Issue #5829: don't raise OverflowError for complex('1e500'). Backport of r72803.
[python.git] / Python / pymath.c
blob643805856d9d71c0ad0158a17a73d6202fe133c4
1 #include "Python.h"
3 #ifdef X87_DOUBLE_ROUNDING
4 /* On x86 platforms using an x87 FPU, this function is called from the
5 Py_FORCE_DOUBLE macro (defined in pymath.h) to force a floating-point
6 number out of an 80-bit x87 FPU register and into a 64-bit memory location,
7 thus rounding from extended precision to double precision. */
8 double _Py_force_double(double x)
10 volatile double y;
11 y = x;
12 return y;
14 #endif
16 #ifndef HAVE_HYPOT
17 double hypot(double x, double y)
19 double yx;
21 x = fabs(x);
22 y = fabs(y);
23 if (x < y) {
24 double temp = x;
25 x = y;
26 y = temp;
28 if (x == 0.)
29 return 0.;
30 else {
31 yx = y/x;
32 return x*sqrt(1.+yx*yx);
35 #endif /* HAVE_HYPOT */
37 #ifndef HAVE_COPYSIGN
38 double
39 copysign(double x, double y)
41 /* use atan2 to distinguish -0. from 0. */
42 if (y > 0. || (y == 0. && atan2(y, -1.) > 0.)) {
43 return fabs(x);
44 } else {
45 return -fabs(x);
48 #endif /* HAVE_COPYSIGN */
50 #ifndef HAVE_ROUND
51 double
52 round(double x)
54 double absx, y;
55 absx = fabs(x);
56 y = floor(absx);
57 if (absx - y >= 0.5)
58 y += 1.0;
59 return copysign(y, x);
61 #endif /* HAVE_ROUND */
63 #ifndef HAVE_LOG1P
64 #include <float.h>
66 double
67 log1p(double x)
69 /* For x small, we use the following approach. Let y be the nearest
70 float to 1+x, then
72 1+x = y * (1 - (y-1-x)/y)
74 so log(1+x) = log(y) + log(1-(y-1-x)/y). Since (y-1-x)/y is tiny,
75 the second term is well approximated by (y-1-x)/y. If abs(x) >=
76 DBL_EPSILON/2 or the rounding-mode is some form of round-to-nearest
77 then y-1-x will be exactly representable, and is computed exactly
78 by (y-1)-x.
80 If abs(x) < DBL_EPSILON/2 and the rounding mode is not known to be
81 round-to-nearest then this method is slightly dangerous: 1+x could
82 be rounded up to 1+DBL_EPSILON instead of down to 1, and in that
83 case y-1-x will not be exactly representable any more and the
84 result can be off by many ulps. But this is easily fixed: for a
85 floating-point number |x| < DBL_EPSILON/2., the closest
86 floating-point number to log(1+x) is exactly x.
89 double y;
90 if (fabs(x) < DBL_EPSILON/2.) {
91 return x;
92 } else if (-0.5 <= x && x <= 1.) {
93 /* WARNING: it's possible than an overeager compiler
94 will incorrectly optimize the following two lines
95 to the equivalent of "return log(1.+x)". If this
96 happens, then results from log1p will be inaccurate
97 for small x. */
98 y = 1.+x;
99 return log(y)-((y-1.)-x)/y;
100 } else {
101 /* NaNs and infinities should end up here */
102 return log(1.+x);
105 #endif /* HAVE_LOG1P */
108 * ====================================================
109 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
111 * Developed at SunPro, a Sun Microsystems, Inc. business.
112 * Permission to use, copy, modify, and distribute this
113 * software is freely granted, provided that this notice
114 * is preserved.
115 * ====================================================
118 static const double ln2 = 6.93147180559945286227E-01;
119 static const double two_pow_m28 = 3.7252902984619141E-09; /* 2**-28 */
120 static const double two_pow_p28 = 268435456.0; /* 2**28 */
121 static const double zero = 0.0;
123 /* asinh(x)
124 * Method :
125 * Based on
126 * asinh(x) = sign(x) * log [ |x| + sqrt(x*x+1) ]
127 * we have
128 * asinh(x) := x if 1+x*x=1,
129 * := sign(x)*(log(x)+ln2)) for large |x|, else
130 * := sign(x)*log(2|x|+1/(|x|+sqrt(x*x+1))) if|x|>2, else
131 * := sign(x)*log1p(|x| + x^2/(1 + sqrt(1+x^2)))
134 #ifndef HAVE_ASINH
135 double
136 asinh(double x)
138 double w;
139 double absx = fabs(x);
141 if (Py_IS_NAN(x) || Py_IS_INFINITY(x)) {
142 return x+x;
144 if (absx < two_pow_m28) { /* |x| < 2**-28 */
145 return x; /* return x inexact except 0 */
147 if (absx > two_pow_p28) { /* |x| > 2**28 */
148 w = log(absx)+ln2;
150 else if (absx > 2.0) { /* 2 < |x| < 2**28 */
151 w = log(2.0*absx + 1.0 / (sqrt(x*x + 1.0) + absx));
153 else { /* 2**-28 <= |x| < 2= */
154 double t = x*x;
155 w = log1p(absx + t / (1.0 + sqrt(1.0 + t)));
157 return copysign(w, x);
160 #endif /* HAVE_ASINH */
162 /* acosh(x)
163 * Method :
164 * Based on
165 * acosh(x) = log [ x + sqrt(x*x-1) ]
166 * we have
167 * acosh(x) := log(x)+ln2, if x is large; else
168 * acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else
169 * acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1.
171 * Special cases:
172 * acosh(x) is NaN with signal if x<1.
173 * acosh(NaN) is NaN without signal.
176 #ifndef HAVE_ACOSH
177 double
178 acosh(double x)
180 if (Py_IS_NAN(x)) {
181 return x+x;
183 if (x < 1.) { /* x < 1; return a signaling NaN */
184 errno = EDOM;
185 #ifdef Py_NAN
186 return Py_NAN;
187 #else
188 return (x-x)/(x-x);
189 #endif
191 else if (x >= two_pow_p28) { /* x > 2**28 */
192 if (Py_IS_INFINITY(x)) {
193 return x+x;
194 } else {
195 return log(x)+ln2; /* acosh(huge)=log(2x) */
198 else if (x == 1.) {
199 return 0.0; /* acosh(1) = 0 */
201 else if (x > 2.) { /* 2 < x < 2**28 */
202 double t = x*x;
203 return log(2.0*x - 1.0 / (x + sqrt(t - 1.0)));
205 else { /* 1 < x <= 2 */
206 double t = x - 1.0;
207 return log1p(t + sqrt(2.0*t + t*t));
210 #endif /* HAVE_ACOSH */
212 /* atanh(x)
213 * Method :
214 * 1.Reduced x to positive by atanh(-x) = -atanh(x)
215 * 2.For x>=0.5
216 * 1 2x x
217 * atanh(x) = --- * log(1 + -------) = 0.5 * log1p(2 * --------)
218 * 2 1 - x 1 - x
220 * For x<0.5
221 * atanh(x) = 0.5*log1p(2x+2x*x/(1-x))
223 * Special cases:
224 * atanh(x) is NaN if |x| >= 1 with signal;
225 * atanh(NaN) is that NaN with no signal;
229 #ifndef HAVE_ATANH
230 double
231 atanh(double x)
233 double absx;
234 double t;
236 if (Py_IS_NAN(x)) {
237 return x+x;
239 absx = fabs(x);
240 if (absx >= 1.) { /* |x| >= 1 */
241 errno = EDOM;
242 #ifdef Py_NAN
243 return Py_NAN;
244 #else
245 return x/zero;
246 #endif
248 if (absx < two_pow_m28) { /* |x| < 2**-28 */
249 return x;
251 if (absx < 0.5) { /* |x| < 0.5 */
252 t = absx+absx;
253 t = 0.5 * log1p(t + t*absx / (1.0 - absx));
255 else { /* 0.5 <= |x| <= 1.0 */
256 t = 0.5 * log1p((absx + absx) / (1.0 - absx));
258 return copysign(t, x);
260 #endif /* HAVE_ATANH */