Remove use of Trove name, which isn't very helpful to users
[python.git] / Include / object.h
blob4b0e08010dbbc17094f189dcbbb388e0c47af7a7
1 #ifndef Py_OBJECT_H
2 #define Py_OBJECT_H
3 #ifdef __cplusplus
4 extern "C" {
5 #endif
8 /* Object and type object interface */
11 Objects are structures allocated on the heap. Special rules apply to
12 the use of objects to ensure they are properly garbage-collected.
13 Objects are never allocated statically or on the stack; they must be
14 accessed through special macros and functions only. (Type objects are
15 exceptions to the first rule; the standard types are represented by
16 statically initialized type objects, although work on type/class unification
17 for Python 2.2 made it possible to have heap-allocated type objects too).
19 An object has a 'reference count' that is increased or decreased when a
20 pointer to the object is copied or deleted; when the reference count
21 reaches zero there are no references to the object left and it can be
22 removed from the heap.
24 An object has a 'type' that determines what it represents and what kind
25 of data it contains. An object's type is fixed when it is created.
26 Types themselves are represented as objects; an object contains a
27 pointer to the corresponding type object. The type itself has a type
28 pointer pointing to the object representing the type 'type', which
29 contains a pointer to itself!).
31 Objects do not float around in memory; once allocated an object keeps
32 the same size and address. Objects that must hold variable-size data
33 can contain pointers to variable-size parts of the object. Not all
34 objects of the same type have the same size; but the size cannot change
35 after allocation. (These restrictions are made so a reference to an
36 object can be simply a pointer -- moving an object would require
37 updating all the pointers, and changing an object's size would require
38 moving it if there was another object right next to it.)
40 Objects are always accessed through pointers of the type 'PyObject *'.
41 The type 'PyObject' is a structure that only contains the reference count
42 and the type pointer. The actual memory allocated for an object
43 contains other data that can only be accessed after casting the pointer
44 to a pointer to a longer structure type. This longer type must start
45 with the reference count and type fields; the macro PyObject_HEAD should be
46 used for this (to accommodate for future changes). The implementation
47 of a particular object type can cast the object pointer to the proper
48 type and back.
50 A standard interface exists for objects that contain an array of items
51 whose size is determined when the object is allocated.
54 /* Py_DEBUG implies Py_TRACE_REFS. */
55 #if defined(Py_DEBUG) && !defined(Py_TRACE_REFS)
56 #define Py_TRACE_REFS
57 #endif
59 /* Py_TRACE_REFS implies Py_REF_DEBUG. */
60 #if defined(Py_TRACE_REFS) && !defined(Py_REF_DEBUG)
61 #define Py_REF_DEBUG
62 #endif
64 #ifdef Py_TRACE_REFS
65 /* Define pointers to support a doubly-linked list of all live heap objects. */
66 #define _PyObject_HEAD_EXTRA \
67 struct _object *_ob_next; \
68 struct _object *_ob_prev;
70 #define _PyObject_EXTRA_INIT 0, 0,
72 #else
73 #define _PyObject_HEAD_EXTRA
74 #define _PyObject_EXTRA_INIT
75 #endif
77 /* PyObject_HEAD defines the initial segment of every PyObject. */
78 #define PyObject_HEAD \
79 _PyObject_HEAD_EXTRA \
80 Py_ssize_t ob_refcnt; \
81 struct _typeobject *ob_type;
83 #define PyObject_HEAD_INIT(type) \
84 _PyObject_EXTRA_INIT \
85 1, type,
87 /* PyObject_VAR_HEAD defines the initial segment of all variable-size
88 * container objects. These end with a declaration of an array with 1
89 * element, but enough space is malloc'ed so that the array actually
90 * has room for ob_size elements. Note that ob_size is an element count,
91 * not necessarily a byte count.
93 #define PyObject_VAR_HEAD \
94 PyObject_HEAD \
95 Py_ssize_t ob_size; /* Number of items in variable part */
96 #define Py_INVALID_SIZE (Py_ssize_t)-1
98 /* Nothing is actually declared to be a PyObject, but every pointer to
99 * a Python object can be cast to a PyObject*. This is inheritance built
100 * by hand. Similarly every pointer to a variable-size Python object can,
101 * in addition, be cast to PyVarObject*.
103 typedef struct _object {
104 PyObject_HEAD
105 } PyObject;
107 typedef struct {
108 PyObject_VAR_HEAD
109 } PyVarObject;
113 Type objects contain a string containing the type name (to help somewhat
114 in debugging), the allocation parameters (see PyObject_New() and
115 PyObject_NewVar()),
116 and methods for accessing objects of the type. Methods are optional, a
117 nil pointer meaning that particular kind of access is not available for
118 this type. The Py_DECREF() macro uses the tp_dealloc method without
119 checking for a nil pointer; it should always be implemented except if
120 the implementation can guarantee that the reference count will never
121 reach zero (e.g., for statically allocated type objects).
123 NB: the methods for certain type groups are now contained in separate
124 method blocks.
127 typedef PyObject * (*unaryfunc)(PyObject *);
128 typedef PyObject * (*binaryfunc)(PyObject *, PyObject *);
129 typedef PyObject * (*ternaryfunc)(PyObject *, PyObject *, PyObject *);
130 typedef int (*inquiry)(PyObject *);
131 typedef Py_ssize_t (*lenfunc)(PyObject *);
132 typedef int (*coercion)(PyObject **, PyObject **);
133 typedef PyObject *(*intargfunc)(PyObject *, int) Py_DEPRECATED(2.5);
134 typedef PyObject *(*intintargfunc)(PyObject *, int, int) Py_DEPRECATED(2.5);
135 typedef PyObject *(*ssizeargfunc)(PyObject *, Py_ssize_t);
136 typedef PyObject *(*ssizessizeargfunc)(PyObject *, Py_ssize_t, Py_ssize_t);
137 typedef int(*intobjargproc)(PyObject *, int, PyObject *);
138 typedef int(*intintobjargproc)(PyObject *, int, int, PyObject *);
139 typedef int(*ssizeobjargproc)(PyObject *, Py_ssize_t, PyObject *);
140 typedef int(*ssizessizeobjargproc)(PyObject *, Py_ssize_t, Py_ssize_t, PyObject *);
141 typedef int(*objobjargproc)(PyObject *, PyObject *, PyObject *);
143 /* int-based buffer interface */
144 typedef int (*getreadbufferproc)(PyObject *, int, void **);
145 typedef int (*getwritebufferproc)(PyObject *, int, void **);
146 typedef int (*getsegcountproc)(PyObject *, int *);
147 typedef int (*getcharbufferproc)(PyObject *, int, char **);
148 /* ssize_t-based buffer interface */
149 typedef Py_ssize_t (*readbufferproc)(PyObject *, Py_ssize_t, void **);
150 typedef Py_ssize_t (*writebufferproc)(PyObject *, Py_ssize_t, void **);
151 typedef Py_ssize_t (*segcountproc)(PyObject *, Py_ssize_t *);
152 typedef Py_ssize_t (*charbufferproc)(PyObject *, Py_ssize_t, char **);
154 typedef int (*objobjproc)(PyObject *, PyObject *);
155 typedef int (*visitproc)(PyObject *, void *);
156 typedef int (*traverseproc)(PyObject *, visitproc, void *);
158 typedef struct {
159 /* For numbers without flag bit Py_TPFLAGS_CHECKTYPES set, all
160 arguments are guaranteed to be of the object's type (modulo
161 coercion hacks -- i.e. if the type's coercion function
162 returns other types, then these are allowed as well). Numbers that
163 have the Py_TPFLAGS_CHECKTYPES flag bit set should check *both*
164 arguments for proper type and implement the necessary conversions
165 in the slot functions themselves. */
167 binaryfunc nb_add;
168 binaryfunc nb_subtract;
169 binaryfunc nb_multiply;
170 binaryfunc nb_divide;
171 binaryfunc nb_remainder;
172 binaryfunc nb_divmod;
173 ternaryfunc nb_power;
174 unaryfunc nb_negative;
175 unaryfunc nb_positive;
176 unaryfunc nb_absolute;
177 inquiry nb_nonzero;
178 unaryfunc nb_invert;
179 binaryfunc nb_lshift;
180 binaryfunc nb_rshift;
181 binaryfunc nb_and;
182 binaryfunc nb_xor;
183 binaryfunc nb_or;
184 coercion nb_coerce;
185 unaryfunc nb_int;
186 unaryfunc nb_long;
187 unaryfunc nb_float;
188 unaryfunc nb_oct;
189 unaryfunc nb_hex;
190 /* Added in release 2.0 */
191 binaryfunc nb_inplace_add;
192 binaryfunc nb_inplace_subtract;
193 binaryfunc nb_inplace_multiply;
194 binaryfunc nb_inplace_divide;
195 binaryfunc nb_inplace_remainder;
196 ternaryfunc nb_inplace_power;
197 binaryfunc nb_inplace_lshift;
198 binaryfunc nb_inplace_rshift;
199 binaryfunc nb_inplace_and;
200 binaryfunc nb_inplace_xor;
201 binaryfunc nb_inplace_or;
203 /* Added in release 2.2 */
204 /* The following require the Py_TPFLAGS_HAVE_CLASS flag */
205 binaryfunc nb_floor_divide;
206 binaryfunc nb_true_divide;
207 binaryfunc nb_inplace_floor_divide;
208 binaryfunc nb_inplace_true_divide;
210 /* Added in release 2.5 */
211 lenfunc nb_index;
212 } PyNumberMethods;
214 typedef struct {
215 lenfunc sq_length;
216 binaryfunc sq_concat;
217 ssizeargfunc sq_repeat;
218 ssizeargfunc sq_item;
219 ssizessizeargfunc sq_slice;
220 ssizeobjargproc sq_ass_item;
221 ssizessizeobjargproc sq_ass_slice;
222 objobjproc sq_contains;
223 /* Added in release 2.0 */
224 binaryfunc sq_inplace_concat;
225 ssizeargfunc sq_inplace_repeat;
226 } PySequenceMethods;
228 typedef struct {
229 lenfunc mp_length;
230 binaryfunc mp_subscript;
231 objobjargproc mp_ass_subscript;
232 } PyMappingMethods;
234 typedef struct {
235 readbufferproc bf_getreadbuffer;
236 writebufferproc bf_getwritebuffer;
237 segcountproc bf_getsegcount;
238 charbufferproc bf_getcharbuffer;
239 } PyBufferProcs;
242 typedef void (*freefunc)(void *);
243 typedef void (*destructor)(PyObject *);
244 typedef int (*printfunc)(PyObject *, FILE *, int);
245 typedef PyObject *(*getattrfunc)(PyObject *, char *);
246 typedef PyObject *(*getattrofunc)(PyObject *, PyObject *);
247 typedef int (*setattrfunc)(PyObject *, char *, PyObject *);
248 typedef int (*setattrofunc)(PyObject *, PyObject *, PyObject *);
249 typedef int (*cmpfunc)(PyObject *, PyObject *);
250 typedef PyObject *(*reprfunc)(PyObject *);
251 typedef long (*hashfunc)(PyObject *);
252 typedef PyObject *(*richcmpfunc) (PyObject *, PyObject *, int);
253 typedef PyObject *(*getiterfunc) (PyObject *);
254 typedef PyObject *(*iternextfunc) (PyObject *);
255 typedef PyObject *(*descrgetfunc) (PyObject *, PyObject *, PyObject *);
256 typedef int (*descrsetfunc) (PyObject *, PyObject *, PyObject *);
257 typedef int (*initproc)(PyObject *, PyObject *, PyObject *);
258 typedef PyObject *(*newfunc)(struct _typeobject *, PyObject *, PyObject *);
259 typedef PyObject *(*allocfunc)(struct _typeobject *, Py_ssize_t);
261 typedef struct _typeobject {
262 PyObject_VAR_HEAD
263 const char *tp_name; /* For printing, in format "<module>.<name>" */
264 Py_ssize_t tp_basicsize, tp_itemsize; /* For allocation */
266 /* Methods to implement standard operations */
268 destructor tp_dealloc;
269 printfunc tp_print;
270 getattrfunc tp_getattr;
271 setattrfunc tp_setattr;
272 cmpfunc tp_compare;
273 reprfunc tp_repr;
275 /* Method suites for standard classes */
277 PyNumberMethods *tp_as_number;
278 PySequenceMethods *tp_as_sequence;
279 PyMappingMethods *tp_as_mapping;
281 /* More standard operations (here for binary compatibility) */
283 hashfunc tp_hash;
284 ternaryfunc tp_call;
285 reprfunc tp_str;
286 getattrofunc tp_getattro;
287 setattrofunc tp_setattro;
289 /* Functions to access object as input/output buffer */
290 PyBufferProcs *tp_as_buffer;
292 /* Flags to define presence of optional/expanded features */
293 long tp_flags;
295 const char *tp_doc; /* Documentation string */
297 /* Assigned meaning in release 2.0 */
298 /* call function for all accessible objects */
299 traverseproc tp_traverse;
301 /* delete references to contained objects */
302 inquiry tp_clear;
304 /* Assigned meaning in release 2.1 */
305 /* rich comparisons */
306 richcmpfunc tp_richcompare;
308 /* weak reference enabler */
309 Py_ssize_t tp_weaklistoffset;
311 /* Added in release 2.2 */
312 /* Iterators */
313 getiterfunc tp_iter;
314 iternextfunc tp_iternext;
316 /* Attribute descriptor and subclassing stuff */
317 struct PyMethodDef *tp_methods;
318 struct PyMemberDef *tp_members;
319 struct PyGetSetDef *tp_getset;
320 struct _typeobject *tp_base;
321 PyObject *tp_dict;
322 descrgetfunc tp_descr_get;
323 descrsetfunc tp_descr_set;
324 Py_ssize_t tp_dictoffset;
325 initproc tp_init;
326 allocfunc tp_alloc;
327 newfunc tp_new;
328 freefunc tp_free; /* Low-level free-memory routine */
329 inquiry tp_is_gc; /* For PyObject_IS_GC */
330 PyObject *tp_bases;
331 PyObject *tp_mro; /* method resolution order */
332 PyObject *tp_cache;
333 PyObject *tp_subclasses;
334 PyObject *tp_weaklist;
335 destructor tp_del;
337 #ifdef COUNT_ALLOCS
338 /* these must be last and never explicitly initialized */
339 Py_ssize_t tp_allocs;
340 Py_ssize_t tp_frees;
341 Py_ssize_t tp_maxalloc;
342 struct _typeobject *tp_prev;
343 struct _typeobject *tp_next;
344 #endif
345 } PyTypeObject;
348 /* The *real* layout of a type object when allocated on the heap */
349 typedef struct _heaptypeobject {
350 /* Note: there's a dependency on the order of these members
351 in slotptr() in typeobject.c . */
352 PyTypeObject ht_type;
353 PyNumberMethods as_number;
354 PyMappingMethods as_mapping;
355 PySequenceMethods as_sequence; /* as_sequence comes after as_mapping,
356 so that the mapping wins when both
357 the mapping and the sequence define
358 a given operator (e.g. __getitem__).
359 see add_operators() in typeobject.c . */
360 PyBufferProcs as_buffer;
361 PyObject *ht_name, *ht_slots;
362 /* here are optional user slots, followed by the members. */
363 } PyHeapTypeObject;
365 /* access macro to the members which are floating "behind" the object */
366 #define PyHeapType_GET_MEMBERS(etype) \
367 ((PyMemberDef *)(((char *)etype) + (etype)->ht_type.ob_type->tp_basicsize))
370 /* Generic type check */
371 PyAPI_FUNC(int) PyType_IsSubtype(PyTypeObject *, PyTypeObject *);
372 #define PyObject_TypeCheck(ob, tp) \
373 ((ob)->ob_type == (tp) || PyType_IsSubtype((ob)->ob_type, (tp)))
375 PyAPI_DATA(PyTypeObject) PyType_Type; /* built-in 'type' */
376 PyAPI_DATA(PyTypeObject) PyBaseObject_Type; /* built-in 'object' */
377 PyAPI_DATA(PyTypeObject) PySuper_Type; /* built-in 'super' */
379 #define PyType_Check(op) PyObject_TypeCheck(op, &PyType_Type)
380 #define PyType_CheckExact(op) ((op)->ob_type == &PyType_Type)
382 PyAPI_FUNC(int) PyType_Ready(PyTypeObject *);
383 PyAPI_FUNC(PyObject *) PyType_GenericAlloc(PyTypeObject *, Py_ssize_t);
384 PyAPI_FUNC(PyObject *) PyType_GenericNew(PyTypeObject *,
385 PyObject *, PyObject *);
386 PyAPI_FUNC(PyObject *) _PyType_Lookup(PyTypeObject *, PyObject *);
388 /* Generic operations on objects */
389 PyAPI_FUNC(int) PyObject_Print(PyObject *, FILE *, int);
390 PyAPI_FUNC(void) _PyObject_Dump(PyObject *);
391 PyAPI_FUNC(PyObject *) PyObject_Repr(PyObject *);
392 PyAPI_FUNC(PyObject *) _PyObject_Str(PyObject *);
393 PyAPI_FUNC(PyObject *) PyObject_Str(PyObject *);
394 #ifdef Py_USING_UNICODE
395 PyAPI_FUNC(PyObject *) PyObject_Unicode(PyObject *);
396 #endif
397 PyAPI_FUNC(int) PyObject_Compare(PyObject *, PyObject *);
398 PyAPI_FUNC(PyObject *) PyObject_RichCompare(PyObject *, PyObject *, int);
399 PyAPI_FUNC(int) PyObject_RichCompareBool(PyObject *, PyObject *, int);
400 PyAPI_FUNC(PyObject *) PyObject_GetAttrString(PyObject *, const char *);
401 PyAPI_FUNC(int) PyObject_SetAttrString(PyObject *, const char *, PyObject *);
402 PyAPI_FUNC(int) PyObject_HasAttrString(PyObject *, const char *);
403 PyAPI_FUNC(PyObject *) PyObject_GetAttr(PyObject *, PyObject *);
404 PyAPI_FUNC(int) PyObject_SetAttr(PyObject *, PyObject *, PyObject *);
405 PyAPI_FUNC(int) PyObject_HasAttr(PyObject *, PyObject *);
406 PyAPI_FUNC(PyObject **) _PyObject_GetDictPtr(PyObject *);
407 PyAPI_FUNC(PyObject *) PyObject_SelfIter(PyObject *);
408 PyAPI_FUNC(PyObject *) PyObject_GenericGetAttr(PyObject *, PyObject *);
409 PyAPI_FUNC(int) PyObject_GenericSetAttr(PyObject *,
410 PyObject *, PyObject *);
411 PyAPI_FUNC(long) PyObject_Hash(PyObject *);
412 PyAPI_FUNC(int) PyObject_IsTrue(PyObject *);
413 PyAPI_FUNC(int) PyObject_Not(PyObject *);
414 PyAPI_FUNC(int) PyCallable_Check(PyObject *);
415 PyAPI_FUNC(int) PyNumber_Coerce(PyObject **, PyObject **);
416 PyAPI_FUNC(int) PyNumber_CoerceEx(PyObject **, PyObject **);
418 PyAPI_FUNC(void) PyObject_ClearWeakRefs(PyObject *);
420 /* A slot function whose address we need to compare */
421 extern int _PyObject_SlotCompare(PyObject *, PyObject *);
424 /* PyObject_Dir(obj) acts like Python __builtin__.dir(obj), returning a
425 list of strings. PyObject_Dir(NULL) is like __builtin__.dir(),
426 returning the names of the current locals. In this case, if there are
427 no current locals, NULL is returned, and PyErr_Occurred() is false.
429 PyAPI_FUNC(PyObject *) PyObject_Dir(PyObject *);
432 /* Helpers for printing recursive container types */
433 PyAPI_FUNC(int) Py_ReprEnter(PyObject *);
434 PyAPI_FUNC(void) Py_ReprLeave(PyObject *);
436 /* Helpers for hash functions */
437 PyAPI_FUNC(long) _Py_HashDouble(double);
438 PyAPI_FUNC(long) _Py_HashPointer(void*);
440 /* Helper for passing objects to printf and the like */
441 #define PyObject_REPR(obj) PyString_AS_STRING(PyObject_Repr(obj))
443 /* Flag bits for printing: */
444 #define Py_PRINT_RAW 1 /* No string quotes etc. */
447 `Type flags (tp_flags)
449 These flags are used to extend the type structure in a backwards-compatible
450 fashion. Extensions can use the flags to indicate (and test) when a given
451 type structure contains a new feature. The Python core will use these when
452 introducing new functionality between major revisions (to avoid mid-version
453 changes in the PYTHON_API_VERSION).
455 Arbitration of the flag bit positions will need to be coordinated among
456 all extension writers who publically release their extensions (this will
457 be fewer than you might expect!)..
459 Python 1.5.2 introduced the bf_getcharbuffer slot into PyBufferProcs.
461 Type definitions should use Py_TPFLAGS_DEFAULT for their tp_flags value.
463 Code can use PyType_HasFeature(type_ob, flag_value) to test whether the
464 given type object has a specified feature.
467 /* PyBufferProcs contains bf_getcharbuffer */
468 #define Py_TPFLAGS_HAVE_GETCHARBUFFER (1L<<0)
470 /* PySequenceMethods contains sq_contains */
471 #define Py_TPFLAGS_HAVE_SEQUENCE_IN (1L<<1)
473 /* This is here for backwards compatibility. Extensions that use the old GC
474 * API will still compile but the objects will not be tracked by the GC. */
475 #define Py_TPFLAGS_GC 0 /* used to be (1L<<2) */
477 /* PySequenceMethods and PyNumberMethods contain in-place operators */
478 #define Py_TPFLAGS_HAVE_INPLACEOPS (1L<<3)
480 /* PyNumberMethods do their own coercion */
481 #define Py_TPFLAGS_CHECKTYPES (1L<<4)
483 /* tp_richcompare is defined */
484 #define Py_TPFLAGS_HAVE_RICHCOMPARE (1L<<5)
486 /* Objects which are weakly referencable if their tp_weaklistoffset is >0 */
487 #define Py_TPFLAGS_HAVE_WEAKREFS (1L<<6)
489 /* tp_iter is defined */
490 #define Py_TPFLAGS_HAVE_ITER (1L<<7)
492 /* New members introduced by Python 2.2 exist */
493 #define Py_TPFLAGS_HAVE_CLASS (1L<<8)
495 /* Set if the type object is dynamically allocated */
496 #define Py_TPFLAGS_HEAPTYPE (1L<<9)
498 /* Set if the type allows subclassing */
499 #define Py_TPFLAGS_BASETYPE (1L<<10)
501 /* Set if the type is 'ready' -- fully initialized */
502 #define Py_TPFLAGS_READY (1L<<12)
504 /* Set while the type is being 'readied', to prevent recursive ready calls */
505 #define Py_TPFLAGS_READYING (1L<<13)
507 /* Objects support garbage collection (see objimp.h) */
508 #define Py_TPFLAGS_HAVE_GC (1L<<14)
510 /* These two bits are preserved for Stackless Python, next after this is 17 */
511 #ifdef STACKLESS
512 #define Py_TPFLAGS_HAVE_STACKLESS_EXTENSION (3L<<15)
513 #else
514 #define Py_TPFLAGS_HAVE_STACKLESS_EXTENSION 0
515 #endif
517 /* Objects support nb_index in PyNumberMethods */
518 #define Py_TPFLAGS_HAVE_INDEX (1L<<17)
520 #define Py_TPFLAGS_DEFAULT ( \
521 Py_TPFLAGS_HAVE_GETCHARBUFFER | \
522 Py_TPFLAGS_HAVE_SEQUENCE_IN | \
523 Py_TPFLAGS_HAVE_INPLACEOPS | \
524 Py_TPFLAGS_HAVE_RICHCOMPARE | \
525 Py_TPFLAGS_HAVE_WEAKREFS | \
526 Py_TPFLAGS_HAVE_ITER | \
527 Py_TPFLAGS_HAVE_CLASS | \
528 Py_TPFLAGS_HAVE_STACKLESS_EXTENSION | \
529 Py_TPFLAGS_HAVE_INDEX | \
532 #define PyType_HasFeature(t,f) (((t)->tp_flags & (f)) != 0)
536 The macros Py_INCREF(op) and Py_DECREF(op) are used to increment or decrement
537 reference counts. Py_DECREF calls the object's deallocator function when
538 the refcount falls to 0; for
539 objects that don't contain references to other objects or heap memory
540 this can be the standard function free(). Both macros can be used
541 wherever a void expression is allowed. The argument must not be a
542 NIL pointer. If it may be NIL, use Py_XINCREF/Py_XDECREF instead.
543 The macro _Py_NewReference(op) initialize reference counts to 1, and
544 in special builds (Py_REF_DEBUG, Py_TRACE_REFS) performs additional
545 bookkeeping appropriate to the special build.
547 We assume that the reference count field can never overflow; this can
548 be proven when the size of the field is the same as the pointer size, so
549 we ignore the possibility. Provided a C int is at least 32 bits (which
550 is implicitly assumed in many parts of this code), that's enough for
551 about 2**31 references to an object.
553 XXX The following became out of date in Python 2.2, but I'm not sure
554 XXX what the full truth is now. Certainly, heap-allocated type objects
555 XXX can and should be deallocated.
556 Type objects should never be deallocated; the type pointer in an object
557 is not considered to be a reference to the type object, to save
558 complications in the deallocation function. (This is actually a
559 decision that's up to the implementer of each new type so if you want,
560 you can count such references to the type object.)
562 *** WARNING*** The Py_DECREF macro must have a side-effect-free argument
563 since it may evaluate its argument multiple times. (The alternative
564 would be to mace it a proper function or assign it to a global temporary
565 variable first, both of which are slower; and in a multi-threaded
566 environment the global variable trick is not safe.)
569 /* First define a pile of simple helper macros, one set per special
570 * build symbol. These either expand to the obvious things, or to
571 * nothing at all when the special mode isn't in effect. The main
572 * macros can later be defined just once then, yet expand to different
573 * things depending on which special build options are and aren't in effect.
574 * Trust me <wink>: while painful, this is 20x easier to understand than,
575 * e.g, defining _Py_NewReference five different times in a maze of nested
576 * #ifdefs (we used to do that -- it was impenetrable).
578 #ifdef Py_REF_DEBUG
579 PyAPI_DATA(Py_ssize_t) _Py_RefTotal;
580 PyAPI_FUNC(void) _Py_NegativeRefcount(const char *fname,
581 int lineno, PyObject *op);
582 PyAPI_FUNC(PyObject *) _PyDict_Dummy(void);
583 PyAPI_FUNC(PyObject *) _PySet_Dummy(void);
584 PyAPI_FUNC(Py_ssize_t) _Py_GetRefTotal(void);
585 #define _Py_INC_REFTOTAL _Py_RefTotal++
586 #define _Py_DEC_REFTOTAL _Py_RefTotal--
587 #define _Py_REF_DEBUG_COMMA ,
588 #define _Py_CHECK_REFCNT(OP) \
589 { if ((OP)->ob_refcnt < 0) \
590 _Py_NegativeRefcount(__FILE__, __LINE__, \
591 (PyObject *)(OP)); \
593 #else
594 #define _Py_INC_REFTOTAL
595 #define _Py_DEC_REFTOTAL
596 #define _Py_REF_DEBUG_COMMA
597 #define _Py_CHECK_REFCNT(OP) /* a semicolon */;
598 #endif /* Py_REF_DEBUG */
600 #ifdef COUNT_ALLOCS
601 PyAPI_FUNC(void) inc_count(PyTypeObject *);
602 PyAPI_FUNC(void) dec_count(PyTypeObject *);
603 #define _Py_INC_TPALLOCS(OP) inc_count((OP)->ob_type)
604 #define _Py_INC_TPFREES(OP) dec_count((OP)->ob_type)
605 #define _Py_DEC_TPFREES(OP) (OP)->ob_type->tp_frees--
606 #define _Py_COUNT_ALLOCS_COMMA ,
607 #else
608 #define _Py_INC_TPALLOCS(OP)
609 #define _Py_INC_TPFREES(OP)
610 #define _Py_DEC_TPFREES(OP)
611 #define _Py_COUNT_ALLOCS_COMMA
612 #endif /* COUNT_ALLOCS */
614 #ifdef Py_TRACE_REFS
615 /* Py_TRACE_REFS is such major surgery that we call external routines. */
616 PyAPI_FUNC(void) _Py_NewReference(PyObject *);
617 PyAPI_FUNC(void) _Py_ForgetReference(PyObject *);
618 PyAPI_FUNC(void) _Py_Dealloc(PyObject *);
619 PyAPI_FUNC(void) _Py_PrintReferences(FILE *);
620 PyAPI_FUNC(void) _Py_PrintReferenceAddresses(FILE *);
621 PyAPI_FUNC(void) _Py_AddToAllObjects(PyObject *, int force);
623 #else
624 /* Without Py_TRACE_REFS, there's little enough to do that we expand code
625 * inline.
627 #define _Py_NewReference(op) ( \
628 _Py_INC_TPALLOCS(op) _Py_COUNT_ALLOCS_COMMA \
629 _Py_INC_REFTOTAL _Py_REF_DEBUG_COMMA \
630 (op)->ob_refcnt = 1)
632 #define _Py_ForgetReference(op) _Py_INC_TPFREES(op)
634 #define _Py_Dealloc(op) ( \
635 _Py_INC_TPFREES(op) _Py_COUNT_ALLOCS_COMMA \
636 (*(op)->ob_type->tp_dealloc)((PyObject *)(op)))
637 #endif /* !Py_TRACE_REFS */
639 #define Py_INCREF(op) ( \
640 _Py_INC_REFTOTAL _Py_REF_DEBUG_COMMA \
641 (op)->ob_refcnt++)
643 #define Py_DECREF(op) \
644 if (_Py_DEC_REFTOTAL _Py_REF_DEBUG_COMMA \
645 --(op)->ob_refcnt != 0) \
646 _Py_CHECK_REFCNT(op) \
647 else \
648 _Py_Dealloc((PyObject *)(op))
650 /* Safely decref `op` and set `op` to NULL, especially useful in tp_clear
651 * and tp_dealloc implementatons.
653 * Note that "the obvious" code can be deadly:
655 * Py_XDECREF(op);
656 * op = NULL;
658 * Typically, `op` is something like self->containee, and `self` is done
659 * using its `containee` member. In the code sequence above, suppose
660 * `containee` is non-NULL with a refcount of 1. Its refcount falls to
661 * 0 on the first line, which can trigger an arbitrary amount of code,
662 * possibly including finalizers (like __del__ methods or weakref callbacks)
663 * coded in Python, which in turn can release the GIL and allow other threads
664 * to run, etc. Such code may even invoke methods of `self` again, or cause
665 * cyclic gc to trigger, but-- oops! --self->containee still points to the
666 * object being torn down, and it may be in an insane state while being torn
667 * down. This has in fact been a rich historic source of miserable (rare &
668 * hard-to-diagnose) segfaulting (and other) bugs.
670 * The safe way is:
672 * Py_CLEAR(op);
674 * That arranges to set `op` to NULL _before_ decref'ing, so that any code
675 * triggered as a side-effect of `op` getting torn down no longer believes
676 * `op` points to a valid object.
678 * There are cases where it's safe to use the naive code, but they're brittle.
679 * For example, if `op` points to a Python integer, you know that destroying
680 * one of those can't cause problems -- but in part that relies on that
681 * Python integers aren't currently weakly referencable. Best practice is
682 * to use Py_CLEAR() even if you can't think of a reason for why you need to.
684 #define Py_CLEAR(op) \
685 do { \
686 if (op) { \
687 PyObject *tmp = (PyObject *)(op); \
688 (op) = NULL; \
689 Py_DECREF(tmp); \
691 } while (0)
693 /* Macros to use in case the object pointer may be NULL: */
694 #define Py_XINCREF(op) if ((op) == NULL) ; else Py_INCREF(op)
695 #define Py_XDECREF(op) if ((op) == NULL) ; else Py_DECREF(op)
698 These are provided as conveniences to Python runtime embedders, so that
699 they can have object code that is not dependent on Python compilation flags.
701 PyAPI_FUNC(void) Py_IncRef(PyObject *);
702 PyAPI_FUNC(void) Py_DecRef(PyObject *);
705 _Py_NoneStruct is an object of undefined type which can be used in contexts
706 where NULL (nil) is not suitable (since NULL often means 'error').
708 Don't forget to apply Py_INCREF() when returning this value!!!
710 PyAPI_DATA(PyObject) _Py_NoneStruct; /* Don't use this directly */
711 #define Py_None (&_Py_NoneStruct)
713 /* Macro for returning Py_None from a function */
714 #define Py_RETURN_NONE return Py_INCREF(Py_None), Py_None
717 Py_NotImplemented is a singleton used to signal that an operation is
718 not implemented for a given type combination.
720 PyAPI_DATA(PyObject) _Py_NotImplementedStruct; /* Don't use this directly */
721 #define Py_NotImplemented (&_Py_NotImplementedStruct)
723 /* Rich comparison opcodes */
724 #define Py_LT 0
725 #define Py_LE 1
726 #define Py_EQ 2
727 #define Py_NE 3
728 #define Py_GT 4
729 #define Py_GE 5
731 /* Maps Py_LT to Py_GT, ..., Py_GE to Py_LE.
732 * Defined in object.c.
734 PyAPI_DATA(int) _Py_SwappedOp[];
737 Define staticforward and statichere for source compatibility with old
738 C extensions.
740 The staticforward define was needed to support certain broken C
741 compilers (notably SCO ODT 3.0, perhaps early AIX as well) botched the
742 static keyword when it was used with a forward declaration of a static
743 initialized structure. Standard C allows the forward declaration with
744 static, and we've decided to stop catering to broken C compilers.
745 (In fact, we expect that the compilers are all fixed eight years later.)
748 #define staticforward static
749 #define statichere static
753 More conventions
754 ================
756 Argument Checking
757 -----------------
759 Functions that take objects as arguments normally don't check for nil
760 arguments, but they do check the type of the argument, and return an
761 error if the function doesn't apply to the type.
763 Failure Modes
764 -------------
766 Functions may fail for a variety of reasons, including running out of
767 memory. This is communicated to the caller in two ways: an error string
768 is set (see errors.h), and the function result differs: functions that
769 normally return a pointer return NULL for failure, functions returning
770 an integer return -1 (which could be a legal return value too!), and
771 other functions return 0 for success and -1 for failure.
772 Callers should always check for errors before using the result. If
773 an error was set, the caller must either explicitly clear it, or pass
774 the error on to its caller.
776 Reference Counts
777 ----------------
779 It takes a while to get used to the proper usage of reference counts.
781 Functions that create an object set the reference count to 1; such new
782 objects must be stored somewhere or destroyed again with Py_DECREF().
783 Some functions that 'store' objects, such as PyTuple_SetItem() and
784 PyList_SetItem(),
785 don't increment the reference count of the object, since the most
786 frequent use is to store a fresh object. Functions that 'retrieve'
787 objects, such as PyTuple_GetItem() and PyDict_GetItemString(), also
788 don't increment
789 the reference count, since most frequently the object is only looked at
790 quickly. Thus, to retrieve an object and store it again, the caller
791 must call Py_INCREF() explicitly.
793 NOTE: functions that 'consume' a reference count, like
794 PyList_SetItem(), consume the reference even if the object wasn't
795 successfully stored, to simplify error handling.
797 It seems attractive to make other functions that take an object as
798 argument consume a reference count; however, this may quickly get
799 confusing (even the current practice is already confusing). Consider
800 it carefully, it may save lots of calls to Py_INCREF() and Py_DECREF() at
801 times.
805 /* Trashcan mechanism, thanks to Christian Tismer.
807 When deallocating a container object, it's possible to trigger an unbounded
808 chain of deallocations, as each Py_DECREF in turn drops the refcount on "the
809 next" object in the chain to 0. This can easily lead to stack faults, and
810 especially in threads (which typically have less stack space to work with).
812 A container object that participates in cyclic gc can avoid this by
813 bracketing the body of its tp_dealloc function with a pair of macros:
815 static void
816 mytype_dealloc(mytype *p)
818 ... declarations go here ...
820 PyObject_GC_UnTrack(p); // must untrack first
821 Py_TRASHCAN_SAFE_BEGIN(p)
822 ... The body of the deallocator goes here, including all calls ...
823 ... to Py_DECREF on contained objects. ...
824 Py_TRASHCAN_SAFE_END(p)
827 CAUTION: Never return from the middle of the body! If the body needs to
828 "get out early", put a label immediately before the Py_TRASHCAN_SAFE_END
829 call, and goto it. Else the call-depth counter (see below) will stay
830 above 0 forever, and the trashcan will never get emptied.
832 How it works: The BEGIN macro increments a call-depth counter. So long
833 as this counter is small, the body of the deallocator is run directly without
834 further ado. But if the counter gets large, it instead adds p to a list of
835 objects to be deallocated later, skips the body of the deallocator, and
836 resumes execution after the END macro. The tp_dealloc routine then returns
837 without deallocating anything (and so unbounded call-stack depth is avoided).
839 When the call stack finishes unwinding again, code generated by the END macro
840 notices this, and calls another routine to deallocate all the objects that
841 may have been added to the list of deferred deallocations. In effect, a
842 chain of N deallocations is broken into N / PyTrash_UNWIND_LEVEL pieces,
843 with the call stack never exceeding a depth of PyTrash_UNWIND_LEVEL.
846 PyAPI_FUNC(void) _PyTrash_deposit_object(PyObject*);
847 PyAPI_FUNC(void) _PyTrash_destroy_chain(void);
848 PyAPI_DATA(int) _PyTrash_delete_nesting;
849 PyAPI_DATA(PyObject *) _PyTrash_delete_later;
851 #define PyTrash_UNWIND_LEVEL 50
853 #define Py_TRASHCAN_SAFE_BEGIN(op) \
854 if (_PyTrash_delete_nesting < PyTrash_UNWIND_LEVEL) { \
855 ++_PyTrash_delete_nesting;
856 /* The body of the deallocator is here. */
857 #define Py_TRASHCAN_SAFE_END(op) \
858 --_PyTrash_delete_nesting; \
859 if (_PyTrash_delete_later && _PyTrash_delete_nesting <= 0) \
860 _PyTrash_destroy_chain(); \
862 else \
863 _PyTrash_deposit_object((PyObject*)op);
865 #ifdef __cplusplus
867 #endif
868 #endif /* !Py_OBJECT_H */