4295 goto NeedAware;
4297 /* Conversion to self's own time zone is a NOP. */
4298 if (self->tzinfo == tzinfo) {
4299 Py_INCREF(self);
4300 return (PyObject *)self;
4303 /* Convert self to UTC. */
4304 offset = call_utcoffset(self->tzinfo, (PyObject *)self, &none);
4305 if (offset == -1 && PyErr_Occurred())
4306 return NULL;
4307 if (none)
4308 goto NeedAware;
4310 y = GET_YEAR(self);
4311 m = GET_MONTH(self);
4312 d = GET_DAY(self);
4313 hh = DATE_GET_HOUR(self);
4314 mm = DATE_GET_MINUTE(self);
4315 ss = DATE_GET_SECOND(self);
4316 us = DATE_GET_MICROSECOND(self);
4318 mm -= offset;
4319 if ((mm < 0 || mm >= 60) &&
4320 normalize_datetime(&y, &m, &d, &hh, &mm, &ss, &us) < 0)
4321 return NULL;
4323 /* Attach new tzinfo and let fromutc() do the rest. */
4324 result = new_datetime(y, m, d, hh, mm, ss, us, tzinfo);
4325 if (result != NULL) {
4326 PyObject *temp = result;
4328 result = PyObject_CallMethod(tzinfo, "fromutc", "O", temp);
4329 Py_DECREF(temp);
4331 return result;
4333 NeedAware:
4334 PyErr_SetString(PyExc_ValueError, "astimezone() cannot be applied to "
4335 "a naive datetime");
4336 return NULL;
4339 static PyObject *
4340 datetime_timetuple(PyDateTime_DateTime *self)
4342 int dstflag = -1;
4344 if (HASTZINFO(self) && self->tzinfo != Py_None) {
4345 int none;
4347 dstflag = call_dst(self->tzinfo, (PyObject *)self, &none);
4348 if (dstflag == -1 && PyErr_Occurred())
4349 return NULL;
4351 if (none)
4352 dstflag = -1;
4353 else if (dstflag != 0)
4354 dstflag = 1;
4357 return build_struct_time(GET_YEAR(self),
4358 GET_MONTH(self),
4359 GET_DAY(self),
4360 DATE_GET_HOUR(self),
4361 DATE_GET_MINUTE(self),
4362 DATE_GET_SECOND(self),
4363 dstflag);
4366 static PyObject *
4367 datetime_getdate(PyDateTime_DateTime *self)
4369 return new_date(GET_YEAR(self),
4370 GET_MONTH(self),
4371 GET_DAY(self));
4374 static PyObject *
4375 datetime_gettime(PyDateTime_DateTime *self)
4377 return new_time(DATE_GET_HOUR(self),
4378 DATE_GET_MINUTE(self),
4379 DATE_GET_SECOND(self),
4380 DATE_GET_MICROSECOND(self),
4381 Py_None);
4384 static PyObject *
4385 datetime_gettimetz(PyDateTime_DateTime *self)
4387 return new_time(DATE_GET_HOUR(self),
4388 DATE_GET_MINUTE(self),
4389 DATE_GET_SECOND(self),
4390 DATE_GET_MICROSECOND(self),
4391 HASTZINFO(self) ? self->tzinfo : Py_None);
4394 static PyObject *
4395 datetime_utctimetuple(PyDateTime_DateTime *self)
4397 int y = GET_YEAR(self);
4398 int m = GET_MONTH(self);
4399 int d = GET_DAY(self);
4400 int hh = DATE_GET_HOUR(self);
4401 int mm = DATE_GET_MINUTE(self);
4402 int ss = DATE_GET_SECOND(self);
4403 int us = 0; /* microseconds are ignored in a timetuple */
4404 int offset = 0;
4406 if (HASTZINFO(self) && self->tzinfo != Py_None) {
4407 int none;
4409 offset = call_utcoffset(self->tzinfo, (PyObject *)self, &none);
4410 if (offset == -1 && PyErr_Occurred())
4411 return NULL;
4413 /* Even if offset is 0, don't call timetuple() -- tm_isdst should be
4414 * 0 in a UTC timetuple regardless of what dst() says.
4416 if (offset) {
4417 /* Subtract offset minutes & normalize. */
4418 int stat;
4420 mm -= offset;
4421 stat = normalize_datetime(&y, &m, &d, &hh, &mm, &ss, &us);
4422 if (stat < 0) {
4423 /* At the edges, it's possible we overflowed
4424 * beyond MINYEAR or MAXYEAR.
4426 if (PyErr_ExceptionMatches(PyExc_OverflowError))
4427 PyErr_Clear();
4428 else
4429 return NULL;
4432 return build_struct_time(y, m, d, hh, mm, ss, 0);
4435 /* Pickle support, a simple use of __reduce__. */
4437 /* Let basestate be the non-tzinfo data string.
4438 * If tzinfo is None, this returns (basestate,), else (basestate, tzinfo).
4439 * So it's a tuple in any (non-error) case.
4440 * __getstate__ isn't exposed.
4442 static PyObject *
4443 datetime_getstate(PyDateTime_DateTime *self)
4445 PyObject *basestate;
4446 PyObject *result = NULL;
4448 basestate = PyString_FromStringAndSize((char *)self->data,
4449 _PyDateTime_DATETIME_DATASIZE);
4450 if (basestate != NULL) {
4451 if (! HASTZINFO(self) || self->tzinfo == Py_None)
4452 result = PyTuple_Pack(1, basestate);
4453 else
4454 result = PyTuple_Pack(2, basestate, self->tzinfo);
4455 Py_DECREF(basestate);
4457 return result;
4460 static PyObject *
4461 datetime_reduce(PyDateTime_DateTime *self, PyObject *arg)
4463 return Py_BuildValue("(ON)", self->ob_type, datetime_getstate(self));
4466 static PyMethodDef datetime_methods[] = {
4468 /* Class methods: */
4470 {"now", (PyCFunction)datetime_now,
4471 METH_KEYWORDS | METH_CLASS,
4472 PyDoc_STR("[tz] -> new datetime with tz's local day and time.")},
4474 {"utcnow", (PyCFunction)datetime_utcnow,
4475 METH_NOARGS | METH_CLASS,
4476 PyDoc_STR("Return a new datetime representing UTC day and time.")},
4478 {"fromtimestamp", (PyCFunction)datetime_fromtimestamp,
4479 METH_KEYWORDS | METH_CLASS,
4480 PyDoc_STR("timestamp[, tz] -> tz's local time from POSIX timestamp.")},
4482 {"utcfromtimestamp", (PyCFunction)datetime_utcfromtimestamp,
4483 METH_VARARGS | METH_CLASS,
4484 PyDoc_STR("timestamp -> UTC datetime from a POSIX timestamp "
4485 "(like time.time()).")},
4487 {"strptime", (PyCFunction)datetime_strptime,
4488 METH_VARARGS | METH_CLASS,
4489 PyDoc_STR("string, format -> new datetime parsed from a string "
4490 "(like time.strptime()).")},
4492 {"combine", (PyCFunction)datetime_combine,
4493 METH_VARARGS | METH_KEYWORDS | METH_CLASS,
4494 PyDoc_STR("date, time -> datetime with same date and time fields")},
4496 /* Instance methods: */
4498 {"date", (PyCFunction)datetime_getdate, METH_NOARGS,
4499 PyDoc_STR("Return date object with same year, month and day.")},
4501 {"time", (PyCFunction)datetime_gettime, METH_NOARGS,
4502 PyDoc_STR("Return time object with same time but with tzinfo=None.")},
4504 {"timetz", (PyCFunction)datetime_gettimetz, METH_NOARGS,
4505 PyDoc_STR("Return time object with same time and tzinfo.")},
4507 {"ctime", (PyCFunction)datetime_ctime, METH_NOARGS,
4508 PyDoc_STR("Return ctime() style string.")},
4510 {"timetuple", (PyCFunction)datetime_timetuple, METH_NOARGS,
4511 PyDoc_STR("Return time tuple, compatible with time.localtime().")},
4513 {"utctimetuple", (PyCFunction)datetime_utctimetuple, METH_NOARGS,
4514 PyDoc_STR("Return UTC time tuple, compatible with time.localtime().")},
4516 {"isoformat", (PyCFunction)datetime_isoformat, METH_KEYWORDS,
4517 PyDoc_STR("[sep] -> string in ISO 8601 format, "
4518 "YYYY-MM-DDTHH:MM:SS[.mmmmmm][+HH:MM].\n\n"
4519 "sep is used to separate the year from the time, and "
4520 "defaults to 'T'.")},
4522 {"utcoffset", (PyCFunction)datetime_utcoffset, METH_NOARGS,
4523 PyDoc_STR("Return self.tzinfo.utcoffset(self).")},
4525 {"tzname", (PyCFunction)datetime_tzname, METH_NOARGS,
4526 PyDoc_STR("Return self.tzinfo.tzname(self).")},
4528 {"dst", (PyCFunction)datetime_dst, METH_NOARGS,
4529 PyDoc_STR("Return self.tzinfo.dst(self).")},
4531 {"replace", (PyCFunction)datetime_replace, METH_KEYWORDS,
4532 PyDoc_STR("Return datetime with new specified fields.")},
4534 {"astimezone", (PyCFunction)datetime_astimezone, METH_KEYWORDS,
4535 PyDoc_STR("tz -> convert to local time in new timezone tz\n")},
4537 {"__reduce__", (PyCFunction)datetime_reduce, METH_NOARGS,
4538 PyDoc_STR("__reduce__() -> (cls, state)")},
4540 {NULL, NULL}
4543 static char datetime_doc[] =
4544 PyDoc_STR("datetime(year, month, day[, hour[, minute[, second[, microsecond[,tzinfo]]]]])\n\
4546 The year, month and day arguments are required. tzinfo may be None, or an\n\
4547 instance of a tzinfo subclass. The remaining arguments may be ints or longs.\n");
4549 static PyNumberMethods datetime_as_number = {
4550 datetime_add, /* nb_add */
4551 datetime_subtract, /* nb_subtract */
4552 0, /* nb_multiply */
4553 0, /* nb_divide */
4554 0, /* nb_remainder */
4555 0, /* nb_divmod */
4556 0, /* nb_power */
4557 0, /* nb_negative */
4558 0, /* nb_positive */
4559 0, /* nb_absolute */
4560 0, /* nb_nonzero */
4563 statichere PyTypeObject PyDateTime_DateTimeType = {
4564 PyObject_HEAD_INIT(NULL)
4565 0, /* ob_size */
4566 "datetime.datetime", /* tp_name */
4567 sizeof(PyDateTime_DateTime), /* tp_basicsize */
4568 0, /* tp_itemsize */
4569 (destructor)datetime_dealloc, /* tp_dealloc */
4570 0, /* tp_print */
4571 0, /* tp_getattr */
4572 0, /* tp_setattr */
4573 0, /* tp_compare */
4574 (reprfunc)datetime_repr, /* tp_repr */
4575 &datetime_as_number, /* tp_as_number */
4576 0, /* tp_as_sequence */
4577 0, /* tp_as_mapping */
4578 (hashfunc)datetime_hash, /* tp_hash */
4579 0, /* tp_call */
4580 (reprfunc)datetime_str, /* tp_str */
4581 PyObject_GenericGetAttr, /* tp_getattro */
4582 0, /* tp_setattro */
4583 0, /* tp_as_buffer */
4584 Py_TPFLAGS_DEFAULT | Py_TPFLAGS_CHECKTYPES |
4585 Py_TPFLAGS_BASETYPE, /* tp_flags */
4586 datetime_doc, /* tp_doc */
4587 0, /* tp_traverse */
4588 0, /* tp_clear */
4589 (richcmpfunc)datetime_richcompare, /* tp_richcompare */
4590 0, /* tp_weaklistoffset */
4591 0, /* tp_iter */
4592 0, /* tp_iternext */
4593 datetime_methods, /* tp_methods */
4594 0, /* tp_members */
4595 datetime_getset, /* tp_getset */
4596 &PyDateTime_DateType, /* tp_base */
4597 0, /* tp_dict */
4598 0, /* tp_descr_get */
4599 0, /* tp_descr_set */
4600 0, /* tp_dictoffset */
4601 0, /* tp_init */
4602 datetime_alloc, /* tp_alloc */
4603 datetime_new, /* tp_new */
4604 0, /* tp_free */
4607 /* ---------------------------------------------------------------------------
4608 * Module methods and initialization.
4611 static PyMethodDef module_methods[] = {
4612 {NULL, NULL}
4615 /* C API. Clients get at this via PyDateTime_IMPORT, defined in
4616 * datetime.h.
4618 static PyDateTime_CAPI CAPI = {
4619 &PyDateTime_DateType,
4620 &PyDateTime_DateTimeType,
4621 &PyDateTime_TimeType,
4622 &PyDateTime_DeltaType,
4623 &PyDateTime_TZInfoType,
4624 new_date_ex,
4625 new_datetime_ex,
4626 new_time_ex,
4627 new_delta_ex,
4628 datetime_fromtimestamp,
4629 date_fromtimestamp
4633 PyMODINIT_FUNC
4634 initdatetime(void)
4636 PyObject *m; /* a module object */
4637 PyObject *d; /* its dict */
4638 PyObject *x;
4640 m = Py_InitModule3("datetime", module_methods,
4641 "Fast implementation of the datetime type.");
4642 if (m == NULL)
4643 return;
4645 if (PyType_Ready(&PyDateTime_DateType) < 0)
4646 return;
4647 if (PyType_Ready(&PyDateTime_DateTimeType) < 0)
4648 return;
4649 if (PyType_Ready(&PyDateTime_DeltaType) < 0)
4650 return;
4651 if (PyType_Ready(&PyDateTime_TimeType) < 0)
4652 return;
4653 if (PyType_Ready(&PyDateTime_TZInfoType) < 0)
4654 return;
4656 /* timedelta values */
4657 d = PyDateTime_DeltaType.tp_dict;
4659 x = new_delta(0, 0, 1, 0);
4660 if (x == NULL || PyDict_SetItemString(d, "resolution", x) < 0)
4661 return;
4662 Py_DECREF(x);
4664 x = new_delta(-MAX_DELTA_DAYS, 0, 0, 0);
4665 if (x == NULL || PyDict_SetItemString(d, "min", x) < 0)
4666 return;
4667 Py_DECREF(x);
4669 x = new_delta(MAX_DELTA_DAYS, 24*3600-1, 1000000-1, 0);
4670 if (x == NULL || PyDict_SetItemString(d, "max", x) < 0)
4671 return;
4672 Py_DECREF(x);
4674 /* date values */
4675 d = PyDateTime_DateType.tp_dict;
4677 x = new_date(1, 1, 1);
4678 if (x == NULL || PyDict_SetItemString(d, "min", x) < 0)
4679 return;
4680 Py_DECREF(x);
4682 x = new_date(MAXYEAR, 12, 31);
4683 if (x == NULL || PyDict_SetItemString(d, "max", x) < 0)
4684 return;
4685 Py_DECREF(x);
4687 x = new_delta(1, 0, 0, 0);
4688 if (x == NULL || PyDict_SetItemString(d, "resolution", x) < 0)
4689 return;
4690 Py_DECREF(x);
4692 /* time values */
4693 d = PyDateTime_TimeType.tp_dict;
4695 x = new_time(0, 0, 0, 0, Py_None);
4696 if (x == NULL || PyDict_SetItemString(d, "min", x) < 0)
4697 return;
4698 Py_DECREF(x);
4700 x = new_time(23, 59, 59, 999999, Py_None);
4701 if (x == NULL || PyDict_SetItemString(d, "max", x) < 0)
4702 return;
4703 Py_DECREF(x);
4705 x = new_delta(0, 0, 1, 0);
4706 if (x == NULL || PyDict_SetItemString(d, "resolution", x) < 0)
4707 return;
4708 Py_DECREF(x);
4710 /* datetime values */
4711 d = PyDateTime_DateTimeType.tp_dict;
4713 x = new_datetime(1, 1, 1, 0, 0, 0, 0, Py_None);
4714 if (x == NULL || PyDict_SetItemString(d, "min", x) < 0)
4715 return;
4716 Py_DECREF(x);
4718 x = new_datetime(MAXYEAR, 12, 31, 23, 59, 59, 999999, Py_None);
4719 if (x == NULL || PyDict_SetItemString(d, "max", x) < 0)
4720 return;
4721 Py_DECREF(x);
4723 x = new_delta(0, 0, 1, 0);
4724 if (x == NULL || PyDict_SetItemString(d, "resolution", x) < 0)
4725 return;
4726 Py_DECREF(x);
4728 /* module initialization */
4729 PyModule_AddIntConstant(m, "MINYEAR", MINYEAR);
4730 PyModule_AddIntConstant(m, "MAXYEAR", MAXYEAR);
4732 Py_INCREF(&PyDateTime_DateType);
4733 PyModule_AddObject(m, "date", (PyObject *) &PyDateTime_DateType);
4735 Py_INCREF(&PyDateTime_DateTimeType);
4736 PyModule_AddObject(m, "datetime",
4737 (PyObject *)&PyDateTime_DateTimeType);
4739 Py_INCREF(&PyDateTime_TimeType);
4740 PyModule_AddObject(m, "time", (PyObject *) &PyDateTime_TimeType);
4742 Py_INCREF(&PyDateTime_DeltaType);
4743 PyModule_AddObject(m, "timedelta", (PyObject *) &PyDateTime_DeltaType);
4745 Py_INCREF(&PyDateTime_TZInfoType);
4746 PyModule_AddObject(m, "tzinfo", (PyObject *) &PyDateTime_TZInfoType);
4748 x = PyCObject_FromVoidPtrAndDesc(&CAPI, (void*) DATETIME_API_MAGIC,
4749 NULL);
4750 if (x == NULL)
4751 return;
4752 PyModule_AddObject(m, "datetime_CAPI", x);
4754 /* A 4-year cycle has an extra leap day over what we'd get from
4755 * pasting together 4 single years.
4757 assert(DI4Y == 4 * 365 + 1);
4758 assert(DI4Y == days_before_year(4+1));
4760 /* Similarly, a 400-year cycle has an extra leap day over what we'd
4761 * get from pasting together 4 100-year cycles.
4763 assert(DI400Y == 4 * DI100Y + 1);
4764 assert(DI400Y == days_before_year(400+1));
4766 /* OTOH, a 100-year cycle has one fewer leap day than we'd get from
4767 * pasting together 25 4-year cycles.
4769 assert(DI100Y == 25 * DI4Y - 1);
4770 assert(DI100Y == days_before_year(100+1));
4772 us_per_us = PyInt_FromLong(1);
4773 us_per_ms = PyInt_FromLong(1000);
4774 us_per_second = PyInt_FromLong(1000000);
4775 us_per_minute = PyInt_FromLong(60000000);
4776 seconds_per_day = PyInt_FromLong(24 * 3600);
4777 if (us_per_us == NULL || us_per_ms == NULL || us_per_second == NULL ||
4778 us_per_minute == NULL || seconds_per_day == NULL)
4779 return;
4781 /* The rest are too big for 32-bit ints, but even
4782 * us_per_week fits in 40 bits, so doubles should be exact.
4784 us_per_hour = PyLong_FromDouble(3600000000.0);
4785 us_per_day = PyLong_FromDouble(86400000000.0);
4786 us_per_week = PyLong_FromDouble(604800000000.0);
4787 if (us_per_hour == NULL || us_per_day == NULL || us_per_week == NULL)
4788 return;
4791 /* ---------------------------------------------------------------------------
4792 Some time zone algebra. For a datetime x, let
4793 x.n = x stripped of its timezone -- its naive time.
4794 x.o = x.utcoffset(), and assuming that doesn't raise an exception or
4795 return None
4796 x.d = x.dst(), and assuming that doesn't raise an exception or
4797 return None
4798 x.s = x's standard offset, x.o - x.d
4800 Now some derived rules, where k is a duration (timedelta).
4802 1. x.o = x.s + x.d
4803 This follows from the definition of x.s.
4805 2. If x and y have the same tzinfo member, x.s = y.s.
4806 This is actually a requirement, an assumption we need to make about
4807 sane tzinfo classes.
4809 3. The naive UTC time corresponding to x is x.n - x.o.
4810 This is again a requirement for a sane tzinfo class.
4812 4. (x+k).s = x.s
4813 This follows from #2, and that datimetimetz+timedelta preserves tzinfo.
4815 5. (x+k).n = x.n + k
4816 Again follows from how arithmetic is defined.
4818 Now we can explain tz.fromutc(x). Let's assume it's an interesting case
4819 (meaning that the various tzinfo methods exist, and don't blow up or return
4820 None when called).
4822 The function wants to return a datetime y with timezone tz, equivalent to x.
4823 x is already in UTC.
4825 By #3, we want
4827 y.n - y.o = x.n [1]
4829 The algorithm starts by attaching tz to x.n, and calling that y. So
4830 x.n = y.n at the start. Then it wants to add a duration k to y, so that [1]
4831 becomes true; in effect, we want to solve [2] for k:
4833 (y+k).n - (y+k).o = x.n [2]
4835 By #1, this is the same as
4837 (y+k).n - ((y+k).s + (y+k).d) = x.n [3]
4839 By #5, (y+k).n = y.n + k, which equals x.n + k because x.n=y.n at the start.
4840 Substituting that into [3],
4842 x.n + k - (y+k).s - (y+k).d = x.n; the x.n terms cancel, leaving
4843 k - (y+k).s - (y+k).d = 0; rearranging,
4844 k = (y+k).s - (y+k).d; by #4, (y+k).s == y.s, so
4845 k = y.s - (y+k).d
4847 On the RHS, (y+k).d can't be computed directly, but y.s can be, and we
4848 approximate k by ignoring the (y+k).d term at first. Note that k can't be
4849 very large, since all offset-returning methods return a duration of magnitude
4850 less than 24 hours. For that reason, if y is firmly in std time, (y+k).d must
4851 be 0, so ignoring it has no consequence then.
4853 In any case, the new value is
4855 z = y + y.s [4]
4857 It's helpful to step back at look at [4] from a higher level: it's simply
4858 mapping from UTC to tz's standard time.
4860 At this point, if
4862 z.n - z.o = x.n [5]
4864 we have an equivalent time, and are almost done. The insecurity here is
4865 at the start of daylight time. Picture US Eastern for concreteness. The wall
4866 time jumps from 1:59 to 3:00, and wall hours of the form 2:MM don't make good
4867 sense then. The docs ask that an Eastern tzinfo class consider such a time to
4868 be EDT (because it's "after 2"), which is a redundant spelling of 1:MM EST
4869 on the day DST starts. We want to return the 1:MM EST spelling because that's
4870 the only spelling that makes sense on the local wall clock.
4872 In fact, if [5] holds at this point, we do have the standard-time spelling,
4873 but that takes a bit of proof. We first prove a stronger result. What's the
4874 difference between the LHS and RHS of [5]? Let
4876 diff = x.n - (z.n - z.o) [6]
4879 z.n = by [4]
4880 (y + y.s).n = by #5
4881 y.n + y.s = since y.n = x.n
4882 x.n + y.s = since z and y are have the same tzinfo member,
4883 y.s = z.s by #2
4884 x.n + z.s
4886 Plugging that back into [6] gives
4888 diff =
4889 x.n - ((x.n + z.s) - z.o) = expanding
4890 x.n - x.n - z.s + z.o = cancelling
4891 - z.s + z.o = by #2
4894 So diff = z.d.
4896 If [5] is true now, diff = 0, so z.d = 0 too, and we have the standard-time
4897 spelling we wanted in the endcase described above. We're done. Contrarily,
4898 if z.d = 0, then we have a UTC equivalent, and are also done.
4900 If [5] is not true now, diff = z.d != 0, and z.d is the offset we need to
4901 add to z (in effect, z is in tz's standard time, and we need to shift the
4902 local clock into tz's daylight time).
4906 z' = z + z.d = z + diff [7]
4908 and we can again ask whether
4910 z'.n - z'.o = x.n [8]
4912 If so, we're done. If not, the tzinfo class is insane, according to the
4913 assumptions we've made. This also requires a bit of proof. As before, let's
4914 compute the difference between the LHS and RHS of [8] (and skipping some of
4915 the justifications for the kinds of substitutions we've done several times
4916 already):
4918 diff' = x.n - (z'.n - z'.o) = replacing z'.n via [7]
4919 x.n - (z.n + diff - z'.o) = replacing diff via [6]
4920 x.n - (z.n + x.n - (z.n - z.o) - z'.o) =
4921 x.n - z.n - x.n + z.n - z.o + z'.o = cancel x.n
4922 - z.n + z.n - z.o + z'.o = cancel z.n
4923 - z.o + z'.o = #1 twice
4924 -z.s - z.d + z'.s + z'.d = z and z' have same tzinfo
4925 z'.d - z.d
4927 So z' is UTC-equivalent to x iff z'.d = z.d at this point. If they are equal,
4928 we've found the UTC-equivalent so are done. In fact, we stop with [7] and
4929 return z', not bothering to compute z'.d.
4931 How could z.d and z'd differ? z' = z + z.d [7], so merely moving z' by
4932 a dst() offset, and starting *from* a time already in DST (we know z.d != 0),
4933 would have to change the result dst() returns: we start in DST, and moving
4934 a little further into it takes us out of DST.
4936 There isn't a sane case where this can happen. The closest it gets is at
4937 the end of DST, where there's an hour in UTC with no spelling in a hybrid
4938 tzinfo class. In US Eastern, that's 5:MM UTC = 0:MM EST = 1:MM EDT. During
4939 that hour, on an Eastern clock 1:MM is taken as being in standard time (6:MM
4940 UTC) because the docs insist on that, but 0:MM is taken as being in daylight
4941 time (4:MM UTC). There is no local time mapping to 5:MM UTC. The local
4942 clock jumps from 1:59 back to 1:00 again, and repeats the 1:MM hour in
4943 standard time. Since that's what the local clock *does*, we want to map both
4944 UTC hours 5:MM and 6:MM to 1:MM Eastern. The result is ambiguous
4945 in local time, but so it goes -- it's the way the local clock works.
4947 When x = 5:MM UTC is the input to this algorithm, x.o=0, y.o=-5 and y.d=0,
4948 so z=0:MM. z.d=60 (minutes) then, so [5] doesn't hold and we keep going.
4949 z' = z + z.d = 1:MM then, and z'.d=0, and z'.d - z.d = -60 != 0 so [8]
4950 (correctly) concludes that z' is not UTC-equivalent to x.
4952 Because we know z.d said z was in daylight time (else [5] would have held and
4953 we would have stopped then), and we know z.d != z'.d (else [8] would have held
4954 and we would have stopped then), and there are only 2 possible values dst() can
4955 return in Eastern, it follows that z'.d must be 0 (which it is in the example,
4956 but the reasoning doesn't depend on the example -- it depends on there being
4957 two possible dst() outcomes, one zero and the other non-zero). Therefore
4958 z' must be in standard time, and is the spelling we want in this case.
4960 Note again that z' is not UTC-equivalent as far as the hybrid tzinfo class is
4961 concerned (because it takes z' as being in standard time rather than the
4962 daylight time we intend here), but returning it gives the real-life "local
4963 clock repeats an hour" behavior when mapping the "unspellable" UTC hour into
4966 When the input is 6:MM, z=1:MM and z.d=0, and we stop at once, again with
4967 the 1:MM standard time spelling we want.
4969 So how can this break? One of the assumptions must be violated. Two
4970 possibilities:
4972 1) [2] effectively says that y.s is invariant across all y belong to a given
4973 time zone. This isn't true if, for political reasons or continental drift,
4974 a region decides to change its base offset from UTC.
4976 2) There may be versions of "double daylight" time where the tail end of
4977 the analysis gives up a step too early. I haven't thought about that
4978 enough to say.
4980 In any case, it's clear that the default fromutc() is strong enough to handle
4981 "almost all" time zones: so long as the standard offset is invariant, it
4982 doesn't matter if daylight time transition points change from year to year, or
4983 if daylight time is skipped in some years; it doesn't matter how large or
4984 small dst() may get within its bounds; and it doesn't even matter if some
4985 perverse time zone returns a negative dst()). So a breaking case must be
4986 pretty bizarre, and a tzinfo subclass can override fromutc() if it is.
4987 --------------------------------------------------------------------------- */