Try to make test_wsgiref less fragile against environment changes by other tests
[python.git] / Lib / csv.py
blob3db5dac5db666380c03d77473fa05efcbbb075bf
2 """
3 csv.py - read/write/investigate CSV files
4 """
6 import re
7 from functools import reduce
8 from _csv import Error, __version__, writer, reader, register_dialect, \
9 unregister_dialect, get_dialect, list_dialects, \
10 field_size_limit, \
11 QUOTE_MINIMAL, QUOTE_ALL, QUOTE_NONNUMERIC, QUOTE_NONE, \
12 __doc__
13 from _csv import Dialect as _Dialect
15 try:
16 from cStringIO import StringIO
17 except ImportError:
18 from StringIO import StringIO
20 __all__ = [ "QUOTE_MINIMAL", "QUOTE_ALL", "QUOTE_NONNUMERIC", "QUOTE_NONE",
21 "Error", "Dialect", "__doc__", "excel", "excel_tab",
22 "field_size_limit", "reader", "writer",
23 "register_dialect", "get_dialect", "list_dialects", "Sniffer",
24 "unregister_dialect", "__version__", "DictReader", "DictWriter" ]
26 class Dialect:
27 """Describe an Excel dialect.
29 This must be subclassed (see csv.excel). Valid attributes are:
30 delimiter, quotechar, escapechar, doublequote, skipinitialspace,
31 lineterminator, quoting.
33 """
34 _name = ""
35 _valid = False
36 # placeholders
37 delimiter = None
38 quotechar = None
39 escapechar = None
40 doublequote = None
41 skipinitialspace = None
42 lineterminator = None
43 quoting = None
45 def __init__(self):
46 if self.__class__ != Dialect:
47 self._valid = True
48 self._validate()
50 def _validate(self):
51 try:
52 _Dialect(self)
53 except TypeError, e:
54 # We do this for compatibility with py2.3
55 raise Error(str(e))
57 class excel(Dialect):
58 """Describe the usual properties of Excel-generated CSV files."""
59 delimiter = ','
60 quotechar = '"'
61 doublequote = True
62 skipinitialspace = False
63 lineterminator = '\r\n'
64 quoting = QUOTE_MINIMAL
65 register_dialect("excel", excel)
67 class excel_tab(excel):
68 """Describe the usual properties of Excel-generated TAB-delimited files."""
69 delimiter = '\t'
70 register_dialect("excel-tab", excel_tab)
73 class DictReader:
74 def __init__(self, f, fieldnames=None, restkey=None, restval=None,
75 dialect="excel", *args, **kwds):
76 self._fieldnames = fieldnames # list of keys for the dict
77 self.restkey = restkey # key to catch long rows
78 self.restval = restval # default value for short rows
79 self.reader = reader(f, dialect, *args, **kwds)
80 self.dialect = dialect
81 self.line_num = 0
83 def __iter__(self):
84 return self
86 @property
87 def fieldnames(self):
88 if self._fieldnames is None:
89 try:
90 self._fieldnames = self.reader.next()
91 except StopIteration:
92 pass
93 self.line_num = self.reader.line_num
94 return self._fieldnames
96 @fieldnames.setter
97 def fieldnames(self, value):
98 self._fieldnames = value
100 def next(self):
101 if self.line_num == 0:
102 # Used only for its side effect.
103 self.fieldnames
104 row = self.reader.next()
105 self.line_num = self.reader.line_num
107 # unlike the basic reader, we prefer not to return blanks,
108 # because we will typically wind up with a dict full of None
109 # values
110 while row == []:
111 row = self.reader.next()
112 d = dict(zip(self.fieldnames, row))
113 lf = len(self.fieldnames)
114 lr = len(row)
115 if lf < lr:
116 d[self.restkey] = row[lf:]
117 elif lf > lr:
118 for key in self.fieldnames[lr:]:
119 d[key] = self.restval
120 return d
123 class DictWriter:
124 def __init__(self, f, fieldnames, restval="", extrasaction="raise",
125 dialect="excel", *args, **kwds):
126 self.fieldnames = fieldnames # list of keys for the dict
127 self.restval = restval # for writing short dicts
128 if extrasaction.lower() not in ("raise", "ignore"):
129 raise ValueError, \
130 ("extrasaction (%s) must be 'raise' or 'ignore'" %
131 extrasaction)
132 self.extrasaction = extrasaction
133 self.writer = writer(f, dialect, *args, **kwds)
135 def _dict_to_list(self, rowdict):
136 if self.extrasaction == "raise":
137 wrong_fields = [k for k in rowdict if k not in self.fieldnames]
138 if wrong_fields:
139 raise ValueError("dict contains fields not in fieldnames: " +
140 ", ".join(wrong_fields))
141 return [rowdict.get(key, self.restval) for key in self.fieldnames]
143 def writerow(self, rowdict):
144 return self.writer.writerow(self._dict_to_list(rowdict))
146 def writerows(self, rowdicts):
147 rows = []
148 for rowdict in rowdicts:
149 rows.append(self._dict_to_list(rowdict))
150 return self.writer.writerows(rows)
152 # Guard Sniffer's type checking against builds that exclude complex()
153 try:
154 complex
155 except NameError:
156 complex = float
158 class Sniffer:
160 "Sniffs" the format of a CSV file (i.e. delimiter, quotechar)
161 Returns a Dialect object.
163 def __init__(self):
164 # in case there is more than one possible delimiter
165 self.preferred = [',', '\t', ';', ' ', ':']
168 def sniff(self, sample, delimiters=None):
170 Returns a dialect (or None) corresponding to the sample
173 quotechar, doublequote, delimiter, skipinitialspace = \
174 self._guess_quote_and_delimiter(sample, delimiters)
175 if not delimiter:
176 delimiter, skipinitialspace = self._guess_delimiter(sample,
177 delimiters)
179 if not delimiter:
180 raise Error, "Could not determine delimiter"
182 class dialect(Dialect):
183 _name = "sniffed"
184 lineterminator = '\r\n'
185 quoting = QUOTE_MINIMAL
186 # escapechar = ''
188 dialect.doublequote = doublequote
189 dialect.delimiter = delimiter
190 # _csv.reader won't accept a quotechar of ''
191 dialect.quotechar = quotechar or '"'
192 dialect.skipinitialspace = skipinitialspace
194 return dialect
197 def _guess_quote_and_delimiter(self, data, delimiters):
199 Looks for text enclosed between two identical quotes
200 (the probable quotechar) which are preceded and followed
201 by the same character (the probable delimiter).
202 For example:
203 ,'some text',
204 The quote with the most wins, same with the delimiter.
205 If there is no quotechar the delimiter can't be determined
206 this way.
209 matches = []
210 for restr in ('(?P<delim>[^\w\n"\'])(?P<space> ?)(?P<quote>["\']).*?(?P=quote)(?P=delim)', # ,".*?",
211 '(?:^|\n)(?P<quote>["\']).*?(?P=quote)(?P<delim>[^\w\n"\'])(?P<space> ?)', # ".*?",
212 '(?P<delim>>[^\w\n"\'])(?P<space> ?)(?P<quote>["\']).*?(?P=quote)(?:$|\n)', # ,".*?"
213 '(?:^|\n)(?P<quote>["\']).*?(?P=quote)(?:$|\n)'): # ".*?" (no delim, no space)
214 regexp = re.compile(restr, re.DOTALL | re.MULTILINE)
215 matches = regexp.findall(data)
216 if matches:
217 break
219 if not matches:
220 # (quotechar, doublequote, delimiter, skipinitialspace)
221 return ('', False, None, 0)
222 quotes = {}
223 delims = {}
224 spaces = 0
225 for m in matches:
226 n = regexp.groupindex['quote'] - 1
227 key = m[n]
228 if key:
229 quotes[key] = quotes.get(key, 0) + 1
230 try:
231 n = regexp.groupindex['delim'] - 1
232 key = m[n]
233 except KeyError:
234 continue
235 if key and (delimiters is None or key in delimiters):
236 delims[key] = delims.get(key, 0) + 1
237 try:
238 n = regexp.groupindex['space'] - 1
239 except KeyError:
240 continue
241 if m[n]:
242 spaces += 1
244 quotechar = reduce(lambda a, b, quotes = quotes:
245 (quotes[a] > quotes[b]) and a or b, quotes.keys())
247 if delims:
248 delim = reduce(lambda a, b, delims = delims:
249 (delims[a] > delims[b]) and a or b, delims.keys())
250 skipinitialspace = delims[delim] == spaces
251 if delim == '\n': # most likely a file with a single column
252 delim = ''
253 else:
254 # there is *no* delimiter, it's a single column of quoted data
255 delim = ''
256 skipinitialspace = 0
258 # if we see an extra quote between delimiters, we've got a
259 # double quoted format
260 dq_regexp = re.compile(r"((%(delim)s)|^)\W*%(quote)s[^%(delim)s\n]*%(quote)s[^%(delim)s\n]*%(quote)s\W*((%(delim)s)|$)" % \
261 {'delim':delim, 'quote':quotechar}, re.MULTILINE)
265 if dq_regexp.search(data):
266 doublequote = True
267 else:
268 doublequote = False
270 return (quotechar, doublequote, delim, skipinitialspace)
273 def _guess_delimiter(self, data, delimiters):
275 The delimiter /should/ occur the same number of times on
276 each row. However, due to malformed data, it may not. We don't want
277 an all or nothing approach, so we allow for small variations in this
278 number.
279 1) build a table of the frequency of each character on every line.
280 2) build a table of freqencies of this frequency (meta-frequency?),
281 e.g. 'x occurred 5 times in 10 rows, 6 times in 1000 rows,
282 7 times in 2 rows'
283 3) use the mode of the meta-frequency to determine the /expected/
284 frequency for that character
285 4) find out how often the character actually meets that goal
286 5) the character that best meets its goal is the delimiter
287 For performance reasons, the data is evaluated in chunks, so it can
288 try and evaluate the smallest portion of the data possible, evaluating
289 additional chunks as necessary.
292 data = filter(None, data.split('\n'))
294 ascii = [chr(c) for c in range(127)] # 7-bit ASCII
296 # build frequency tables
297 chunkLength = min(10, len(data))
298 iteration = 0
299 charFrequency = {}
300 modes = {}
301 delims = {}
302 start, end = 0, min(chunkLength, len(data))
303 while start < len(data):
304 iteration += 1
305 for line in data[start:end]:
306 for char in ascii:
307 metaFrequency = charFrequency.get(char, {})
308 # must count even if frequency is 0
309 freq = line.count(char)
310 # value is the mode
311 metaFrequency[freq] = metaFrequency.get(freq, 0) + 1
312 charFrequency[char] = metaFrequency
314 for char in charFrequency.keys():
315 items = charFrequency[char].items()
316 if len(items) == 1 and items[0][0] == 0:
317 continue
318 # get the mode of the frequencies
319 if len(items) > 1:
320 modes[char] = reduce(lambda a, b: a[1] > b[1] and a or b,
321 items)
322 # adjust the mode - subtract the sum of all
323 # other frequencies
324 items.remove(modes[char])
325 modes[char] = (modes[char][0], modes[char][1]
326 - reduce(lambda a, b: (0, a[1] + b[1]),
327 items)[1])
328 else:
329 modes[char] = items[0]
331 # build a list of possible delimiters
332 modeList = modes.items()
333 total = float(chunkLength * iteration)
334 # (rows of consistent data) / (number of rows) = 100%
335 consistency = 1.0
336 # minimum consistency threshold
337 threshold = 0.9
338 while len(delims) == 0 and consistency >= threshold:
339 for k, v in modeList:
340 if v[0] > 0 and v[1] > 0:
341 if ((v[1]/total) >= consistency and
342 (delimiters is None or k in delimiters)):
343 delims[k] = v
344 consistency -= 0.01
346 if len(delims) == 1:
347 delim = delims.keys()[0]
348 skipinitialspace = (data[0].count(delim) ==
349 data[0].count("%c " % delim))
350 return (delim, skipinitialspace)
352 # analyze another chunkLength lines
353 start = end
354 end += chunkLength
356 if not delims:
357 return ('', 0)
359 # if there's more than one, fall back to a 'preferred' list
360 if len(delims) > 1:
361 for d in self.preferred:
362 if d in delims.keys():
363 skipinitialspace = (data[0].count(d) ==
364 data[0].count("%c " % d))
365 return (d, skipinitialspace)
367 # nothing else indicates a preference, pick the character that
368 # dominates(?)
369 items = [(v,k) for (k,v) in delims.items()]
370 items.sort()
371 delim = items[-1][1]
373 skipinitialspace = (data[0].count(delim) ==
374 data[0].count("%c " % delim))
375 return (delim, skipinitialspace)
378 def has_header(self, sample):
379 # Creates a dictionary of types of data in each column. If any
380 # column is of a single type (say, integers), *except* for the first
381 # row, then the first row is presumed to be labels. If the type
382 # can't be determined, it is assumed to be a string in which case
383 # the length of the string is the determining factor: if all of the
384 # rows except for the first are the same length, it's a header.
385 # Finally, a 'vote' is taken at the end for each column, adding or
386 # subtracting from the likelihood of the first row being a header.
388 rdr = reader(StringIO(sample), self.sniff(sample))
390 header = rdr.next() # assume first row is header
392 columns = len(header)
393 columnTypes = {}
394 for i in range(columns): columnTypes[i] = None
396 checked = 0
397 for row in rdr:
398 # arbitrary number of rows to check, to keep it sane
399 if checked > 20:
400 break
401 checked += 1
403 if len(row) != columns:
404 continue # skip rows that have irregular number of columns
406 for col in columnTypes.keys():
408 for thisType in [int, long, float, complex]:
409 try:
410 thisType(row[col])
411 break
412 except (ValueError, OverflowError):
413 pass
414 else:
415 # fallback to length of string
416 thisType = len(row[col])
418 # treat longs as ints
419 if thisType == long:
420 thisType = int
422 if thisType != columnTypes[col]:
423 if columnTypes[col] is None: # add new column type
424 columnTypes[col] = thisType
425 else:
426 # type is inconsistent, remove column from
427 # consideration
428 del columnTypes[col]
430 # finally, compare results against first row and "vote"
431 # on whether it's a header
432 hasHeader = 0
433 for col, colType in columnTypes.items():
434 if type(colType) == type(0): # it's a length
435 if len(header[col]) != colType:
436 hasHeader += 1
437 else:
438 hasHeader -= 1
439 else: # attempt typecast
440 try:
441 colType(header[col])
442 except (ValueError, TypeError):
443 hasHeader += 1
444 else:
445 hasHeader -= 1
447 return hasHeader > 0