Issue #7051: Clarify behaviour of 'g' and 'G'-style formatting.
[python.git] / Lib / test / test_cmath.py
blob20c17bd0acd42308f54d360ec063dd4345166042
1 from test.test_support import run_unittest
2 from test.test_math import parse_testfile, test_file
3 import unittest
4 import os, sys
5 import cmath, math
6 from cmath import phase, polar, rect, pi
8 INF = float('inf')
9 NAN = float('nan')
11 complex_zeros = [complex(x, y) for x in [0.0, -0.0] for y in [0.0, -0.0]]
12 complex_infinities = [complex(x, y) for x, y in [
13 (INF, 0.0), # 1st quadrant
14 (INF, 2.3),
15 (INF, INF),
16 (2.3, INF),
17 (0.0, INF),
18 (-0.0, INF), # 2nd quadrant
19 (-2.3, INF),
20 (-INF, INF),
21 (-INF, 2.3),
22 (-INF, 0.0),
23 (-INF, -0.0), # 3rd quadrant
24 (-INF, -2.3),
25 (-INF, -INF),
26 (-2.3, -INF),
27 (-0.0, -INF),
28 (0.0, -INF), # 4th quadrant
29 (2.3, -INF),
30 (INF, -INF),
31 (INF, -2.3),
32 (INF, -0.0)
34 complex_nans = [complex(x, y) for x, y in [
35 (NAN, -INF),
36 (NAN, -2.3),
37 (NAN, -0.0),
38 (NAN, 0.0),
39 (NAN, 2.3),
40 (NAN, INF),
41 (-INF, NAN),
42 (-2.3, NAN),
43 (-0.0, NAN),
44 (0.0, NAN),
45 (2.3, NAN),
46 (INF, NAN)
49 def almostEqualF(a, b, rel_err=2e-15, abs_err = 5e-323):
50 """Determine whether floating-point values a and b are equal to within
51 a (small) rounding error. The default values for rel_err and
52 abs_err are chosen to be suitable for platforms where a float is
53 represented by an IEEE 754 double. They allow an error of between
54 9 and 19 ulps."""
56 # special values testing
57 if math.isnan(a):
58 return math.isnan(b)
59 if math.isinf(a):
60 return a == b
62 # if both a and b are zero, check whether they have the same sign
63 # (in theory there are examples where it would be legitimate for a
64 # and b to have opposite signs; in practice these hardly ever
65 # occur).
66 if not a and not b:
67 return math.copysign(1., a) == math.copysign(1., b)
69 # if a-b overflows, or b is infinite, return False. Again, in
70 # theory there are examples where a is within a few ulps of the
71 # max representable float, and then b could legitimately be
72 # infinite. In practice these examples are rare.
73 try:
74 absolute_error = abs(b-a)
75 except OverflowError:
76 return False
77 else:
78 return absolute_error <= max(abs_err, rel_err * abs(a))
80 class CMathTests(unittest.TestCase):
81 # list of all functions in cmath
82 test_functions = [getattr(cmath, fname) for fname in [
83 'acos', 'acosh', 'asin', 'asinh', 'atan', 'atanh',
84 'cos', 'cosh', 'exp', 'log', 'log10', 'sin', 'sinh',
85 'sqrt', 'tan', 'tanh']]
86 # test first and second arguments independently for 2-argument log
87 test_functions.append(lambda x : cmath.log(x, 1729. + 0j))
88 test_functions.append(lambda x : cmath.log(14.-27j, x))
90 def setUp(self):
91 self.test_values = open(test_file)
93 def tearDown(self):
94 self.test_values.close()
96 def rAssertAlmostEqual(self, a, b, rel_err = 2e-15, abs_err = 5e-323):
97 """Check that two floating-point numbers are almost equal."""
99 # special values testing
100 if math.isnan(a):
101 if math.isnan(b):
102 return
103 self.fail("%s should be nan" % repr(b))
105 if math.isinf(a):
106 if a == b:
107 return
108 self.fail("finite result where infinity excpected: "
109 "expected %s, got %s" % (repr(a), repr(b)))
111 if not a and not b:
112 if math.atan2(a, -1.) != math.atan2(b, -1.):
113 self.fail("zero has wrong sign: expected %s, got %s" %
114 (repr(a), repr(b)))
116 # test passes if either the absolute error or the relative
117 # error is sufficiently small. The defaults amount to an
118 # error of between 9 ulps and 19 ulps on an IEEE-754 compliant
119 # machine.
121 try:
122 absolute_error = abs(b-a)
123 except OverflowError:
124 pass
125 else:
126 if absolute_error <= max(abs_err, rel_err * abs(a)):
127 return
128 self.fail("%s and %s are not sufficiently close" % (repr(a), repr(b)))
130 def test_constants(self):
131 e_expected = 2.71828182845904523536
132 pi_expected = 3.14159265358979323846
133 self.rAssertAlmostEqual(cmath.pi, pi_expected, 9,
134 "cmath.pi is %s; should be %s" % (cmath.pi, pi_expected))
135 self.rAssertAlmostEqual(cmath.e, e_expected, 9,
136 "cmath.e is %s; should be %s" % (cmath.e, e_expected))
138 def test_user_object(self):
139 # Test automatic calling of __complex__ and __float__ by cmath
140 # functions
142 # some random values to use as test values; we avoid values
143 # for which any of the functions in cmath is undefined
144 # (i.e. 0., 1., -1., 1j, -1j) or would cause overflow
145 cx_arg = 4.419414439 + 1.497100113j
146 flt_arg = -6.131677725
148 # a variety of non-complex numbers, used to check that
149 # non-complex return values from __complex__ give an error
150 non_complexes = ["not complex", 1, 5L, 2., None,
151 object(), NotImplemented]
153 # Now we introduce a variety of classes whose instances might
154 # end up being passed to the cmath functions
156 # usual case: new-style class implementing __complex__
157 class MyComplex(object):
158 def __init__(self, value):
159 self.value = value
160 def __complex__(self):
161 return self.value
163 # old-style class implementing __complex__
164 class MyComplexOS:
165 def __init__(self, value):
166 self.value = value
167 def __complex__(self):
168 return self.value
170 # classes for which __complex__ raises an exception
171 class SomeException(Exception):
172 pass
173 class MyComplexException(object):
174 def __complex__(self):
175 raise SomeException
176 class MyComplexExceptionOS:
177 def __complex__(self):
178 raise SomeException
180 # some classes not providing __float__ or __complex__
181 class NeitherComplexNorFloat(object):
182 pass
183 class NeitherComplexNorFloatOS:
184 pass
185 class MyInt(object):
186 def __int__(self): return 2
187 def __long__(self): return 2L
188 def __index__(self): return 2
189 class MyIntOS:
190 def __int__(self): return 2
191 def __long__(self): return 2L
192 def __index__(self): return 2
194 # other possible combinations of __float__ and __complex__
195 # that should work
196 class FloatAndComplex(object):
197 def __float__(self):
198 return flt_arg
199 def __complex__(self):
200 return cx_arg
201 class FloatAndComplexOS:
202 def __float__(self):
203 return flt_arg
204 def __complex__(self):
205 return cx_arg
206 class JustFloat(object):
207 def __float__(self):
208 return flt_arg
209 class JustFloatOS:
210 def __float__(self):
211 return flt_arg
213 for f in self.test_functions:
214 # usual usage
215 self.assertEqual(f(MyComplex(cx_arg)), f(cx_arg))
216 self.assertEqual(f(MyComplexOS(cx_arg)), f(cx_arg))
217 # other combinations of __float__ and __complex__
218 self.assertEqual(f(FloatAndComplex()), f(cx_arg))
219 self.assertEqual(f(FloatAndComplexOS()), f(cx_arg))
220 self.assertEqual(f(JustFloat()), f(flt_arg))
221 self.assertEqual(f(JustFloatOS()), f(flt_arg))
222 # TypeError should be raised for classes not providing
223 # either __complex__ or __float__, even if they provide
224 # __int__, __long__ or __index__. An old-style class
225 # currently raises AttributeError instead of a TypeError;
226 # this could be considered a bug.
227 self.assertRaises(TypeError, f, NeitherComplexNorFloat())
228 self.assertRaises(TypeError, f, MyInt())
229 self.assertRaises(Exception, f, NeitherComplexNorFloatOS())
230 self.assertRaises(Exception, f, MyIntOS())
231 # non-complex return value from __complex__ -> TypeError
232 for bad_complex in non_complexes:
233 self.assertRaises(TypeError, f, MyComplex(bad_complex))
234 self.assertRaises(TypeError, f, MyComplexOS(bad_complex))
235 # exceptions in __complex__ should be propagated correctly
236 self.assertRaises(SomeException, f, MyComplexException())
237 self.assertRaises(SomeException, f, MyComplexExceptionOS())
239 def test_input_type(self):
240 # ints and longs should be acceptable inputs to all cmath
241 # functions, by virtue of providing a __float__ method
242 for f in self.test_functions:
243 for arg in [2, 2L, 2.]:
244 self.assertEqual(f(arg), f(arg.__float__()))
246 # but strings should give a TypeError
247 for f in self.test_functions:
248 for arg in ["a", "long_string", "0", "1j", ""]:
249 self.assertRaises(TypeError, f, arg)
251 def test_cmath_matches_math(self):
252 # check that corresponding cmath and math functions are equal
253 # for floats in the appropriate range
255 # test_values in (0, 1)
256 test_values = [0.01, 0.1, 0.2, 0.5, 0.9, 0.99]
258 # test_values for functions defined on [-1., 1.]
259 unit_interval = test_values + [-x for x in test_values] + \
260 [0., 1., -1.]
262 # test_values for log, log10, sqrt
263 positive = test_values + [1.] + [1./x for x in test_values]
264 nonnegative = [0.] + positive
266 # test_values for functions defined on the whole real line
267 real_line = [0.] + positive + [-x for x in positive]
269 test_functions = {
270 'acos' : unit_interval,
271 'asin' : unit_interval,
272 'atan' : real_line,
273 'cos' : real_line,
274 'cosh' : real_line,
275 'exp' : real_line,
276 'log' : positive,
277 'log10' : positive,
278 'sin' : real_line,
279 'sinh' : real_line,
280 'sqrt' : nonnegative,
281 'tan' : real_line,
282 'tanh' : real_line}
284 for fn, values in test_functions.items():
285 float_fn = getattr(math, fn)
286 complex_fn = getattr(cmath, fn)
287 for v in values:
288 z = complex_fn(v)
289 self.rAssertAlmostEqual(float_fn(v), z.real)
290 self.assertEqual(0., z.imag)
292 # test two-argument version of log with various bases
293 for base in [0.5, 2., 10.]:
294 for v in positive:
295 z = cmath.log(v, base)
296 self.rAssertAlmostEqual(math.log(v, base), z.real)
297 self.assertEqual(0., z.imag)
299 def test_specific_values(self):
300 if not float.__getformat__("double").startswith("IEEE"):
301 return
303 def rect_complex(z):
304 """Wrapped version of rect that accepts a complex number instead of
305 two float arguments."""
306 return cmath.rect(z.real, z.imag)
308 def polar_complex(z):
309 """Wrapped version of polar that returns a complex number instead of
310 two floats."""
311 return complex(*polar(z))
313 for id, fn, ar, ai, er, ei, flags in parse_testfile(test_file):
314 arg = complex(ar, ai)
315 expected = complex(er, ei)
316 if fn == 'rect':
317 function = rect_complex
318 elif fn == 'polar':
319 function = polar_complex
320 else:
321 function = getattr(cmath, fn)
322 if 'divide-by-zero' in flags or 'invalid' in flags:
323 try:
324 actual = function(arg)
325 except ValueError:
326 continue
327 else:
328 test_str = "%s: %s(complex(%r, %r))" % (id, fn, ar, ai)
329 self.fail('ValueError not raised in test %s' % test_str)
331 if 'overflow' in flags:
332 try:
333 actual = function(arg)
334 except OverflowError:
335 continue
336 else:
337 test_str = "%s: %s(complex(%r, %r))" % (id, fn, ar, ai)
338 self.fail('OverflowError not raised in test %s' % test_str)
340 actual = function(arg)
342 if 'ignore-real-sign' in flags:
343 actual = complex(abs(actual.real), actual.imag)
344 expected = complex(abs(expected.real), expected.imag)
345 if 'ignore-imag-sign' in flags:
346 actual = complex(actual.real, abs(actual.imag))
347 expected = complex(expected.real, abs(expected.imag))
349 # for the real part of the log function, we allow an
350 # absolute error of up to 2e-15.
351 if fn in ('log', 'log10'):
352 real_abs_err = 2e-15
353 else:
354 real_abs_err = 5e-323
356 if not (almostEqualF(expected.real, actual.real,
357 abs_err = real_abs_err) and
358 almostEqualF(expected.imag, actual.imag)):
359 error_message = (
360 "%s: %s(complex(%r, %r))\n" % (id, fn, ar, ai) +
361 "Expected: complex(%r, %r)\n" %
362 (expected.real, expected.imag) +
363 "Received: complex(%r, %r)\n" %
364 (actual.real, actual.imag) +
365 "Received value insufficiently close to expected value.")
366 self.fail(error_message)
368 def assertCISEqual(self, a, b):
369 eps = 1E-7
370 if abs(a[0] - b[0]) > eps or abs(a[1] - b[1]) > eps:
371 self.fail((a ,b))
373 def test_polar(self):
374 self.assertCISEqual(polar(0), (0., 0.))
375 self.assertCISEqual(polar(1.), (1., 0.))
376 self.assertCISEqual(polar(-1.), (1., pi))
377 self.assertCISEqual(polar(1j), (1., pi/2))
378 self.assertCISEqual(polar(-1j), (1., -pi/2))
380 def test_phase(self):
381 self.assertAlmostEqual(phase(0), 0.)
382 self.assertAlmostEqual(phase(1.), 0.)
383 self.assertAlmostEqual(phase(-1.), pi)
384 self.assertAlmostEqual(phase(-1.+1E-300j), pi)
385 self.assertAlmostEqual(phase(-1.-1E-300j), -pi)
386 self.assertAlmostEqual(phase(1j), pi/2)
387 self.assertAlmostEqual(phase(-1j), -pi/2)
389 # zeros
390 self.assertEqual(phase(complex(0.0, 0.0)), 0.0)
391 self.assertEqual(phase(complex(0.0, -0.0)), -0.0)
392 self.assertEqual(phase(complex(-0.0, 0.0)), pi)
393 self.assertEqual(phase(complex(-0.0, -0.0)), -pi)
395 # infinities
396 self.assertAlmostEqual(phase(complex(-INF, -0.0)), -pi)
397 self.assertAlmostEqual(phase(complex(-INF, -2.3)), -pi)
398 self.assertAlmostEqual(phase(complex(-INF, -INF)), -0.75*pi)
399 self.assertAlmostEqual(phase(complex(-2.3, -INF)), -pi/2)
400 self.assertAlmostEqual(phase(complex(-0.0, -INF)), -pi/2)
401 self.assertAlmostEqual(phase(complex(0.0, -INF)), -pi/2)
402 self.assertAlmostEqual(phase(complex(2.3, -INF)), -pi/2)
403 self.assertAlmostEqual(phase(complex(INF, -INF)), -pi/4)
404 self.assertEqual(phase(complex(INF, -2.3)), -0.0)
405 self.assertEqual(phase(complex(INF, -0.0)), -0.0)
406 self.assertEqual(phase(complex(INF, 0.0)), 0.0)
407 self.assertEqual(phase(complex(INF, 2.3)), 0.0)
408 self.assertAlmostEqual(phase(complex(INF, INF)), pi/4)
409 self.assertAlmostEqual(phase(complex(2.3, INF)), pi/2)
410 self.assertAlmostEqual(phase(complex(0.0, INF)), pi/2)
411 self.assertAlmostEqual(phase(complex(-0.0, INF)), pi/2)
412 self.assertAlmostEqual(phase(complex(-2.3, INF)), pi/2)
413 self.assertAlmostEqual(phase(complex(-INF, INF)), 0.75*pi)
414 self.assertAlmostEqual(phase(complex(-INF, 2.3)), pi)
415 self.assertAlmostEqual(phase(complex(-INF, 0.0)), pi)
417 # real or imaginary part NaN
418 for z in complex_nans:
419 self.assertTrue(math.isnan(phase(z)))
421 def test_abs(self):
422 # zeros
423 for z in complex_zeros:
424 self.assertEqual(abs(z), 0.0)
426 # infinities
427 for z in complex_infinities:
428 self.assertEqual(abs(z), INF)
430 # real or imaginary part NaN
431 self.assertEqual(abs(complex(NAN, -INF)), INF)
432 self.assertTrue(math.isnan(abs(complex(NAN, -2.3))))
433 self.assertTrue(math.isnan(abs(complex(NAN, -0.0))))
434 self.assertTrue(math.isnan(abs(complex(NAN, 0.0))))
435 self.assertTrue(math.isnan(abs(complex(NAN, 2.3))))
436 self.assertEqual(abs(complex(NAN, INF)), INF)
437 self.assertEqual(abs(complex(-INF, NAN)), INF)
438 self.assertTrue(math.isnan(abs(complex(-2.3, NAN))))
439 self.assertTrue(math.isnan(abs(complex(-0.0, NAN))))
440 self.assertTrue(math.isnan(abs(complex(0.0, NAN))))
441 self.assertTrue(math.isnan(abs(complex(2.3, NAN))))
442 self.assertEqual(abs(complex(INF, NAN)), INF)
443 self.assertTrue(math.isnan(abs(complex(NAN, NAN))))
445 # result overflows
446 if float.__getformat__("double").startswith("IEEE"):
447 self.assertRaises(OverflowError, abs, complex(1.4e308, 1.4e308))
449 def assertCEqual(self, a, b):
450 eps = 1E-7
451 if abs(a.real - b[0]) > eps or abs(a.imag - b[1]) > eps:
452 self.fail((a ,b))
454 def test_rect(self):
455 self.assertCEqual(rect(0, 0), (0, 0))
456 self.assertCEqual(rect(1, 0), (1., 0))
457 self.assertCEqual(rect(1, -pi), (-1., 0))
458 self.assertCEqual(rect(1, pi/2), (0, 1.))
459 self.assertCEqual(rect(1, -pi/2), (0, -1.))
461 def test_isnan(self):
462 self.assertFalse(cmath.isnan(1))
463 self.assertFalse(cmath.isnan(1j))
464 self.assertFalse(cmath.isnan(INF))
465 self.assertTrue(cmath.isnan(NAN))
466 self.assertTrue(cmath.isnan(complex(NAN, 0)))
467 self.assertTrue(cmath.isnan(complex(0, NAN)))
468 self.assertTrue(cmath.isnan(complex(NAN, NAN)))
469 self.assertTrue(cmath.isnan(complex(NAN, INF)))
470 self.assertTrue(cmath.isnan(complex(INF, NAN)))
472 def test_isinf(self):
473 self.assertFalse(cmath.isinf(1))
474 self.assertFalse(cmath.isinf(1j))
475 self.assertFalse(cmath.isinf(NAN))
476 self.assertTrue(cmath.isinf(INF))
477 self.assertTrue(cmath.isinf(complex(INF, 0)))
478 self.assertTrue(cmath.isinf(complex(0, INF)))
479 self.assertTrue(cmath.isinf(complex(INF, INF)))
480 self.assertTrue(cmath.isinf(complex(NAN, INF)))
481 self.assertTrue(cmath.isinf(complex(INF, NAN)))
484 def test_main():
485 run_unittest(CMathTests)
487 if __name__ == "__main__":
488 test_main()