Updated with fix for #3126.
[python.git] / Modules / mathmodule.c
blob32c2400f4cc8eb8eb9d3059e3443f1764303839c
1 /* Math module -- standard C math library functions, pi and e */
3 /* Here are some comments from Tim Peters, extracted from the
4 discussion attached to http://bugs.python.org/issue1640. They
5 describe the general aims of the math module with respect to
6 special values, IEEE-754 floating-point exceptions, and Python
7 exceptions.
9 These are the "spirit of 754" rules:
11 1. If the mathematical result is a real number, but of magnitude too
12 large to approximate by a machine float, overflow is signaled and the
13 result is an infinity (with the appropriate sign).
15 2. If the mathematical result is a real number, but of magnitude too
16 small to approximate by a machine float, underflow is signaled and the
17 result is a zero (with the appropriate sign).
19 3. At a singularity (a value x such that the limit of f(y) as y
20 approaches x exists and is an infinity), "divide by zero" is signaled
21 and the result is an infinity (with the appropriate sign). This is
22 complicated a little by that the left-side and right-side limits may
23 not be the same; e.g., 1/x approaches +inf or -inf as x approaches 0
24 from the positive or negative directions. In that specific case, the
25 sign of the zero determines the result of 1/0.
27 4. At a point where a function has no defined result in the extended
28 reals (i.e., the reals plus an infinity or two), invalid operation is
29 signaled and a NaN is returned.
31 And these are what Python has historically /tried/ to do (but not
32 always successfully, as platform libm behavior varies a lot):
34 For #1, raise OverflowError.
36 For #2, return a zero (with the appropriate sign if that happens by
37 accident ;-)).
39 For #3 and #4, raise ValueError. It may have made sense to raise
40 Python's ZeroDivisionError in #3, but historically that's only been
41 raised for division by zero and mod by zero.
46 In general, on an IEEE-754 platform the aim is to follow the C99
47 standard, including Annex 'F', whenever possible. Where the
48 standard recommends raising the 'divide-by-zero' or 'invalid'
49 floating-point exceptions, Python should raise a ValueError. Where
50 the standard recommends raising 'overflow', Python should raise an
51 OverflowError. In all other circumstances a value should be
52 returned.
55 #include "Python.h"
56 #include "longintrepr.h" /* just for SHIFT */
58 #ifdef _OSF_SOURCE
59 /* OSF1 5.1 doesn't make this available with XOPEN_SOURCE_EXTENDED defined */
60 extern double copysign(double, double);
61 #endif
63 /* Call is_error when errno != 0, and where x is the result libm
64 * returned. is_error will usually set up an exception and return
65 * true (1), but may return false (0) without setting up an exception.
67 static int
68 is_error(double x)
70 int result = 1; /* presumption of guilt */
71 assert(errno); /* non-zero errno is a precondition for calling */
72 if (errno == EDOM)
73 PyErr_SetString(PyExc_ValueError, "math domain error");
75 else if (errno == ERANGE) {
76 /* ANSI C generally requires libm functions to set ERANGE
77 * on overflow, but also generally *allows* them to set
78 * ERANGE on underflow too. There's no consistency about
79 * the latter across platforms.
80 * Alas, C99 never requires that errno be set.
81 * Here we suppress the underflow errors (libm functions
82 * should return a zero on underflow, and +- HUGE_VAL on
83 * overflow, so testing the result for zero suffices to
84 * distinguish the cases).
86 if (x)
87 PyErr_SetString(PyExc_OverflowError,
88 "math range error");
89 else
90 result = 0;
92 else
93 /* Unexpected math error */
94 PyErr_SetFromErrno(PyExc_ValueError);
95 return result;
99 wrapper for atan2 that deals directly with special cases before
100 delegating to the platform libm for the remaining cases. This
101 is necessary to get consistent behaviour across platforms.
102 Windows, FreeBSD and alpha Tru64 are amongst platforms that don't
103 always follow C99.
106 static double
107 m_atan2(double y, double x)
109 if (Py_IS_NAN(x) || Py_IS_NAN(y))
110 return Py_NAN;
111 if (Py_IS_INFINITY(y)) {
112 if (Py_IS_INFINITY(x)) {
113 if (copysign(1., x) == 1.)
114 /* atan2(+-inf, +inf) == +-pi/4 */
115 return copysign(0.25*Py_MATH_PI, y);
116 else
117 /* atan2(+-inf, -inf) == +-pi*3/4 */
118 return copysign(0.75*Py_MATH_PI, y);
120 /* atan2(+-inf, x) == +-pi/2 for finite x */
121 return copysign(0.5*Py_MATH_PI, y);
123 if (Py_IS_INFINITY(x) || y == 0.) {
124 if (copysign(1., x) == 1.)
125 /* atan2(+-y, +inf) = atan2(+-0, +x) = +-0. */
126 return copysign(0., y);
127 else
128 /* atan2(+-y, -inf) = atan2(+-0., -x) = +-pi. */
129 return copysign(Py_MATH_PI, y);
131 return atan2(y, x);
135 math_1 is used to wrap a libm function f that takes a double
136 arguments and returns a double.
138 The error reporting follows these rules, which are designed to do
139 the right thing on C89/C99 platforms and IEEE 754/non IEEE 754
140 platforms.
142 - a NaN result from non-NaN inputs causes ValueError to be raised
143 - an infinite result from finite inputs causes OverflowError to be
144 raised if can_overflow is 1, or raises ValueError if can_overflow
145 is 0.
146 - if the result is finite and errno == EDOM then ValueError is
147 raised
148 - if the result is finite and nonzero and errno == ERANGE then
149 OverflowError is raised
151 The last rule is used to catch overflow on platforms which follow
152 C89 but for which HUGE_VAL is not an infinity.
154 For the majority of one-argument functions these rules are enough
155 to ensure that Python's functions behave as specified in 'Annex F'
156 of the C99 standard, with the 'invalid' and 'divide-by-zero'
157 floating-point exceptions mapping to Python's ValueError and the
158 'overflow' floating-point exception mapping to OverflowError.
159 math_1 only works for functions that don't have singularities *and*
160 the possibility of overflow; fortunately, that covers everything we
161 care about right now.
164 static PyObject *
165 math_1(PyObject *arg, double (*func) (double), int can_overflow)
167 double x, r;
168 x = PyFloat_AsDouble(arg);
169 if (x == -1.0 && PyErr_Occurred())
170 return NULL;
171 errno = 0;
172 PyFPE_START_PROTECT("in math_1", return 0);
173 r = (*func)(x);
174 PyFPE_END_PROTECT(r);
175 if (Py_IS_NAN(r)) {
176 if (!Py_IS_NAN(x))
177 errno = EDOM;
178 else
179 errno = 0;
181 else if (Py_IS_INFINITY(r)) {
182 if (Py_IS_FINITE(x))
183 errno = can_overflow ? ERANGE : EDOM;
184 else
185 errno = 0;
187 if (errno && is_error(r))
188 return NULL;
189 else
190 return PyFloat_FromDouble(r);
194 math_2 is used to wrap a libm function f that takes two double
195 arguments and returns a double.
197 The error reporting follows these rules, which are designed to do
198 the right thing on C89/C99 platforms and IEEE 754/non IEEE 754
199 platforms.
201 - a NaN result from non-NaN inputs causes ValueError to be raised
202 - an infinite result from finite inputs causes OverflowError to be
203 raised.
204 - if the result is finite and errno == EDOM then ValueError is
205 raised
206 - if the result is finite and nonzero and errno == ERANGE then
207 OverflowError is raised
209 The last rule is used to catch overflow on platforms which follow
210 C89 but for which HUGE_VAL is not an infinity.
212 For most two-argument functions (copysign, fmod, hypot, atan2)
213 these rules are enough to ensure that Python's functions behave as
214 specified in 'Annex F' of the C99 standard, with the 'invalid' and
215 'divide-by-zero' floating-point exceptions mapping to Python's
216 ValueError and the 'overflow' floating-point exception mapping to
217 OverflowError.
220 static PyObject *
221 math_2(PyObject *args, double (*func) (double, double), char *funcname)
223 PyObject *ox, *oy;
224 double x, y, r;
225 if (! PyArg_UnpackTuple(args, funcname, 2, 2, &ox, &oy))
226 return NULL;
227 x = PyFloat_AsDouble(ox);
228 y = PyFloat_AsDouble(oy);
229 if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
230 return NULL;
231 errno = 0;
232 PyFPE_START_PROTECT("in math_2", return 0);
233 r = (*func)(x, y);
234 PyFPE_END_PROTECT(r);
235 if (Py_IS_NAN(r)) {
236 if (!Py_IS_NAN(x) && !Py_IS_NAN(y))
237 errno = EDOM;
238 else
239 errno = 0;
241 else if (Py_IS_INFINITY(r)) {
242 if (Py_IS_FINITE(x) && Py_IS_FINITE(y))
243 errno = ERANGE;
244 else
245 errno = 0;
247 if (errno && is_error(r))
248 return NULL;
249 else
250 return PyFloat_FromDouble(r);
253 #define FUNC1(funcname, func, can_overflow, docstring) \
254 static PyObject * math_##funcname(PyObject *self, PyObject *args) { \
255 return math_1(args, func, can_overflow); \
257 PyDoc_STRVAR(math_##funcname##_doc, docstring);
259 #define FUNC2(funcname, func, docstring) \
260 static PyObject * math_##funcname(PyObject *self, PyObject *args) { \
261 return math_2(args, func, #funcname); \
263 PyDoc_STRVAR(math_##funcname##_doc, docstring);
265 FUNC1(acos, acos, 0,
266 "acos(x)\n\nReturn the arc cosine (measured in radians) of x.")
267 FUNC1(acosh, acosh, 0,
268 "acosh(x)\n\nReturn the hyperbolic arc cosine (measured in radians) of x.")
269 FUNC1(asin, asin, 0,
270 "asin(x)\n\nReturn the arc sine (measured in radians) of x.")
271 FUNC1(asinh, asinh, 0,
272 "asinh(x)\n\nReturn the hyperbolic arc sine (measured in radians) of x.")
273 FUNC1(atan, atan, 0,
274 "atan(x)\n\nReturn the arc tangent (measured in radians) of x.")
275 FUNC2(atan2, m_atan2,
276 "atan2(y, x)\n\nReturn the arc tangent (measured in radians) of y/x.\n"
277 "Unlike atan(y/x), the signs of both x and y are considered.")
278 FUNC1(atanh, atanh, 0,
279 "atanh(x)\n\nReturn the hyperbolic arc tangent (measured in radians) of x.")
280 FUNC1(ceil, ceil, 0,
281 "ceil(x)\n\nReturn the ceiling of x as a float.\n"
282 "This is the smallest integral value >= x.")
283 FUNC2(copysign, copysign,
284 "copysign(x,y)\n\nReturn x with the sign of y.")
285 FUNC1(cos, cos, 0,
286 "cos(x)\n\nReturn the cosine of x (measured in radians).")
287 FUNC1(cosh, cosh, 1,
288 "cosh(x)\n\nReturn the hyperbolic cosine of x.")
289 FUNC1(exp, exp, 1,
290 "exp(x)\n\nReturn e raised to the power of x.")
291 FUNC1(fabs, fabs, 0,
292 "fabs(x)\n\nReturn the absolute value of the float x.")
293 FUNC1(floor, floor, 0,
294 "floor(x)\n\nReturn the floor of x as a float.\n"
295 "This is the largest integral value <= x.")
296 FUNC1(log1p, log1p, 1,
297 "log1p(x)\n\nReturn the natural logarithm of 1+x (base e).\n\
298 The result is computed in a way which is accurate for x near zero.")
299 FUNC1(sin, sin, 0,
300 "sin(x)\n\nReturn the sine of x (measured in radians).")
301 FUNC1(sinh, sinh, 1,
302 "sinh(x)\n\nReturn the hyperbolic sine of x.")
303 FUNC1(sqrt, sqrt, 0,
304 "sqrt(x)\n\nReturn the square root of x.")
305 FUNC1(tan, tan, 0,
306 "tan(x)\n\nReturn the tangent of x (measured in radians).")
307 FUNC1(tanh, tanh, 0,
308 "tanh(x)\n\nReturn the hyperbolic tangent of x.")
310 /* Precision summation function as msum() by Raymond Hettinger in
311 <http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/393090>,
312 enhanced with the exact partials sum and roundoff from Mark
313 Dickinson's post at <http://bugs.python.org/file10357/msum4.py>.
314 See those links for more details, proofs and other references.
316 Note 1: IEEE 754R floating point semantics are assumed,
317 but the current implementation does not re-establish special
318 value semantics across iterations (i.e. handling -Inf + Inf).
320 Note 2: No provision is made for intermediate overflow handling;
321 therefore, sum([1e+308, 1e-308, 1e+308]) returns 1e+308 while
322 sum([1e+308, 1e+308, 1e-308]) raises an OverflowError due to the
323 overflow of the first partial sum.
325 Note 3: The itermediate values lo, yr, and hi are declared volatile so
326 aggressive compilers won't algebraicly reduce lo to always be exactly 0.0.
327 Also, the volatile declaration forces the values to be stored in memory as
328 regular doubles instead of extended long precision (80-bit) values. This
329 prevents double rounding because any addition or substraction of two doubles
330 can be resolved exactly into double-sized hi and lo values. As long as the
331 hi value gets forced into a double before yr and lo are computed, the extra
332 bits in downstream extended precision operations (x87 for example) will be
333 exactly zero and therefore can be losslessly stored back into a double,
334 thereby preventing double rounding.
336 Note 4: A similar implementation is in Modules/cmathmodule.c.
337 Be sure to update both when making changes.
339 Note 5: The signature of math.sum() differs from __builtin__.sum()
340 because the start argument doesn't make sense in the context of
341 accurate summation. Since the partials table is collapsed before
342 returning a result, sum(seq2, start=sum(seq1)) may not equal the
343 accurate result returned by sum(itertools.chain(seq1, seq2)).
346 #define NUM_PARTIALS 32 /* initial partials array size, on stack */
348 /* Extend the partials array p[] by doubling its size. */
349 static int /* non-zero on error */
350 _sum_realloc(double **p_ptr, Py_ssize_t n,
351 double *ps, Py_ssize_t *m_ptr)
353 void *v = NULL;
354 Py_ssize_t m = *m_ptr;
356 m += m; /* double */
357 if (n < m && m < (PY_SSIZE_T_MAX / sizeof(double))) {
358 double *p = *p_ptr;
359 if (p == ps) {
360 v = PyMem_Malloc(sizeof(double) * m);
361 if (v != NULL)
362 memcpy(v, ps, sizeof(double) * n);
364 else
365 v = PyMem_Realloc(p, sizeof(double) * m);
367 if (v == NULL) { /* size overflow or no memory */
368 PyErr_SetString(PyExc_MemoryError, "math sum partials");
369 return 1;
371 *p_ptr = (double*) v;
372 *m_ptr = m;
373 return 0;
376 /* Full precision summation of a sequence of floats.
378 def msum(iterable):
379 partials = [] # sorted, non-overlapping partial sums
380 for x in iterable:
381 i = 0
382 for y in partials:
383 if abs(x) < abs(y):
384 x, y = y, x
385 hi = x + y
386 lo = y - (hi - x)
387 if lo:
388 partials[i] = lo
389 i += 1
390 x = hi
391 partials[i:] = [x]
392 return sum_exact(partials)
394 Rounded x+y stored in hi with the roundoff stored in lo. Together hi+lo
395 are exactly equal to x+y. The inner loop applies hi/lo summation to each
396 partial so that the list of partial sums remains exact.
398 Sum_exact() adds the partial sums exactly and correctly rounds the final
399 result (using the round-half-to-even rule). The items in partials remain
400 non-zero, non-special, non-overlapping and strictly increasing in
401 magnitude, but possibly not all having the same sign.
403 Depends on IEEE 754 arithmetic guarantees and half-even rounding.
406 static PyObject*
407 math_sum(PyObject *self, PyObject *seq)
409 PyObject *item, *iter, *sum = NULL;
410 Py_ssize_t i, j, n = 0, m = NUM_PARTIALS;
411 double x, y, t, ps[NUM_PARTIALS], *p = ps;
412 volatile double hi, yr, lo;
414 iter = PyObject_GetIter(seq);
415 if (iter == NULL)
416 return NULL;
418 PyFPE_START_PROTECT("sum", Py_DECREF(iter); return NULL)
420 for(;;) { /* for x in iterable */
421 assert(0 <= n && n <= m);
422 assert((m == NUM_PARTIALS && p == ps) ||
423 (m > NUM_PARTIALS && p != NULL));
425 item = PyIter_Next(iter);
426 if (item == NULL) {
427 if (PyErr_Occurred())
428 goto _sum_error;
429 break;
431 x = PyFloat_AsDouble(item);
432 Py_DECREF(item);
433 if (PyErr_Occurred())
434 goto _sum_error;
436 for (i = j = 0; j < n; j++) { /* for y in partials */
437 y = p[j];
438 if (fabs(x) < fabs(y)) {
439 t = x; x = y; y = t;
441 hi = x + y;
442 yr = hi - x;
443 lo = y - yr;
444 if (lo != 0.0)
445 p[i++] = lo;
446 x = hi;
449 n = i; /* ps[i:] = [x] */
450 if (x != 0.0) {
451 /* If non-finite, reset partials, effectively
452 adding subsequent items without roundoff
453 and yielding correct non-finite results,
454 provided IEEE 754 rules are observed */
455 if (! Py_IS_FINITE(x))
456 n = 0;
457 else if (n >= m && _sum_realloc(&p, n, ps, &m))
458 goto _sum_error;
459 p[n++] = x;
463 hi = 0.0;
464 if (n > 0) {
465 hi = p[--n];
466 if (Py_IS_FINITE(hi)) {
467 /* sum_exact(ps, hi) from the top, stop when the sum becomes inexact. */
468 while (n > 0) {
469 x = hi;
470 y = p[--n];
471 assert(fabs(y) < fabs(x));
472 hi = x + y;
473 yr = hi - x;
474 lo = y - yr;
475 if (lo != 0.0)
476 break;
478 /* Make half-even rounding work across multiple partials. Needed
479 so that sum([1e-16, 1, 1e16]) will round-up the last digit to
480 two instead of down to zero (the 1e-16 makes the 1 slightly
481 closer to two). With a potential 1 ULP rounding error fixed-up,
482 math.sum() can guarantee commutativity. */
483 if (n > 0 && ((lo < 0.0 && p[n-1] < 0.0) ||
484 (lo > 0.0 && p[n-1] > 0.0))) {
485 y = lo * 2.0;
486 x = hi + y;
487 yr = x - hi;
488 if (y == yr)
489 hi = x;
492 else { /* raise exception corresponding to a special value */
493 errno = Py_IS_NAN(hi) ? EDOM : ERANGE;
494 if (is_error(hi))
495 goto _sum_error;
498 sum = PyFloat_FromDouble(hi);
500 _sum_error:
501 PyFPE_END_PROTECT(hi)
502 Py_DECREF(iter);
503 if (p != ps)
504 PyMem_Free(p);
505 return sum;
508 #undef NUM_PARTIALS
510 PyDoc_STRVAR(math_sum_doc,
511 "sum(iterable)\n\n\
512 Return an accurate floating point sum of values in the iterable.\n\
513 Assumes IEEE-754 floating point arithmetic.");
515 static PyObject *
516 math_factorial(PyObject *self, PyObject *arg)
518 long i, x;
519 PyObject *result, *iobj, *newresult;
521 if (PyFloat_Check(arg)) {
522 double dx = PyFloat_AS_DOUBLE((PyFloatObject *)arg);
523 if (dx != floor(dx)) {
524 PyErr_SetString(PyExc_ValueError,
525 "factorial() only accepts integral values");
526 return NULL;
530 x = PyInt_AsLong(arg);
531 if (x == -1 && PyErr_Occurred())
532 return NULL;
533 if (x < 0) {
534 PyErr_SetString(PyExc_ValueError,
535 "factorial() not defined for negative values");
536 return NULL;
539 result = (PyObject *)PyInt_FromLong(1);
540 if (result == NULL)
541 return NULL;
542 for (i=1 ; i<=x ; i++) {
543 iobj = (PyObject *)PyInt_FromLong(i);
544 if (iobj == NULL)
545 goto error;
546 newresult = PyNumber_Multiply(result, iobj);
547 Py_DECREF(iobj);
548 if (newresult == NULL)
549 goto error;
550 Py_DECREF(result);
551 result = newresult;
553 return result;
555 error:
556 Py_DECREF(result);
557 Py_XDECREF(iobj);
558 return NULL;
561 PyDoc_STRVAR(math_factorial_doc, "Return n!");
563 static PyObject *
564 math_trunc(PyObject *self, PyObject *number)
566 return PyObject_CallMethod(number, "__trunc__", NULL);
569 PyDoc_STRVAR(math_trunc_doc,
570 "trunc(x:Real) -> Integral\n"
571 "\n"
572 "Truncates x to the nearest Integral toward 0. Uses the __trunc__ magic method.");
574 static PyObject *
575 math_frexp(PyObject *self, PyObject *arg)
577 int i;
578 double x = PyFloat_AsDouble(arg);
579 if (x == -1.0 && PyErr_Occurred())
580 return NULL;
581 /* deal with special cases directly, to sidestep platform
582 differences */
583 if (Py_IS_NAN(x) || Py_IS_INFINITY(x) || !x) {
584 i = 0;
586 else {
587 PyFPE_START_PROTECT("in math_frexp", return 0);
588 x = frexp(x, &i);
589 PyFPE_END_PROTECT(x);
591 return Py_BuildValue("(di)", x, i);
594 PyDoc_STRVAR(math_frexp_doc,
595 "frexp(x)\n"
596 "\n"
597 "Return the mantissa and exponent of x, as pair (m, e).\n"
598 "m is a float and e is an int, such that x = m * 2.**e.\n"
599 "If x is 0, m and e are both 0. Else 0.5 <= abs(m) < 1.0.");
601 static PyObject *
602 math_ldexp(PyObject *self, PyObject *args)
604 double x, r;
605 PyObject *oexp;
606 long exp;
607 if (! PyArg_ParseTuple(args, "dO:ldexp", &x, &oexp))
608 return NULL;
610 if (PyLong_Check(oexp)) {
611 /* on overflow, replace exponent with either LONG_MAX
612 or LONG_MIN, depending on the sign. */
613 exp = PyLong_AsLong(oexp);
614 if (exp == -1 && PyErr_Occurred()) {
615 if (PyErr_ExceptionMatches(PyExc_OverflowError)) {
616 if (Py_SIZE(oexp) < 0) {
617 exp = LONG_MIN;
619 else {
620 exp = LONG_MAX;
622 PyErr_Clear();
624 else {
625 /* propagate any unexpected exception */
626 return NULL;
630 else if (PyInt_Check(oexp)) {
631 exp = PyInt_AS_LONG(oexp);
633 else {
634 PyErr_SetString(PyExc_TypeError,
635 "Expected an int or long as second argument "
636 "to ldexp.");
637 return NULL;
640 if (x == 0. || !Py_IS_FINITE(x)) {
641 /* NaNs, zeros and infinities are returned unchanged */
642 r = x;
643 errno = 0;
644 } else if (exp > INT_MAX) {
645 /* overflow */
646 r = copysign(Py_HUGE_VAL, x);
647 errno = ERANGE;
648 } else if (exp < INT_MIN) {
649 /* underflow to +-0 */
650 r = copysign(0., x);
651 errno = 0;
652 } else {
653 errno = 0;
654 PyFPE_START_PROTECT("in math_ldexp", return 0);
655 r = ldexp(x, (int)exp);
656 PyFPE_END_PROTECT(r);
657 if (Py_IS_INFINITY(r))
658 errno = ERANGE;
661 if (errno && is_error(r))
662 return NULL;
663 return PyFloat_FromDouble(r);
666 PyDoc_STRVAR(math_ldexp_doc,
667 "ldexp(x, i) -> x * (2**i)");
669 static PyObject *
670 math_modf(PyObject *self, PyObject *arg)
672 double y, x = PyFloat_AsDouble(arg);
673 if (x == -1.0 && PyErr_Occurred())
674 return NULL;
675 /* some platforms don't do the right thing for NaNs and
676 infinities, so we take care of special cases directly. */
677 if (!Py_IS_FINITE(x)) {
678 if (Py_IS_INFINITY(x))
679 return Py_BuildValue("(dd)", copysign(0., x), x);
680 else if (Py_IS_NAN(x))
681 return Py_BuildValue("(dd)", x, x);
684 errno = 0;
685 PyFPE_START_PROTECT("in math_modf", return 0);
686 x = modf(x, &y);
687 PyFPE_END_PROTECT(x);
688 return Py_BuildValue("(dd)", x, y);
691 PyDoc_STRVAR(math_modf_doc,
692 "modf(x)\n"
693 "\n"
694 "Return the fractional and integer parts of x. Both results carry the sign\n"
695 "of x. The integer part is returned as a real.");
697 /* A decent logarithm is easy to compute even for huge longs, but libm can't
698 do that by itself -- loghelper can. func is log or log10, and name is
699 "log" or "log10". Note that overflow isn't possible: a long can contain
700 no more than INT_MAX * SHIFT bits, so has value certainly less than
701 2**(2**64 * 2**16) == 2**2**80, and log2 of that is 2**80, which is
702 small enough to fit in an IEEE single. log and log10 are even smaller.
705 static PyObject*
706 loghelper(PyObject* arg, double (*func)(double), char *funcname)
708 /* If it is long, do it ourselves. */
709 if (PyLong_Check(arg)) {
710 double x;
711 int e;
712 x = _PyLong_AsScaledDouble(arg, &e);
713 if (x <= 0.0) {
714 PyErr_SetString(PyExc_ValueError,
715 "math domain error");
716 return NULL;
718 /* Value is ~= x * 2**(e*PyLong_SHIFT), so the log ~=
719 log(x) + log(2) * e * PyLong_SHIFT.
720 CAUTION: e*PyLong_SHIFT may overflow using int arithmetic,
721 so force use of double. */
722 x = func(x) + (e * (double)PyLong_SHIFT) * func(2.0);
723 return PyFloat_FromDouble(x);
726 /* Else let libm handle it by itself. */
727 return math_1(arg, func, 0);
730 static PyObject *
731 math_log(PyObject *self, PyObject *args)
733 PyObject *arg;
734 PyObject *base = NULL;
735 PyObject *num, *den;
736 PyObject *ans;
738 if (!PyArg_UnpackTuple(args, "log", 1, 2, &arg, &base))
739 return NULL;
741 num = loghelper(arg, log, "log");
742 if (num == NULL || base == NULL)
743 return num;
745 den = loghelper(base, log, "log");
746 if (den == NULL) {
747 Py_DECREF(num);
748 return NULL;
751 ans = PyNumber_Divide(num, den);
752 Py_DECREF(num);
753 Py_DECREF(den);
754 return ans;
757 PyDoc_STRVAR(math_log_doc,
758 "log(x[, base]) -> the logarithm of x to the given base.\n\
759 If the base not specified, returns the natural logarithm (base e) of x.");
761 static PyObject *
762 math_log10(PyObject *self, PyObject *arg)
764 return loghelper(arg, log10, "log10");
767 PyDoc_STRVAR(math_log10_doc,
768 "log10(x) -> the base 10 logarithm of x.");
770 static PyObject *
771 math_fmod(PyObject *self, PyObject *args)
773 PyObject *ox, *oy;
774 double r, x, y;
775 if (! PyArg_UnpackTuple(args, "fmod", 2, 2, &ox, &oy))
776 return NULL;
777 x = PyFloat_AsDouble(ox);
778 y = PyFloat_AsDouble(oy);
779 if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
780 return NULL;
781 /* fmod(x, +/-Inf) returns x for finite x. */
782 if (Py_IS_INFINITY(y) && Py_IS_FINITE(x))
783 return PyFloat_FromDouble(x);
784 errno = 0;
785 PyFPE_START_PROTECT("in math_fmod", return 0);
786 r = fmod(x, y);
787 PyFPE_END_PROTECT(r);
788 if (Py_IS_NAN(r)) {
789 if (!Py_IS_NAN(x) && !Py_IS_NAN(y))
790 errno = EDOM;
791 else
792 errno = 0;
794 if (errno && is_error(r))
795 return NULL;
796 else
797 return PyFloat_FromDouble(r);
800 PyDoc_STRVAR(math_fmod_doc,
801 "fmod(x,y)\n\nReturn fmod(x, y), according to platform C."
802 " x % y may differ.");
804 static PyObject *
805 math_hypot(PyObject *self, PyObject *args)
807 PyObject *ox, *oy;
808 double r, x, y;
809 if (! PyArg_UnpackTuple(args, "hypot", 2, 2, &ox, &oy))
810 return NULL;
811 x = PyFloat_AsDouble(ox);
812 y = PyFloat_AsDouble(oy);
813 if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
814 return NULL;
815 /* hypot(x, +/-Inf) returns Inf, even if x is a NaN. */
816 if (Py_IS_INFINITY(x))
817 return PyFloat_FromDouble(fabs(x));
818 if (Py_IS_INFINITY(y))
819 return PyFloat_FromDouble(fabs(y));
820 errno = 0;
821 PyFPE_START_PROTECT("in math_hypot", return 0);
822 r = hypot(x, y);
823 PyFPE_END_PROTECT(r);
824 if (Py_IS_NAN(r)) {
825 if (!Py_IS_NAN(x) && !Py_IS_NAN(y))
826 errno = EDOM;
827 else
828 errno = 0;
830 else if (Py_IS_INFINITY(r)) {
831 if (Py_IS_FINITE(x) && Py_IS_FINITE(y))
832 errno = ERANGE;
833 else
834 errno = 0;
836 if (errno && is_error(r))
837 return NULL;
838 else
839 return PyFloat_FromDouble(r);
842 PyDoc_STRVAR(math_hypot_doc,
843 "hypot(x,y)\n\nReturn the Euclidean distance, sqrt(x*x + y*y).");
845 /* pow can't use math_2, but needs its own wrapper: the problem is
846 that an infinite result can arise either as a result of overflow
847 (in which case OverflowError should be raised) or as a result of
848 e.g. 0.**-5. (for which ValueError needs to be raised.)
851 static PyObject *
852 math_pow(PyObject *self, PyObject *args)
854 PyObject *ox, *oy;
855 double r, x, y;
856 int odd_y;
858 if (! PyArg_UnpackTuple(args, "pow", 2, 2, &ox, &oy))
859 return NULL;
860 x = PyFloat_AsDouble(ox);
861 y = PyFloat_AsDouble(oy);
862 if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
863 return NULL;
865 /* deal directly with IEEE specials, to cope with problems on various
866 platforms whose semantics don't exactly match C99 */
867 r = 0.; /* silence compiler warning */
868 if (!Py_IS_FINITE(x) || !Py_IS_FINITE(y)) {
869 errno = 0;
870 if (Py_IS_NAN(x))
871 r = y == 0. ? 1. : x; /* NaN**0 = 1 */
872 else if (Py_IS_NAN(y))
873 r = x == 1. ? 1. : y; /* 1**NaN = 1 */
874 else if (Py_IS_INFINITY(x)) {
875 odd_y = Py_IS_FINITE(y) && fmod(fabs(y), 2.0) == 1.0;
876 if (y > 0.)
877 r = odd_y ? x : fabs(x);
878 else if (y == 0.)
879 r = 1.;
880 else /* y < 0. */
881 r = odd_y ? copysign(0., x) : 0.;
883 else if (Py_IS_INFINITY(y)) {
884 if (fabs(x) == 1.0)
885 r = 1.;
886 else if (y > 0. && fabs(x) > 1.0)
887 r = y;
888 else if (y < 0. && fabs(x) < 1.0) {
889 r = -y; /* result is +inf */
890 if (x == 0.) /* 0**-inf: divide-by-zero */
891 errno = EDOM;
893 else
894 r = 0.;
897 else {
898 /* let libm handle finite**finite */
899 errno = 0;
900 PyFPE_START_PROTECT("in math_pow", return 0);
901 r = pow(x, y);
902 PyFPE_END_PROTECT(r);
903 /* a NaN result should arise only from (-ve)**(finite
904 non-integer); in this case we want to raise ValueError. */
905 if (!Py_IS_FINITE(r)) {
906 if (Py_IS_NAN(r)) {
907 errno = EDOM;
910 an infinite result here arises either from:
911 (A) (+/-0.)**negative (-> divide-by-zero)
912 (B) overflow of x**y with x and y finite
914 else if (Py_IS_INFINITY(r)) {
915 if (x == 0.)
916 errno = EDOM;
917 else
918 errno = ERANGE;
923 if (errno && is_error(r))
924 return NULL;
925 else
926 return PyFloat_FromDouble(r);
929 PyDoc_STRVAR(math_pow_doc,
930 "pow(x,y)\n\nReturn x**y (x to the power of y).");
932 static const double degToRad = Py_MATH_PI / 180.0;
933 static const double radToDeg = 180.0 / Py_MATH_PI;
935 static PyObject *
936 math_degrees(PyObject *self, PyObject *arg)
938 double x = PyFloat_AsDouble(arg);
939 if (x == -1.0 && PyErr_Occurred())
940 return NULL;
941 return PyFloat_FromDouble(x * radToDeg);
944 PyDoc_STRVAR(math_degrees_doc,
945 "degrees(x) -> converts angle x from radians to degrees");
947 static PyObject *
948 math_radians(PyObject *self, PyObject *arg)
950 double x = PyFloat_AsDouble(arg);
951 if (x == -1.0 && PyErr_Occurred())
952 return NULL;
953 return PyFloat_FromDouble(x * degToRad);
956 PyDoc_STRVAR(math_radians_doc,
957 "radians(x) -> converts angle x from degrees to radians");
959 static PyObject *
960 math_isnan(PyObject *self, PyObject *arg)
962 double x = PyFloat_AsDouble(arg);
963 if (x == -1.0 && PyErr_Occurred())
964 return NULL;
965 return PyBool_FromLong((long)Py_IS_NAN(x));
968 PyDoc_STRVAR(math_isnan_doc,
969 "isnan(x) -> bool\n\
970 Checks if float x is not a number (NaN)");
972 static PyObject *
973 math_isinf(PyObject *self, PyObject *arg)
975 double x = PyFloat_AsDouble(arg);
976 if (x == -1.0 && PyErr_Occurred())
977 return NULL;
978 return PyBool_FromLong((long)Py_IS_INFINITY(x));
981 PyDoc_STRVAR(math_isinf_doc,
982 "isinf(x) -> bool\n\
983 Checks if float x is infinite (positive or negative)");
985 static PyMethodDef math_methods[] = {
986 {"acos", math_acos, METH_O, math_acos_doc},
987 {"acosh", math_acosh, METH_O, math_acosh_doc},
988 {"asin", math_asin, METH_O, math_asin_doc},
989 {"asinh", math_asinh, METH_O, math_asinh_doc},
990 {"atan", math_atan, METH_O, math_atan_doc},
991 {"atan2", math_atan2, METH_VARARGS, math_atan2_doc},
992 {"atanh", math_atanh, METH_O, math_atanh_doc},
993 {"ceil", math_ceil, METH_O, math_ceil_doc},
994 {"copysign", math_copysign, METH_VARARGS, math_copysign_doc},
995 {"cos", math_cos, METH_O, math_cos_doc},
996 {"cosh", math_cosh, METH_O, math_cosh_doc},
997 {"degrees", math_degrees, METH_O, math_degrees_doc},
998 {"exp", math_exp, METH_O, math_exp_doc},
999 {"fabs", math_fabs, METH_O, math_fabs_doc},
1000 {"factorial", math_factorial, METH_O, math_factorial_doc},
1001 {"floor", math_floor, METH_O, math_floor_doc},
1002 {"fmod", math_fmod, METH_VARARGS, math_fmod_doc},
1003 {"frexp", math_frexp, METH_O, math_frexp_doc},
1004 {"hypot", math_hypot, METH_VARARGS, math_hypot_doc},
1005 {"isinf", math_isinf, METH_O, math_isinf_doc},
1006 {"isnan", math_isnan, METH_O, math_isnan_doc},
1007 {"ldexp", math_ldexp, METH_VARARGS, math_ldexp_doc},
1008 {"log", math_log, METH_VARARGS, math_log_doc},
1009 {"log1p", math_log1p, METH_O, math_log1p_doc},
1010 {"log10", math_log10, METH_O, math_log10_doc},
1011 {"modf", math_modf, METH_O, math_modf_doc},
1012 {"pow", math_pow, METH_VARARGS, math_pow_doc},
1013 {"radians", math_radians, METH_O, math_radians_doc},
1014 {"sin", math_sin, METH_O, math_sin_doc},
1015 {"sinh", math_sinh, METH_O, math_sinh_doc},
1016 {"sqrt", math_sqrt, METH_O, math_sqrt_doc},
1017 {"sum", math_sum, METH_O, math_sum_doc},
1018 {"tan", math_tan, METH_O, math_tan_doc},
1019 {"tanh", math_tanh, METH_O, math_tanh_doc},
1020 {"trunc", math_trunc, METH_O, math_trunc_doc},
1021 {NULL, NULL} /* sentinel */
1025 PyDoc_STRVAR(module_doc,
1026 "This module is always available. It provides access to the\n"
1027 "mathematical functions defined by the C standard.");
1029 PyMODINIT_FUNC
1030 initmath(void)
1032 PyObject *m;
1034 m = Py_InitModule3("math", math_methods, module_doc);
1035 if (m == NULL)
1036 goto finally;
1038 PyModule_AddObject(m, "pi", PyFloat_FromDouble(Py_MATH_PI));
1039 PyModule_AddObject(m, "e", PyFloat_FromDouble(Py_MATH_E));
1041 finally:
1042 return;