3 /* This module provides an interface to NIST's SHA-256 and SHA-224 Algorithms */
5 /* See below for information about the original code this module was
6 based upon. Additional work performed by:
8 Andrew Kuchling (amk@amk.ca)
9 Greg Stein (gstein@lyra.org)
10 Trevor Perrin (trevp@trevp.net)
12 Copyright (C) 2005 Gregory P. Smith (greg@krypto.org)
13 Licensed to PSF under a Contributor Agreement.
20 #include "structmember.h"
23 /* Endianness testing and definitions */
24 #define TestEndianness(variable) {int i=1; variable=PCT_BIG_ENDIAN;\
25 if (*((char*)&i)==1) variable=PCT_LITTLE_ENDIAN;}
27 #define PCT_LITTLE_ENDIAN 1
28 #define PCT_BIG_ENDIAN 0
30 /* Some useful types */
32 typedef unsigned char SHA_BYTE
;
35 typedef unsigned int SHA_INT32
; /* 32-bit integer */
37 /* not defined. compilation will die. */
40 /* The SHA block size and message digest sizes, in bytes */
42 #define SHA_BLOCKSIZE 64
43 #define SHA_DIGESTSIZE 32
45 /* The structure for storing SHA info */
49 SHA_INT32 digest
[8]; /* Message digest */
50 SHA_INT32 count_lo
, count_hi
; /* 64-bit bit count */
51 SHA_BYTE data
[SHA_BLOCKSIZE
]; /* SHA data buffer */
53 int local
; /* unprocessed amount in data */
57 /* When run on a little-endian CPU we need to perform byte reversal on an
58 array of longwords. */
60 static void longReverse(SHA_INT32
*buffer
, int byteCount
, int Endianness
)
64 if ( Endianness
== PCT_BIG_ENDIAN
)
67 byteCount
/= sizeof(*buffer
);
70 value
= ( ( value
& 0xFF00FF00L
) >> 8 ) | \
71 ( ( value
& 0x00FF00FFL
) << 8 );
72 *buffer
++ = ( value
<< 16 ) | ( value
>> 16 );
76 static void SHAcopy(SHAobject
*src
, SHAobject
*dest
)
78 dest
->Endianness
= src
->Endianness
;
79 dest
->local
= src
->local
;
80 dest
->digestsize
= src
->digestsize
;
81 dest
->count_lo
= src
->count_lo
;
82 dest
->count_hi
= src
->count_hi
;
83 memcpy(dest
->digest
, src
->digest
, sizeof(src
->digest
));
84 memcpy(dest
->data
, src
->data
, sizeof(src
->data
));
88 /* ------------------------------------------------------------------------
90 * This code for the SHA-256 algorithm was noted as public domain. The
91 * original headers are pasted below.
93 * Several changes have been made to make it more compatible with the
94 * Python environment and desired interface.
98 /* LibTomCrypt, modular cryptographic library -- Tom St Denis
100 * LibTomCrypt is a library that provides various cryptographic
101 * algorithms in a highly modular and flexible manner.
103 * The library is free for all purposes without any express
106 * Tom St Denis, tomstdenis@iahu.ca, http://libtomcrypt.org
110 /* SHA256 by Tom St Denis */
112 /* Various logical functions */
114 ( ((((unsigned long)(x)&0xFFFFFFFFUL)>>(unsigned long)((y)&31)) | \
115 ((unsigned long)(x)<<(unsigned long)(32-((y)&31)))) & 0xFFFFFFFFUL)
116 #define Ch(x,y,z) (z ^ (x & (y ^ z)))
117 #define Maj(x,y,z) (((x | y) & z) | (x & y))
118 #define S(x, n) ROR((x),(n))
119 #define R(x, n) (((x)&0xFFFFFFFFUL)>>(n))
120 #define Sigma0(x) (S(x, 2) ^ S(x, 13) ^ S(x, 22))
121 #define Sigma1(x) (S(x, 6) ^ S(x, 11) ^ S(x, 25))
122 #define Gamma0(x) (S(x, 7) ^ S(x, 18) ^ R(x, 3))
123 #define Gamma1(x) (S(x, 17) ^ S(x, 19) ^ R(x, 10))
127 sha_transform(SHAobject
*sha_info
)
130 SHA_INT32 S
[8], W
[64], t0
, t1
;
132 memcpy(W
, sha_info
->data
, sizeof(sha_info
->data
));
133 longReverse(W
, (int)sizeof(sha_info
->data
), sha_info
->Endianness
);
135 for (i
= 16; i
< 64; ++i
) {
136 W
[i
] = Gamma1(W
[i
- 2]) + W
[i
- 7] + Gamma0(W
[i
- 15]) + W
[i
- 16];
138 for (i
= 0; i
< 8; ++i
) {
139 S
[i
] = sha_info
->digest
[i
];
143 #define RND(a,b,c,d,e,f,g,h,i,ki) \
144 t0 = h + Sigma1(e) + Ch(e, f, g) + ki + W[i]; \
145 t1 = Sigma0(a) + Maj(a, b, c); \
149 RND(S
[0],S
[1],S
[2],S
[3],S
[4],S
[5],S
[6],S
[7],0,0x428a2f98);
150 RND(S
[7],S
[0],S
[1],S
[2],S
[3],S
[4],S
[5],S
[6],1,0x71374491);
151 RND(S
[6],S
[7],S
[0],S
[1],S
[2],S
[3],S
[4],S
[5],2,0xb5c0fbcf);
152 RND(S
[5],S
[6],S
[7],S
[0],S
[1],S
[2],S
[3],S
[4],3,0xe9b5dba5);
153 RND(S
[4],S
[5],S
[6],S
[7],S
[0],S
[1],S
[2],S
[3],4,0x3956c25b);
154 RND(S
[3],S
[4],S
[5],S
[6],S
[7],S
[0],S
[1],S
[2],5,0x59f111f1);
155 RND(S
[2],S
[3],S
[4],S
[5],S
[6],S
[7],S
[0],S
[1],6,0x923f82a4);
156 RND(S
[1],S
[2],S
[3],S
[4],S
[5],S
[6],S
[7],S
[0],7,0xab1c5ed5);
157 RND(S
[0],S
[1],S
[2],S
[3],S
[4],S
[5],S
[6],S
[7],8,0xd807aa98);
158 RND(S
[7],S
[0],S
[1],S
[2],S
[3],S
[4],S
[5],S
[6],9,0x12835b01);
159 RND(S
[6],S
[7],S
[0],S
[1],S
[2],S
[3],S
[4],S
[5],10,0x243185be);
160 RND(S
[5],S
[6],S
[7],S
[0],S
[1],S
[2],S
[3],S
[4],11,0x550c7dc3);
161 RND(S
[4],S
[5],S
[6],S
[7],S
[0],S
[1],S
[2],S
[3],12,0x72be5d74);
162 RND(S
[3],S
[4],S
[5],S
[6],S
[7],S
[0],S
[1],S
[2],13,0x80deb1fe);
163 RND(S
[2],S
[3],S
[4],S
[5],S
[6],S
[7],S
[0],S
[1],14,0x9bdc06a7);
164 RND(S
[1],S
[2],S
[3],S
[4],S
[5],S
[6],S
[7],S
[0],15,0xc19bf174);
165 RND(S
[0],S
[1],S
[2],S
[3],S
[4],S
[5],S
[6],S
[7],16,0xe49b69c1);
166 RND(S
[7],S
[0],S
[1],S
[2],S
[3],S
[4],S
[5],S
[6],17,0xefbe4786);
167 RND(S
[6],S
[7],S
[0],S
[1],S
[2],S
[3],S
[4],S
[5],18,0x0fc19dc6);
168 RND(S
[5],S
[6],S
[7],S
[0],S
[1],S
[2],S
[3],S
[4],19,0x240ca1cc);
169 RND(S
[4],S
[5],S
[6],S
[7],S
[0],S
[1],S
[2],S
[3],20,0x2de92c6f);
170 RND(S
[3],S
[4],S
[5],S
[6],S
[7],S
[0],S
[1],S
[2],21,0x4a7484aa);
171 RND(S
[2],S
[3],S
[4],S
[5],S
[6],S
[7],S
[0],S
[1],22,0x5cb0a9dc);
172 RND(S
[1],S
[2],S
[3],S
[4],S
[5],S
[6],S
[7],S
[0],23,0x76f988da);
173 RND(S
[0],S
[1],S
[2],S
[3],S
[4],S
[5],S
[6],S
[7],24,0x983e5152);
174 RND(S
[7],S
[0],S
[1],S
[2],S
[3],S
[4],S
[5],S
[6],25,0xa831c66d);
175 RND(S
[6],S
[7],S
[0],S
[1],S
[2],S
[3],S
[4],S
[5],26,0xb00327c8);
176 RND(S
[5],S
[6],S
[7],S
[0],S
[1],S
[2],S
[3],S
[4],27,0xbf597fc7);
177 RND(S
[4],S
[5],S
[6],S
[7],S
[0],S
[1],S
[2],S
[3],28,0xc6e00bf3);
178 RND(S
[3],S
[4],S
[5],S
[6],S
[7],S
[0],S
[1],S
[2],29,0xd5a79147);
179 RND(S
[2],S
[3],S
[4],S
[5],S
[6],S
[7],S
[0],S
[1],30,0x06ca6351);
180 RND(S
[1],S
[2],S
[3],S
[4],S
[5],S
[6],S
[7],S
[0],31,0x14292967);
181 RND(S
[0],S
[1],S
[2],S
[3],S
[4],S
[5],S
[6],S
[7],32,0x27b70a85);
182 RND(S
[7],S
[0],S
[1],S
[2],S
[3],S
[4],S
[5],S
[6],33,0x2e1b2138);
183 RND(S
[6],S
[7],S
[0],S
[1],S
[2],S
[3],S
[4],S
[5],34,0x4d2c6dfc);
184 RND(S
[5],S
[6],S
[7],S
[0],S
[1],S
[2],S
[3],S
[4],35,0x53380d13);
185 RND(S
[4],S
[5],S
[6],S
[7],S
[0],S
[1],S
[2],S
[3],36,0x650a7354);
186 RND(S
[3],S
[4],S
[5],S
[6],S
[7],S
[0],S
[1],S
[2],37,0x766a0abb);
187 RND(S
[2],S
[3],S
[4],S
[5],S
[6],S
[7],S
[0],S
[1],38,0x81c2c92e);
188 RND(S
[1],S
[2],S
[3],S
[4],S
[5],S
[6],S
[7],S
[0],39,0x92722c85);
189 RND(S
[0],S
[1],S
[2],S
[3],S
[4],S
[5],S
[6],S
[7],40,0xa2bfe8a1);
190 RND(S
[7],S
[0],S
[1],S
[2],S
[3],S
[4],S
[5],S
[6],41,0xa81a664b);
191 RND(S
[6],S
[7],S
[0],S
[1],S
[2],S
[3],S
[4],S
[5],42,0xc24b8b70);
192 RND(S
[5],S
[6],S
[7],S
[0],S
[1],S
[2],S
[3],S
[4],43,0xc76c51a3);
193 RND(S
[4],S
[5],S
[6],S
[7],S
[0],S
[1],S
[2],S
[3],44,0xd192e819);
194 RND(S
[3],S
[4],S
[5],S
[6],S
[7],S
[0],S
[1],S
[2],45,0xd6990624);
195 RND(S
[2],S
[3],S
[4],S
[5],S
[6],S
[7],S
[0],S
[1],46,0xf40e3585);
196 RND(S
[1],S
[2],S
[3],S
[4],S
[5],S
[6],S
[7],S
[0],47,0x106aa070);
197 RND(S
[0],S
[1],S
[2],S
[3],S
[4],S
[5],S
[6],S
[7],48,0x19a4c116);
198 RND(S
[7],S
[0],S
[1],S
[2],S
[3],S
[4],S
[5],S
[6],49,0x1e376c08);
199 RND(S
[6],S
[7],S
[0],S
[1],S
[2],S
[3],S
[4],S
[5],50,0x2748774c);
200 RND(S
[5],S
[6],S
[7],S
[0],S
[1],S
[2],S
[3],S
[4],51,0x34b0bcb5);
201 RND(S
[4],S
[5],S
[6],S
[7],S
[0],S
[1],S
[2],S
[3],52,0x391c0cb3);
202 RND(S
[3],S
[4],S
[5],S
[6],S
[7],S
[0],S
[1],S
[2],53,0x4ed8aa4a);
203 RND(S
[2],S
[3],S
[4],S
[5],S
[6],S
[7],S
[0],S
[1],54,0x5b9cca4f);
204 RND(S
[1],S
[2],S
[3],S
[4],S
[5],S
[6],S
[7],S
[0],55,0x682e6ff3);
205 RND(S
[0],S
[1],S
[2],S
[3],S
[4],S
[5],S
[6],S
[7],56,0x748f82ee);
206 RND(S
[7],S
[0],S
[1],S
[2],S
[3],S
[4],S
[5],S
[6],57,0x78a5636f);
207 RND(S
[6],S
[7],S
[0],S
[1],S
[2],S
[3],S
[4],S
[5],58,0x84c87814);
208 RND(S
[5],S
[6],S
[7],S
[0],S
[1],S
[2],S
[3],S
[4],59,0x8cc70208);
209 RND(S
[4],S
[5],S
[6],S
[7],S
[0],S
[1],S
[2],S
[3],60,0x90befffa);
210 RND(S
[3],S
[4],S
[5],S
[6],S
[7],S
[0],S
[1],S
[2],61,0xa4506ceb);
211 RND(S
[2],S
[3],S
[4],S
[5],S
[6],S
[7],S
[0],S
[1],62,0xbef9a3f7);
212 RND(S
[1],S
[2],S
[3],S
[4],S
[5],S
[6],S
[7],S
[0],63,0xc67178f2);
217 for (i
= 0; i
< 8; i
++) {
218 sha_info
->digest
[i
] = sha_info
->digest
[i
] + S
[i
];
225 /* initialize the SHA digest */
228 sha_init(SHAobject
*sha_info
)
230 TestEndianness(sha_info
->Endianness
)
231 sha_info
->digest
[0] = 0x6A09E667L
;
232 sha_info
->digest
[1] = 0xBB67AE85L
;
233 sha_info
->digest
[2] = 0x3C6EF372L
;
234 sha_info
->digest
[3] = 0xA54FF53AL
;
235 sha_info
->digest
[4] = 0x510E527FL
;
236 sha_info
->digest
[5] = 0x9B05688CL
;
237 sha_info
->digest
[6] = 0x1F83D9ABL
;
238 sha_info
->digest
[7] = 0x5BE0CD19L
;
239 sha_info
->count_lo
= 0L;
240 sha_info
->count_hi
= 0L;
242 sha_info
->digestsize
= 32;
246 sha224_init(SHAobject
*sha_info
)
248 TestEndianness(sha_info
->Endianness
)
249 sha_info
->digest
[0] = 0xc1059ed8L
;
250 sha_info
->digest
[1] = 0x367cd507L
;
251 sha_info
->digest
[2] = 0x3070dd17L
;
252 sha_info
->digest
[3] = 0xf70e5939L
;
253 sha_info
->digest
[4] = 0xffc00b31L
;
254 sha_info
->digest
[5] = 0x68581511L
;
255 sha_info
->digest
[6] = 0x64f98fa7L
;
256 sha_info
->digest
[7] = 0xbefa4fa4L
;
257 sha_info
->count_lo
= 0L;
258 sha_info
->count_hi
= 0L;
260 sha_info
->digestsize
= 28;
264 /* update the SHA digest */
267 sha_update(SHAobject
*sha_info
, SHA_BYTE
*buffer
, int count
)
272 clo
= sha_info
->count_lo
+ ((SHA_INT32
) count
<< 3);
273 if (clo
< sha_info
->count_lo
) {
274 ++sha_info
->count_hi
;
276 sha_info
->count_lo
= clo
;
277 sha_info
->count_hi
+= (SHA_INT32
) count
>> 29;
278 if (sha_info
->local
) {
279 i
= SHA_BLOCKSIZE
- sha_info
->local
;
283 memcpy(((SHA_BYTE
*) sha_info
->data
) + sha_info
->local
, buffer
, i
);
286 sha_info
->local
+= i
;
287 if (sha_info
->local
== SHA_BLOCKSIZE
) {
288 sha_transform(sha_info
);
294 while (count
>= SHA_BLOCKSIZE
) {
295 memcpy(sha_info
->data
, buffer
, SHA_BLOCKSIZE
);
296 buffer
+= SHA_BLOCKSIZE
;
297 count
-= SHA_BLOCKSIZE
;
298 sha_transform(sha_info
);
300 memcpy(sha_info
->data
, buffer
, count
);
301 sha_info
->local
= count
;
304 /* finish computing the SHA digest */
307 sha_final(unsigned char digest
[SHA_DIGESTSIZE
], SHAobject
*sha_info
)
310 SHA_INT32 lo_bit_count
, hi_bit_count
;
312 lo_bit_count
= sha_info
->count_lo
;
313 hi_bit_count
= sha_info
->count_hi
;
314 count
= (int) ((lo_bit_count
>> 3) & 0x3f);
315 ((SHA_BYTE
*) sha_info
->data
)[count
++] = 0x80;
316 if (count
> SHA_BLOCKSIZE
- 8) {
317 memset(((SHA_BYTE
*) sha_info
->data
) + count
, 0,
318 SHA_BLOCKSIZE
- count
);
319 sha_transform(sha_info
);
320 memset((SHA_BYTE
*) sha_info
->data
, 0, SHA_BLOCKSIZE
- 8);
323 memset(((SHA_BYTE
*) sha_info
->data
) + count
, 0,
324 SHA_BLOCKSIZE
- 8 - count
);
327 /* GJS: note that we add the hi/lo in big-endian. sha_transform will
328 swap these values into host-order. */
329 sha_info
->data
[56] = (hi_bit_count
>> 24) & 0xff;
330 sha_info
->data
[57] = (hi_bit_count
>> 16) & 0xff;
331 sha_info
->data
[58] = (hi_bit_count
>> 8) & 0xff;
332 sha_info
->data
[59] = (hi_bit_count
>> 0) & 0xff;
333 sha_info
->data
[60] = (lo_bit_count
>> 24) & 0xff;
334 sha_info
->data
[61] = (lo_bit_count
>> 16) & 0xff;
335 sha_info
->data
[62] = (lo_bit_count
>> 8) & 0xff;
336 sha_info
->data
[63] = (lo_bit_count
>> 0) & 0xff;
337 sha_transform(sha_info
);
338 digest
[ 0] = (unsigned char) ((sha_info
->digest
[0] >> 24) & 0xff);
339 digest
[ 1] = (unsigned char) ((sha_info
->digest
[0] >> 16) & 0xff);
340 digest
[ 2] = (unsigned char) ((sha_info
->digest
[0] >> 8) & 0xff);
341 digest
[ 3] = (unsigned char) ((sha_info
->digest
[0] ) & 0xff);
342 digest
[ 4] = (unsigned char) ((sha_info
->digest
[1] >> 24) & 0xff);
343 digest
[ 5] = (unsigned char) ((sha_info
->digest
[1] >> 16) & 0xff);
344 digest
[ 6] = (unsigned char) ((sha_info
->digest
[1] >> 8) & 0xff);
345 digest
[ 7] = (unsigned char) ((sha_info
->digest
[1] ) & 0xff);
346 digest
[ 8] = (unsigned char) ((sha_info
->digest
[2] >> 24) & 0xff);
347 digest
[ 9] = (unsigned char) ((sha_info
->digest
[2] >> 16) & 0xff);
348 digest
[10] = (unsigned char) ((sha_info
->digest
[2] >> 8) & 0xff);
349 digest
[11] = (unsigned char) ((sha_info
->digest
[2] ) & 0xff);
350 digest
[12] = (unsigned char) ((sha_info
->digest
[3] >> 24) & 0xff);
351 digest
[13] = (unsigned char) ((sha_info
->digest
[3] >> 16) & 0xff);
352 digest
[14] = (unsigned char) ((sha_info
->digest
[3] >> 8) & 0xff);
353 digest
[15] = (unsigned char) ((sha_info
->digest
[3] ) & 0xff);
354 digest
[16] = (unsigned char) ((sha_info
->digest
[4] >> 24) & 0xff);
355 digest
[17] = (unsigned char) ((sha_info
->digest
[4] >> 16) & 0xff);
356 digest
[18] = (unsigned char) ((sha_info
->digest
[4] >> 8) & 0xff);
357 digest
[19] = (unsigned char) ((sha_info
->digest
[4] ) & 0xff);
358 digest
[20] = (unsigned char) ((sha_info
->digest
[5] >> 24) & 0xff);
359 digest
[21] = (unsigned char) ((sha_info
->digest
[5] >> 16) & 0xff);
360 digest
[22] = (unsigned char) ((sha_info
->digest
[5] >> 8) & 0xff);
361 digest
[23] = (unsigned char) ((sha_info
->digest
[5] ) & 0xff);
362 digest
[24] = (unsigned char) ((sha_info
->digest
[6] >> 24) & 0xff);
363 digest
[25] = (unsigned char) ((sha_info
->digest
[6] >> 16) & 0xff);
364 digest
[26] = (unsigned char) ((sha_info
->digest
[6] >> 8) & 0xff);
365 digest
[27] = (unsigned char) ((sha_info
->digest
[6] ) & 0xff);
366 digest
[28] = (unsigned char) ((sha_info
->digest
[7] >> 24) & 0xff);
367 digest
[29] = (unsigned char) ((sha_info
->digest
[7] >> 16) & 0xff);
368 digest
[30] = (unsigned char) ((sha_info
->digest
[7] >> 8) & 0xff);
369 digest
[31] = (unsigned char) ((sha_info
->digest
[7] ) & 0xff);
373 * End of copied SHA code.
375 * ------------------------------------------------------------------------
378 static PyTypeObject SHA224type
;
379 static PyTypeObject SHA256type
;
383 newSHA224object(void)
385 return (SHAobject
*)PyObject_New(SHAobject
, &SHA224type
);
389 newSHA256object(void)
391 return (SHAobject
*)PyObject_New(SHAobject
, &SHA256type
);
394 /* Internal methods for a hash object */
397 SHA_dealloc(PyObject
*ptr
)
403 /* External methods for a hash object */
405 PyDoc_STRVAR(SHA256_copy__doc__
, "Return a copy of the hash object.");
408 SHA256_copy(SHAobject
*self
, PyObject
*unused
)
412 if (Py_TYPE(self
) == &SHA256type
) {
413 if ( (newobj
= newSHA256object())==NULL
)
416 if ( (newobj
= newSHA224object())==NULL
)
420 SHAcopy(self
, newobj
);
421 return (PyObject
*)newobj
;
424 PyDoc_STRVAR(SHA256_digest__doc__
,
425 "Return the digest value as a string of binary data.");
428 SHA256_digest(SHAobject
*self
, PyObject
*unused
)
430 unsigned char digest
[SHA_DIGESTSIZE
];
433 SHAcopy(self
, &temp
);
434 sha_final(digest
, &temp
);
435 return PyString_FromStringAndSize((const char *)digest
, self
->digestsize
);
438 PyDoc_STRVAR(SHA256_hexdigest__doc__
,
439 "Return the digest value as a string of hexadecimal digits.");
442 SHA256_hexdigest(SHAobject
*self
, PyObject
*unused
)
444 unsigned char digest
[SHA_DIGESTSIZE
];
450 /* Get the raw (binary) digest value */
451 SHAcopy(self
, &temp
);
452 sha_final(digest
, &temp
);
454 /* Create a new string */
455 retval
= PyString_FromStringAndSize(NULL
, self
->digestsize
* 2);
458 hex_digest
= PyString_AsString(retval
);
464 /* Make hex version of the digest */
465 for(i
=j
=0; i
<self
->digestsize
; i
++) {
467 c
= (digest
[i
] >> 4) & 0xf;
468 c
= (c
>9) ? c
+'a'-10 : c
+ '0';
470 c
= (digest
[i
] & 0xf);
471 c
= (c
>9) ? c
+'a'-10 : c
+ '0';
477 PyDoc_STRVAR(SHA256_update__doc__
,
478 "Update this hash object's state with the provided string.");
481 SHA256_update(SHAobject
*self
, PyObject
*args
)
486 if (!PyArg_ParseTuple(args
, "s#:update", &cp
, &len
))
489 sha_update(self
, cp
, len
);
495 static PyMethodDef SHA_methods
[] = {
496 {"copy", (PyCFunction
)SHA256_copy
, METH_NOARGS
, SHA256_copy__doc__
},
497 {"digest", (PyCFunction
)SHA256_digest
, METH_NOARGS
, SHA256_digest__doc__
},
498 {"hexdigest", (PyCFunction
)SHA256_hexdigest
, METH_NOARGS
, SHA256_hexdigest__doc__
},
499 {"update", (PyCFunction
)SHA256_update
, METH_VARARGS
, SHA256_update__doc__
},
500 {NULL
, NULL
} /* sentinel */
504 SHA256_get_block_size(PyObject
*self
, void *closure
)
506 return PyInt_FromLong(SHA_BLOCKSIZE
);
510 SHA256_get_name(PyObject
*self
, void *closure
)
512 if (((SHAobject
*)self
)->digestsize
== 32)
513 return PyString_FromStringAndSize("SHA256", 6);
515 return PyString_FromStringAndSize("SHA224", 6);
518 static PyGetSetDef SHA_getseters
[] = {
520 (getter
)SHA256_get_block_size
, NULL
,
524 (getter
)SHA256_get_name
, NULL
,
527 {NULL
} /* Sentinel */
530 static PyMemberDef SHA_members
[] = {
531 {"digest_size", T_INT
, offsetof(SHAobject
, digestsize
), READONLY
, NULL
},
532 /* the old md5 and sha modules support 'digest_size' as in PEP 247.
533 * the old sha module also supported 'digestsize'. ugh. */
534 {"digestsize", T_INT
, offsetof(SHAobject
, digestsize
), READONLY
, NULL
},
535 {NULL
} /* Sentinel */
538 static PyTypeObject SHA224type
= {
539 PyVarObject_HEAD_INIT(NULL
, 0)
540 "_sha256.sha224", /*tp_name*/
541 sizeof(SHAobject
), /*tp_size*/
544 SHA_dealloc
, /*tp_dealloc*/
551 0, /*tp_as_sequence*/
559 Py_TPFLAGS_DEFAULT
, /*tp_flags*/
563 0, /*tp_richcompare*/
564 0, /*tp_weaklistoffset*/
567 SHA_methods
, /* tp_methods */
568 SHA_members
, /* tp_members */
569 SHA_getseters
, /* tp_getset */
572 static PyTypeObject SHA256type
= {
573 PyVarObject_HEAD_INIT(NULL
, 0)
574 "_sha256.sha256", /*tp_name*/
575 sizeof(SHAobject
), /*tp_size*/
578 SHA_dealloc
, /*tp_dealloc*/
585 0, /*tp_as_sequence*/
593 Py_TPFLAGS_DEFAULT
, /*tp_flags*/
597 0, /*tp_richcompare*/
598 0, /*tp_weaklistoffset*/
601 SHA_methods
, /* tp_methods */
602 SHA_members
, /* tp_members */
603 SHA_getseters
, /* tp_getset */
607 /* The single module-level function: new() */
609 PyDoc_STRVAR(SHA256_new__doc__
,
610 "Return a new SHA-256 hash object; optionally initialized with a string.");
613 SHA256_new(PyObject
*self
, PyObject
*args
, PyObject
*kwdict
)
615 static char *kwlist
[] = {"string", NULL
};
617 unsigned char *cp
= NULL
;
620 if (!PyArg_ParseTupleAndKeywords(args
, kwdict
, "|s#:new", kwlist
,
625 if ((new = newSHA256object()) == NULL
)
630 if (PyErr_Occurred()) {
635 sha_update(new, cp
, len
);
637 return (PyObject
*)new;
640 PyDoc_STRVAR(SHA224_new__doc__
,
641 "Return a new SHA-224 hash object; optionally initialized with a string.");
644 SHA224_new(PyObject
*self
, PyObject
*args
, PyObject
*kwdict
)
646 static char *kwlist
[] = {"string", NULL
};
648 unsigned char *cp
= NULL
;
651 if (!PyArg_ParseTupleAndKeywords(args
, kwdict
, "|s#:new", kwlist
,
656 if ((new = newSHA224object()) == NULL
)
661 if (PyErr_Occurred()) {
666 sha_update(new, cp
, len
);
668 return (PyObject
*)new;
672 /* List of functions exported by this module */
674 static struct PyMethodDef SHA_functions
[] = {
675 {"sha256", (PyCFunction
)SHA256_new
, METH_VARARGS
|METH_KEYWORDS
, SHA256_new__doc__
},
676 {"sha224", (PyCFunction
)SHA224_new
, METH_VARARGS
|METH_KEYWORDS
, SHA224_new__doc__
},
677 {NULL
, NULL
} /* Sentinel */
681 /* Initialize this module. */
683 #define insint(n,v) { PyModule_AddIntConstant(m,n,v); }
690 Py_TYPE(&SHA224type
) = &PyType_Type
;
691 if (PyType_Ready(&SHA224type
) < 0)
693 Py_TYPE(&SHA256type
) = &PyType_Type
;
694 if (PyType_Ready(&SHA256type
) < 0)
696 m
= Py_InitModule("_sha256", SHA_functions
);