Deprecate the timing module for removal in Python 3.0.
[python.git] / Modules / sha256module.c
blob7d569002013e6131d07aedb81bdde64a937730da
1 /* SHA256 module */
3 /* This module provides an interface to NIST's SHA-256 and SHA-224 Algorithms */
5 /* See below for information about the original code this module was
6 based upon. Additional work performed by:
8 Andrew Kuchling (amk@amk.ca)
9 Greg Stein (gstein@lyra.org)
10 Trevor Perrin (trevp@trevp.net)
12 Copyright (C) 2005 Gregory P. Smith (greg@krypto.org)
13 Licensed to PSF under a Contributor Agreement.
17 /* SHA objects */
19 #include "Python.h"
20 #include "structmember.h"
23 /* Endianness testing and definitions */
24 #define TestEndianness(variable) {int i=1; variable=PCT_BIG_ENDIAN;\
25 if (*((char*)&i)==1) variable=PCT_LITTLE_ENDIAN;}
27 #define PCT_LITTLE_ENDIAN 1
28 #define PCT_BIG_ENDIAN 0
30 /* Some useful types */
32 typedef unsigned char SHA_BYTE;
34 #if SIZEOF_INT == 4
35 typedef unsigned int SHA_INT32; /* 32-bit integer */
36 #else
37 /* not defined. compilation will die. */
38 #endif
40 /* The SHA block size and message digest sizes, in bytes */
42 #define SHA_BLOCKSIZE 64
43 #define SHA_DIGESTSIZE 32
45 /* The structure for storing SHA info */
47 typedef struct {
48 PyObject_HEAD
49 SHA_INT32 digest[8]; /* Message digest */
50 SHA_INT32 count_lo, count_hi; /* 64-bit bit count */
51 SHA_BYTE data[SHA_BLOCKSIZE]; /* SHA data buffer */
52 int Endianness;
53 int local; /* unprocessed amount in data */
54 int digestsize;
55 } SHAobject;
57 /* When run on a little-endian CPU we need to perform byte reversal on an
58 array of longwords. */
60 static void longReverse(SHA_INT32 *buffer, int byteCount, int Endianness)
62 SHA_INT32 value;
64 if ( Endianness == PCT_BIG_ENDIAN )
65 return;
67 byteCount /= sizeof(*buffer);
68 while (byteCount--) {
69 value = *buffer;
70 value = ( ( value & 0xFF00FF00L ) >> 8 ) | \
71 ( ( value & 0x00FF00FFL ) << 8 );
72 *buffer++ = ( value << 16 ) | ( value >> 16 );
76 static void SHAcopy(SHAobject *src, SHAobject *dest)
78 dest->Endianness = src->Endianness;
79 dest->local = src->local;
80 dest->digestsize = src->digestsize;
81 dest->count_lo = src->count_lo;
82 dest->count_hi = src->count_hi;
83 memcpy(dest->digest, src->digest, sizeof(src->digest));
84 memcpy(dest->data, src->data, sizeof(src->data));
88 /* ------------------------------------------------------------------------
90 * This code for the SHA-256 algorithm was noted as public domain. The
91 * original headers are pasted below.
93 * Several changes have been made to make it more compatible with the
94 * Python environment and desired interface.
98 /* LibTomCrypt, modular cryptographic library -- Tom St Denis
100 * LibTomCrypt is a library that provides various cryptographic
101 * algorithms in a highly modular and flexible manner.
103 * The library is free for all purposes without any express
104 * gurantee it works.
106 * Tom St Denis, tomstdenis@iahu.ca, http://libtomcrypt.org
110 /* SHA256 by Tom St Denis */
112 /* Various logical functions */
113 #define ROR(x, y)\
114 ( ((((unsigned long)(x)&0xFFFFFFFFUL)>>(unsigned long)((y)&31)) | \
115 ((unsigned long)(x)<<(unsigned long)(32-((y)&31)))) & 0xFFFFFFFFUL)
116 #define Ch(x,y,z) (z ^ (x & (y ^ z)))
117 #define Maj(x,y,z) (((x | y) & z) | (x & y))
118 #define S(x, n) ROR((x),(n))
119 #define R(x, n) (((x)&0xFFFFFFFFUL)>>(n))
120 #define Sigma0(x) (S(x, 2) ^ S(x, 13) ^ S(x, 22))
121 #define Sigma1(x) (S(x, 6) ^ S(x, 11) ^ S(x, 25))
122 #define Gamma0(x) (S(x, 7) ^ S(x, 18) ^ R(x, 3))
123 #define Gamma1(x) (S(x, 17) ^ S(x, 19) ^ R(x, 10))
126 static void
127 sha_transform(SHAobject *sha_info)
129 int i;
130 SHA_INT32 S[8], W[64], t0, t1;
132 memcpy(W, sha_info->data, sizeof(sha_info->data));
133 longReverse(W, (int)sizeof(sha_info->data), sha_info->Endianness);
135 for (i = 16; i < 64; ++i) {
136 W[i] = Gamma1(W[i - 2]) + W[i - 7] + Gamma0(W[i - 15]) + W[i - 16];
138 for (i = 0; i < 8; ++i) {
139 S[i] = sha_info->digest[i];
142 /* Compress */
143 #define RND(a,b,c,d,e,f,g,h,i,ki) \
144 t0 = h + Sigma1(e) + Ch(e, f, g) + ki + W[i]; \
145 t1 = Sigma0(a) + Maj(a, b, c); \
146 d += t0; \
147 h = t0 + t1;
149 RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],0,0x428a2f98);
150 RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],1,0x71374491);
151 RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],2,0xb5c0fbcf);
152 RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],3,0xe9b5dba5);
153 RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],4,0x3956c25b);
154 RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],5,0x59f111f1);
155 RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],6,0x923f82a4);
156 RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],7,0xab1c5ed5);
157 RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],8,0xd807aa98);
158 RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],9,0x12835b01);
159 RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],10,0x243185be);
160 RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],11,0x550c7dc3);
161 RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],12,0x72be5d74);
162 RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],13,0x80deb1fe);
163 RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],14,0x9bdc06a7);
164 RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],15,0xc19bf174);
165 RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],16,0xe49b69c1);
166 RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],17,0xefbe4786);
167 RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],18,0x0fc19dc6);
168 RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],19,0x240ca1cc);
169 RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],20,0x2de92c6f);
170 RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],21,0x4a7484aa);
171 RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],22,0x5cb0a9dc);
172 RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],23,0x76f988da);
173 RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],24,0x983e5152);
174 RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],25,0xa831c66d);
175 RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],26,0xb00327c8);
176 RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],27,0xbf597fc7);
177 RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],28,0xc6e00bf3);
178 RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],29,0xd5a79147);
179 RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],30,0x06ca6351);
180 RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],31,0x14292967);
181 RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],32,0x27b70a85);
182 RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],33,0x2e1b2138);
183 RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],34,0x4d2c6dfc);
184 RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],35,0x53380d13);
185 RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],36,0x650a7354);
186 RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],37,0x766a0abb);
187 RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],38,0x81c2c92e);
188 RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],39,0x92722c85);
189 RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],40,0xa2bfe8a1);
190 RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],41,0xa81a664b);
191 RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],42,0xc24b8b70);
192 RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],43,0xc76c51a3);
193 RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],44,0xd192e819);
194 RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],45,0xd6990624);
195 RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],46,0xf40e3585);
196 RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],47,0x106aa070);
197 RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],48,0x19a4c116);
198 RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],49,0x1e376c08);
199 RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],50,0x2748774c);
200 RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],51,0x34b0bcb5);
201 RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],52,0x391c0cb3);
202 RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],53,0x4ed8aa4a);
203 RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],54,0x5b9cca4f);
204 RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],55,0x682e6ff3);
205 RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],56,0x748f82ee);
206 RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],57,0x78a5636f);
207 RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],58,0x84c87814);
208 RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],59,0x8cc70208);
209 RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],60,0x90befffa);
210 RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],61,0xa4506ceb);
211 RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],62,0xbef9a3f7);
212 RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],63,0xc67178f2);
214 #undef RND
216 /* feedback */
217 for (i = 0; i < 8; i++) {
218 sha_info->digest[i] = sha_info->digest[i] + S[i];
225 /* initialize the SHA digest */
227 static void
228 sha_init(SHAobject *sha_info)
230 TestEndianness(sha_info->Endianness)
231 sha_info->digest[0] = 0x6A09E667L;
232 sha_info->digest[1] = 0xBB67AE85L;
233 sha_info->digest[2] = 0x3C6EF372L;
234 sha_info->digest[3] = 0xA54FF53AL;
235 sha_info->digest[4] = 0x510E527FL;
236 sha_info->digest[5] = 0x9B05688CL;
237 sha_info->digest[6] = 0x1F83D9ABL;
238 sha_info->digest[7] = 0x5BE0CD19L;
239 sha_info->count_lo = 0L;
240 sha_info->count_hi = 0L;
241 sha_info->local = 0;
242 sha_info->digestsize = 32;
245 static void
246 sha224_init(SHAobject *sha_info)
248 TestEndianness(sha_info->Endianness)
249 sha_info->digest[0] = 0xc1059ed8L;
250 sha_info->digest[1] = 0x367cd507L;
251 sha_info->digest[2] = 0x3070dd17L;
252 sha_info->digest[3] = 0xf70e5939L;
253 sha_info->digest[4] = 0xffc00b31L;
254 sha_info->digest[5] = 0x68581511L;
255 sha_info->digest[6] = 0x64f98fa7L;
256 sha_info->digest[7] = 0xbefa4fa4L;
257 sha_info->count_lo = 0L;
258 sha_info->count_hi = 0L;
259 sha_info->local = 0;
260 sha_info->digestsize = 28;
264 /* update the SHA digest */
266 static void
267 sha_update(SHAobject *sha_info, SHA_BYTE *buffer, int count)
269 int i;
270 SHA_INT32 clo;
272 clo = sha_info->count_lo + ((SHA_INT32) count << 3);
273 if (clo < sha_info->count_lo) {
274 ++sha_info->count_hi;
276 sha_info->count_lo = clo;
277 sha_info->count_hi += (SHA_INT32) count >> 29;
278 if (sha_info->local) {
279 i = SHA_BLOCKSIZE - sha_info->local;
280 if (i > count) {
281 i = count;
283 memcpy(((SHA_BYTE *) sha_info->data) + sha_info->local, buffer, i);
284 count -= i;
285 buffer += i;
286 sha_info->local += i;
287 if (sha_info->local == SHA_BLOCKSIZE) {
288 sha_transform(sha_info);
290 else {
291 return;
294 while (count >= SHA_BLOCKSIZE) {
295 memcpy(sha_info->data, buffer, SHA_BLOCKSIZE);
296 buffer += SHA_BLOCKSIZE;
297 count -= SHA_BLOCKSIZE;
298 sha_transform(sha_info);
300 memcpy(sha_info->data, buffer, count);
301 sha_info->local = count;
304 /* finish computing the SHA digest */
306 static void
307 sha_final(unsigned char digest[SHA_DIGESTSIZE], SHAobject *sha_info)
309 int count;
310 SHA_INT32 lo_bit_count, hi_bit_count;
312 lo_bit_count = sha_info->count_lo;
313 hi_bit_count = sha_info->count_hi;
314 count = (int) ((lo_bit_count >> 3) & 0x3f);
315 ((SHA_BYTE *) sha_info->data)[count++] = 0x80;
316 if (count > SHA_BLOCKSIZE - 8) {
317 memset(((SHA_BYTE *) sha_info->data) + count, 0,
318 SHA_BLOCKSIZE - count);
319 sha_transform(sha_info);
320 memset((SHA_BYTE *) sha_info->data, 0, SHA_BLOCKSIZE - 8);
322 else {
323 memset(((SHA_BYTE *) sha_info->data) + count, 0,
324 SHA_BLOCKSIZE - 8 - count);
327 /* GJS: note that we add the hi/lo in big-endian. sha_transform will
328 swap these values into host-order. */
329 sha_info->data[56] = (hi_bit_count >> 24) & 0xff;
330 sha_info->data[57] = (hi_bit_count >> 16) & 0xff;
331 sha_info->data[58] = (hi_bit_count >> 8) & 0xff;
332 sha_info->data[59] = (hi_bit_count >> 0) & 0xff;
333 sha_info->data[60] = (lo_bit_count >> 24) & 0xff;
334 sha_info->data[61] = (lo_bit_count >> 16) & 0xff;
335 sha_info->data[62] = (lo_bit_count >> 8) & 0xff;
336 sha_info->data[63] = (lo_bit_count >> 0) & 0xff;
337 sha_transform(sha_info);
338 digest[ 0] = (unsigned char) ((sha_info->digest[0] >> 24) & 0xff);
339 digest[ 1] = (unsigned char) ((sha_info->digest[0] >> 16) & 0xff);
340 digest[ 2] = (unsigned char) ((sha_info->digest[0] >> 8) & 0xff);
341 digest[ 3] = (unsigned char) ((sha_info->digest[0] ) & 0xff);
342 digest[ 4] = (unsigned char) ((sha_info->digest[1] >> 24) & 0xff);
343 digest[ 5] = (unsigned char) ((sha_info->digest[1] >> 16) & 0xff);
344 digest[ 6] = (unsigned char) ((sha_info->digest[1] >> 8) & 0xff);
345 digest[ 7] = (unsigned char) ((sha_info->digest[1] ) & 0xff);
346 digest[ 8] = (unsigned char) ((sha_info->digest[2] >> 24) & 0xff);
347 digest[ 9] = (unsigned char) ((sha_info->digest[2] >> 16) & 0xff);
348 digest[10] = (unsigned char) ((sha_info->digest[2] >> 8) & 0xff);
349 digest[11] = (unsigned char) ((sha_info->digest[2] ) & 0xff);
350 digest[12] = (unsigned char) ((sha_info->digest[3] >> 24) & 0xff);
351 digest[13] = (unsigned char) ((sha_info->digest[3] >> 16) & 0xff);
352 digest[14] = (unsigned char) ((sha_info->digest[3] >> 8) & 0xff);
353 digest[15] = (unsigned char) ((sha_info->digest[3] ) & 0xff);
354 digest[16] = (unsigned char) ((sha_info->digest[4] >> 24) & 0xff);
355 digest[17] = (unsigned char) ((sha_info->digest[4] >> 16) & 0xff);
356 digest[18] = (unsigned char) ((sha_info->digest[4] >> 8) & 0xff);
357 digest[19] = (unsigned char) ((sha_info->digest[4] ) & 0xff);
358 digest[20] = (unsigned char) ((sha_info->digest[5] >> 24) & 0xff);
359 digest[21] = (unsigned char) ((sha_info->digest[5] >> 16) & 0xff);
360 digest[22] = (unsigned char) ((sha_info->digest[5] >> 8) & 0xff);
361 digest[23] = (unsigned char) ((sha_info->digest[5] ) & 0xff);
362 digest[24] = (unsigned char) ((sha_info->digest[6] >> 24) & 0xff);
363 digest[25] = (unsigned char) ((sha_info->digest[6] >> 16) & 0xff);
364 digest[26] = (unsigned char) ((sha_info->digest[6] >> 8) & 0xff);
365 digest[27] = (unsigned char) ((sha_info->digest[6] ) & 0xff);
366 digest[28] = (unsigned char) ((sha_info->digest[7] >> 24) & 0xff);
367 digest[29] = (unsigned char) ((sha_info->digest[7] >> 16) & 0xff);
368 digest[30] = (unsigned char) ((sha_info->digest[7] >> 8) & 0xff);
369 digest[31] = (unsigned char) ((sha_info->digest[7] ) & 0xff);
373 * End of copied SHA code.
375 * ------------------------------------------------------------------------
378 static PyTypeObject SHA224type;
379 static PyTypeObject SHA256type;
382 static SHAobject *
383 newSHA224object(void)
385 return (SHAobject *)PyObject_New(SHAobject, &SHA224type);
388 static SHAobject *
389 newSHA256object(void)
391 return (SHAobject *)PyObject_New(SHAobject, &SHA256type);
394 /* Internal methods for a hash object */
396 static void
397 SHA_dealloc(PyObject *ptr)
399 PyObject_Del(ptr);
403 /* External methods for a hash object */
405 PyDoc_STRVAR(SHA256_copy__doc__, "Return a copy of the hash object.");
407 static PyObject *
408 SHA256_copy(SHAobject *self, PyObject *unused)
410 SHAobject *newobj;
412 if (Py_TYPE(self) == &SHA256type) {
413 if ( (newobj = newSHA256object())==NULL)
414 return NULL;
415 } else {
416 if ( (newobj = newSHA224object())==NULL)
417 return NULL;
420 SHAcopy(self, newobj);
421 return (PyObject *)newobj;
424 PyDoc_STRVAR(SHA256_digest__doc__,
425 "Return the digest value as a string of binary data.");
427 static PyObject *
428 SHA256_digest(SHAobject *self, PyObject *unused)
430 unsigned char digest[SHA_DIGESTSIZE];
431 SHAobject temp;
433 SHAcopy(self, &temp);
434 sha_final(digest, &temp);
435 return PyString_FromStringAndSize((const char *)digest, self->digestsize);
438 PyDoc_STRVAR(SHA256_hexdigest__doc__,
439 "Return the digest value as a string of hexadecimal digits.");
441 static PyObject *
442 SHA256_hexdigest(SHAobject *self, PyObject *unused)
444 unsigned char digest[SHA_DIGESTSIZE];
445 SHAobject temp;
446 PyObject *retval;
447 char *hex_digest;
448 int i, j;
450 /* Get the raw (binary) digest value */
451 SHAcopy(self, &temp);
452 sha_final(digest, &temp);
454 /* Create a new string */
455 retval = PyString_FromStringAndSize(NULL, self->digestsize * 2);
456 if (!retval)
457 return NULL;
458 hex_digest = PyString_AsString(retval);
459 if (!hex_digest) {
460 Py_DECREF(retval);
461 return NULL;
464 /* Make hex version of the digest */
465 for(i=j=0; i<self->digestsize; i++) {
466 char c;
467 c = (digest[i] >> 4) & 0xf;
468 c = (c>9) ? c+'a'-10 : c + '0';
469 hex_digest[j++] = c;
470 c = (digest[i] & 0xf);
471 c = (c>9) ? c+'a'-10 : c + '0';
472 hex_digest[j++] = c;
474 return retval;
477 PyDoc_STRVAR(SHA256_update__doc__,
478 "Update this hash object's state with the provided string.");
480 static PyObject *
481 SHA256_update(SHAobject *self, PyObject *args)
483 unsigned char *cp;
484 int len;
486 if (!PyArg_ParseTuple(args, "s#:update", &cp, &len))
487 return NULL;
489 sha_update(self, cp, len);
491 Py_INCREF(Py_None);
492 return Py_None;
495 static PyMethodDef SHA_methods[] = {
496 {"copy", (PyCFunction)SHA256_copy, METH_NOARGS, SHA256_copy__doc__},
497 {"digest", (PyCFunction)SHA256_digest, METH_NOARGS, SHA256_digest__doc__},
498 {"hexdigest", (PyCFunction)SHA256_hexdigest, METH_NOARGS, SHA256_hexdigest__doc__},
499 {"update", (PyCFunction)SHA256_update, METH_VARARGS, SHA256_update__doc__},
500 {NULL, NULL} /* sentinel */
503 static PyObject *
504 SHA256_get_block_size(PyObject *self, void *closure)
506 return PyInt_FromLong(SHA_BLOCKSIZE);
509 static PyObject *
510 SHA256_get_name(PyObject *self, void *closure)
512 if (((SHAobject *)self)->digestsize == 32)
513 return PyString_FromStringAndSize("SHA256", 6);
514 else
515 return PyString_FromStringAndSize("SHA224", 6);
518 static PyGetSetDef SHA_getseters[] = {
519 {"block_size",
520 (getter)SHA256_get_block_size, NULL,
521 NULL,
522 NULL},
523 {"name",
524 (getter)SHA256_get_name, NULL,
525 NULL,
526 NULL},
527 {NULL} /* Sentinel */
530 static PyMemberDef SHA_members[] = {
531 {"digest_size", T_INT, offsetof(SHAobject, digestsize), READONLY, NULL},
532 /* the old md5 and sha modules support 'digest_size' as in PEP 247.
533 * the old sha module also supported 'digestsize'. ugh. */
534 {"digestsize", T_INT, offsetof(SHAobject, digestsize), READONLY, NULL},
535 {NULL} /* Sentinel */
538 static PyTypeObject SHA224type = {
539 PyVarObject_HEAD_INIT(NULL, 0)
540 "_sha256.sha224", /*tp_name*/
541 sizeof(SHAobject), /*tp_size*/
542 0, /*tp_itemsize*/
543 /* methods */
544 SHA_dealloc, /*tp_dealloc*/
545 0, /*tp_print*/
546 0, /*tp_getattr*/
547 0, /*tp_setattr*/
548 0, /*tp_compare*/
549 0, /*tp_repr*/
550 0, /*tp_as_number*/
551 0, /*tp_as_sequence*/
552 0, /*tp_as_mapping*/
553 0, /*tp_hash*/
554 0, /*tp_call*/
555 0, /*tp_str*/
556 0, /*tp_getattro*/
557 0, /*tp_setattro*/
558 0, /*tp_as_buffer*/
559 Py_TPFLAGS_DEFAULT, /*tp_flags*/
560 0, /*tp_doc*/
561 0, /*tp_traverse*/
562 0, /*tp_clear*/
563 0, /*tp_richcompare*/
564 0, /*tp_weaklistoffset*/
565 0, /*tp_iter*/
566 0, /*tp_iternext*/
567 SHA_methods, /* tp_methods */
568 SHA_members, /* tp_members */
569 SHA_getseters, /* tp_getset */
572 static PyTypeObject SHA256type = {
573 PyVarObject_HEAD_INIT(NULL, 0)
574 "_sha256.sha256", /*tp_name*/
575 sizeof(SHAobject), /*tp_size*/
576 0, /*tp_itemsize*/
577 /* methods */
578 SHA_dealloc, /*tp_dealloc*/
579 0, /*tp_print*/
580 0, /*tp_getattr*/
581 0, /*tp_setattr*/
582 0, /*tp_compare*/
583 0, /*tp_repr*/
584 0, /*tp_as_number*/
585 0, /*tp_as_sequence*/
586 0, /*tp_as_mapping*/
587 0, /*tp_hash*/
588 0, /*tp_call*/
589 0, /*tp_str*/
590 0, /*tp_getattro*/
591 0, /*tp_setattro*/
592 0, /*tp_as_buffer*/
593 Py_TPFLAGS_DEFAULT, /*tp_flags*/
594 0, /*tp_doc*/
595 0, /*tp_traverse*/
596 0, /*tp_clear*/
597 0, /*tp_richcompare*/
598 0, /*tp_weaklistoffset*/
599 0, /*tp_iter*/
600 0, /*tp_iternext*/
601 SHA_methods, /* tp_methods */
602 SHA_members, /* tp_members */
603 SHA_getseters, /* tp_getset */
607 /* The single module-level function: new() */
609 PyDoc_STRVAR(SHA256_new__doc__,
610 "Return a new SHA-256 hash object; optionally initialized with a string.");
612 static PyObject *
613 SHA256_new(PyObject *self, PyObject *args, PyObject *kwdict)
615 static char *kwlist[] = {"string", NULL};
616 SHAobject *new;
617 unsigned char *cp = NULL;
618 int len;
620 if (!PyArg_ParseTupleAndKeywords(args, kwdict, "|s#:new", kwlist,
621 &cp, &len)) {
622 return NULL;
625 if ((new = newSHA256object()) == NULL)
626 return NULL;
628 sha_init(new);
630 if (PyErr_Occurred()) {
631 Py_DECREF(new);
632 return NULL;
634 if (cp)
635 sha_update(new, cp, len);
637 return (PyObject *)new;
640 PyDoc_STRVAR(SHA224_new__doc__,
641 "Return a new SHA-224 hash object; optionally initialized with a string.");
643 static PyObject *
644 SHA224_new(PyObject *self, PyObject *args, PyObject *kwdict)
646 static char *kwlist[] = {"string", NULL};
647 SHAobject *new;
648 unsigned char *cp = NULL;
649 int len;
651 if (!PyArg_ParseTupleAndKeywords(args, kwdict, "|s#:new", kwlist,
652 &cp, &len)) {
653 return NULL;
656 if ((new = newSHA224object()) == NULL)
657 return NULL;
659 sha224_init(new);
661 if (PyErr_Occurred()) {
662 Py_DECREF(new);
663 return NULL;
665 if (cp)
666 sha_update(new, cp, len);
668 return (PyObject *)new;
672 /* List of functions exported by this module */
674 static struct PyMethodDef SHA_functions[] = {
675 {"sha256", (PyCFunction)SHA256_new, METH_VARARGS|METH_KEYWORDS, SHA256_new__doc__},
676 {"sha224", (PyCFunction)SHA224_new, METH_VARARGS|METH_KEYWORDS, SHA224_new__doc__},
677 {NULL, NULL} /* Sentinel */
681 /* Initialize this module. */
683 #define insint(n,v) { PyModule_AddIntConstant(m,n,v); }
685 PyMODINIT_FUNC
686 init_sha256(void)
688 PyObject *m;
690 Py_TYPE(&SHA224type) = &PyType_Type;
691 if (PyType_Ready(&SHA224type) < 0)
692 return;
693 Py_TYPE(&SHA256type) = &PyType_Type;
694 if (PyType_Ready(&SHA256type) < 0)
695 return;
696 m = Py_InitModule("_sha256", SHA_functions);
697 if (m == NULL)
698 return;