Issue #6850: Fix bug in Decimal._parse_format_specifier for formats
[python.git] / Lib / decimal.py
blob1f5c920d795ea9ba1749653b13f6300cf4a312f9
1 # Copyright (c) 2004 Python Software Foundation.
2 # All rights reserved.
4 # Written by Eric Price <eprice at tjhsst.edu>
5 # and Facundo Batista <facundo at taniquetil.com.ar>
6 # and Raymond Hettinger <python at rcn.com>
7 # and Aahz <aahz at pobox.com>
8 # and Tim Peters
10 # This module is currently Py2.3 compatible and should be kept that way
11 # unless a major compelling advantage arises. IOW, 2.3 compatibility is
12 # strongly preferred, but not guaranteed.
14 # Also, this module should be kept in sync with the latest updates of
15 # the IBM specification as it evolves. Those updates will be treated
16 # as bug fixes (deviation from the spec is a compatibility, usability
17 # bug) and will be backported. At this point the spec is stabilizing
18 # and the updates are becoming fewer, smaller, and less significant.
20 """
21 This is a Py2.3 implementation of decimal floating point arithmetic based on
22 the General Decimal Arithmetic Specification:
24 www2.hursley.ibm.com/decimal/decarith.html
26 and IEEE standard 854-1987:
28 www.cs.berkeley.edu/~ejr/projects/754/private/drafts/854-1987/dir.html
30 Decimal floating point has finite precision with arbitrarily large bounds.
32 The purpose of this module is to support arithmetic using familiar
33 "schoolhouse" rules and to avoid some of the tricky representation
34 issues associated with binary floating point. The package is especially
35 useful for financial applications or for contexts where users have
36 expectations that are at odds with binary floating point (for instance,
37 in binary floating point, 1.00 % 0.1 gives 0.09999999999999995 instead
38 of the expected Decimal('0.00') returned by decimal floating point).
40 Here are some examples of using the decimal module:
42 >>> from decimal import *
43 >>> setcontext(ExtendedContext)
44 >>> Decimal(0)
45 Decimal('0')
46 >>> Decimal('1')
47 Decimal('1')
48 >>> Decimal('-.0123')
49 Decimal('-0.0123')
50 >>> Decimal(123456)
51 Decimal('123456')
52 >>> Decimal('123.45e12345678901234567890')
53 Decimal('1.2345E+12345678901234567892')
54 >>> Decimal('1.33') + Decimal('1.27')
55 Decimal('2.60')
56 >>> Decimal('12.34') + Decimal('3.87') - Decimal('18.41')
57 Decimal('-2.20')
58 >>> dig = Decimal(1)
59 >>> print dig / Decimal(3)
60 0.333333333
61 >>> getcontext().prec = 18
62 >>> print dig / Decimal(3)
63 0.333333333333333333
64 >>> print dig.sqrt()
66 >>> print Decimal(3).sqrt()
67 1.73205080756887729
68 >>> print Decimal(3) ** 123
69 4.85192780976896427E+58
70 >>> inf = Decimal(1) / Decimal(0)
71 >>> print inf
72 Infinity
73 >>> neginf = Decimal(-1) / Decimal(0)
74 >>> print neginf
75 -Infinity
76 >>> print neginf + inf
77 NaN
78 >>> print neginf * inf
79 -Infinity
80 >>> print dig / 0
81 Infinity
82 >>> getcontext().traps[DivisionByZero] = 1
83 >>> print dig / 0
84 Traceback (most recent call last):
85 ...
86 ...
87 ...
88 DivisionByZero: x / 0
89 >>> c = Context()
90 >>> c.traps[InvalidOperation] = 0
91 >>> print c.flags[InvalidOperation]
93 >>> c.divide(Decimal(0), Decimal(0))
94 Decimal('NaN')
95 >>> c.traps[InvalidOperation] = 1
96 >>> print c.flags[InvalidOperation]
98 >>> c.flags[InvalidOperation] = 0
99 >>> print c.flags[InvalidOperation]
101 >>> print c.divide(Decimal(0), Decimal(0))
102 Traceback (most recent call last):
106 InvalidOperation: 0 / 0
107 >>> print c.flags[InvalidOperation]
109 >>> c.flags[InvalidOperation] = 0
110 >>> c.traps[InvalidOperation] = 0
111 >>> print c.divide(Decimal(0), Decimal(0))
113 >>> print c.flags[InvalidOperation]
118 __all__ = [
119 # Two major classes
120 'Decimal', 'Context',
122 # Contexts
123 'DefaultContext', 'BasicContext', 'ExtendedContext',
125 # Exceptions
126 'DecimalException', 'Clamped', 'InvalidOperation', 'DivisionByZero',
127 'Inexact', 'Rounded', 'Subnormal', 'Overflow', 'Underflow',
129 # Constants for use in setting up contexts
130 'ROUND_DOWN', 'ROUND_HALF_UP', 'ROUND_HALF_EVEN', 'ROUND_CEILING',
131 'ROUND_FLOOR', 'ROUND_UP', 'ROUND_HALF_DOWN', 'ROUND_05UP',
133 # Functions for manipulating contexts
134 'setcontext', 'getcontext', 'localcontext'
137 __version__ = '1.70' # Highest version of the spec this complies with
139 import copy as _copy
140 import math as _math
141 import numbers as _numbers
143 try:
144 from collections import namedtuple as _namedtuple
145 DecimalTuple = _namedtuple('DecimalTuple', 'sign digits exponent')
146 except ImportError:
147 DecimalTuple = lambda *args: args
149 # Rounding
150 ROUND_DOWN = 'ROUND_DOWN'
151 ROUND_HALF_UP = 'ROUND_HALF_UP'
152 ROUND_HALF_EVEN = 'ROUND_HALF_EVEN'
153 ROUND_CEILING = 'ROUND_CEILING'
154 ROUND_FLOOR = 'ROUND_FLOOR'
155 ROUND_UP = 'ROUND_UP'
156 ROUND_HALF_DOWN = 'ROUND_HALF_DOWN'
157 ROUND_05UP = 'ROUND_05UP'
159 # Errors
161 class DecimalException(ArithmeticError):
162 """Base exception class.
164 Used exceptions derive from this.
165 If an exception derives from another exception besides this (such as
166 Underflow (Inexact, Rounded, Subnormal) that indicates that it is only
167 called if the others are present. This isn't actually used for
168 anything, though.
170 handle -- Called when context._raise_error is called and the
171 trap_enabler is set. First argument is self, second is the
172 context. More arguments can be given, those being after
173 the explanation in _raise_error (For example,
174 context._raise_error(NewError, '(-x)!', self._sign) would
175 call NewError().handle(context, self._sign).)
177 To define a new exception, it should be sufficient to have it derive
178 from DecimalException.
180 def handle(self, context, *args):
181 pass
184 class Clamped(DecimalException):
185 """Exponent of a 0 changed to fit bounds.
187 This occurs and signals clamped if the exponent of a result has been
188 altered in order to fit the constraints of a specific concrete
189 representation. This may occur when the exponent of a zero result would
190 be outside the bounds of a representation, or when a large normal
191 number would have an encoded exponent that cannot be represented. In
192 this latter case, the exponent is reduced to fit and the corresponding
193 number of zero digits are appended to the coefficient ("fold-down").
196 class InvalidOperation(DecimalException):
197 """An invalid operation was performed.
199 Various bad things cause this:
201 Something creates a signaling NaN
202 -INF + INF
203 0 * (+-)INF
204 (+-)INF / (+-)INF
205 x % 0
206 (+-)INF % x
207 x._rescale( non-integer )
208 sqrt(-x) , x > 0
209 0 ** 0
210 x ** (non-integer)
211 x ** (+-)INF
212 An operand is invalid
214 The result of the operation after these is a quiet positive NaN,
215 except when the cause is a signaling NaN, in which case the result is
216 also a quiet NaN, but with the original sign, and an optional
217 diagnostic information.
219 def handle(self, context, *args):
220 if args:
221 ans = _dec_from_triple(args[0]._sign, args[0]._int, 'n', True)
222 return ans._fix_nan(context)
223 return _NaN
225 class ConversionSyntax(InvalidOperation):
226 """Trying to convert badly formed string.
228 This occurs and signals invalid-operation if an string is being
229 converted to a number and it does not conform to the numeric string
230 syntax. The result is [0,qNaN].
232 def handle(self, context, *args):
233 return _NaN
235 class DivisionByZero(DecimalException, ZeroDivisionError):
236 """Division by 0.
238 This occurs and signals division-by-zero if division of a finite number
239 by zero was attempted (during a divide-integer or divide operation, or a
240 power operation with negative right-hand operand), and the dividend was
241 not zero.
243 The result of the operation is [sign,inf], where sign is the exclusive
244 or of the signs of the operands for divide, or is 1 for an odd power of
245 -0, for power.
248 def handle(self, context, sign, *args):
249 return _SignedInfinity[sign]
251 class DivisionImpossible(InvalidOperation):
252 """Cannot perform the division adequately.
254 This occurs and signals invalid-operation if the integer result of a
255 divide-integer or remainder operation had too many digits (would be
256 longer than precision). The result is [0,qNaN].
259 def handle(self, context, *args):
260 return _NaN
262 class DivisionUndefined(InvalidOperation, ZeroDivisionError):
263 """Undefined result of division.
265 This occurs and signals invalid-operation if division by zero was
266 attempted (during a divide-integer, divide, or remainder operation), and
267 the dividend is also zero. The result is [0,qNaN].
270 def handle(self, context, *args):
271 return _NaN
273 class Inexact(DecimalException):
274 """Had to round, losing information.
276 This occurs and signals inexact whenever the result of an operation is
277 not exact (that is, it needed to be rounded and any discarded digits
278 were non-zero), or if an overflow or underflow condition occurs. The
279 result in all cases is unchanged.
281 The inexact signal may be tested (or trapped) to determine if a given
282 operation (or sequence of operations) was inexact.
285 class InvalidContext(InvalidOperation):
286 """Invalid context. Unknown rounding, for example.
288 This occurs and signals invalid-operation if an invalid context was
289 detected during an operation. This can occur if contexts are not checked
290 on creation and either the precision exceeds the capability of the
291 underlying concrete representation or an unknown or unsupported rounding
292 was specified. These aspects of the context need only be checked when
293 the values are required to be used. The result is [0,qNaN].
296 def handle(self, context, *args):
297 return _NaN
299 class Rounded(DecimalException):
300 """Number got rounded (not necessarily changed during rounding).
302 This occurs and signals rounded whenever the result of an operation is
303 rounded (that is, some zero or non-zero digits were discarded from the
304 coefficient), or if an overflow or underflow condition occurs. The
305 result in all cases is unchanged.
307 The rounded signal may be tested (or trapped) to determine if a given
308 operation (or sequence of operations) caused a loss of precision.
311 class Subnormal(DecimalException):
312 """Exponent < Emin before rounding.
314 This occurs and signals subnormal whenever the result of a conversion or
315 operation is subnormal (that is, its adjusted exponent is less than
316 Emin, before any rounding). The result in all cases is unchanged.
318 The subnormal signal may be tested (or trapped) to determine if a given
319 or operation (or sequence of operations) yielded a subnormal result.
322 class Overflow(Inexact, Rounded):
323 """Numerical overflow.
325 This occurs and signals overflow if the adjusted exponent of a result
326 (from a conversion or from an operation that is not an attempt to divide
327 by zero), after rounding, would be greater than the largest value that
328 can be handled by the implementation (the value Emax).
330 The result depends on the rounding mode:
332 For round-half-up and round-half-even (and for round-half-down and
333 round-up, if implemented), the result of the operation is [sign,inf],
334 where sign is the sign of the intermediate result. For round-down, the
335 result is the largest finite number that can be represented in the
336 current precision, with the sign of the intermediate result. For
337 round-ceiling, the result is the same as for round-down if the sign of
338 the intermediate result is 1, or is [0,inf] otherwise. For round-floor,
339 the result is the same as for round-down if the sign of the intermediate
340 result is 0, or is [1,inf] otherwise. In all cases, Inexact and Rounded
341 will also be raised.
344 def handle(self, context, sign, *args):
345 if context.rounding in (ROUND_HALF_UP, ROUND_HALF_EVEN,
346 ROUND_HALF_DOWN, ROUND_UP):
347 return _SignedInfinity[sign]
348 if sign == 0:
349 if context.rounding == ROUND_CEILING:
350 return _SignedInfinity[sign]
351 return _dec_from_triple(sign, '9'*context.prec,
352 context.Emax-context.prec+1)
353 if sign == 1:
354 if context.rounding == ROUND_FLOOR:
355 return _SignedInfinity[sign]
356 return _dec_from_triple(sign, '9'*context.prec,
357 context.Emax-context.prec+1)
360 class Underflow(Inexact, Rounded, Subnormal):
361 """Numerical underflow with result rounded to 0.
363 This occurs and signals underflow if a result is inexact and the
364 adjusted exponent of the result would be smaller (more negative) than
365 the smallest value that can be handled by the implementation (the value
366 Emin). That is, the result is both inexact and subnormal.
368 The result after an underflow will be a subnormal number rounded, if
369 necessary, so that its exponent is not less than Etiny. This may result
370 in 0 with the sign of the intermediate result and an exponent of Etiny.
372 In all cases, Inexact, Rounded, and Subnormal will also be raised.
375 # List of public traps and flags
376 _signals = [Clamped, DivisionByZero, Inexact, Overflow, Rounded,
377 Underflow, InvalidOperation, Subnormal]
379 # Map conditions (per the spec) to signals
380 _condition_map = {ConversionSyntax:InvalidOperation,
381 DivisionImpossible:InvalidOperation,
382 DivisionUndefined:InvalidOperation,
383 InvalidContext:InvalidOperation}
385 ##### Context Functions ##################################################
387 # The getcontext() and setcontext() function manage access to a thread-local
388 # current context. Py2.4 offers direct support for thread locals. If that
389 # is not available, use threading.currentThread() which is slower but will
390 # work for older Pythons. If threads are not part of the build, create a
391 # mock threading object with threading.local() returning the module namespace.
393 try:
394 import threading
395 except ImportError:
396 # Python was compiled without threads; create a mock object instead
397 import sys
398 class MockThreading(object):
399 def local(self, sys=sys):
400 return sys.modules[__name__]
401 threading = MockThreading()
402 del sys, MockThreading
404 try:
405 threading.local
407 except AttributeError:
409 # To fix reloading, force it to create a new context
410 # Old contexts have different exceptions in their dicts, making problems.
411 if hasattr(threading.currentThread(), '__decimal_context__'):
412 del threading.currentThread().__decimal_context__
414 def setcontext(context):
415 """Set this thread's context to context."""
416 if context in (DefaultContext, BasicContext, ExtendedContext):
417 context = context.copy()
418 context.clear_flags()
419 threading.currentThread().__decimal_context__ = context
421 def getcontext():
422 """Returns this thread's context.
424 If this thread does not yet have a context, returns
425 a new context and sets this thread's context.
426 New contexts are copies of DefaultContext.
428 try:
429 return threading.currentThread().__decimal_context__
430 except AttributeError:
431 context = Context()
432 threading.currentThread().__decimal_context__ = context
433 return context
435 else:
437 local = threading.local()
438 if hasattr(local, '__decimal_context__'):
439 del local.__decimal_context__
441 def getcontext(_local=local):
442 """Returns this thread's context.
444 If this thread does not yet have a context, returns
445 a new context and sets this thread's context.
446 New contexts are copies of DefaultContext.
448 try:
449 return _local.__decimal_context__
450 except AttributeError:
451 context = Context()
452 _local.__decimal_context__ = context
453 return context
455 def setcontext(context, _local=local):
456 """Set this thread's context to context."""
457 if context in (DefaultContext, BasicContext, ExtendedContext):
458 context = context.copy()
459 context.clear_flags()
460 _local.__decimal_context__ = context
462 del threading, local # Don't contaminate the namespace
464 def localcontext(ctx=None):
465 """Return a context manager for a copy of the supplied context
467 Uses a copy of the current context if no context is specified
468 The returned context manager creates a local decimal context
469 in a with statement:
470 def sin(x):
471 with localcontext() as ctx:
472 ctx.prec += 2
473 # Rest of sin calculation algorithm
474 # uses a precision 2 greater than normal
475 return +s # Convert result to normal precision
477 def sin(x):
478 with localcontext(ExtendedContext):
479 # Rest of sin calculation algorithm
480 # uses the Extended Context from the
481 # General Decimal Arithmetic Specification
482 return +s # Convert result to normal context
484 >>> setcontext(DefaultContext)
485 >>> print getcontext().prec
487 >>> with localcontext():
488 ... ctx = getcontext()
489 ... ctx.prec += 2
490 ... print ctx.prec
493 >>> with localcontext(ExtendedContext):
494 ... print getcontext().prec
497 >>> print getcontext().prec
500 if ctx is None: ctx = getcontext()
501 return _ContextManager(ctx)
504 ##### Decimal class #######################################################
506 class Decimal(object):
507 """Floating point class for decimal arithmetic."""
509 __slots__ = ('_exp','_int','_sign', '_is_special')
510 # Generally, the value of the Decimal instance is given by
511 # (-1)**_sign * _int * 10**_exp
512 # Special values are signified by _is_special == True
514 # We're immutable, so use __new__ not __init__
515 def __new__(cls, value="0", context=None):
516 """Create a decimal point instance.
518 >>> Decimal('3.14') # string input
519 Decimal('3.14')
520 >>> Decimal((0, (3, 1, 4), -2)) # tuple (sign, digit_tuple, exponent)
521 Decimal('3.14')
522 >>> Decimal(314) # int or long
523 Decimal('314')
524 >>> Decimal(Decimal(314)) # another decimal instance
525 Decimal('314')
526 >>> Decimal(' 3.14 \\n') # leading and trailing whitespace okay
527 Decimal('3.14')
530 # Note that the coefficient, self._int, is actually stored as
531 # a string rather than as a tuple of digits. This speeds up
532 # the "digits to integer" and "integer to digits" conversions
533 # that are used in almost every arithmetic operation on
534 # Decimals. This is an internal detail: the as_tuple function
535 # and the Decimal constructor still deal with tuples of
536 # digits.
538 self = object.__new__(cls)
540 # From a string
541 # REs insist on real strings, so we can too.
542 if isinstance(value, basestring):
543 m = _parser(value.strip())
544 if m is None:
545 if context is None:
546 context = getcontext()
547 return context._raise_error(ConversionSyntax,
548 "Invalid literal for Decimal: %r" % value)
550 if m.group('sign') == "-":
551 self._sign = 1
552 else:
553 self._sign = 0
554 intpart = m.group('int')
555 if intpart is not None:
556 # finite number
557 fracpart = m.group('frac') or ''
558 exp = int(m.group('exp') or '0')
559 self._int = str(int(intpart+fracpart))
560 self._exp = exp - len(fracpart)
561 self._is_special = False
562 else:
563 diag = m.group('diag')
564 if diag is not None:
565 # NaN
566 self._int = str(int(diag or '0')).lstrip('0')
567 if m.group('signal'):
568 self._exp = 'N'
569 else:
570 self._exp = 'n'
571 else:
572 # infinity
573 self._int = '0'
574 self._exp = 'F'
575 self._is_special = True
576 return self
578 # From an integer
579 if isinstance(value, (int,long)):
580 if value >= 0:
581 self._sign = 0
582 else:
583 self._sign = 1
584 self._exp = 0
585 self._int = str(abs(value))
586 self._is_special = False
587 return self
589 # From another decimal
590 if isinstance(value, Decimal):
591 self._exp = value._exp
592 self._sign = value._sign
593 self._int = value._int
594 self._is_special = value._is_special
595 return self
597 # From an internal working value
598 if isinstance(value, _WorkRep):
599 self._sign = value.sign
600 self._int = str(value.int)
601 self._exp = int(value.exp)
602 self._is_special = False
603 return self
605 # tuple/list conversion (possibly from as_tuple())
606 if isinstance(value, (list,tuple)):
607 if len(value) != 3:
608 raise ValueError('Invalid tuple size in creation of Decimal '
609 'from list or tuple. The list or tuple '
610 'should have exactly three elements.')
611 # process sign. The isinstance test rejects floats
612 if not (isinstance(value[0], (int, long)) and value[0] in (0,1)):
613 raise ValueError("Invalid sign. The first value in the tuple "
614 "should be an integer; either 0 for a "
615 "positive number or 1 for a negative number.")
616 self._sign = value[0]
617 if value[2] == 'F':
618 # infinity: value[1] is ignored
619 self._int = '0'
620 self._exp = value[2]
621 self._is_special = True
622 else:
623 # process and validate the digits in value[1]
624 digits = []
625 for digit in value[1]:
626 if isinstance(digit, (int, long)) and 0 <= digit <= 9:
627 # skip leading zeros
628 if digits or digit != 0:
629 digits.append(digit)
630 else:
631 raise ValueError("The second value in the tuple must "
632 "be composed of integers in the range "
633 "0 through 9.")
634 if value[2] in ('n', 'N'):
635 # NaN: digits form the diagnostic
636 self._int = ''.join(map(str, digits))
637 self._exp = value[2]
638 self._is_special = True
639 elif isinstance(value[2], (int, long)):
640 # finite number: digits give the coefficient
641 self._int = ''.join(map(str, digits or [0]))
642 self._exp = value[2]
643 self._is_special = False
644 else:
645 raise ValueError("The third value in the tuple must "
646 "be an integer, or one of the "
647 "strings 'F', 'n', 'N'.")
648 return self
650 if isinstance(value, float):
651 raise TypeError("Cannot convert float to Decimal. " +
652 "First convert the float to a string")
654 raise TypeError("Cannot convert %r to Decimal" % value)
656 # @classmethod, but @decorator is not valid Python 2.3 syntax, so
657 # don't use it (see notes on Py2.3 compatibility at top of file)
658 def from_float(cls, f):
659 """Converts a float to a decimal number, exactly.
661 Note that Decimal.from_float(0.1) is not the same as Decimal('0.1').
662 Since 0.1 is not exactly representable in binary floating point, the
663 value is stored as the nearest representable value which is
664 0x1.999999999999ap-4. The exact equivalent of the value in decimal
665 is 0.1000000000000000055511151231257827021181583404541015625.
667 >>> Decimal.from_float(0.1)
668 Decimal('0.1000000000000000055511151231257827021181583404541015625')
669 >>> Decimal.from_float(float('nan'))
670 Decimal('NaN')
671 >>> Decimal.from_float(float('inf'))
672 Decimal('Infinity')
673 >>> Decimal.from_float(-float('inf'))
674 Decimal('-Infinity')
675 >>> Decimal.from_float(-0.0)
676 Decimal('-0')
679 if isinstance(f, (int, long)): # handle integer inputs
680 return cls(f)
681 if _math.isinf(f) or _math.isnan(f): # raises TypeError if not a float
682 return cls(repr(f))
683 if _math.copysign(1.0, f) == 1.0:
684 sign = 0
685 else:
686 sign = 1
687 n, d = abs(f).as_integer_ratio()
688 k = d.bit_length() - 1
689 result = _dec_from_triple(sign, str(n*5**k), -k)
690 if cls is Decimal:
691 return result
692 else:
693 return cls(result)
694 from_float = classmethod(from_float)
696 def _isnan(self):
697 """Returns whether the number is not actually one.
699 0 if a number
700 1 if NaN
701 2 if sNaN
703 if self._is_special:
704 exp = self._exp
705 if exp == 'n':
706 return 1
707 elif exp == 'N':
708 return 2
709 return 0
711 def _isinfinity(self):
712 """Returns whether the number is infinite
714 0 if finite or not a number
715 1 if +INF
716 -1 if -INF
718 if self._exp == 'F':
719 if self._sign:
720 return -1
721 return 1
722 return 0
724 def _check_nans(self, other=None, context=None):
725 """Returns whether the number is not actually one.
727 if self, other are sNaN, signal
728 if self, other are NaN return nan
729 return 0
731 Done before operations.
734 self_is_nan = self._isnan()
735 if other is None:
736 other_is_nan = False
737 else:
738 other_is_nan = other._isnan()
740 if self_is_nan or other_is_nan:
741 if context is None:
742 context = getcontext()
744 if self_is_nan == 2:
745 return context._raise_error(InvalidOperation, 'sNaN',
746 self)
747 if other_is_nan == 2:
748 return context._raise_error(InvalidOperation, 'sNaN',
749 other)
750 if self_is_nan:
751 return self._fix_nan(context)
753 return other._fix_nan(context)
754 return 0
756 def _compare_check_nans(self, other, context):
757 """Version of _check_nans used for the signaling comparisons
758 compare_signal, __le__, __lt__, __ge__, __gt__.
760 Signal InvalidOperation if either self or other is a (quiet
761 or signaling) NaN. Signaling NaNs take precedence over quiet
762 NaNs.
764 Return 0 if neither operand is a NaN.
767 if context is None:
768 context = getcontext()
770 if self._is_special or other._is_special:
771 if self.is_snan():
772 return context._raise_error(InvalidOperation,
773 'comparison involving sNaN',
774 self)
775 elif other.is_snan():
776 return context._raise_error(InvalidOperation,
777 'comparison involving sNaN',
778 other)
779 elif self.is_qnan():
780 return context._raise_error(InvalidOperation,
781 'comparison involving NaN',
782 self)
783 elif other.is_qnan():
784 return context._raise_error(InvalidOperation,
785 'comparison involving NaN',
786 other)
787 return 0
789 def __nonzero__(self):
790 """Return True if self is nonzero; otherwise return False.
792 NaNs and infinities are considered nonzero.
794 return self._is_special or self._int != '0'
796 def _cmp(self, other):
797 """Compare the two non-NaN decimal instances self and other.
799 Returns -1 if self < other, 0 if self == other and 1
800 if self > other. This routine is for internal use only."""
802 if self._is_special or other._is_special:
803 self_inf = self._isinfinity()
804 other_inf = other._isinfinity()
805 if self_inf == other_inf:
806 return 0
807 elif self_inf < other_inf:
808 return -1
809 else:
810 return 1
812 # check for zeros; Decimal('0') == Decimal('-0')
813 if not self:
814 if not other:
815 return 0
816 else:
817 return -((-1)**other._sign)
818 if not other:
819 return (-1)**self._sign
821 # If different signs, neg one is less
822 if other._sign < self._sign:
823 return -1
824 if self._sign < other._sign:
825 return 1
827 self_adjusted = self.adjusted()
828 other_adjusted = other.adjusted()
829 if self_adjusted == other_adjusted:
830 self_padded = self._int + '0'*(self._exp - other._exp)
831 other_padded = other._int + '0'*(other._exp - self._exp)
832 if self_padded == other_padded:
833 return 0
834 elif self_padded < other_padded:
835 return -(-1)**self._sign
836 else:
837 return (-1)**self._sign
838 elif self_adjusted > other_adjusted:
839 return (-1)**self._sign
840 else: # self_adjusted < other_adjusted
841 return -((-1)**self._sign)
843 # Note: The Decimal standard doesn't cover rich comparisons for
844 # Decimals. In particular, the specification is silent on the
845 # subject of what should happen for a comparison involving a NaN.
846 # We take the following approach:
848 # == comparisons involving a NaN always return False
849 # != comparisons involving a NaN always return True
850 # <, >, <= and >= comparisons involving a (quiet or signaling)
851 # NaN signal InvalidOperation, and return False if the
852 # InvalidOperation is not trapped.
854 # This behavior is designed to conform as closely as possible to
855 # that specified by IEEE 754.
857 def __eq__(self, other):
858 other = _convert_other(other)
859 if other is NotImplemented:
860 return other
861 if self.is_nan() or other.is_nan():
862 return False
863 return self._cmp(other) == 0
865 def __ne__(self, other):
866 other = _convert_other(other)
867 if other is NotImplemented:
868 return other
869 if self.is_nan() or other.is_nan():
870 return True
871 return self._cmp(other) != 0
873 def __lt__(self, other, context=None):
874 other = _convert_other(other)
875 if other is NotImplemented:
876 return other
877 ans = self._compare_check_nans(other, context)
878 if ans:
879 return False
880 return self._cmp(other) < 0
882 def __le__(self, other, context=None):
883 other = _convert_other(other)
884 if other is NotImplemented:
885 return other
886 ans = self._compare_check_nans(other, context)
887 if ans:
888 return False
889 return self._cmp(other) <= 0
891 def __gt__(self, other, context=None):
892 other = _convert_other(other)
893 if other is NotImplemented:
894 return other
895 ans = self._compare_check_nans(other, context)
896 if ans:
897 return False
898 return self._cmp(other) > 0
900 def __ge__(self, other, context=None):
901 other = _convert_other(other)
902 if other is NotImplemented:
903 return other
904 ans = self._compare_check_nans(other, context)
905 if ans:
906 return False
907 return self._cmp(other) >= 0
909 def compare(self, other, context=None):
910 """Compares one to another.
912 -1 => a < b
913 0 => a = b
914 1 => a > b
915 NaN => one is NaN
916 Like __cmp__, but returns Decimal instances.
918 other = _convert_other(other, raiseit=True)
920 # Compare(NaN, NaN) = NaN
921 if (self._is_special or other and other._is_special):
922 ans = self._check_nans(other, context)
923 if ans:
924 return ans
926 return Decimal(self._cmp(other))
928 def __hash__(self):
929 """x.__hash__() <==> hash(x)"""
930 # Decimal integers must hash the same as the ints
932 # The hash of a nonspecial noninteger Decimal must depend only
933 # on the value of that Decimal, and not on its representation.
934 # For example: hash(Decimal('100E-1')) == hash(Decimal('10')).
935 if self._is_special:
936 if self._isnan():
937 raise TypeError('Cannot hash a NaN value.')
938 return hash(str(self))
939 if not self:
940 return 0
941 if self._isinteger():
942 op = _WorkRep(self.to_integral_value())
943 # to make computation feasible for Decimals with large
944 # exponent, we use the fact that hash(n) == hash(m) for
945 # any two nonzero integers n and m such that (i) n and m
946 # have the same sign, and (ii) n is congruent to m modulo
947 # 2**64-1. So we can replace hash((-1)**s*c*10**e) with
948 # hash((-1)**s*c*pow(10, e, 2**64-1).
949 return hash((-1)**op.sign*op.int*pow(10, op.exp, 2**64-1))
950 # The value of a nonzero nonspecial Decimal instance is
951 # faithfully represented by the triple consisting of its sign,
952 # its adjusted exponent, and its coefficient with trailing
953 # zeros removed.
954 return hash((self._sign,
955 self._exp+len(self._int),
956 self._int.rstrip('0')))
958 def as_tuple(self):
959 """Represents the number as a triple tuple.
961 To show the internals exactly as they are.
963 return DecimalTuple(self._sign, tuple(map(int, self._int)), self._exp)
965 def __repr__(self):
966 """Represents the number as an instance of Decimal."""
967 # Invariant: eval(repr(d)) == d
968 return "Decimal('%s')" % str(self)
970 def __str__(self, eng=False, context=None):
971 """Return string representation of the number in scientific notation.
973 Captures all of the information in the underlying representation.
976 sign = ['', '-'][self._sign]
977 if self._is_special:
978 if self._exp == 'F':
979 return sign + 'Infinity'
980 elif self._exp == 'n':
981 return sign + 'NaN' + self._int
982 else: # self._exp == 'N'
983 return sign + 'sNaN' + self._int
985 # number of digits of self._int to left of decimal point
986 leftdigits = self._exp + len(self._int)
988 # dotplace is number of digits of self._int to the left of the
989 # decimal point in the mantissa of the output string (that is,
990 # after adjusting the exponent)
991 if self._exp <= 0 and leftdigits > -6:
992 # no exponent required
993 dotplace = leftdigits
994 elif not eng:
995 # usual scientific notation: 1 digit on left of the point
996 dotplace = 1
997 elif self._int == '0':
998 # engineering notation, zero
999 dotplace = (leftdigits + 1) % 3 - 1
1000 else:
1001 # engineering notation, nonzero
1002 dotplace = (leftdigits - 1) % 3 + 1
1004 if dotplace <= 0:
1005 intpart = '0'
1006 fracpart = '.' + '0'*(-dotplace) + self._int
1007 elif dotplace >= len(self._int):
1008 intpart = self._int+'0'*(dotplace-len(self._int))
1009 fracpart = ''
1010 else:
1011 intpart = self._int[:dotplace]
1012 fracpart = '.' + self._int[dotplace:]
1013 if leftdigits == dotplace:
1014 exp = ''
1015 else:
1016 if context is None:
1017 context = getcontext()
1018 exp = ['e', 'E'][context.capitals] + "%+d" % (leftdigits-dotplace)
1020 return sign + intpart + fracpart + exp
1022 def to_eng_string(self, context=None):
1023 """Convert to engineering-type string.
1025 Engineering notation has an exponent which is a multiple of 3, so there
1026 are up to 3 digits left of the decimal place.
1028 Same rules for when in exponential and when as a value as in __str__.
1030 return self.__str__(eng=True, context=context)
1032 def __neg__(self, context=None):
1033 """Returns a copy with the sign switched.
1035 Rounds, if it has reason.
1037 if self._is_special:
1038 ans = self._check_nans(context=context)
1039 if ans:
1040 return ans
1042 if not self:
1043 # -Decimal('0') is Decimal('0'), not Decimal('-0')
1044 ans = self.copy_abs()
1045 else:
1046 ans = self.copy_negate()
1048 if context is None:
1049 context = getcontext()
1050 return ans._fix(context)
1052 def __pos__(self, context=None):
1053 """Returns a copy, unless it is a sNaN.
1055 Rounds the number (if more then precision digits)
1057 if self._is_special:
1058 ans = self._check_nans(context=context)
1059 if ans:
1060 return ans
1062 if not self:
1063 # + (-0) = 0
1064 ans = self.copy_abs()
1065 else:
1066 ans = Decimal(self)
1068 if context is None:
1069 context = getcontext()
1070 return ans._fix(context)
1072 def __abs__(self, round=True, context=None):
1073 """Returns the absolute value of self.
1075 If the keyword argument 'round' is false, do not round. The
1076 expression self.__abs__(round=False) is equivalent to
1077 self.copy_abs().
1079 if not round:
1080 return self.copy_abs()
1082 if self._is_special:
1083 ans = self._check_nans(context=context)
1084 if ans:
1085 return ans
1087 if self._sign:
1088 ans = self.__neg__(context=context)
1089 else:
1090 ans = self.__pos__(context=context)
1092 return ans
1094 def __add__(self, other, context=None):
1095 """Returns self + other.
1097 -INF + INF (or the reverse) cause InvalidOperation errors.
1099 other = _convert_other(other)
1100 if other is NotImplemented:
1101 return other
1103 if context is None:
1104 context = getcontext()
1106 if self._is_special or other._is_special:
1107 ans = self._check_nans(other, context)
1108 if ans:
1109 return ans
1111 if self._isinfinity():
1112 # If both INF, same sign => same as both, opposite => error.
1113 if self._sign != other._sign and other._isinfinity():
1114 return context._raise_error(InvalidOperation, '-INF + INF')
1115 return Decimal(self)
1116 if other._isinfinity():
1117 return Decimal(other) # Can't both be infinity here
1119 exp = min(self._exp, other._exp)
1120 negativezero = 0
1121 if context.rounding == ROUND_FLOOR and self._sign != other._sign:
1122 # If the answer is 0, the sign should be negative, in this case.
1123 negativezero = 1
1125 if not self and not other:
1126 sign = min(self._sign, other._sign)
1127 if negativezero:
1128 sign = 1
1129 ans = _dec_from_triple(sign, '0', exp)
1130 ans = ans._fix(context)
1131 return ans
1132 if not self:
1133 exp = max(exp, other._exp - context.prec-1)
1134 ans = other._rescale(exp, context.rounding)
1135 ans = ans._fix(context)
1136 return ans
1137 if not other:
1138 exp = max(exp, self._exp - context.prec-1)
1139 ans = self._rescale(exp, context.rounding)
1140 ans = ans._fix(context)
1141 return ans
1143 op1 = _WorkRep(self)
1144 op2 = _WorkRep(other)
1145 op1, op2 = _normalize(op1, op2, context.prec)
1147 result = _WorkRep()
1148 if op1.sign != op2.sign:
1149 # Equal and opposite
1150 if op1.int == op2.int:
1151 ans = _dec_from_triple(negativezero, '0', exp)
1152 ans = ans._fix(context)
1153 return ans
1154 if op1.int < op2.int:
1155 op1, op2 = op2, op1
1156 # OK, now abs(op1) > abs(op2)
1157 if op1.sign == 1:
1158 result.sign = 1
1159 op1.sign, op2.sign = op2.sign, op1.sign
1160 else:
1161 result.sign = 0
1162 # So we know the sign, and op1 > 0.
1163 elif op1.sign == 1:
1164 result.sign = 1
1165 op1.sign, op2.sign = (0, 0)
1166 else:
1167 result.sign = 0
1168 # Now, op1 > abs(op2) > 0
1170 if op2.sign == 0:
1171 result.int = op1.int + op2.int
1172 else:
1173 result.int = op1.int - op2.int
1175 result.exp = op1.exp
1176 ans = Decimal(result)
1177 ans = ans._fix(context)
1178 return ans
1180 __radd__ = __add__
1182 def __sub__(self, other, context=None):
1183 """Return self - other"""
1184 other = _convert_other(other)
1185 if other is NotImplemented:
1186 return other
1188 if self._is_special or other._is_special:
1189 ans = self._check_nans(other, context=context)
1190 if ans:
1191 return ans
1193 # self - other is computed as self + other.copy_negate()
1194 return self.__add__(other.copy_negate(), context=context)
1196 def __rsub__(self, other, context=None):
1197 """Return other - self"""
1198 other = _convert_other(other)
1199 if other is NotImplemented:
1200 return other
1202 return other.__sub__(self, context=context)
1204 def __mul__(self, other, context=None):
1205 """Return self * other.
1207 (+-) INF * 0 (or its reverse) raise InvalidOperation.
1209 other = _convert_other(other)
1210 if other is NotImplemented:
1211 return other
1213 if context is None:
1214 context = getcontext()
1216 resultsign = self._sign ^ other._sign
1218 if self._is_special or other._is_special:
1219 ans = self._check_nans(other, context)
1220 if ans:
1221 return ans
1223 if self._isinfinity():
1224 if not other:
1225 return context._raise_error(InvalidOperation, '(+-)INF * 0')
1226 return _SignedInfinity[resultsign]
1228 if other._isinfinity():
1229 if not self:
1230 return context._raise_error(InvalidOperation, '0 * (+-)INF')
1231 return _SignedInfinity[resultsign]
1233 resultexp = self._exp + other._exp
1235 # Special case for multiplying by zero
1236 if not self or not other:
1237 ans = _dec_from_triple(resultsign, '0', resultexp)
1238 # Fixing in case the exponent is out of bounds
1239 ans = ans._fix(context)
1240 return ans
1242 # Special case for multiplying by power of 10
1243 if self._int == '1':
1244 ans = _dec_from_triple(resultsign, other._int, resultexp)
1245 ans = ans._fix(context)
1246 return ans
1247 if other._int == '1':
1248 ans = _dec_from_triple(resultsign, self._int, resultexp)
1249 ans = ans._fix(context)
1250 return ans
1252 op1 = _WorkRep(self)
1253 op2 = _WorkRep(other)
1255 ans = _dec_from_triple(resultsign, str(op1.int * op2.int), resultexp)
1256 ans = ans._fix(context)
1258 return ans
1259 __rmul__ = __mul__
1261 def __truediv__(self, other, context=None):
1262 """Return self / other."""
1263 other = _convert_other(other)
1264 if other is NotImplemented:
1265 return NotImplemented
1267 if context is None:
1268 context = getcontext()
1270 sign = self._sign ^ other._sign
1272 if self._is_special or other._is_special:
1273 ans = self._check_nans(other, context)
1274 if ans:
1275 return ans
1277 if self._isinfinity() and other._isinfinity():
1278 return context._raise_error(InvalidOperation, '(+-)INF/(+-)INF')
1280 if self._isinfinity():
1281 return _SignedInfinity[sign]
1283 if other._isinfinity():
1284 context._raise_error(Clamped, 'Division by infinity')
1285 return _dec_from_triple(sign, '0', context.Etiny())
1287 # Special cases for zeroes
1288 if not other:
1289 if not self:
1290 return context._raise_error(DivisionUndefined, '0 / 0')
1291 return context._raise_error(DivisionByZero, 'x / 0', sign)
1293 if not self:
1294 exp = self._exp - other._exp
1295 coeff = 0
1296 else:
1297 # OK, so neither = 0, INF or NaN
1298 shift = len(other._int) - len(self._int) + context.prec + 1
1299 exp = self._exp - other._exp - shift
1300 op1 = _WorkRep(self)
1301 op2 = _WorkRep(other)
1302 if shift >= 0:
1303 coeff, remainder = divmod(op1.int * 10**shift, op2.int)
1304 else:
1305 coeff, remainder = divmod(op1.int, op2.int * 10**-shift)
1306 if remainder:
1307 # result is not exact; adjust to ensure correct rounding
1308 if coeff % 5 == 0:
1309 coeff += 1
1310 else:
1311 # result is exact; get as close to ideal exponent as possible
1312 ideal_exp = self._exp - other._exp
1313 while exp < ideal_exp and coeff % 10 == 0:
1314 coeff //= 10
1315 exp += 1
1317 ans = _dec_from_triple(sign, str(coeff), exp)
1318 return ans._fix(context)
1320 def _divide(self, other, context):
1321 """Return (self // other, self % other), to context.prec precision.
1323 Assumes that neither self nor other is a NaN, that self is not
1324 infinite and that other is nonzero.
1326 sign = self._sign ^ other._sign
1327 if other._isinfinity():
1328 ideal_exp = self._exp
1329 else:
1330 ideal_exp = min(self._exp, other._exp)
1332 expdiff = self.adjusted() - other.adjusted()
1333 if not self or other._isinfinity() or expdiff <= -2:
1334 return (_dec_from_triple(sign, '0', 0),
1335 self._rescale(ideal_exp, context.rounding))
1336 if expdiff <= context.prec:
1337 op1 = _WorkRep(self)
1338 op2 = _WorkRep(other)
1339 if op1.exp >= op2.exp:
1340 op1.int *= 10**(op1.exp - op2.exp)
1341 else:
1342 op2.int *= 10**(op2.exp - op1.exp)
1343 q, r = divmod(op1.int, op2.int)
1344 if q < 10**context.prec:
1345 return (_dec_from_triple(sign, str(q), 0),
1346 _dec_from_triple(self._sign, str(r), ideal_exp))
1348 # Here the quotient is too large to be representable
1349 ans = context._raise_error(DivisionImpossible,
1350 'quotient too large in //, % or divmod')
1351 return ans, ans
1353 def __rtruediv__(self, other, context=None):
1354 """Swaps self/other and returns __truediv__."""
1355 other = _convert_other(other)
1356 if other is NotImplemented:
1357 return other
1358 return other.__truediv__(self, context=context)
1360 __div__ = __truediv__
1361 __rdiv__ = __rtruediv__
1363 def __divmod__(self, other, context=None):
1365 Return (self // other, self % other)
1367 other = _convert_other(other)
1368 if other is NotImplemented:
1369 return other
1371 if context is None:
1372 context = getcontext()
1374 ans = self._check_nans(other, context)
1375 if ans:
1376 return (ans, ans)
1378 sign = self._sign ^ other._sign
1379 if self._isinfinity():
1380 if other._isinfinity():
1381 ans = context._raise_error(InvalidOperation, 'divmod(INF, INF)')
1382 return ans, ans
1383 else:
1384 return (_SignedInfinity[sign],
1385 context._raise_error(InvalidOperation, 'INF % x'))
1387 if not other:
1388 if not self:
1389 ans = context._raise_error(DivisionUndefined, 'divmod(0, 0)')
1390 return ans, ans
1391 else:
1392 return (context._raise_error(DivisionByZero, 'x // 0', sign),
1393 context._raise_error(InvalidOperation, 'x % 0'))
1395 quotient, remainder = self._divide(other, context)
1396 remainder = remainder._fix(context)
1397 return quotient, remainder
1399 def __rdivmod__(self, other, context=None):
1400 """Swaps self/other and returns __divmod__."""
1401 other = _convert_other(other)
1402 if other is NotImplemented:
1403 return other
1404 return other.__divmod__(self, context=context)
1406 def __mod__(self, other, context=None):
1408 self % other
1410 other = _convert_other(other)
1411 if other is NotImplemented:
1412 return other
1414 if context is None:
1415 context = getcontext()
1417 ans = self._check_nans(other, context)
1418 if ans:
1419 return ans
1421 if self._isinfinity():
1422 return context._raise_error(InvalidOperation, 'INF % x')
1423 elif not other:
1424 if self:
1425 return context._raise_error(InvalidOperation, 'x % 0')
1426 else:
1427 return context._raise_error(DivisionUndefined, '0 % 0')
1429 remainder = self._divide(other, context)[1]
1430 remainder = remainder._fix(context)
1431 return remainder
1433 def __rmod__(self, other, context=None):
1434 """Swaps self/other and returns __mod__."""
1435 other = _convert_other(other)
1436 if other is NotImplemented:
1437 return other
1438 return other.__mod__(self, context=context)
1440 def remainder_near(self, other, context=None):
1442 Remainder nearest to 0- abs(remainder-near) <= other/2
1444 if context is None:
1445 context = getcontext()
1447 other = _convert_other(other, raiseit=True)
1449 ans = self._check_nans(other, context)
1450 if ans:
1451 return ans
1453 # self == +/-infinity -> InvalidOperation
1454 if self._isinfinity():
1455 return context._raise_error(InvalidOperation,
1456 'remainder_near(infinity, x)')
1458 # other == 0 -> either InvalidOperation or DivisionUndefined
1459 if not other:
1460 if self:
1461 return context._raise_error(InvalidOperation,
1462 'remainder_near(x, 0)')
1463 else:
1464 return context._raise_error(DivisionUndefined,
1465 'remainder_near(0, 0)')
1467 # other = +/-infinity -> remainder = self
1468 if other._isinfinity():
1469 ans = Decimal(self)
1470 return ans._fix(context)
1472 # self = 0 -> remainder = self, with ideal exponent
1473 ideal_exponent = min(self._exp, other._exp)
1474 if not self:
1475 ans = _dec_from_triple(self._sign, '0', ideal_exponent)
1476 return ans._fix(context)
1478 # catch most cases of large or small quotient
1479 expdiff = self.adjusted() - other.adjusted()
1480 if expdiff >= context.prec + 1:
1481 # expdiff >= prec+1 => abs(self/other) > 10**prec
1482 return context._raise_error(DivisionImpossible)
1483 if expdiff <= -2:
1484 # expdiff <= -2 => abs(self/other) < 0.1
1485 ans = self._rescale(ideal_exponent, context.rounding)
1486 return ans._fix(context)
1488 # adjust both arguments to have the same exponent, then divide
1489 op1 = _WorkRep(self)
1490 op2 = _WorkRep(other)
1491 if op1.exp >= op2.exp:
1492 op1.int *= 10**(op1.exp - op2.exp)
1493 else:
1494 op2.int *= 10**(op2.exp - op1.exp)
1495 q, r = divmod(op1.int, op2.int)
1496 # remainder is r*10**ideal_exponent; other is +/-op2.int *
1497 # 10**ideal_exponent. Apply correction to ensure that
1498 # abs(remainder) <= abs(other)/2
1499 if 2*r + (q&1) > op2.int:
1500 r -= op2.int
1501 q += 1
1503 if q >= 10**context.prec:
1504 return context._raise_error(DivisionImpossible)
1506 # result has same sign as self unless r is negative
1507 sign = self._sign
1508 if r < 0:
1509 sign = 1-sign
1510 r = -r
1512 ans = _dec_from_triple(sign, str(r), ideal_exponent)
1513 return ans._fix(context)
1515 def __floordiv__(self, other, context=None):
1516 """self // other"""
1517 other = _convert_other(other)
1518 if other is NotImplemented:
1519 return other
1521 if context is None:
1522 context = getcontext()
1524 ans = self._check_nans(other, context)
1525 if ans:
1526 return ans
1528 if self._isinfinity():
1529 if other._isinfinity():
1530 return context._raise_error(InvalidOperation, 'INF // INF')
1531 else:
1532 return _SignedInfinity[self._sign ^ other._sign]
1534 if not other:
1535 if self:
1536 return context._raise_error(DivisionByZero, 'x // 0',
1537 self._sign ^ other._sign)
1538 else:
1539 return context._raise_error(DivisionUndefined, '0 // 0')
1541 return self._divide(other, context)[0]
1543 def __rfloordiv__(self, other, context=None):
1544 """Swaps self/other and returns __floordiv__."""
1545 other = _convert_other(other)
1546 if other is NotImplemented:
1547 return other
1548 return other.__floordiv__(self, context=context)
1550 def __float__(self):
1551 """Float representation."""
1552 return float(str(self))
1554 def __int__(self):
1555 """Converts self to an int, truncating if necessary."""
1556 if self._is_special:
1557 if self._isnan():
1558 context = getcontext()
1559 return context._raise_error(InvalidContext)
1560 elif self._isinfinity():
1561 raise OverflowError("Cannot convert infinity to int")
1562 s = (-1)**self._sign
1563 if self._exp >= 0:
1564 return s*int(self._int)*10**self._exp
1565 else:
1566 return s*int(self._int[:self._exp] or '0')
1568 __trunc__ = __int__
1570 def real(self):
1571 return self
1572 real = property(real)
1574 def imag(self):
1575 return Decimal(0)
1576 imag = property(imag)
1578 def conjugate(self):
1579 return self
1581 def __complex__(self):
1582 return complex(float(self))
1584 def __long__(self):
1585 """Converts to a long.
1587 Equivalent to long(int(self))
1589 return long(self.__int__())
1591 def _fix_nan(self, context):
1592 """Decapitate the payload of a NaN to fit the context"""
1593 payload = self._int
1595 # maximum length of payload is precision if _clamp=0,
1596 # precision-1 if _clamp=1.
1597 max_payload_len = context.prec - context._clamp
1598 if len(payload) > max_payload_len:
1599 payload = payload[len(payload)-max_payload_len:].lstrip('0')
1600 return _dec_from_triple(self._sign, payload, self._exp, True)
1601 return Decimal(self)
1603 def _fix(self, context):
1604 """Round if it is necessary to keep self within prec precision.
1606 Rounds and fixes the exponent. Does not raise on a sNaN.
1608 Arguments:
1609 self - Decimal instance
1610 context - context used.
1613 if self._is_special:
1614 if self._isnan():
1615 # decapitate payload if necessary
1616 return self._fix_nan(context)
1617 else:
1618 # self is +/-Infinity; return unaltered
1619 return Decimal(self)
1621 # if self is zero then exponent should be between Etiny and
1622 # Emax if _clamp==0, and between Etiny and Etop if _clamp==1.
1623 Etiny = context.Etiny()
1624 Etop = context.Etop()
1625 if not self:
1626 exp_max = [context.Emax, Etop][context._clamp]
1627 new_exp = min(max(self._exp, Etiny), exp_max)
1628 if new_exp != self._exp:
1629 context._raise_error(Clamped)
1630 return _dec_from_triple(self._sign, '0', new_exp)
1631 else:
1632 return Decimal(self)
1634 # exp_min is the smallest allowable exponent of the result,
1635 # equal to max(self.adjusted()-context.prec+1, Etiny)
1636 exp_min = len(self._int) + self._exp - context.prec
1637 if exp_min > Etop:
1638 # overflow: exp_min > Etop iff self.adjusted() > Emax
1639 context._raise_error(Inexact)
1640 context._raise_error(Rounded)
1641 return context._raise_error(Overflow, 'above Emax', self._sign)
1642 self_is_subnormal = exp_min < Etiny
1643 if self_is_subnormal:
1644 context._raise_error(Subnormal)
1645 exp_min = Etiny
1647 # round if self has too many digits
1648 if self._exp < exp_min:
1649 context._raise_error(Rounded)
1650 digits = len(self._int) + self._exp - exp_min
1651 if digits < 0:
1652 self = _dec_from_triple(self._sign, '1', exp_min-1)
1653 digits = 0
1654 this_function = getattr(self, self._pick_rounding_function[context.rounding])
1655 changed = this_function(digits)
1656 coeff = self._int[:digits] or '0'
1657 if changed == 1:
1658 coeff = str(int(coeff)+1)
1659 ans = _dec_from_triple(self._sign, coeff, exp_min)
1661 if changed:
1662 context._raise_error(Inexact)
1663 if self_is_subnormal:
1664 context._raise_error(Underflow)
1665 if not ans:
1666 # raise Clamped on underflow to 0
1667 context._raise_error(Clamped)
1668 elif len(ans._int) == context.prec+1:
1669 # we get here only if rescaling rounds the
1670 # cofficient up to exactly 10**context.prec
1671 if ans._exp < Etop:
1672 ans = _dec_from_triple(ans._sign,
1673 ans._int[:-1], ans._exp+1)
1674 else:
1675 # Inexact and Rounded have already been raised
1676 ans = context._raise_error(Overflow, 'above Emax',
1677 self._sign)
1678 return ans
1680 # fold down if _clamp == 1 and self has too few digits
1681 if context._clamp == 1 and self._exp > Etop:
1682 context._raise_error(Clamped)
1683 self_padded = self._int + '0'*(self._exp - Etop)
1684 return _dec_from_triple(self._sign, self_padded, Etop)
1686 # here self was representable to begin with; return unchanged
1687 return Decimal(self)
1689 _pick_rounding_function = {}
1691 # for each of the rounding functions below:
1692 # self is a finite, nonzero Decimal
1693 # prec is an integer satisfying 0 <= prec < len(self._int)
1695 # each function returns either -1, 0, or 1, as follows:
1696 # 1 indicates that self should be rounded up (away from zero)
1697 # 0 indicates that self should be truncated, and that all the
1698 # digits to be truncated are zeros (so the value is unchanged)
1699 # -1 indicates that there are nonzero digits to be truncated
1701 def _round_down(self, prec):
1702 """Also known as round-towards-0, truncate."""
1703 if _all_zeros(self._int, prec):
1704 return 0
1705 else:
1706 return -1
1708 def _round_up(self, prec):
1709 """Rounds away from 0."""
1710 return -self._round_down(prec)
1712 def _round_half_up(self, prec):
1713 """Rounds 5 up (away from 0)"""
1714 if self._int[prec] in '56789':
1715 return 1
1716 elif _all_zeros(self._int, prec):
1717 return 0
1718 else:
1719 return -1
1721 def _round_half_down(self, prec):
1722 """Round 5 down"""
1723 if _exact_half(self._int, prec):
1724 return -1
1725 else:
1726 return self._round_half_up(prec)
1728 def _round_half_even(self, prec):
1729 """Round 5 to even, rest to nearest."""
1730 if _exact_half(self._int, prec) and \
1731 (prec == 0 or self._int[prec-1] in '02468'):
1732 return -1
1733 else:
1734 return self._round_half_up(prec)
1736 def _round_ceiling(self, prec):
1737 """Rounds up (not away from 0 if negative.)"""
1738 if self._sign:
1739 return self._round_down(prec)
1740 else:
1741 return -self._round_down(prec)
1743 def _round_floor(self, prec):
1744 """Rounds down (not towards 0 if negative)"""
1745 if not self._sign:
1746 return self._round_down(prec)
1747 else:
1748 return -self._round_down(prec)
1750 def _round_05up(self, prec):
1751 """Round down unless digit prec-1 is 0 or 5."""
1752 if prec and self._int[prec-1] not in '05':
1753 return self._round_down(prec)
1754 else:
1755 return -self._round_down(prec)
1757 def fma(self, other, third, context=None):
1758 """Fused multiply-add.
1760 Returns self*other+third with no rounding of the intermediate
1761 product self*other.
1763 self and other are multiplied together, with no rounding of
1764 the result. The third operand is then added to the result,
1765 and a single final rounding is performed.
1768 other = _convert_other(other, raiseit=True)
1770 # compute product; raise InvalidOperation if either operand is
1771 # a signaling NaN or if the product is zero times infinity.
1772 if self._is_special or other._is_special:
1773 if context is None:
1774 context = getcontext()
1775 if self._exp == 'N':
1776 return context._raise_error(InvalidOperation, 'sNaN', self)
1777 if other._exp == 'N':
1778 return context._raise_error(InvalidOperation, 'sNaN', other)
1779 if self._exp == 'n':
1780 product = self
1781 elif other._exp == 'n':
1782 product = other
1783 elif self._exp == 'F':
1784 if not other:
1785 return context._raise_error(InvalidOperation,
1786 'INF * 0 in fma')
1787 product = _SignedInfinity[self._sign ^ other._sign]
1788 elif other._exp == 'F':
1789 if not self:
1790 return context._raise_error(InvalidOperation,
1791 '0 * INF in fma')
1792 product = _SignedInfinity[self._sign ^ other._sign]
1793 else:
1794 product = _dec_from_triple(self._sign ^ other._sign,
1795 str(int(self._int) * int(other._int)),
1796 self._exp + other._exp)
1798 third = _convert_other(third, raiseit=True)
1799 return product.__add__(third, context)
1801 def _power_modulo(self, other, modulo, context=None):
1802 """Three argument version of __pow__"""
1804 # if can't convert other and modulo to Decimal, raise
1805 # TypeError; there's no point returning NotImplemented (no
1806 # equivalent of __rpow__ for three argument pow)
1807 other = _convert_other(other, raiseit=True)
1808 modulo = _convert_other(modulo, raiseit=True)
1810 if context is None:
1811 context = getcontext()
1813 # deal with NaNs: if there are any sNaNs then first one wins,
1814 # (i.e. behaviour for NaNs is identical to that of fma)
1815 self_is_nan = self._isnan()
1816 other_is_nan = other._isnan()
1817 modulo_is_nan = modulo._isnan()
1818 if self_is_nan or other_is_nan or modulo_is_nan:
1819 if self_is_nan == 2:
1820 return context._raise_error(InvalidOperation, 'sNaN',
1821 self)
1822 if other_is_nan == 2:
1823 return context._raise_error(InvalidOperation, 'sNaN',
1824 other)
1825 if modulo_is_nan == 2:
1826 return context._raise_error(InvalidOperation, 'sNaN',
1827 modulo)
1828 if self_is_nan:
1829 return self._fix_nan(context)
1830 if other_is_nan:
1831 return other._fix_nan(context)
1832 return modulo._fix_nan(context)
1834 # check inputs: we apply same restrictions as Python's pow()
1835 if not (self._isinteger() and
1836 other._isinteger() and
1837 modulo._isinteger()):
1838 return context._raise_error(InvalidOperation,
1839 'pow() 3rd argument not allowed '
1840 'unless all arguments are integers')
1841 if other < 0:
1842 return context._raise_error(InvalidOperation,
1843 'pow() 2nd argument cannot be '
1844 'negative when 3rd argument specified')
1845 if not modulo:
1846 return context._raise_error(InvalidOperation,
1847 'pow() 3rd argument cannot be 0')
1849 # additional restriction for decimal: the modulus must be less
1850 # than 10**prec in absolute value
1851 if modulo.adjusted() >= context.prec:
1852 return context._raise_error(InvalidOperation,
1853 'insufficient precision: pow() 3rd '
1854 'argument must not have more than '
1855 'precision digits')
1857 # define 0**0 == NaN, for consistency with two-argument pow
1858 # (even though it hurts!)
1859 if not other and not self:
1860 return context._raise_error(InvalidOperation,
1861 'at least one of pow() 1st argument '
1862 'and 2nd argument must be nonzero ;'
1863 '0**0 is not defined')
1865 # compute sign of result
1866 if other._iseven():
1867 sign = 0
1868 else:
1869 sign = self._sign
1871 # convert modulo to a Python integer, and self and other to
1872 # Decimal integers (i.e. force their exponents to be >= 0)
1873 modulo = abs(int(modulo))
1874 base = _WorkRep(self.to_integral_value())
1875 exponent = _WorkRep(other.to_integral_value())
1877 # compute result using integer pow()
1878 base = (base.int % modulo * pow(10, base.exp, modulo)) % modulo
1879 for i in xrange(exponent.exp):
1880 base = pow(base, 10, modulo)
1881 base = pow(base, exponent.int, modulo)
1883 return _dec_from_triple(sign, str(base), 0)
1885 def _power_exact(self, other, p):
1886 """Attempt to compute self**other exactly.
1888 Given Decimals self and other and an integer p, attempt to
1889 compute an exact result for the power self**other, with p
1890 digits of precision. Return None if self**other is not
1891 exactly representable in p digits.
1893 Assumes that elimination of special cases has already been
1894 performed: self and other must both be nonspecial; self must
1895 be positive and not numerically equal to 1; other must be
1896 nonzero. For efficiency, other._exp should not be too large,
1897 so that 10**abs(other._exp) is a feasible calculation."""
1899 # In the comments below, we write x for the value of self and
1900 # y for the value of other. Write x = xc*10**xe and y =
1901 # yc*10**ye.
1903 # The main purpose of this method is to identify the *failure*
1904 # of x**y to be exactly representable with as little effort as
1905 # possible. So we look for cheap and easy tests that
1906 # eliminate the possibility of x**y being exact. Only if all
1907 # these tests are passed do we go on to actually compute x**y.
1909 # Here's the main idea. First normalize both x and y. We
1910 # express y as a rational m/n, with m and n relatively prime
1911 # and n>0. Then for x**y to be exactly representable (at
1912 # *any* precision), xc must be the nth power of a positive
1913 # integer and xe must be divisible by n. If m is negative
1914 # then additionally xc must be a power of either 2 or 5, hence
1915 # a power of 2**n or 5**n.
1917 # There's a limit to how small |y| can be: if y=m/n as above
1918 # then:
1920 # (1) if xc != 1 then for the result to be representable we
1921 # need xc**(1/n) >= 2, and hence also xc**|y| >= 2. So
1922 # if |y| <= 1/nbits(xc) then xc < 2**nbits(xc) <=
1923 # 2**(1/|y|), hence xc**|y| < 2 and the result is not
1924 # representable.
1926 # (2) if xe != 0, |xe|*(1/n) >= 1, so |xe|*|y| >= 1. Hence if
1927 # |y| < 1/|xe| then the result is not representable.
1929 # Note that since x is not equal to 1, at least one of (1) and
1930 # (2) must apply. Now |y| < 1/nbits(xc) iff |yc|*nbits(xc) <
1931 # 10**-ye iff len(str(|yc|*nbits(xc)) <= -ye.
1933 # There's also a limit to how large y can be, at least if it's
1934 # positive: the normalized result will have coefficient xc**y,
1935 # so if it's representable then xc**y < 10**p, and y <
1936 # p/log10(xc). Hence if y*log10(xc) >= p then the result is
1937 # not exactly representable.
1939 # if len(str(abs(yc*xe)) <= -ye then abs(yc*xe) < 10**-ye,
1940 # so |y| < 1/xe and the result is not representable.
1941 # Similarly, len(str(abs(yc)*xc_bits)) <= -ye implies |y|
1942 # < 1/nbits(xc).
1944 x = _WorkRep(self)
1945 xc, xe = x.int, x.exp
1946 while xc % 10 == 0:
1947 xc //= 10
1948 xe += 1
1950 y = _WorkRep(other)
1951 yc, ye = y.int, y.exp
1952 while yc % 10 == 0:
1953 yc //= 10
1954 ye += 1
1956 # case where xc == 1: result is 10**(xe*y), with xe*y
1957 # required to be an integer
1958 if xc == 1:
1959 if ye >= 0:
1960 exponent = xe*yc*10**ye
1961 else:
1962 exponent, remainder = divmod(xe*yc, 10**-ye)
1963 if remainder:
1964 return None
1965 if y.sign == 1:
1966 exponent = -exponent
1967 # if other is a nonnegative integer, use ideal exponent
1968 if other._isinteger() and other._sign == 0:
1969 ideal_exponent = self._exp*int(other)
1970 zeros = min(exponent-ideal_exponent, p-1)
1971 else:
1972 zeros = 0
1973 return _dec_from_triple(0, '1' + '0'*zeros, exponent-zeros)
1975 # case where y is negative: xc must be either a power
1976 # of 2 or a power of 5.
1977 if y.sign == 1:
1978 last_digit = xc % 10
1979 if last_digit in (2,4,6,8):
1980 # quick test for power of 2
1981 if xc & -xc != xc:
1982 return None
1983 # now xc is a power of 2; e is its exponent
1984 e = _nbits(xc)-1
1985 # find e*y and xe*y; both must be integers
1986 if ye >= 0:
1987 y_as_int = yc*10**ye
1988 e = e*y_as_int
1989 xe = xe*y_as_int
1990 else:
1991 ten_pow = 10**-ye
1992 e, remainder = divmod(e*yc, ten_pow)
1993 if remainder:
1994 return None
1995 xe, remainder = divmod(xe*yc, ten_pow)
1996 if remainder:
1997 return None
1999 if e*65 >= p*93: # 93/65 > log(10)/log(5)
2000 return None
2001 xc = 5**e
2003 elif last_digit == 5:
2004 # e >= log_5(xc) if xc is a power of 5; we have
2005 # equality all the way up to xc=5**2658
2006 e = _nbits(xc)*28//65
2007 xc, remainder = divmod(5**e, xc)
2008 if remainder:
2009 return None
2010 while xc % 5 == 0:
2011 xc //= 5
2012 e -= 1
2013 if ye >= 0:
2014 y_as_integer = yc*10**ye
2015 e = e*y_as_integer
2016 xe = xe*y_as_integer
2017 else:
2018 ten_pow = 10**-ye
2019 e, remainder = divmod(e*yc, ten_pow)
2020 if remainder:
2021 return None
2022 xe, remainder = divmod(xe*yc, ten_pow)
2023 if remainder:
2024 return None
2025 if e*3 >= p*10: # 10/3 > log(10)/log(2)
2026 return None
2027 xc = 2**e
2028 else:
2029 return None
2031 if xc >= 10**p:
2032 return None
2033 xe = -e-xe
2034 return _dec_from_triple(0, str(xc), xe)
2036 # now y is positive; find m and n such that y = m/n
2037 if ye >= 0:
2038 m, n = yc*10**ye, 1
2039 else:
2040 if xe != 0 and len(str(abs(yc*xe))) <= -ye:
2041 return None
2042 xc_bits = _nbits(xc)
2043 if xc != 1 and len(str(abs(yc)*xc_bits)) <= -ye:
2044 return None
2045 m, n = yc, 10**(-ye)
2046 while m % 2 == n % 2 == 0:
2047 m //= 2
2048 n //= 2
2049 while m % 5 == n % 5 == 0:
2050 m //= 5
2051 n //= 5
2053 # compute nth root of xc*10**xe
2054 if n > 1:
2055 # if 1 < xc < 2**n then xc isn't an nth power
2056 if xc != 1 and xc_bits <= n:
2057 return None
2059 xe, rem = divmod(xe, n)
2060 if rem != 0:
2061 return None
2063 # compute nth root of xc using Newton's method
2064 a = 1L << -(-_nbits(xc)//n) # initial estimate
2065 while True:
2066 q, r = divmod(xc, a**(n-1))
2067 if a <= q:
2068 break
2069 else:
2070 a = (a*(n-1) + q)//n
2071 if not (a == q and r == 0):
2072 return None
2073 xc = a
2075 # now xc*10**xe is the nth root of the original xc*10**xe
2076 # compute mth power of xc*10**xe
2078 # if m > p*100//_log10_lb(xc) then m > p/log10(xc), hence xc**m >
2079 # 10**p and the result is not representable.
2080 if xc > 1 and m > p*100//_log10_lb(xc):
2081 return None
2082 xc = xc**m
2083 xe *= m
2084 if xc > 10**p:
2085 return None
2087 # by this point the result *is* exactly representable
2088 # adjust the exponent to get as close as possible to the ideal
2089 # exponent, if necessary
2090 str_xc = str(xc)
2091 if other._isinteger() and other._sign == 0:
2092 ideal_exponent = self._exp*int(other)
2093 zeros = min(xe-ideal_exponent, p-len(str_xc))
2094 else:
2095 zeros = 0
2096 return _dec_from_triple(0, str_xc+'0'*zeros, xe-zeros)
2098 def __pow__(self, other, modulo=None, context=None):
2099 """Return self ** other [ % modulo].
2101 With two arguments, compute self**other.
2103 With three arguments, compute (self**other) % modulo. For the
2104 three argument form, the following restrictions on the
2105 arguments hold:
2107 - all three arguments must be integral
2108 - other must be nonnegative
2109 - either self or other (or both) must be nonzero
2110 - modulo must be nonzero and must have at most p digits,
2111 where p is the context precision.
2113 If any of these restrictions is violated the InvalidOperation
2114 flag is raised.
2116 The result of pow(self, other, modulo) is identical to the
2117 result that would be obtained by computing (self**other) %
2118 modulo with unbounded precision, but is computed more
2119 efficiently. It is always exact.
2122 if modulo is not None:
2123 return self._power_modulo(other, modulo, context)
2125 other = _convert_other(other)
2126 if other is NotImplemented:
2127 return other
2129 if context is None:
2130 context = getcontext()
2132 # either argument is a NaN => result is NaN
2133 ans = self._check_nans(other, context)
2134 if ans:
2135 return ans
2137 # 0**0 = NaN (!), x**0 = 1 for nonzero x (including +/-Infinity)
2138 if not other:
2139 if not self:
2140 return context._raise_error(InvalidOperation, '0 ** 0')
2141 else:
2142 return _One
2144 # result has sign 1 iff self._sign is 1 and other is an odd integer
2145 result_sign = 0
2146 if self._sign == 1:
2147 if other._isinteger():
2148 if not other._iseven():
2149 result_sign = 1
2150 else:
2151 # -ve**noninteger = NaN
2152 # (-0)**noninteger = 0**noninteger
2153 if self:
2154 return context._raise_error(InvalidOperation,
2155 'x ** y with x negative and y not an integer')
2156 # negate self, without doing any unwanted rounding
2157 self = self.copy_negate()
2159 # 0**(+ve or Inf)= 0; 0**(-ve or -Inf) = Infinity
2160 if not self:
2161 if other._sign == 0:
2162 return _dec_from_triple(result_sign, '0', 0)
2163 else:
2164 return _SignedInfinity[result_sign]
2166 # Inf**(+ve or Inf) = Inf; Inf**(-ve or -Inf) = 0
2167 if self._isinfinity():
2168 if other._sign == 0:
2169 return _SignedInfinity[result_sign]
2170 else:
2171 return _dec_from_triple(result_sign, '0', 0)
2173 # 1**other = 1, but the choice of exponent and the flags
2174 # depend on the exponent of self, and on whether other is a
2175 # positive integer, a negative integer, or neither
2176 if self == _One:
2177 if other._isinteger():
2178 # exp = max(self._exp*max(int(other), 0),
2179 # 1-context.prec) but evaluating int(other) directly
2180 # is dangerous until we know other is small (other
2181 # could be 1e999999999)
2182 if other._sign == 1:
2183 multiplier = 0
2184 elif other > context.prec:
2185 multiplier = context.prec
2186 else:
2187 multiplier = int(other)
2189 exp = self._exp * multiplier
2190 if exp < 1-context.prec:
2191 exp = 1-context.prec
2192 context._raise_error(Rounded)
2193 else:
2194 context._raise_error(Inexact)
2195 context._raise_error(Rounded)
2196 exp = 1-context.prec
2198 return _dec_from_triple(result_sign, '1'+'0'*-exp, exp)
2200 # compute adjusted exponent of self
2201 self_adj = self.adjusted()
2203 # self ** infinity is infinity if self > 1, 0 if self < 1
2204 # self ** -infinity is infinity if self < 1, 0 if self > 1
2205 if other._isinfinity():
2206 if (other._sign == 0) == (self_adj < 0):
2207 return _dec_from_triple(result_sign, '0', 0)
2208 else:
2209 return _SignedInfinity[result_sign]
2211 # from here on, the result always goes through the call
2212 # to _fix at the end of this function.
2213 ans = None
2215 # crude test to catch cases of extreme overflow/underflow. If
2216 # log10(self)*other >= 10**bound and bound >= len(str(Emax))
2217 # then 10**bound >= 10**len(str(Emax)) >= Emax+1 and hence
2218 # self**other >= 10**(Emax+1), so overflow occurs. The test
2219 # for underflow is similar.
2220 bound = self._log10_exp_bound() + other.adjusted()
2221 if (self_adj >= 0) == (other._sign == 0):
2222 # self > 1 and other +ve, or self < 1 and other -ve
2223 # possibility of overflow
2224 if bound >= len(str(context.Emax)):
2225 ans = _dec_from_triple(result_sign, '1', context.Emax+1)
2226 else:
2227 # self > 1 and other -ve, or self < 1 and other +ve
2228 # possibility of underflow to 0
2229 Etiny = context.Etiny()
2230 if bound >= len(str(-Etiny)):
2231 ans = _dec_from_triple(result_sign, '1', Etiny-1)
2233 # try for an exact result with precision +1
2234 if ans is None:
2235 ans = self._power_exact(other, context.prec + 1)
2236 if ans is not None and result_sign == 1:
2237 ans = _dec_from_triple(1, ans._int, ans._exp)
2239 # usual case: inexact result, x**y computed directly as exp(y*log(x))
2240 if ans is None:
2241 p = context.prec
2242 x = _WorkRep(self)
2243 xc, xe = x.int, x.exp
2244 y = _WorkRep(other)
2245 yc, ye = y.int, y.exp
2246 if y.sign == 1:
2247 yc = -yc
2249 # compute correctly rounded result: start with precision +3,
2250 # then increase precision until result is unambiguously roundable
2251 extra = 3
2252 while True:
2253 coeff, exp = _dpower(xc, xe, yc, ye, p+extra)
2254 if coeff % (5*10**(len(str(coeff))-p-1)):
2255 break
2256 extra += 3
2258 ans = _dec_from_triple(result_sign, str(coeff), exp)
2260 # the specification says that for non-integer other we need to
2261 # raise Inexact, even when the result is actually exact. In
2262 # the same way, we need to raise Underflow here if the result
2263 # is subnormal. (The call to _fix will take care of raising
2264 # Rounded and Subnormal, as usual.)
2265 if not other._isinteger():
2266 context._raise_error(Inexact)
2267 # pad with zeros up to length context.prec+1 if necessary
2268 if len(ans._int) <= context.prec:
2269 expdiff = context.prec+1 - len(ans._int)
2270 ans = _dec_from_triple(ans._sign, ans._int+'0'*expdiff,
2271 ans._exp-expdiff)
2272 if ans.adjusted() < context.Emin:
2273 context._raise_error(Underflow)
2275 # unlike exp, ln and log10, the power function respects the
2276 # rounding mode; no need to use ROUND_HALF_EVEN here
2277 ans = ans._fix(context)
2278 return ans
2280 def __rpow__(self, other, context=None):
2281 """Swaps self/other and returns __pow__."""
2282 other = _convert_other(other)
2283 if other is NotImplemented:
2284 return other
2285 return other.__pow__(self, context=context)
2287 def normalize(self, context=None):
2288 """Normalize- strip trailing 0s, change anything equal to 0 to 0e0"""
2290 if context is None:
2291 context = getcontext()
2293 if self._is_special:
2294 ans = self._check_nans(context=context)
2295 if ans:
2296 return ans
2298 dup = self._fix(context)
2299 if dup._isinfinity():
2300 return dup
2302 if not dup:
2303 return _dec_from_triple(dup._sign, '0', 0)
2304 exp_max = [context.Emax, context.Etop()][context._clamp]
2305 end = len(dup._int)
2306 exp = dup._exp
2307 while dup._int[end-1] == '0' and exp < exp_max:
2308 exp += 1
2309 end -= 1
2310 return _dec_from_triple(dup._sign, dup._int[:end], exp)
2312 def quantize(self, exp, rounding=None, context=None, watchexp=True):
2313 """Quantize self so its exponent is the same as that of exp.
2315 Similar to self._rescale(exp._exp) but with error checking.
2317 exp = _convert_other(exp, raiseit=True)
2319 if context is None:
2320 context = getcontext()
2321 if rounding is None:
2322 rounding = context.rounding
2324 if self._is_special or exp._is_special:
2325 ans = self._check_nans(exp, context)
2326 if ans:
2327 return ans
2329 if exp._isinfinity() or self._isinfinity():
2330 if exp._isinfinity() and self._isinfinity():
2331 return Decimal(self) # if both are inf, it is OK
2332 return context._raise_error(InvalidOperation,
2333 'quantize with one INF')
2335 # if we're not watching exponents, do a simple rescale
2336 if not watchexp:
2337 ans = self._rescale(exp._exp, rounding)
2338 # raise Inexact and Rounded where appropriate
2339 if ans._exp > self._exp:
2340 context._raise_error(Rounded)
2341 if ans != self:
2342 context._raise_error(Inexact)
2343 return ans
2345 # exp._exp should be between Etiny and Emax
2346 if not (context.Etiny() <= exp._exp <= context.Emax):
2347 return context._raise_error(InvalidOperation,
2348 'target exponent out of bounds in quantize')
2350 if not self:
2351 ans = _dec_from_triple(self._sign, '0', exp._exp)
2352 return ans._fix(context)
2354 self_adjusted = self.adjusted()
2355 if self_adjusted > context.Emax:
2356 return context._raise_error(InvalidOperation,
2357 'exponent of quantize result too large for current context')
2358 if self_adjusted - exp._exp + 1 > context.prec:
2359 return context._raise_error(InvalidOperation,
2360 'quantize result has too many digits for current context')
2362 ans = self._rescale(exp._exp, rounding)
2363 if ans.adjusted() > context.Emax:
2364 return context._raise_error(InvalidOperation,
2365 'exponent of quantize result too large for current context')
2366 if len(ans._int) > context.prec:
2367 return context._raise_error(InvalidOperation,
2368 'quantize result has too many digits for current context')
2370 # raise appropriate flags
2371 if ans._exp > self._exp:
2372 context._raise_error(Rounded)
2373 if ans != self:
2374 context._raise_error(Inexact)
2375 if ans and ans.adjusted() < context.Emin:
2376 context._raise_error(Subnormal)
2378 # call to fix takes care of any necessary folddown
2379 ans = ans._fix(context)
2380 return ans
2382 def same_quantum(self, other):
2383 """Return True if self and other have the same exponent; otherwise
2384 return False.
2386 If either operand is a special value, the following rules are used:
2387 * return True if both operands are infinities
2388 * return True if both operands are NaNs
2389 * otherwise, return False.
2391 other = _convert_other(other, raiseit=True)
2392 if self._is_special or other._is_special:
2393 return (self.is_nan() and other.is_nan() or
2394 self.is_infinite() and other.is_infinite())
2395 return self._exp == other._exp
2397 def _rescale(self, exp, rounding):
2398 """Rescale self so that the exponent is exp, either by padding with zeros
2399 or by truncating digits, using the given rounding mode.
2401 Specials are returned without change. This operation is
2402 quiet: it raises no flags, and uses no information from the
2403 context.
2405 exp = exp to scale to (an integer)
2406 rounding = rounding mode
2408 if self._is_special:
2409 return Decimal(self)
2410 if not self:
2411 return _dec_from_triple(self._sign, '0', exp)
2413 if self._exp >= exp:
2414 # pad answer with zeros if necessary
2415 return _dec_from_triple(self._sign,
2416 self._int + '0'*(self._exp - exp), exp)
2418 # too many digits; round and lose data. If self.adjusted() <
2419 # exp-1, replace self by 10**(exp-1) before rounding
2420 digits = len(self._int) + self._exp - exp
2421 if digits < 0:
2422 self = _dec_from_triple(self._sign, '1', exp-1)
2423 digits = 0
2424 this_function = getattr(self, self._pick_rounding_function[rounding])
2425 changed = this_function(digits)
2426 coeff = self._int[:digits] or '0'
2427 if changed == 1:
2428 coeff = str(int(coeff)+1)
2429 return _dec_from_triple(self._sign, coeff, exp)
2431 def _round(self, places, rounding):
2432 """Round a nonzero, nonspecial Decimal to a fixed number of
2433 significant figures, using the given rounding mode.
2435 Infinities, NaNs and zeros are returned unaltered.
2437 This operation is quiet: it raises no flags, and uses no
2438 information from the context.
2441 if places <= 0:
2442 raise ValueError("argument should be at least 1 in _round")
2443 if self._is_special or not self:
2444 return Decimal(self)
2445 ans = self._rescale(self.adjusted()+1-places, rounding)
2446 # it can happen that the rescale alters the adjusted exponent;
2447 # for example when rounding 99.97 to 3 significant figures.
2448 # When this happens we end up with an extra 0 at the end of
2449 # the number; a second rescale fixes this.
2450 if ans.adjusted() != self.adjusted():
2451 ans = ans._rescale(ans.adjusted()+1-places, rounding)
2452 return ans
2454 def to_integral_exact(self, rounding=None, context=None):
2455 """Rounds to a nearby integer.
2457 If no rounding mode is specified, take the rounding mode from
2458 the context. This method raises the Rounded and Inexact flags
2459 when appropriate.
2461 See also: to_integral_value, which does exactly the same as
2462 this method except that it doesn't raise Inexact or Rounded.
2464 if self._is_special:
2465 ans = self._check_nans(context=context)
2466 if ans:
2467 return ans
2468 return Decimal(self)
2469 if self._exp >= 0:
2470 return Decimal(self)
2471 if not self:
2472 return _dec_from_triple(self._sign, '0', 0)
2473 if context is None:
2474 context = getcontext()
2475 if rounding is None:
2476 rounding = context.rounding
2477 context._raise_error(Rounded)
2478 ans = self._rescale(0, rounding)
2479 if ans != self:
2480 context._raise_error(Inexact)
2481 return ans
2483 def to_integral_value(self, rounding=None, context=None):
2484 """Rounds to the nearest integer, without raising inexact, rounded."""
2485 if context is None:
2486 context = getcontext()
2487 if rounding is None:
2488 rounding = context.rounding
2489 if self._is_special:
2490 ans = self._check_nans(context=context)
2491 if ans:
2492 return ans
2493 return Decimal(self)
2494 if self._exp >= 0:
2495 return Decimal(self)
2496 else:
2497 return self._rescale(0, rounding)
2499 # the method name changed, but we provide also the old one, for compatibility
2500 to_integral = to_integral_value
2502 def sqrt(self, context=None):
2503 """Return the square root of self."""
2504 if context is None:
2505 context = getcontext()
2507 if self._is_special:
2508 ans = self._check_nans(context=context)
2509 if ans:
2510 return ans
2512 if self._isinfinity() and self._sign == 0:
2513 return Decimal(self)
2515 if not self:
2516 # exponent = self._exp // 2. sqrt(-0) = -0
2517 ans = _dec_from_triple(self._sign, '0', self._exp // 2)
2518 return ans._fix(context)
2520 if self._sign == 1:
2521 return context._raise_error(InvalidOperation, 'sqrt(-x), x > 0')
2523 # At this point self represents a positive number. Let p be
2524 # the desired precision and express self in the form c*100**e
2525 # with c a positive real number and e an integer, c and e
2526 # being chosen so that 100**(p-1) <= c < 100**p. Then the
2527 # (exact) square root of self is sqrt(c)*10**e, and 10**(p-1)
2528 # <= sqrt(c) < 10**p, so the closest representable Decimal at
2529 # precision p is n*10**e where n = round_half_even(sqrt(c)),
2530 # the closest integer to sqrt(c) with the even integer chosen
2531 # in the case of a tie.
2533 # To ensure correct rounding in all cases, we use the
2534 # following trick: we compute the square root to an extra
2535 # place (precision p+1 instead of precision p), rounding down.
2536 # Then, if the result is inexact and its last digit is 0 or 5,
2537 # we increase the last digit to 1 or 6 respectively; if it's
2538 # exact we leave the last digit alone. Now the final round to
2539 # p places (or fewer in the case of underflow) will round
2540 # correctly and raise the appropriate flags.
2542 # use an extra digit of precision
2543 prec = context.prec+1
2545 # write argument in the form c*100**e where e = self._exp//2
2546 # is the 'ideal' exponent, to be used if the square root is
2547 # exactly representable. l is the number of 'digits' of c in
2548 # base 100, so that 100**(l-1) <= c < 100**l.
2549 op = _WorkRep(self)
2550 e = op.exp >> 1
2551 if op.exp & 1:
2552 c = op.int * 10
2553 l = (len(self._int) >> 1) + 1
2554 else:
2555 c = op.int
2556 l = len(self._int)+1 >> 1
2558 # rescale so that c has exactly prec base 100 'digits'
2559 shift = prec-l
2560 if shift >= 0:
2561 c *= 100**shift
2562 exact = True
2563 else:
2564 c, remainder = divmod(c, 100**-shift)
2565 exact = not remainder
2566 e -= shift
2568 # find n = floor(sqrt(c)) using Newton's method
2569 n = 10**prec
2570 while True:
2571 q = c//n
2572 if n <= q:
2573 break
2574 else:
2575 n = n + q >> 1
2576 exact = exact and n*n == c
2578 if exact:
2579 # result is exact; rescale to use ideal exponent e
2580 if shift >= 0:
2581 # assert n % 10**shift == 0
2582 n //= 10**shift
2583 else:
2584 n *= 10**-shift
2585 e += shift
2586 else:
2587 # result is not exact; fix last digit as described above
2588 if n % 5 == 0:
2589 n += 1
2591 ans = _dec_from_triple(0, str(n), e)
2593 # round, and fit to current context
2594 context = context._shallow_copy()
2595 rounding = context._set_rounding(ROUND_HALF_EVEN)
2596 ans = ans._fix(context)
2597 context.rounding = rounding
2599 return ans
2601 def max(self, other, context=None):
2602 """Returns the larger value.
2604 Like max(self, other) except if one is not a number, returns
2605 NaN (and signals if one is sNaN). Also rounds.
2607 other = _convert_other(other, raiseit=True)
2609 if context is None:
2610 context = getcontext()
2612 if self._is_special or other._is_special:
2613 # If one operand is a quiet NaN and the other is number, then the
2614 # number is always returned
2615 sn = self._isnan()
2616 on = other._isnan()
2617 if sn or on:
2618 if on == 1 and sn == 0:
2619 return self._fix(context)
2620 if sn == 1 and on == 0:
2621 return other._fix(context)
2622 return self._check_nans(other, context)
2624 c = self._cmp(other)
2625 if c == 0:
2626 # If both operands are finite and equal in numerical value
2627 # then an ordering is applied:
2629 # If the signs differ then max returns the operand with the
2630 # positive sign and min returns the operand with the negative sign
2632 # If the signs are the same then the exponent is used to select
2633 # the result. This is exactly the ordering used in compare_total.
2634 c = self.compare_total(other)
2636 if c == -1:
2637 ans = other
2638 else:
2639 ans = self
2641 return ans._fix(context)
2643 def min(self, other, context=None):
2644 """Returns the smaller value.
2646 Like min(self, other) except if one is not a number, returns
2647 NaN (and signals if one is sNaN). Also rounds.
2649 other = _convert_other(other, raiseit=True)
2651 if context is None:
2652 context = getcontext()
2654 if self._is_special or other._is_special:
2655 # If one operand is a quiet NaN and the other is number, then the
2656 # number is always returned
2657 sn = self._isnan()
2658 on = other._isnan()
2659 if sn or on:
2660 if on == 1 and sn == 0:
2661 return self._fix(context)
2662 if sn == 1 and on == 0:
2663 return other._fix(context)
2664 return self._check_nans(other, context)
2666 c = self._cmp(other)
2667 if c == 0:
2668 c = self.compare_total(other)
2670 if c == -1:
2671 ans = self
2672 else:
2673 ans = other
2675 return ans._fix(context)
2677 def _isinteger(self):
2678 """Returns whether self is an integer"""
2679 if self._is_special:
2680 return False
2681 if self._exp >= 0:
2682 return True
2683 rest = self._int[self._exp:]
2684 return rest == '0'*len(rest)
2686 def _iseven(self):
2687 """Returns True if self is even. Assumes self is an integer."""
2688 if not self or self._exp > 0:
2689 return True
2690 return self._int[-1+self._exp] in '02468'
2692 def adjusted(self):
2693 """Return the adjusted exponent of self"""
2694 try:
2695 return self._exp + len(self._int) - 1
2696 # If NaN or Infinity, self._exp is string
2697 except TypeError:
2698 return 0
2700 def canonical(self, context=None):
2701 """Returns the same Decimal object.
2703 As we do not have different encodings for the same number, the
2704 received object already is in its canonical form.
2706 return self
2708 def compare_signal(self, other, context=None):
2709 """Compares self to the other operand numerically.
2711 It's pretty much like compare(), but all NaNs signal, with signaling
2712 NaNs taking precedence over quiet NaNs.
2714 other = _convert_other(other, raiseit = True)
2715 ans = self._compare_check_nans(other, context)
2716 if ans:
2717 return ans
2718 return self.compare(other, context=context)
2720 def compare_total(self, other):
2721 """Compares self to other using the abstract representations.
2723 This is not like the standard compare, which use their numerical
2724 value. Note that a total ordering is defined for all possible abstract
2725 representations.
2727 # if one is negative and the other is positive, it's easy
2728 if self._sign and not other._sign:
2729 return _NegativeOne
2730 if not self._sign and other._sign:
2731 return _One
2732 sign = self._sign
2734 # let's handle both NaN types
2735 self_nan = self._isnan()
2736 other_nan = other._isnan()
2737 if self_nan or other_nan:
2738 if self_nan == other_nan:
2739 # compare payloads as though they're integers
2740 self_key = len(self._int), self._int
2741 other_key = len(other._int), other._int
2742 if self_key < other_key:
2743 if sign:
2744 return _One
2745 else:
2746 return _NegativeOne
2747 if self_key > other_key:
2748 if sign:
2749 return _NegativeOne
2750 else:
2751 return _One
2752 return _Zero
2754 if sign:
2755 if self_nan == 1:
2756 return _NegativeOne
2757 if other_nan == 1:
2758 return _One
2759 if self_nan == 2:
2760 return _NegativeOne
2761 if other_nan == 2:
2762 return _One
2763 else:
2764 if self_nan == 1:
2765 return _One
2766 if other_nan == 1:
2767 return _NegativeOne
2768 if self_nan == 2:
2769 return _One
2770 if other_nan == 2:
2771 return _NegativeOne
2773 if self < other:
2774 return _NegativeOne
2775 if self > other:
2776 return _One
2778 if self._exp < other._exp:
2779 if sign:
2780 return _One
2781 else:
2782 return _NegativeOne
2783 if self._exp > other._exp:
2784 if sign:
2785 return _NegativeOne
2786 else:
2787 return _One
2788 return _Zero
2791 def compare_total_mag(self, other):
2792 """Compares self to other using abstract repr., ignoring sign.
2794 Like compare_total, but with operand's sign ignored and assumed to be 0.
2796 s = self.copy_abs()
2797 o = other.copy_abs()
2798 return s.compare_total(o)
2800 def copy_abs(self):
2801 """Returns a copy with the sign set to 0. """
2802 return _dec_from_triple(0, self._int, self._exp, self._is_special)
2804 def copy_negate(self):
2805 """Returns a copy with the sign inverted."""
2806 if self._sign:
2807 return _dec_from_triple(0, self._int, self._exp, self._is_special)
2808 else:
2809 return _dec_from_triple(1, self._int, self._exp, self._is_special)
2811 def copy_sign(self, other):
2812 """Returns self with the sign of other."""
2813 return _dec_from_triple(other._sign, self._int,
2814 self._exp, self._is_special)
2816 def exp(self, context=None):
2817 """Returns e ** self."""
2819 if context is None:
2820 context = getcontext()
2822 # exp(NaN) = NaN
2823 ans = self._check_nans(context=context)
2824 if ans:
2825 return ans
2827 # exp(-Infinity) = 0
2828 if self._isinfinity() == -1:
2829 return _Zero
2831 # exp(0) = 1
2832 if not self:
2833 return _One
2835 # exp(Infinity) = Infinity
2836 if self._isinfinity() == 1:
2837 return Decimal(self)
2839 # the result is now guaranteed to be inexact (the true
2840 # mathematical result is transcendental). There's no need to
2841 # raise Rounded and Inexact here---they'll always be raised as
2842 # a result of the call to _fix.
2843 p = context.prec
2844 adj = self.adjusted()
2846 # we only need to do any computation for quite a small range
2847 # of adjusted exponents---for example, -29 <= adj <= 10 for
2848 # the default context. For smaller exponent the result is
2849 # indistinguishable from 1 at the given precision, while for
2850 # larger exponent the result either overflows or underflows.
2851 if self._sign == 0 and adj > len(str((context.Emax+1)*3)):
2852 # overflow
2853 ans = _dec_from_triple(0, '1', context.Emax+1)
2854 elif self._sign == 1 and adj > len(str((-context.Etiny()+1)*3)):
2855 # underflow to 0
2856 ans = _dec_from_triple(0, '1', context.Etiny()-1)
2857 elif self._sign == 0 and adj < -p:
2858 # p+1 digits; final round will raise correct flags
2859 ans = _dec_from_triple(0, '1' + '0'*(p-1) + '1', -p)
2860 elif self._sign == 1 and adj < -p-1:
2861 # p+1 digits; final round will raise correct flags
2862 ans = _dec_from_triple(0, '9'*(p+1), -p-1)
2863 # general case
2864 else:
2865 op = _WorkRep(self)
2866 c, e = op.int, op.exp
2867 if op.sign == 1:
2868 c = -c
2870 # compute correctly rounded result: increase precision by
2871 # 3 digits at a time until we get an unambiguously
2872 # roundable result
2873 extra = 3
2874 while True:
2875 coeff, exp = _dexp(c, e, p+extra)
2876 if coeff % (5*10**(len(str(coeff))-p-1)):
2877 break
2878 extra += 3
2880 ans = _dec_from_triple(0, str(coeff), exp)
2882 # at this stage, ans should round correctly with *any*
2883 # rounding mode, not just with ROUND_HALF_EVEN
2884 context = context._shallow_copy()
2885 rounding = context._set_rounding(ROUND_HALF_EVEN)
2886 ans = ans._fix(context)
2887 context.rounding = rounding
2889 return ans
2891 def is_canonical(self):
2892 """Return True if self is canonical; otherwise return False.
2894 Currently, the encoding of a Decimal instance is always
2895 canonical, so this method returns True for any Decimal.
2897 return True
2899 def is_finite(self):
2900 """Return True if self is finite; otherwise return False.
2902 A Decimal instance is considered finite if it is neither
2903 infinite nor a NaN.
2905 return not self._is_special
2907 def is_infinite(self):
2908 """Return True if self is infinite; otherwise return False."""
2909 return self._exp == 'F'
2911 def is_nan(self):
2912 """Return True if self is a qNaN or sNaN; otherwise return False."""
2913 return self._exp in ('n', 'N')
2915 def is_normal(self, context=None):
2916 """Return True if self is a normal number; otherwise return False."""
2917 if self._is_special or not self:
2918 return False
2919 if context is None:
2920 context = getcontext()
2921 return context.Emin <= self.adjusted() <= context.Emax
2923 def is_qnan(self):
2924 """Return True if self is a quiet NaN; otherwise return False."""
2925 return self._exp == 'n'
2927 def is_signed(self):
2928 """Return True if self is negative; otherwise return False."""
2929 return self._sign == 1
2931 def is_snan(self):
2932 """Return True if self is a signaling NaN; otherwise return False."""
2933 return self._exp == 'N'
2935 def is_subnormal(self, context=None):
2936 """Return True if self is subnormal; otherwise return False."""
2937 if self._is_special or not self:
2938 return False
2939 if context is None:
2940 context = getcontext()
2941 return self.adjusted() < context.Emin
2943 def is_zero(self):
2944 """Return True if self is a zero; otherwise return False."""
2945 return not self._is_special and self._int == '0'
2947 def _ln_exp_bound(self):
2948 """Compute a lower bound for the adjusted exponent of self.ln().
2949 In other words, compute r such that self.ln() >= 10**r. Assumes
2950 that self is finite and positive and that self != 1.
2953 # for 0.1 <= x <= 10 we use the inequalities 1-1/x <= ln(x) <= x-1
2954 adj = self._exp + len(self._int) - 1
2955 if adj >= 1:
2956 # argument >= 10; we use 23/10 = 2.3 as a lower bound for ln(10)
2957 return len(str(adj*23//10)) - 1
2958 if adj <= -2:
2959 # argument <= 0.1
2960 return len(str((-1-adj)*23//10)) - 1
2961 op = _WorkRep(self)
2962 c, e = op.int, op.exp
2963 if adj == 0:
2964 # 1 < self < 10
2965 num = str(c-10**-e)
2966 den = str(c)
2967 return len(num) - len(den) - (num < den)
2968 # adj == -1, 0.1 <= self < 1
2969 return e + len(str(10**-e - c)) - 1
2972 def ln(self, context=None):
2973 """Returns the natural (base e) logarithm of self."""
2975 if context is None:
2976 context = getcontext()
2978 # ln(NaN) = NaN
2979 ans = self._check_nans(context=context)
2980 if ans:
2981 return ans
2983 # ln(0.0) == -Infinity
2984 if not self:
2985 return _NegativeInfinity
2987 # ln(Infinity) = Infinity
2988 if self._isinfinity() == 1:
2989 return _Infinity
2991 # ln(1.0) == 0.0
2992 if self == _One:
2993 return _Zero
2995 # ln(negative) raises InvalidOperation
2996 if self._sign == 1:
2997 return context._raise_error(InvalidOperation,
2998 'ln of a negative value')
3000 # result is irrational, so necessarily inexact
3001 op = _WorkRep(self)
3002 c, e = op.int, op.exp
3003 p = context.prec
3005 # correctly rounded result: repeatedly increase precision by 3
3006 # until we get an unambiguously roundable result
3007 places = p - self._ln_exp_bound() + 2 # at least p+3 places
3008 while True:
3009 coeff = _dlog(c, e, places)
3010 # assert len(str(abs(coeff)))-p >= 1
3011 if coeff % (5*10**(len(str(abs(coeff)))-p-1)):
3012 break
3013 places += 3
3014 ans = _dec_from_triple(int(coeff<0), str(abs(coeff)), -places)
3016 context = context._shallow_copy()
3017 rounding = context._set_rounding(ROUND_HALF_EVEN)
3018 ans = ans._fix(context)
3019 context.rounding = rounding
3020 return ans
3022 def _log10_exp_bound(self):
3023 """Compute a lower bound for the adjusted exponent of self.log10().
3024 In other words, find r such that self.log10() >= 10**r.
3025 Assumes that self is finite and positive and that self != 1.
3028 # For x >= 10 or x < 0.1 we only need a bound on the integer
3029 # part of log10(self), and this comes directly from the
3030 # exponent of x. For 0.1 <= x <= 10 we use the inequalities
3031 # 1-1/x <= log(x) <= x-1. If x > 1 we have |log10(x)| >
3032 # (1-1/x)/2.31 > 0. If x < 1 then |log10(x)| > (1-x)/2.31 > 0
3034 adj = self._exp + len(self._int) - 1
3035 if adj >= 1:
3036 # self >= 10
3037 return len(str(adj))-1
3038 if adj <= -2:
3039 # self < 0.1
3040 return len(str(-1-adj))-1
3041 op = _WorkRep(self)
3042 c, e = op.int, op.exp
3043 if adj == 0:
3044 # 1 < self < 10
3045 num = str(c-10**-e)
3046 den = str(231*c)
3047 return len(num) - len(den) - (num < den) + 2
3048 # adj == -1, 0.1 <= self < 1
3049 num = str(10**-e-c)
3050 return len(num) + e - (num < "231") - 1
3052 def log10(self, context=None):
3053 """Returns the base 10 logarithm of self."""
3055 if context is None:
3056 context = getcontext()
3058 # log10(NaN) = NaN
3059 ans = self._check_nans(context=context)
3060 if ans:
3061 return ans
3063 # log10(0.0) == -Infinity
3064 if not self:
3065 return _NegativeInfinity
3067 # log10(Infinity) = Infinity
3068 if self._isinfinity() == 1:
3069 return _Infinity
3071 # log10(negative or -Infinity) raises InvalidOperation
3072 if self._sign == 1:
3073 return context._raise_error(InvalidOperation,
3074 'log10 of a negative value')
3076 # log10(10**n) = n
3077 if self._int[0] == '1' and self._int[1:] == '0'*(len(self._int) - 1):
3078 # answer may need rounding
3079 ans = Decimal(self._exp + len(self._int) - 1)
3080 else:
3081 # result is irrational, so necessarily inexact
3082 op = _WorkRep(self)
3083 c, e = op.int, op.exp
3084 p = context.prec
3086 # correctly rounded result: repeatedly increase precision
3087 # until result is unambiguously roundable
3088 places = p-self._log10_exp_bound()+2
3089 while True:
3090 coeff = _dlog10(c, e, places)
3091 # assert len(str(abs(coeff)))-p >= 1
3092 if coeff % (5*10**(len(str(abs(coeff)))-p-1)):
3093 break
3094 places += 3
3095 ans = _dec_from_triple(int(coeff<0), str(abs(coeff)), -places)
3097 context = context._shallow_copy()
3098 rounding = context._set_rounding(ROUND_HALF_EVEN)
3099 ans = ans._fix(context)
3100 context.rounding = rounding
3101 return ans
3103 def logb(self, context=None):
3104 """ Returns the exponent of the magnitude of self's MSD.
3106 The result is the integer which is the exponent of the magnitude
3107 of the most significant digit of self (as though it were truncated
3108 to a single digit while maintaining the value of that digit and
3109 without limiting the resulting exponent).
3111 # logb(NaN) = NaN
3112 ans = self._check_nans(context=context)
3113 if ans:
3114 return ans
3116 if context is None:
3117 context = getcontext()
3119 # logb(+/-Inf) = +Inf
3120 if self._isinfinity():
3121 return _Infinity
3123 # logb(0) = -Inf, DivisionByZero
3124 if not self:
3125 return context._raise_error(DivisionByZero, 'logb(0)', 1)
3127 # otherwise, simply return the adjusted exponent of self, as a
3128 # Decimal. Note that no attempt is made to fit the result
3129 # into the current context.
3130 return Decimal(self.adjusted())
3132 def _islogical(self):
3133 """Return True if self is a logical operand.
3135 For being logical, it must be a finite number with a sign of 0,
3136 an exponent of 0, and a coefficient whose digits must all be
3137 either 0 or 1.
3139 if self._sign != 0 or self._exp != 0:
3140 return False
3141 for dig in self._int:
3142 if dig not in '01':
3143 return False
3144 return True
3146 def _fill_logical(self, context, opa, opb):
3147 dif = context.prec - len(opa)
3148 if dif > 0:
3149 opa = '0'*dif + opa
3150 elif dif < 0:
3151 opa = opa[-context.prec:]
3152 dif = context.prec - len(opb)
3153 if dif > 0:
3154 opb = '0'*dif + opb
3155 elif dif < 0:
3156 opb = opb[-context.prec:]
3157 return opa, opb
3159 def logical_and(self, other, context=None):
3160 """Applies an 'and' operation between self and other's digits."""
3161 if context is None:
3162 context = getcontext()
3163 if not self._islogical() or not other._islogical():
3164 return context._raise_error(InvalidOperation)
3166 # fill to context.prec
3167 (opa, opb) = self._fill_logical(context, self._int, other._int)
3169 # make the operation, and clean starting zeroes
3170 result = "".join([str(int(a)&int(b)) for a,b in zip(opa,opb)])
3171 return _dec_from_triple(0, result.lstrip('0') or '0', 0)
3173 def logical_invert(self, context=None):
3174 """Invert all its digits."""
3175 if context is None:
3176 context = getcontext()
3177 return self.logical_xor(_dec_from_triple(0,'1'*context.prec,0),
3178 context)
3180 def logical_or(self, other, context=None):
3181 """Applies an 'or' operation between self and other's digits."""
3182 if context is None:
3183 context = getcontext()
3184 if not self._islogical() or not other._islogical():
3185 return context._raise_error(InvalidOperation)
3187 # fill to context.prec
3188 (opa, opb) = self._fill_logical(context, self._int, other._int)
3190 # make the operation, and clean starting zeroes
3191 result = "".join([str(int(a)|int(b)) for a,b in zip(opa,opb)])
3192 return _dec_from_triple(0, result.lstrip('0') or '0', 0)
3194 def logical_xor(self, other, context=None):
3195 """Applies an 'xor' operation between self and other's digits."""
3196 if context is None:
3197 context = getcontext()
3198 if not self._islogical() or not other._islogical():
3199 return context._raise_error(InvalidOperation)
3201 # fill to context.prec
3202 (opa, opb) = self._fill_logical(context, self._int, other._int)
3204 # make the operation, and clean starting zeroes
3205 result = "".join([str(int(a)^int(b)) for a,b in zip(opa,opb)])
3206 return _dec_from_triple(0, result.lstrip('0') or '0', 0)
3208 def max_mag(self, other, context=None):
3209 """Compares the values numerically with their sign ignored."""
3210 other = _convert_other(other, raiseit=True)
3212 if context is None:
3213 context = getcontext()
3215 if self._is_special or other._is_special:
3216 # If one operand is a quiet NaN and the other is number, then the
3217 # number is always returned
3218 sn = self._isnan()
3219 on = other._isnan()
3220 if sn or on:
3221 if on == 1 and sn == 0:
3222 return self._fix(context)
3223 if sn == 1 and on == 0:
3224 return other._fix(context)
3225 return self._check_nans(other, context)
3227 c = self.copy_abs()._cmp(other.copy_abs())
3228 if c == 0:
3229 c = self.compare_total(other)
3231 if c == -1:
3232 ans = other
3233 else:
3234 ans = self
3236 return ans._fix(context)
3238 def min_mag(self, other, context=None):
3239 """Compares the values numerically with their sign ignored."""
3240 other = _convert_other(other, raiseit=True)
3242 if context is None:
3243 context = getcontext()
3245 if self._is_special or other._is_special:
3246 # If one operand is a quiet NaN and the other is number, then the
3247 # number is always returned
3248 sn = self._isnan()
3249 on = other._isnan()
3250 if sn or on:
3251 if on == 1 and sn == 0:
3252 return self._fix(context)
3253 if sn == 1 and on == 0:
3254 return other._fix(context)
3255 return self._check_nans(other, context)
3257 c = self.copy_abs()._cmp(other.copy_abs())
3258 if c == 0:
3259 c = self.compare_total(other)
3261 if c == -1:
3262 ans = self
3263 else:
3264 ans = other
3266 return ans._fix(context)
3268 def next_minus(self, context=None):
3269 """Returns the largest representable number smaller than itself."""
3270 if context is None:
3271 context = getcontext()
3273 ans = self._check_nans(context=context)
3274 if ans:
3275 return ans
3277 if self._isinfinity() == -1:
3278 return _NegativeInfinity
3279 if self._isinfinity() == 1:
3280 return _dec_from_triple(0, '9'*context.prec, context.Etop())
3282 context = context.copy()
3283 context._set_rounding(ROUND_FLOOR)
3284 context._ignore_all_flags()
3285 new_self = self._fix(context)
3286 if new_self != self:
3287 return new_self
3288 return self.__sub__(_dec_from_triple(0, '1', context.Etiny()-1),
3289 context)
3291 def next_plus(self, context=None):
3292 """Returns the smallest representable number larger than itself."""
3293 if context is None:
3294 context = getcontext()
3296 ans = self._check_nans(context=context)
3297 if ans:
3298 return ans
3300 if self._isinfinity() == 1:
3301 return _Infinity
3302 if self._isinfinity() == -1:
3303 return _dec_from_triple(1, '9'*context.prec, context.Etop())
3305 context = context.copy()
3306 context._set_rounding(ROUND_CEILING)
3307 context._ignore_all_flags()
3308 new_self = self._fix(context)
3309 if new_self != self:
3310 return new_self
3311 return self.__add__(_dec_from_triple(0, '1', context.Etiny()-1),
3312 context)
3314 def next_toward(self, other, context=None):
3315 """Returns the number closest to self, in the direction towards other.
3317 The result is the closest representable number to self
3318 (excluding self) that is in the direction towards other,
3319 unless both have the same value. If the two operands are
3320 numerically equal, then the result is a copy of self with the
3321 sign set to be the same as the sign of other.
3323 other = _convert_other(other, raiseit=True)
3325 if context is None:
3326 context = getcontext()
3328 ans = self._check_nans(other, context)
3329 if ans:
3330 return ans
3332 comparison = self._cmp(other)
3333 if comparison == 0:
3334 return self.copy_sign(other)
3336 if comparison == -1:
3337 ans = self.next_plus(context)
3338 else: # comparison == 1
3339 ans = self.next_minus(context)
3341 # decide which flags to raise using value of ans
3342 if ans._isinfinity():
3343 context._raise_error(Overflow,
3344 'Infinite result from next_toward',
3345 ans._sign)
3346 context._raise_error(Rounded)
3347 context._raise_error(Inexact)
3348 elif ans.adjusted() < context.Emin:
3349 context._raise_error(Underflow)
3350 context._raise_error(Subnormal)
3351 context._raise_error(Rounded)
3352 context._raise_error(Inexact)
3353 # if precision == 1 then we don't raise Clamped for a
3354 # result 0E-Etiny.
3355 if not ans:
3356 context._raise_error(Clamped)
3358 return ans
3360 def number_class(self, context=None):
3361 """Returns an indication of the class of self.
3363 The class is one of the following strings:
3364 sNaN
3366 -Infinity
3367 -Normal
3368 -Subnormal
3369 -Zero
3370 +Zero
3371 +Subnormal
3372 +Normal
3373 +Infinity
3375 if self.is_snan():
3376 return "sNaN"
3377 if self.is_qnan():
3378 return "NaN"
3379 inf = self._isinfinity()
3380 if inf == 1:
3381 return "+Infinity"
3382 if inf == -1:
3383 return "-Infinity"
3384 if self.is_zero():
3385 if self._sign:
3386 return "-Zero"
3387 else:
3388 return "+Zero"
3389 if context is None:
3390 context = getcontext()
3391 if self.is_subnormal(context=context):
3392 if self._sign:
3393 return "-Subnormal"
3394 else:
3395 return "+Subnormal"
3396 # just a normal, regular, boring number, :)
3397 if self._sign:
3398 return "-Normal"
3399 else:
3400 return "+Normal"
3402 def radix(self):
3403 """Just returns 10, as this is Decimal, :)"""
3404 return Decimal(10)
3406 def rotate(self, other, context=None):
3407 """Returns a rotated copy of self, value-of-other times."""
3408 if context is None:
3409 context = getcontext()
3411 ans = self._check_nans(other, context)
3412 if ans:
3413 return ans
3415 if other._exp != 0:
3416 return context._raise_error(InvalidOperation)
3417 if not (-context.prec <= int(other) <= context.prec):
3418 return context._raise_error(InvalidOperation)
3420 if self._isinfinity():
3421 return Decimal(self)
3423 # get values, pad if necessary
3424 torot = int(other)
3425 rotdig = self._int
3426 topad = context.prec - len(rotdig)
3427 if topad:
3428 rotdig = '0'*topad + rotdig
3430 # let's rotate!
3431 rotated = rotdig[torot:] + rotdig[:torot]
3432 return _dec_from_triple(self._sign,
3433 rotated.lstrip('0') or '0', self._exp)
3435 def scaleb (self, other, context=None):
3436 """Returns self operand after adding the second value to its exp."""
3437 if context is None:
3438 context = getcontext()
3440 ans = self._check_nans(other, context)
3441 if ans:
3442 return ans
3444 if other._exp != 0:
3445 return context._raise_error(InvalidOperation)
3446 liminf = -2 * (context.Emax + context.prec)
3447 limsup = 2 * (context.Emax + context.prec)
3448 if not (liminf <= int(other) <= limsup):
3449 return context._raise_error(InvalidOperation)
3451 if self._isinfinity():
3452 return Decimal(self)
3454 d = _dec_from_triple(self._sign, self._int, self._exp + int(other))
3455 d = d._fix(context)
3456 return d
3458 def shift(self, other, context=None):
3459 """Returns a shifted copy of self, value-of-other times."""
3460 if context is None:
3461 context = getcontext()
3463 ans = self._check_nans(other, context)
3464 if ans:
3465 return ans
3467 if other._exp != 0:
3468 return context._raise_error(InvalidOperation)
3469 if not (-context.prec <= int(other) <= context.prec):
3470 return context._raise_error(InvalidOperation)
3472 if self._isinfinity():
3473 return Decimal(self)
3475 # get values, pad if necessary
3476 torot = int(other)
3477 if not torot:
3478 return Decimal(self)
3479 rotdig = self._int
3480 topad = context.prec - len(rotdig)
3481 if topad:
3482 rotdig = '0'*topad + rotdig
3484 # let's shift!
3485 if torot < 0:
3486 rotated = rotdig[:torot]
3487 else:
3488 rotated = rotdig + '0'*torot
3489 rotated = rotated[-context.prec:]
3491 return _dec_from_triple(self._sign,
3492 rotated.lstrip('0') or '0', self._exp)
3494 # Support for pickling, copy, and deepcopy
3495 def __reduce__(self):
3496 return (self.__class__, (str(self),))
3498 def __copy__(self):
3499 if type(self) == Decimal:
3500 return self # I'm immutable; therefore I am my own clone
3501 return self.__class__(str(self))
3503 def __deepcopy__(self, memo):
3504 if type(self) == Decimal:
3505 return self # My components are also immutable
3506 return self.__class__(str(self))
3508 # PEP 3101 support. the _localeconv keyword argument should be
3509 # considered private: it's provided for ease of testing only.
3510 def __format__(self, specifier, context=None, _localeconv=None):
3511 """Format a Decimal instance according to the given specifier.
3513 The specifier should be a standard format specifier, with the
3514 form described in PEP 3101. Formatting types 'e', 'E', 'f',
3515 'F', 'g', 'G', 'n' and '%' are supported. If the formatting
3516 type is omitted it defaults to 'g' or 'G', depending on the
3517 value of context.capitals.
3520 # Note: PEP 3101 says that if the type is not present then
3521 # there should be at least one digit after the decimal point.
3522 # We take the liberty of ignoring this requirement for
3523 # Decimal---it's presumably there to make sure that
3524 # format(float, '') behaves similarly to str(float).
3525 if context is None:
3526 context = getcontext()
3528 spec = _parse_format_specifier(specifier, _localeconv=_localeconv)
3530 # special values don't care about the type or precision
3531 if self._is_special:
3532 sign = _format_sign(self._sign, spec)
3533 body = str(self.copy_abs())
3534 return _format_align(sign, body, spec)
3536 # a type of None defaults to 'g' or 'G', depending on context
3537 if spec['type'] is None:
3538 spec['type'] = ['g', 'G'][context.capitals]
3540 # if type is '%', adjust exponent of self accordingly
3541 if spec['type'] == '%':
3542 self = _dec_from_triple(self._sign, self._int, self._exp+2)
3544 # round if necessary, taking rounding mode from the context
3545 rounding = context.rounding
3546 precision = spec['precision']
3547 if precision is not None:
3548 if spec['type'] in 'eE':
3549 self = self._round(precision+1, rounding)
3550 elif spec['type'] in 'fF%':
3551 self = self._rescale(-precision, rounding)
3552 elif spec['type'] in 'gG' and len(self._int) > precision:
3553 self = self._round(precision, rounding)
3554 # special case: zeros with a positive exponent can't be
3555 # represented in fixed point; rescale them to 0e0.
3556 if not self and self._exp > 0 and spec['type'] in 'fF%':
3557 self = self._rescale(0, rounding)
3559 # figure out placement of the decimal point
3560 leftdigits = self._exp + len(self._int)
3561 if spec['type'] in 'eE':
3562 if not self and precision is not None:
3563 dotplace = 1 - precision
3564 else:
3565 dotplace = 1
3566 elif spec['type'] in 'fF%':
3567 dotplace = leftdigits
3568 elif spec['type'] in 'gG':
3569 if self._exp <= 0 and leftdigits > -6:
3570 dotplace = leftdigits
3571 else:
3572 dotplace = 1
3574 # find digits before and after decimal point, and get exponent
3575 if dotplace < 0:
3576 intpart = '0'
3577 fracpart = '0'*(-dotplace) + self._int
3578 elif dotplace > len(self._int):
3579 intpart = self._int + '0'*(dotplace-len(self._int))
3580 fracpart = ''
3581 else:
3582 intpart = self._int[:dotplace] or '0'
3583 fracpart = self._int[dotplace:]
3584 exp = leftdigits-dotplace
3586 # done with the decimal-specific stuff; hand over the rest
3587 # of the formatting to the _format_number function
3588 return _format_number(self._sign, intpart, fracpart, exp, spec)
3590 def _dec_from_triple(sign, coefficient, exponent, special=False):
3591 """Create a decimal instance directly, without any validation,
3592 normalization (e.g. removal of leading zeros) or argument
3593 conversion.
3595 This function is for *internal use only*.
3598 self = object.__new__(Decimal)
3599 self._sign = sign
3600 self._int = coefficient
3601 self._exp = exponent
3602 self._is_special = special
3604 return self
3606 # Register Decimal as a kind of Number (an abstract base class).
3607 # However, do not register it as Real (because Decimals are not
3608 # interoperable with floats).
3609 _numbers.Number.register(Decimal)
3612 ##### Context class #######################################################
3615 # get rounding method function:
3616 rounding_functions = [name for name in Decimal.__dict__.keys()
3617 if name.startswith('_round_')]
3618 for name in rounding_functions:
3619 # name is like _round_half_even, goes to the global ROUND_HALF_EVEN value.
3620 globalname = name[1:].upper()
3621 val = globals()[globalname]
3622 Decimal._pick_rounding_function[val] = name
3624 del name, val, globalname, rounding_functions
3626 class _ContextManager(object):
3627 """Context manager class to support localcontext().
3629 Sets a copy of the supplied context in __enter__() and restores
3630 the previous decimal context in __exit__()
3632 def __init__(self, new_context):
3633 self.new_context = new_context.copy()
3634 def __enter__(self):
3635 self.saved_context = getcontext()
3636 setcontext(self.new_context)
3637 return self.new_context
3638 def __exit__(self, t, v, tb):
3639 setcontext(self.saved_context)
3641 class Context(object):
3642 """Contains the context for a Decimal instance.
3644 Contains:
3645 prec - precision (for use in rounding, division, square roots..)
3646 rounding - rounding type (how you round)
3647 traps - If traps[exception] = 1, then the exception is
3648 raised when it is caused. Otherwise, a value is
3649 substituted in.
3650 flags - When an exception is caused, flags[exception] is set.
3651 (Whether or not the trap_enabler is set)
3652 Should be reset by user of Decimal instance.
3653 Emin - Minimum exponent
3654 Emax - Maximum exponent
3655 capitals - If 1, 1*10^1 is printed as 1E+1.
3656 If 0, printed as 1e1
3657 _clamp - If 1, change exponents if too high (Default 0)
3660 def __init__(self, prec=None, rounding=None,
3661 traps=None, flags=None,
3662 Emin=None, Emax=None,
3663 capitals=None, _clamp=0,
3664 _ignored_flags=None):
3665 if flags is None:
3666 flags = []
3667 if _ignored_flags is None:
3668 _ignored_flags = []
3669 if not isinstance(flags, dict):
3670 flags = dict([(s, int(s in flags)) for s in _signals])
3671 del s
3672 if traps is not None and not isinstance(traps, dict):
3673 traps = dict([(s, int(s in traps)) for s in _signals])
3674 del s
3675 for name, val in locals().items():
3676 if val is None:
3677 setattr(self, name, _copy.copy(getattr(DefaultContext, name)))
3678 else:
3679 setattr(self, name, val)
3680 del self.self
3682 def __repr__(self):
3683 """Show the current context."""
3684 s = []
3685 s.append('Context(prec=%(prec)d, rounding=%(rounding)s, '
3686 'Emin=%(Emin)d, Emax=%(Emax)d, capitals=%(capitals)d'
3687 % vars(self))
3688 names = [f.__name__ for f, v in self.flags.items() if v]
3689 s.append('flags=[' + ', '.join(names) + ']')
3690 names = [t.__name__ for t, v in self.traps.items() if v]
3691 s.append('traps=[' + ', '.join(names) + ']')
3692 return ', '.join(s) + ')'
3694 def clear_flags(self):
3695 """Reset all flags to zero"""
3696 for flag in self.flags:
3697 self.flags[flag] = 0
3699 def _shallow_copy(self):
3700 """Returns a shallow copy from self."""
3701 nc = Context(self.prec, self.rounding, self.traps,
3702 self.flags, self.Emin, self.Emax,
3703 self.capitals, self._clamp, self._ignored_flags)
3704 return nc
3706 def copy(self):
3707 """Returns a deep copy from self."""
3708 nc = Context(self.prec, self.rounding, self.traps.copy(),
3709 self.flags.copy(), self.Emin, self.Emax,
3710 self.capitals, self._clamp, self._ignored_flags)
3711 return nc
3712 __copy__ = copy
3714 def _raise_error(self, condition, explanation = None, *args):
3715 """Handles an error
3717 If the flag is in _ignored_flags, returns the default response.
3718 Otherwise, it sets the flag, then, if the corresponding
3719 trap_enabler is set, it reaises the exception. Otherwise, it returns
3720 the default value after setting the flag.
3722 error = _condition_map.get(condition, condition)
3723 if error in self._ignored_flags:
3724 # Don't touch the flag
3725 return error().handle(self, *args)
3727 self.flags[error] = 1
3728 if not self.traps[error]:
3729 # The errors define how to handle themselves.
3730 return condition().handle(self, *args)
3732 # Errors should only be risked on copies of the context
3733 # self._ignored_flags = []
3734 raise error(explanation)
3736 def _ignore_all_flags(self):
3737 """Ignore all flags, if they are raised"""
3738 return self._ignore_flags(*_signals)
3740 def _ignore_flags(self, *flags):
3741 """Ignore the flags, if they are raised"""
3742 # Do not mutate-- This way, copies of a context leave the original
3743 # alone.
3744 self._ignored_flags = (self._ignored_flags + list(flags))
3745 return list(flags)
3747 def _regard_flags(self, *flags):
3748 """Stop ignoring the flags, if they are raised"""
3749 if flags and isinstance(flags[0], (tuple,list)):
3750 flags = flags[0]
3751 for flag in flags:
3752 self._ignored_flags.remove(flag)
3754 # We inherit object.__hash__, so we must deny this explicitly
3755 __hash__ = None
3757 def Etiny(self):
3758 """Returns Etiny (= Emin - prec + 1)"""
3759 return int(self.Emin - self.prec + 1)
3761 def Etop(self):
3762 """Returns maximum exponent (= Emax - prec + 1)"""
3763 return int(self.Emax - self.prec + 1)
3765 def _set_rounding(self, type):
3766 """Sets the rounding type.
3768 Sets the rounding type, and returns the current (previous)
3769 rounding type. Often used like:
3771 context = context.copy()
3772 # so you don't change the calling context
3773 # if an error occurs in the middle.
3774 rounding = context._set_rounding(ROUND_UP)
3775 val = self.__sub__(other, context=context)
3776 context._set_rounding(rounding)
3778 This will make it round up for that operation.
3780 rounding = self.rounding
3781 self.rounding= type
3782 return rounding
3784 def create_decimal(self, num='0'):
3785 """Creates a new Decimal instance but using self as context.
3787 This method implements the to-number operation of the
3788 IBM Decimal specification."""
3790 if isinstance(num, basestring) and num != num.strip():
3791 return self._raise_error(ConversionSyntax,
3792 "no trailing or leading whitespace is "
3793 "permitted.")
3795 d = Decimal(num, context=self)
3796 if d._isnan() and len(d._int) > self.prec - self._clamp:
3797 return self._raise_error(ConversionSyntax,
3798 "diagnostic info too long in NaN")
3799 return d._fix(self)
3801 def create_decimal_from_float(self, f):
3802 """Creates a new Decimal instance from a float but rounding using self
3803 as the context.
3805 >>> context = Context(prec=5, rounding=ROUND_DOWN)
3806 >>> context.create_decimal_from_float(3.1415926535897932)
3807 Decimal('3.1415')
3808 >>> context = Context(prec=5, traps=[Inexact])
3809 >>> context.create_decimal_from_float(3.1415926535897932)
3810 Traceback (most recent call last):
3812 Inexact: None
3815 d = Decimal.from_float(f) # An exact conversion
3816 return d._fix(self) # Apply the context rounding
3818 # Methods
3819 def abs(self, a):
3820 """Returns the absolute value of the operand.
3822 If the operand is negative, the result is the same as using the minus
3823 operation on the operand. Otherwise, the result is the same as using
3824 the plus operation on the operand.
3826 >>> ExtendedContext.abs(Decimal('2.1'))
3827 Decimal('2.1')
3828 >>> ExtendedContext.abs(Decimal('-100'))
3829 Decimal('100')
3830 >>> ExtendedContext.abs(Decimal('101.5'))
3831 Decimal('101.5')
3832 >>> ExtendedContext.abs(Decimal('-101.5'))
3833 Decimal('101.5')
3835 return a.__abs__(context=self)
3837 def add(self, a, b):
3838 """Return the sum of the two operands.
3840 >>> ExtendedContext.add(Decimal('12'), Decimal('7.00'))
3841 Decimal('19.00')
3842 >>> ExtendedContext.add(Decimal('1E+2'), Decimal('1.01E+4'))
3843 Decimal('1.02E+4')
3845 return a.__add__(b, context=self)
3847 def _apply(self, a):
3848 return str(a._fix(self))
3850 def canonical(self, a):
3851 """Returns the same Decimal object.
3853 As we do not have different encodings for the same number, the
3854 received object already is in its canonical form.
3856 >>> ExtendedContext.canonical(Decimal('2.50'))
3857 Decimal('2.50')
3859 return a.canonical(context=self)
3861 def compare(self, a, b):
3862 """Compares values numerically.
3864 If the signs of the operands differ, a value representing each operand
3865 ('-1' if the operand is less than zero, '0' if the operand is zero or
3866 negative zero, or '1' if the operand is greater than zero) is used in
3867 place of that operand for the comparison instead of the actual
3868 operand.
3870 The comparison is then effected by subtracting the second operand from
3871 the first and then returning a value according to the result of the
3872 subtraction: '-1' if the result is less than zero, '0' if the result is
3873 zero or negative zero, or '1' if the result is greater than zero.
3875 >>> ExtendedContext.compare(Decimal('2.1'), Decimal('3'))
3876 Decimal('-1')
3877 >>> ExtendedContext.compare(Decimal('2.1'), Decimal('2.1'))
3878 Decimal('0')
3879 >>> ExtendedContext.compare(Decimal('2.1'), Decimal('2.10'))
3880 Decimal('0')
3881 >>> ExtendedContext.compare(Decimal('3'), Decimal('2.1'))
3882 Decimal('1')
3883 >>> ExtendedContext.compare(Decimal('2.1'), Decimal('-3'))
3884 Decimal('1')
3885 >>> ExtendedContext.compare(Decimal('-3'), Decimal('2.1'))
3886 Decimal('-1')
3888 return a.compare(b, context=self)
3890 def compare_signal(self, a, b):
3891 """Compares the values of the two operands numerically.
3893 It's pretty much like compare(), but all NaNs signal, with signaling
3894 NaNs taking precedence over quiet NaNs.
3896 >>> c = ExtendedContext
3897 >>> c.compare_signal(Decimal('2.1'), Decimal('3'))
3898 Decimal('-1')
3899 >>> c.compare_signal(Decimal('2.1'), Decimal('2.1'))
3900 Decimal('0')
3901 >>> c.flags[InvalidOperation] = 0
3902 >>> print c.flags[InvalidOperation]
3904 >>> c.compare_signal(Decimal('NaN'), Decimal('2.1'))
3905 Decimal('NaN')
3906 >>> print c.flags[InvalidOperation]
3908 >>> c.flags[InvalidOperation] = 0
3909 >>> print c.flags[InvalidOperation]
3911 >>> c.compare_signal(Decimal('sNaN'), Decimal('2.1'))
3912 Decimal('NaN')
3913 >>> print c.flags[InvalidOperation]
3916 return a.compare_signal(b, context=self)
3918 def compare_total(self, a, b):
3919 """Compares two operands using their abstract representation.
3921 This is not like the standard compare, which use their numerical
3922 value. Note that a total ordering is defined for all possible abstract
3923 representations.
3925 >>> ExtendedContext.compare_total(Decimal('12.73'), Decimal('127.9'))
3926 Decimal('-1')
3927 >>> ExtendedContext.compare_total(Decimal('-127'), Decimal('12'))
3928 Decimal('-1')
3929 >>> ExtendedContext.compare_total(Decimal('12.30'), Decimal('12.3'))
3930 Decimal('-1')
3931 >>> ExtendedContext.compare_total(Decimal('12.30'), Decimal('12.30'))
3932 Decimal('0')
3933 >>> ExtendedContext.compare_total(Decimal('12.3'), Decimal('12.300'))
3934 Decimal('1')
3935 >>> ExtendedContext.compare_total(Decimal('12.3'), Decimal('NaN'))
3936 Decimal('-1')
3938 return a.compare_total(b)
3940 def compare_total_mag(self, a, b):
3941 """Compares two operands using their abstract representation ignoring sign.
3943 Like compare_total, but with operand's sign ignored and assumed to be 0.
3945 return a.compare_total_mag(b)
3947 def copy_abs(self, a):
3948 """Returns a copy of the operand with the sign set to 0.
3950 >>> ExtendedContext.copy_abs(Decimal('2.1'))
3951 Decimal('2.1')
3952 >>> ExtendedContext.copy_abs(Decimal('-100'))
3953 Decimal('100')
3955 return a.copy_abs()
3957 def copy_decimal(self, a):
3958 """Returns a copy of the decimal objet.
3960 >>> ExtendedContext.copy_decimal(Decimal('2.1'))
3961 Decimal('2.1')
3962 >>> ExtendedContext.copy_decimal(Decimal('-1.00'))
3963 Decimal('-1.00')
3965 return Decimal(a)
3967 def copy_negate(self, a):
3968 """Returns a copy of the operand with the sign inverted.
3970 >>> ExtendedContext.copy_negate(Decimal('101.5'))
3971 Decimal('-101.5')
3972 >>> ExtendedContext.copy_negate(Decimal('-101.5'))
3973 Decimal('101.5')
3975 return a.copy_negate()
3977 def copy_sign(self, a, b):
3978 """Copies the second operand's sign to the first one.
3980 In detail, it returns a copy of the first operand with the sign
3981 equal to the sign of the second operand.
3983 >>> ExtendedContext.copy_sign(Decimal( '1.50'), Decimal('7.33'))
3984 Decimal('1.50')
3985 >>> ExtendedContext.copy_sign(Decimal('-1.50'), Decimal('7.33'))
3986 Decimal('1.50')
3987 >>> ExtendedContext.copy_sign(Decimal( '1.50'), Decimal('-7.33'))
3988 Decimal('-1.50')
3989 >>> ExtendedContext.copy_sign(Decimal('-1.50'), Decimal('-7.33'))
3990 Decimal('-1.50')
3992 return a.copy_sign(b)
3994 def divide(self, a, b):
3995 """Decimal division in a specified context.
3997 >>> ExtendedContext.divide(Decimal('1'), Decimal('3'))
3998 Decimal('0.333333333')
3999 >>> ExtendedContext.divide(Decimal('2'), Decimal('3'))
4000 Decimal('0.666666667')
4001 >>> ExtendedContext.divide(Decimal('5'), Decimal('2'))
4002 Decimal('2.5')
4003 >>> ExtendedContext.divide(Decimal('1'), Decimal('10'))
4004 Decimal('0.1')
4005 >>> ExtendedContext.divide(Decimal('12'), Decimal('12'))
4006 Decimal('1')
4007 >>> ExtendedContext.divide(Decimal('8.00'), Decimal('2'))
4008 Decimal('4.00')
4009 >>> ExtendedContext.divide(Decimal('2.400'), Decimal('2.0'))
4010 Decimal('1.20')
4011 >>> ExtendedContext.divide(Decimal('1000'), Decimal('100'))
4012 Decimal('10')
4013 >>> ExtendedContext.divide(Decimal('1000'), Decimal('1'))
4014 Decimal('1000')
4015 >>> ExtendedContext.divide(Decimal('2.40E+6'), Decimal('2'))
4016 Decimal('1.20E+6')
4018 return a.__div__(b, context=self)
4020 def divide_int(self, a, b):
4021 """Divides two numbers and returns the integer part of the result.
4023 >>> ExtendedContext.divide_int(Decimal('2'), Decimal('3'))
4024 Decimal('0')
4025 >>> ExtendedContext.divide_int(Decimal('10'), Decimal('3'))
4026 Decimal('3')
4027 >>> ExtendedContext.divide_int(Decimal('1'), Decimal('0.3'))
4028 Decimal('3')
4030 return a.__floordiv__(b, context=self)
4032 def divmod(self, a, b):
4033 return a.__divmod__(b, context=self)
4035 def exp(self, a):
4036 """Returns e ** a.
4038 >>> c = ExtendedContext.copy()
4039 >>> c.Emin = -999
4040 >>> c.Emax = 999
4041 >>> c.exp(Decimal('-Infinity'))
4042 Decimal('0')
4043 >>> c.exp(Decimal('-1'))
4044 Decimal('0.367879441')
4045 >>> c.exp(Decimal('0'))
4046 Decimal('1')
4047 >>> c.exp(Decimal('1'))
4048 Decimal('2.71828183')
4049 >>> c.exp(Decimal('0.693147181'))
4050 Decimal('2.00000000')
4051 >>> c.exp(Decimal('+Infinity'))
4052 Decimal('Infinity')
4054 return a.exp(context=self)
4056 def fma(self, a, b, c):
4057 """Returns a multiplied by b, plus c.
4059 The first two operands are multiplied together, using multiply,
4060 the third operand is then added to the result of that
4061 multiplication, using add, all with only one final rounding.
4063 >>> ExtendedContext.fma(Decimal('3'), Decimal('5'), Decimal('7'))
4064 Decimal('22')
4065 >>> ExtendedContext.fma(Decimal('3'), Decimal('-5'), Decimal('7'))
4066 Decimal('-8')
4067 >>> ExtendedContext.fma(Decimal('888565290'), Decimal('1557.96930'), Decimal('-86087.7578'))
4068 Decimal('1.38435736E+12')
4070 return a.fma(b, c, context=self)
4072 def is_canonical(self, a):
4073 """Return True if the operand is canonical; otherwise return False.
4075 Currently, the encoding of a Decimal instance is always
4076 canonical, so this method returns True for any Decimal.
4078 >>> ExtendedContext.is_canonical(Decimal('2.50'))
4079 True
4081 return a.is_canonical()
4083 def is_finite(self, a):
4084 """Return True if the operand is finite; otherwise return False.
4086 A Decimal instance is considered finite if it is neither
4087 infinite nor a NaN.
4089 >>> ExtendedContext.is_finite(Decimal('2.50'))
4090 True
4091 >>> ExtendedContext.is_finite(Decimal('-0.3'))
4092 True
4093 >>> ExtendedContext.is_finite(Decimal('0'))
4094 True
4095 >>> ExtendedContext.is_finite(Decimal('Inf'))
4096 False
4097 >>> ExtendedContext.is_finite(Decimal('NaN'))
4098 False
4100 return a.is_finite()
4102 def is_infinite(self, a):
4103 """Return True if the operand is infinite; otherwise return False.
4105 >>> ExtendedContext.is_infinite(Decimal('2.50'))
4106 False
4107 >>> ExtendedContext.is_infinite(Decimal('-Inf'))
4108 True
4109 >>> ExtendedContext.is_infinite(Decimal('NaN'))
4110 False
4112 return a.is_infinite()
4114 def is_nan(self, a):
4115 """Return True if the operand is a qNaN or sNaN;
4116 otherwise return False.
4118 >>> ExtendedContext.is_nan(Decimal('2.50'))
4119 False
4120 >>> ExtendedContext.is_nan(Decimal('NaN'))
4121 True
4122 >>> ExtendedContext.is_nan(Decimal('-sNaN'))
4123 True
4125 return a.is_nan()
4127 def is_normal(self, a):
4128 """Return True if the operand is a normal number;
4129 otherwise return False.
4131 >>> c = ExtendedContext.copy()
4132 >>> c.Emin = -999
4133 >>> c.Emax = 999
4134 >>> c.is_normal(Decimal('2.50'))
4135 True
4136 >>> c.is_normal(Decimal('0.1E-999'))
4137 False
4138 >>> c.is_normal(Decimal('0.00'))
4139 False
4140 >>> c.is_normal(Decimal('-Inf'))
4141 False
4142 >>> c.is_normal(Decimal('NaN'))
4143 False
4145 return a.is_normal(context=self)
4147 def is_qnan(self, a):
4148 """Return True if the operand is a quiet NaN; otherwise return False.
4150 >>> ExtendedContext.is_qnan(Decimal('2.50'))
4151 False
4152 >>> ExtendedContext.is_qnan(Decimal('NaN'))
4153 True
4154 >>> ExtendedContext.is_qnan(Decimal('sNaN'))
4155 False
4157 return a.is_qnan()
4159 def is_signed(self, a):
4160 """Return True if the operand is negative; otherwise return False.
4162 >>> ExtendedContext.is_signed(Decimal('2.50'))
4163 False
4164 >>> ExtendedContext.is_signed(Decimal('-12'))
4165 True
4166 >>> ExtendedContext.is_signed(Decimal('-0'))
4167 True
4169 return a.is_signed()
4171 def is_snan(self, a):
4172 """Return True if the operand is a signaling NaN;
4173 otherwise return False.
4175 >>> ExtendedContext.is_snan(Decimal('2.50'))
4176 False
4177 >>> ExtendedContext.is_snan(Decimal('NaN'))
4178 False
4179 >>> ExtendedContext.is_snan(Decimal('sNaN'))
4180 True
4182 return a.is_snan()
4184 def is_subnormal(self, a):
4185 """Return True if the operand is subnormal; otherwise return False.
4187 >>> c = ExtendedContext.copy()
4188 >>> c.Emin = -999
4189 >>> c.Emax = 999
4190 >>> c.is_subnormal(Decimal('2.50'))
4191 False
4192 >>> c.is_subnormal(Decimal('0.1E-999'))
4193 True
4194 >>> c.is_subnormal(Decimal('0.00'))
4195 False
4196 >>> c.is_subnormal(Decimal('-Inf'))
4197 False
4198 >>> c.is_subnormal(Decimal('NaN'))
4199 False
4201 return a.is_subnormal(context=self)
4203 def is_zero(self, a):
4204 """Return True if the operand is a zero; otherwise return False.
4206 >>> ExtendedContext.is_zero(Decimal('0'))
4207 True
4208 >>> ExtendedContext.is_zero(Decimal('2.50'))
4209 False
4210 >>> ExtendedContext.is_zero(Decimal('-0E+2'))
4211 True
4213 return a.is_zero()
4215 def ln(self, a):
4216 """Returns the natural (base e) logarithm of the operand.
4218 >>> c = ExtendedContext.copy()
4219 >>> c.Emin = -999
4220 >>> c.Emax = 999
4221 >>> c.ln(Decimal('0'))
4222 Decimal('-Infinity')
4223 >>> c.ln(Decimal('1.000'))
4224 Decimal('0')
4225 >>> c.ln(Decimal('2.71828183'))
4226 Decimal('1.00000000')
4227 >>> c.ln(Decimal('10'))
4228 Decimal('2.30258509')
4229 >>> c.ln(Decimal('+Infinity'))
4230 Decimal('Infinity')
4232 return a.ln(context=self)
4234 def log10(self, a):
4235 """Returns the base 10 logarithm of the operand.
4237 >>> c = ExtendedContext.copy()
4238 >>> c.Emin = -999
4239 >>> c.Emax = 999
4240 >>> c.log10(Decimal('0'))
4241 Decimal('-Infinity')
4242 >>> c.log10(Decimal('0.001'))
4243 Decimal('-3')
4244 >>> c.log10(Decimal('1.000'))
4245 Decimal('0')
4246 >>> c.log10(Decimal('2'))
4247 Decimal('0.301029996')
4248 >>> c.log10(Decimal('10'))
4249 Decimal('1')
4250 >>> c.log10(Decimal('70'))
4251 Decimal('1.84509804')
4252 >>> c.log10(Decimal('+Infinity'))
4253 Decimal('Infinity')
4255 return a.log10(context=self)
4257 def logb(self, a):
4258 """ Returns the exponent of the magnitude of the operand's MSD.
4260 The result is the integer which is the exponent of the magnitude
4261 of the most significant digit of the operand (as though the
4262 operand were truncated to a single digit while maintaining the
4263 value of that digit and without limiting the resulting exponent).
4265 >>> ExtendedContext.logb(Decimal('250'))
4266 Decimal('2')
4267 >>> ExtendedContext.logb(Decimal('2.50'))
4268 Decimal('0')
4269 >>> ExtendedContext.logb(Decimal('0.03'))
4270 Decimal('-2')
4271 >>> ExtendedContext.logb(Decimal('0'))
4272 Decimal('-Infinity')
4274 return a.logb(context=self)
4276 def logical_and(self, a, b):
4277 """Applies the logical operation 'and' between each operand's digits.
4279 The operands must be both logical numbers.
4281 >>> ExtendedContext.logical_and(Decimal('0'), Decimal('0'))
4282 Decimal('0')
4283 >>> ExtendedContext.logical_and(Decimal('0'), Decimal('1'))
4284 Decimal('0')
4285 >>> ExtendedContext.logical_and(Decimal('1'), Decimal('0'))
4286 Decimal('0')
4287 >>> ExtendedContext.logical_and(Decimal('1'), Decimal('1'))
4288 Decimal('1')
4289 >>> ExtendedContext.logical_and(Decimal('1100'), Decimal('1010'))
4290 Decimal('1000')
4291 >>> ExtendedContext.logical_and(Decimal('1111'), Decimal('10'))
4292 Decimal('10')
4294 return a.logical_and(b, context=self)
4296 def logical_invert(self, a):
4297 """Invert all the digits in the operand.
4299 The operand must be a logical number.
4301 >>> ExtendedContext.logical_invert(Decimal('0'))
4302 Decimal('111111111')
4303 >>> ExtendedContext.logical_invert(Decimal('1'))
4304 Decimal('111111110')
4305 >>> ExtendedContext.logical_invert(Decimal('111111111'))
4306 Decimal('0')
4307 >>> ExtendedContext.logical_invert(Decimal('101010101'))
4308 Decimal('10101010')
4310 return a.logical_invert(context=self)
4312 def logical_or(self, a, b):
4313 """Applies the logical operation 'or' between each operand's digits.
4315 The operands must be both logical numbers.
4317 >>> ExtendedContext.logical_or(Decimal('0'), Decimal('0'))
4318 Decimal('0')
4319 >>> ExtendedContext.logical_or(Decimal('0'), Decimal('1'))
4320 Decimal('1')
4321 >>> ExtendedContext.logical_or(Decimal('1'), Decimal('0'))
4322 Decimal('1')
4323 >>> ExtendedContext.logical_or(Decimal('1'), Decimal('1'))
4324 Decimal('1')
4325 >>> ExtendedContext.logical_or(Decimal('1100'), Decimal('1010'))
4326 Decimal('1110')
4327 >>> ExtendedContext.logical_or(Decimal('1110'), Decimal('10'))
4328 Decimal('1110')
4330 return a.logical_or(b, context=self)
4332 def logical_xor(self, a, b):
4333 """Applies the logical operation 'xor' between each operand's digits.
4335 The operands must be both logical numbers.
4337 >>> ExtendedContext.logical_xor(Decimal('0'), Decimal('0'))
4338 Decimal('0')
4339 >>> ExtendedContext.logical_xor(Decimal('0'), Decimal('1'))
4340 Decimal('1')
4341 >>> ExtendedContext.logical_xor(Decimal('1'), Decimal('0'))
4342 Decimal('1')
4343 >>> ExtendedContext.logical_xor(Decimal('1'), Decimal('1'))
4344 Decimal('0')
4345 >>> ExtendedContext.logical_xor(Decimal('1100'), Decimal('1010'))
4346 Decimal('110')
4347 >>> ExtendedContext.logical_xor(Decimal('1111'), Decimal('10'))
4348 Decimal('1101')
4350 return a.logical_xor(b, context=self)
4352 def max(self, a,b):
4353 """max compares two values numerically and returns the maximum.
4355 If either operand is a NaN then the general rules apply.
4356 Otherwise, the operands are compared as though by the compare
4357 operation. If they are numerically equal then the left-hand operand
4358 is chosen as the result. Otherwise the maximum (closer to positive
4359 infinity) of the two operands is chosen as the result.
4361 >>> ExtendedContext.max(Decimal('3'), Decimal('2'))
4362 Decimal('3')
4363 >>> ExtendedContext.max(Decimal('-10'), Decimal('3'))
4364 Decimal('3')
4365 >>> ExtendedContext.max(Decimal('1.0'), Decimal('1'))
4366 Decimal('1')
4367 >>> ExtendedContext.max(Decimal('7'), Decimal('NaN'))
4368 Decimal('7')
4370 return a.max(b, context=self)
4372 def max_mag(self, a, b):
4373 """Compares the values numerically with their sign ignored."""
4374 return a.max_mag(b, context=self)
4376 def min(self, a,b):
4377 """min compares two values numerically and returns the minimum.
4379 If either operand is a NaN then the general rules apply.
4380 Otherwise, the operands are compared as though by the compare
4381 operation. If they are numerically equal then the left-hand operand
4382 is chosen as the result. Otherwise the minimum (closer to negative
4383 infinity) of the two operands is chosen as the result.
4385 >>> ExtendedContext.min(Decimal('3'), Decimal('2'))
4386 Decimal('2')
4387 >>> ExtendedContext.min(Decimal('-10'), Decimal('3'))
4388 Decimal('-10')
4389 >>> ExtendedContext.min(Decimal('1.0'), Decimal('1'))
4390 Decimal('1.0')
4391 >>> ExtendedContext.min(Decimal('7'), Decimal('NaN'))
4392 Decimal('7')
4394 return a.min(b, context=self)
4396 def min_mag(self, a, b):
4397 """Compares the values numerically with their sign ignored."""
4398 return a.min_mag(b, context=self)
4400 def minus(self, a):
4401 """Minus corresponds to unary prefix minus in Python.
4403 The operation is evaluated using the same rules as subtract; the
4404 operation minus(a) is calculated as subtract('0', a) where the '0'
4405 has the same exponent as the operand.
4407 >>> ExtendedContext.minus(Decimal('1.3'))
4408 Decimal('-1.3')
4409 >>> ExtendedContext.minus(Decimal('-1.3'))
4410 Decimal('1.3')
4412 return a.__neg__(context=self)
4414 def multiply(self, a, b):
4415 """multiply multiplies two operands.
4417 If either operand is a special value then the general rules apply.
4418 Otherwise, the operands are multiplied together ('long multiplication'),
4419 resulting in a number which may be as long as the sum of the lengths
4420 of the two operands.
4422 >>> ExtendedContext.multiply(Decimal('1.20'), Decimal('3'))
4423 Decimal('3.60')
4424 >>> ExtendedContext.multiply(Decimal('7'), Decimal('3'))
4425 Decimal('21')
4426 >>> ExtendedContext.multiply(Decimal('0.9'), Decimal('0.8'))
4427 Decimal('0.72')
4428 >>> ExtendedContext.multiply(Decimal('0.9'), Decimal('-0'))
4429 Decimal('-0.0')
4430 >>> ExtendedContext.multiply(Decimal('654321'), Decimal('654321'))
4431 Decimal('4.28135971E+11')
4433 return a.__mul__(b, context=self)
4435 def next_minus(self, a):
4436 """Returns the largest representable number smaller than a.
4438 >>> c = ExtendedContext.copy()
4439 >>> c.Emin = -999
4440 >>> c.Emax = 999
4441 >>> ExtendedContext.next_minus(Decimal('1'))
4442 Decimal('0.999999999')
4443 >>> c.next_minus(Decimal('1E-1007'))
4444 Decimal('0E-1007')
4445 >>> ExtendedContext.next_minus(Decimal('-1.00000003'))
4446 Decimal('-1.00000004')
4447 >>> c.next_minus(Decimal('Infinity'))
4448 Decimal('9.99999999E+999')
4450 return a.next_minus(context=self)
4452 def next_plus(self, a):
4453 """Returns the smallest representable number larger than a.
4455 >>> c = ExtendedContext.copy()
4456 >>> c.Emin = -999
4457 >>> c.Emax = 999
4458 >>> ExtendedContext.next_plus(Decimal('1'))
4459 Decimal('1.00000001')
4460 >>> c.next_plus(Decimal('-1E-1007'))
4461 Decimal('-0E-1007')
4462 >>> ExtendedContext.next_plus(Decimal('-1.00000003'))
4463 Decimal('-1.00000002')
4464 >>> c.next_plus(Decimal('-Infinity'))
4465 Decimal('-9.99999999E+999')
4467 return a.next_plus(context=self)
4469 def next_toward(self, a, b):
4470 """Returns the number closest to a, in direction towards b.
4472 The result is the closest representable number from the first
4473 operand (but not the first operand) that is in the direction
4474 towards the second operand, unless the operands have the same
4475 value.
4477 >>> c = ExtendedContext.copy()
4478 >>> c.Emin = -999
4479 >>> c.Emax = 999
4480 >>> c.next_toward(Decimal('1'), Decimal('2'))
4481 Decimal('1.00000001')
4482 >>> c.next_toward(Decimal('-1E-1007'), Decimal('1'))
4483 Decimal('-0E-1007')
4484 >>> c.next_toward(Decimal('-1.00000003'), Decimal('0'))
4485 Decimal('-1.00000002')
4486 >>> c.next_toward(Decimal('1'), Decimal('0'))
4487 Decimal('0.999999999')
4488 >>> c.next_toward(Decimal('1E-1007'), Decimal('-100'))
4489 Decimal('0E-1007')
4490 >>> c.next_toward(Decimal('-1.00000003'), Decimal('-10'))
4491 Decimal('-1.00000004')
4492 >>> c.next_toward(Decimal('0.00'), Decimal('-0.0000'))
4493 Decimal('-0.00')
4495 return a.next_toward(b, context=self)
4497 def normalize(self, a):
4498 """normalize reduces an operand to its simplest form.
4500 Essentially a plus operation with all trailing zeros removed from the
4501 result.
4503 >>> ExtendedContext.normalize(Decimal('2.1'))
4504 Decimal('2.1')
4505 >>> ExtendedContext.normalize(Decimal('-2.0'))
4506 Decimal('-2')
4507 >>> ExtendedContext.normalize(Decimal('1.200'))
4508 Decimal('1.2')
4509 >>> ExtendedContext.normalize(Decimal('-120'))
4510 Decimal('-1.2E+2')
4511 >>> ExtendedContext.normalize(Decimal('120.00'))
4512 Decimal('1.2E+2')
4513 >>> ExtendedContext.normalize(Decimal('0.00'))
4514 Decimal('0')
4516 return a.normalize(context=self)
4518 def number_class(self, a):
4519 """Returns an indication of the class of the operand.
4521 The class is one of the following strings:
4522 -sNaN
4523 -NaN
4524 -Infinity
4525 -Normal
4526 -Subnormal
4527 -Zero
4528 +Zero
4529 +Subnormal
4530 +Normal
4531 +Infinity
4533 >>> c = Context(ExtendedContext)
4534 >>> c.Emin = -999
4535 >>> c.Emax = 999
4536 >>> c.number_class(Decimal('Infinity'))
4537 '+Infinity'
4538 >>> c.number_class(Decimal('1E-10'))
4539 '+Normal'
4540 >>> c.number_class(Decimal('2.50'))
4541 '+Normal'
4542 >>> c.number_class(Decimal('0.1E-999'))
4543 '+Subnormal'
4544 >>> c.number_class(Decimal('0'))
4545 '+Zero'
4546 >>> c.number_class(Decimal('-0'))
4547 '-Zero'
4548 >>> c.number_class(Decimal('-0.1E-999'))
4549 '-Subnormal'
4550 >>> c.number_class(Decimal('-1E-10'))
4551 '-Normal'
4552 >>> c.number_class(Decimal('-2.50'))
4553 '-Normal'
4554 >>> c.number_class(Decimal('-Infinity'))
4555 '-Infinity'
4556 >>> c.number_class(Decimal('NaN'))
4557 'NaN'
4558 >>> c.number_class(Decimal('-NaN'))
4559 'NaN'
4560 >>> c.number_class(Decimal('sNaN'))
4561 'sNaN'
4563 return a.number_class(context=self)
4565 def plus(self, a):
4566 """Plus corresponds to unary prefix plus in Python.
4568 The operation is evaluated using the same rules as add; the
4569 operation plus(a) is calculated as add('0', a) where the '0'
4570 has the same exponent as the operand.
4572 >>> ExtendedContext.plus(Decimal('1.3'))
4573 Decimal('1.3')
4574 >>> ExtendedContext.plus(Decimal('-1.3'))
4575 Decimal('-1.3')
4577 return a.__pos__(context=self)
4579 def power(self, a, b, modulo=None):
4580 """Raises a to the power of b, to modulo if given.
4582 With two arguments, compute a**b. If a is negative then b
4583 must be integral. The result will be inexact unless b is
4584 integral and the result is finite and can be expressed exactly
4585 in 'precision' digits.
4587 With three arguments, compute (a**b) % modulo. For the
4588 three argument form, the following restrictions on the
4589 arguments hold:
4591 - all three arguments must be integral
4592 - b must be nonnegative
4593 - at least one of a or b must be nonzero
4594 - modulo must be nonzero and have at most 'precision' digits
4596 The result of pow(a, b, modulo) is identical to the result
4597 that would be obtained by computing (a**b) % modulo with
4598 unbounded precision, but is computed more efficiently. It is
4599 always exact.
4601 >>> c = ExtendedContext.copy()
4602 >>> c.Emin = -999
4603 >>> c.Emax = 999
4604 >>> c.power(Decimal('2'), Decimal('3'))
4605 Decimal('8')
4606 >>> c.power(Decimal('-2'), Decimal('3'))
4607 Decimal('-8')
4608 >>> c.power(Decimal('2'), Decimal('-3'))
4609 Decimal('0.125')
4610 >>> c.power(Decimal('1.7'), Decimal('8'))
4611 Decimal('69.7575744')
4612 >>> c.power(Decimal('10'), Decimal('0.301029996'))
4613 Decimal('2.00000000')
4614 >>> c.power(Decimal('Infinity'), Decimal('-1'))
4615 Decimal('0')
4616 >>> c.power(Decimal('Infinity'), Decimal('0'))
4617 Decimal('1')
4618 >>> c.power(Decimal('Infinity'), Decimal('1'))
4619 Decimal('Infinity')
4620 >>> c.power(Decimal('-Infinity'), Decimal('-1'))
4621 Decimal('-0')
4622 >>> c.power(Decimal('-Infinity'), Decimal('0'))
4623 Decimal('1')
4624 >>> c.power(Decimal('-Infinity'), Decimal('1'))
4625 Decimal('-Infinity')
4626 >>> c.power(Decimal('-Infinity'), Decimal('2'))
4627 Decimal('Infinity')
4628 >>> c.power(Decimal('0'), Decimal('0'))
4629 Decimal('NaN')
4631 >>> c.power(Decimal('3'), Decimal('7'), Decimal('16'))
4632 Decimal('11')
4633 >>> c.power(Decimal('-3'), Decimal('7'), Decimal('16'))
4634 Decimal('-11')
4635 >>> c.power(Decimal('-3'), Decimal('8'), Decimal('16'))
4636 Decimal('1')
4637 >>> c.power(Decimal('3'), Decimal('7'), Decimal('-16'))
4638 Decimal('11')
4639 >>> c.power(Decimal('23E12345'), Decimal('67E189'), Decimal('123456789'))
4640 Decimal('11729830')
4641 >>> c.power(Decimal('-0'), Decimal('17'), Decimal('1729'))
4642 Decimal('-0')
4643 >>> c.power(Decimal('-23'), Decimal('0'), Decimal('65537'))
4644 Decimal('1')
4646 return a.__pow__(b, modulo, context=self)
4648 def quantize(self, a, b):
4649 """Returns a value equal to 'a' (rounded), having the exponent of 'b'.
4651 The coefficient of the result is derived from that of the left-hand
4652 operand. It may be rounded using the current rounding setting (if the
4653 exponent is being increased), multiplied by a positive power of ten (if
4654 the exponent is being decreased), or is unchanged (if the exponent is
4655 already equal to that of the right-hand operand).
4657 Unlike other operations, if the length of the coefficient after the
4658 quantize operation would be greater than precision then an Invalid
4659 operation condition is raised. This guarantees that, unless there is
4660 an error condition, the exponent of the result of a quantize is always
4661 equal to that of the right-hand operand.
4663 Also unlike other operations, quantize will never raise Underflow, even
4664 if the result is subnormal and inexact.
4666 >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.001'))
4667 Decimal('2.170')
4668 >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.01'))
4669 Decimal('2.17')
4670 >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.1'))
4671 Decimal('2.2')
4672 >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('1e+0'))
4673 Decimal('2')
4674 >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('1e+1'))
4675 Decimal('0E+1')
4676 >>> ExtendedContext.quantize(Decimal('-Inf'), Decimal('Infinity'))
4677 Decimal('-Infinity')
4678 >>> ExtendedContext.quantize(Decimal('2'), Decimal('Infinity'))
4679 Decimal('NaN')
4680 >>> ExtendedContext.quantize(Decimal('-0.1'), Decimal('1'))
4681 Decimal('-0')
4682 >>> ExtendedContext.quantize(Decimal('-0'), Decimal('1e+5'))
4683 Decimal('-0E+5')
4684 >>> ExtendedContext.quantize(Decimal('+35236450.6'), Decimal('1e-2'))
4685 Decimal('NaN')
4686 >>> ExtendedContext.quantize(Decimal('-35236450.6'), Decimal('1e-2'))
4687 Decimal('NaN')
4688 >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e-1'))
4689 Decimal('217.0')
4690 >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e-0'))
4691 Decimal('217')
4692 >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e+1'))
4693 Decimal('2.2E+2')
4694 >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e+2'))
4695 Decimal('2E+2')
4697 return a.quantize(b, context=self)
4699 def radix(self):
4700 """Just returns 10, as this is Decimal, :)
4702 >>> ExtendedContext.radix()
4703 Decimal('10')
4705 return Decimal(10)
4707 def remainder(self, a, b):
4708 """Returns the remainder from integer division.
4710 The result is the residue of the dividend after the operation of
4711 calculating integer division as described for divide-integer, rounded
4712 to precision digits if necessary. The sign of the result, if
4713 non-zero, is the same as that of the original dividend.
4715 This operation will fail under the same conditions as integer division
4716 (that is, if integer division on the same two operands would fail, the
4717 remainder cannot be calculated).
4719 >>> ExtendedContext.remainder(Decimal('2.1'), Decimal('3'))
4720 Decimal('2.1')
4721 >>> ExtendedContext.remainder(Decimal('10'), Decimal('3'))
4722 Decimal('1')
4723 >>> ExtendedContext.remainder(Decimal('-10'), Decimal('3'))
4724 Decimal('-1')
4725 >>> ExtendedContext.remainder(Decimal('10.2'), Decimal('1'))
4726 Decimal('0.2')
4727 >>> ExtendedContext.remainder(Decimal('10'), Decimal('0.3'))
4728 Decimal('0.1')
4729 >>> ExtendedContext.remainder(Decimal('3.6'), Decimal('1.3'))
4730 Decimal('1.0')
4732 return a.__mod__(b, context=self)
4734 def remainder_near(self, a, b):
4735 """Returns to be "a - b * n", where n is the integer nearest the exact
4736 value of "x / b" (if two integers are equally near then the even one
4737 is chosen). If the result is equal to 0 then its sign will be the
4738 sign of a.
4740 This operation will fail under the same conditions as integer division
4741 (that is, if integer division on the same two operands would fail, the
4742 remainder cannot be calculated).
4744 >>> ExtendedContext.remainder_near(Decimal('2.1'), Decimal('3'))
4745 Decimal('-0.9')
4746 >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('6'))
4747 Decimal('-2')
4748 >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('3'))
4749 Decimal('1')
4750 >>> ExtendedContext.remainder_near(Decimal('-10'), Decimal('3'))
4751 Decimal('-1')
4752 >>> ExtendedContext.remainder_near(Decimal('10.2'), Decimal('1'))
4753 Decimal('0.2')
4754 >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('0.3'))
4755 Decimal('0.1')
4756 >>> ExtendedContext.remainder_near(Decimal('3.6'), Decimal('1.3'))
4757 Decimal('-0.3')
4759 return a.remainder_near(b, context=self)
4761 def rotate(self, a, b):
4762 """Returns a rotated copy of a, b times.
4764 The coefficient of the result is a rotated copy of the digits in
4765 the coefficient of the first operand. The number of places of
4766 rotation is taken from the absolute value of the second operand,
4767 with the rotation being to the left if the second operand is
4768 positive or to the right otherwise.
4770 >>> ExtendedContext.rotate(Decimal('34'), Decimal('8'))
4771 Decimal('400000003')
4772 >>> ExtendedContext.rotate(Decimal('12'), Decimal('9'))
4773 Decimal('12')
4774 >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('-2'))
4775 Decimal('891234567')
4776 >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('0'))
4777 Decimal('123456789')
4778 >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('+2'))
4779 Decimal('345678912')
4781 return a.rotate(b, context=self)
4783 def same_quantum(self, a, b):
4784 """Returns True if the two operands have the same exponent.
4786 The result is never affected by either the sign or the coefficient of
4787 either operand.
4789 >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('0.001'))
4790 False
4791 >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('0.01'))
4792 True
4793 >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('1'))
4794 False
4795 >>> ExtendedContext.same_quantum(Decimal('Inf'), Decimal('-Inf'))
4796 True
4798 return a.same_quantum(b)
4800 def scaleb (self, a, b):
4801 """Returns the first operand after adding the second value its exp.
4803 >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('-2'))
4804 Decimal('0.0750')
4805 >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('0'))
4806 Decimal('7.50')
4807 >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('3'))
4808 Decimal('7.50E+3')
4810 return a.scaleb (b, context=self)
4812 def shift(self, a, b):
4813 """Returns a shifted copy of a, b times.
4815 The coefficient of the result is a shifted copy of the digits
4816 in the coefficient of the first operand. The number of places
4817 to shift is taken from the absolute value of the second operand,
4818 with the shift being to the left if the second operand is
4819 positive or to the right otherwise. Digits shifted into the
4820 coefficient are zeros.
4822 >>> ExtendedContext.shift(Decimal('34'), Decimal('8'))
4823 Decimal('400000000')
4824 >>> ExtendedContext.shift(Decimal('12'), Decimal('9'))
4825 Decimal('0')
4826 >>> ExtendedContext.shift(Decimal('123456789'), Decimal('-2'))
4827 Decimal('1234567')
4828 >>> ExtendedContext.shift(Decimal('123456789'), Decimal('0'))
4829 Decimal('123456789')
4830 >>> ExtendedContext.shift(Decimal('123456789'), Decimal('+2'))
4831 Decimal('345678900')
4833 return a.shift(b, context=self)
4835 def sqrt(self, a):
4836 """Square root of a non-negative number to context precision.
4838 If the result must be inexact, it is rounded using the round-half-even
4839 algorithm.
4841 >>> ExtendedContext.sqrt(Decimal('0'))
4842 Decimal('0')
4843 >>> ExtendedContext.sqrt(Decimal('-0'))
4844 Decimal('-0')
4845 >>> ExtendedContext.sqrt(Decimal('0.39'))
4846 Decimal('0.624499800')
4847 >>> ExtendedContext.sqrt(Decimal('100'))
4848 Decimal('10')
4849 >>> ExtendedContext.sqrt(Decimal('1'))
4850 Decimal('1')
4851 >>> ExtendedContext.sqrt(Decimal('1.0'))
4852 Decimal('1.0')
4853 >>> ExtendedContext.sqrt(Decimal('1.00'))
4854 Decimal('1.0')
4855 >>> ExtendedContext.sqrt(Decimal('7'))
4856 Decimal('2.64575131')
4857 >>> ExtendedContext.sqrt(Decimal('10'))
4858 Decimal('3.16227766')
4859 >>> ExtendedContext.prec
4862 return a.sqrt(context=self)
4864 def subtract(self, a, b):
4865 """Return the difference between the two operands.
4867 >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('1.07'))
4868 Decimal('0.23')
4869 >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('1.30'))
4870 Decimal('0.00')
4871 >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('2.07'))
4872 Decimal('-0.77')
4874 return a.__sub__(b, context=self)
4876 def to_eng_string(self, a):
4877 """Converts a number to a string, using scientific notation.
4879 The operation is not affected by the context.
4881 return a.to_eng_string(context=self)
4883 def to_sci_string(self, a):
4884 """Converts a number to a string, using scientific notation.
4886 The operation is not affected by the context.
4888 return a.__str__(context=self)
4890 def to_integral_exact(self, a):
4891 """Rounds to an integer.
4893 When the operand has a negative exponent, the result is the same
4894 as using the quantize() operation using the given operand as the
4895 left-hand-operand, 1E+0 as the right-hand-operand, and the precision
4896 of the operand as the precision setting; Inexact and Rounded flags
4897 are allowed in this operation. The rounding mode is taken from the
4898 context.
4900 >>> ExtendedContext.to_integral_exact(Decimal('2.1'))
4901 Decimal('2')
4902 >>> ExtendedContext.to_integral_exact(Decimal('100'))
4903 Decimal('100')
4904 >>> ExtendedContext.to_integral_exact(Decimal('100.0'))
4905 Decimal('100')
4906 >>> ExtendedContext.to_integral_exact(Decimal('101.5'))
4907 Decimal('102')
4908 >>> ExtendedContext.to_integral_exact(Decimal('-101.5'))
4909 Decimal('-102')
4910 >>> ExtendedContext.to_integral_exact(Decimal('10E+5'))
4911 Decimal('1.0E+6')
4912 >>> ExtendedContext.to_integral_exact(Decimal('7.89E+77'))
4913 Decimal('7.89E+77')
4914 >>> ExtendedContext.to_integral_exact(Decimal('-Inf'))
4915 Decimal('-Infinity')
4917 return a.to_integral_exact(context=self)
4919 def to_integral_value(self, a):
4920 """Rounds to an integer.
4922 When the operand has a negative exponent, the result is the same
4923 as using the quantize() operation using the given operand as the
4924 left-hand-operand, 1E+0 as the right-hand-operand, and the precision
4925 of the operand as the precision setting, except that no flags will
4926 be set. The rounding mode is taken from the context.
4928 >>> ExtendedContext.to_integral_value(Decimal('2.1'))
4929 Decimal('2')
4930 >>> ExtendedContext.to_integral_value(Decimal('100'))
4931 Decimal('100')
4932 >>> ExtendedContext.to_integral_value(Decimal('100.0'))
4933 Decimal('100')
4934 >>> ExtendedContext.to_integral_value(Decimal('101.5'))
4935 Decimal('102')
4936 >>> ExtendedContext.to_integral_value(Decimal('-101.5'))
4937 Decimal('-102')
4938 >>> ExtendedContext.to_integral_value(Decimal('10E+5'))
4939 Decimal('1.0E+6')
4940 >>> ExtendedContext.to_integral_value(Decimal('7.89E+77'))
4941 Decimal('7.89E+77')
4942 >>> ExtendedContext.to_integral_value(Decimal('-Inf'))
4943 Decimal('-Infinity')
4945 return a.to_integral_value(context=self)
4947 # the method name changed, but we provide also the old one, for compatibility
4948 to_integral = to_integral_value
4950 class _WorkRep(object):
4951 __slots__ = ('sign','int','exp')
4952 # sign: 0 or 1
4953 # int: int or long
4954 # exp: None, int, or string
4956 def __init__(self, value=None):
4957 if value is None:
4958 self.sign = None
4959 self.int = 0
4960 self.exp = None
4961 elif isinstance(value, Decimal):
4962 self.sign = value._sign
4963 self.int = int(value._int)
4964 self.exp = value._exp
4965 else:
4966 # assert isinstance(value, tuple)
4967 self.sign = value[0]
4968 self.int = value[1]
4969 self.exp = value[2]
4971 def __repr__(self):
4972 return "(%r, %r, %r)" % (self.sign, self.int, self.exp)
4974 __str__ = __repr__
4978 def _normalize(op1, op2, prec = 0):
4979 """Normalizes op1, op2 to have the same exp and length of coefficient.
4981 Done during addition.
4983 if op1.exp < op2.exp:
4984 tmp = op2
4985 other = op1
4986 else:
4987 tmp = op1
4988 other = op2
4990 # Let exp = min(tmp.exp - 1, tmp.adjusted() - precision - 1).
4991 # Then adding 10**exp to tmp has the same effect (after rounding)
4992 # as adding any positive quantity smaller than 10**exp; similarly
4993 # for subtraction. So if other is smaller than 10**exp we replace
4994 # it with 10**exp. This avoids tmp.exp - other.exp getting too large.
4995 tmp_len = len(str(tmp.int))
4996 other_len = len(str(other.int))
4997 exp = tmp.exp + min(-1, tmp_len - prec - 2)
4998 if other_len + other.exp - 1 < exp:
4999 other.int = 1
5000 other.exp = exp
5002 tmp.int *= 10 ** (tmp.exp - other.exp)
5003 tmp.exp = other.exp
5004 return op1, op2
5006 ##### Integer arithmetic functions used by ln, log10, exp and __pow__ #####
5008 # This function from Tim Peters was taken from here:
5009 # http://mail.python.org/pipermail/python-list/1999-July/007758.html
5010 # The correction being in the function definition is for speed, and
5011 # the whole function is not resolved with math.log because of avoiding
5012 # the use of floats.
5013 def _nbits(n, correction = {
5014 '0': 4, '1': 3, '2': 2, '3': 2,
5015 '4': 1, '5': 1, '6': 1, '7': 1,
5016 '8': 0, '9': 0, 'a': 0, 'b': 0,
5017 'c': 0, 'd': 0, 'e': 0, 'f': 0}):
5018 """Number of bits in binary representation of the positive integer n,
5019 or 0 if n == 0.
5021 if n < 0:
5022 raise ValueError("The argument to _nbits should be nonnegative.")
5023 hex_n = "%x" % n
5024 return 4*len(hex_n) - correction[hex_n[0]]
5026 def _sqrt_nearest(n, a):
5027 """Closest integer to the square root of the positive integer n. a is
5028 an initial approximation to the square root. Any positive integer
5029 will do for a, but the closer a is to the square root of n the
5030 faster convergence will be.
5033 if n <= 0 or a <= 0:
5034 raise ValueError("Both arguments to _sqrt_nearest should be positive.")
5037 while a != b:
5038 b, a = a, a--n//a>>1
5039 return a
5041 def _rshift_nearest(x, shift):
5042 """Given an integer x and a nonnegative integer shift, return closest
5043 integer to x / 2**shift; use round-to-even in case of a tie.
5046 b, q = 1L << shift, x >> shift
5047 return q + (2*(x & (b-1)) + (q&1) > b)
5049 def _div_nearest(a, b):
5050 """Closest integer to a/b, a and b positive integers; rounds to even
5051 in the case of a tie.
5054 q, r = divmod(a, b)
5055 return q + (2*r + (q&1) > b)
5057 def _ilog(x, M, L = 8):
5058 """Integer approximation to M*log(x/M), with absolute error boundable
5059 in terms only of x/M.
5061 Given positive integers x and M, return an integer approximation to
5062 M * log(x/M). For L = 8 and 0.1 <= x/M <= 10 the difference
5063 between the approximation and the exact result is at most 22. For
5064 L = 8 and 1.0 <= x/M <= 10.0 the difference is at most 15. In
5065 both cases these are upper bounds on the error; it will usually be
5066 much smaller."""
5068 # The basic algorithm is the following: let log1p be the function
5069 # log1p(x) = log(1+x). Then log(x/M) = log1p((x-M)/M). We use
5070 # the reduction
5072 # log1p(y) = 2*log1p(y/(1+sqrt(1+y)))
5074 # repeatedly until the argument to log1p is small (< 2**-L in
5075 # absolute value). For small y we can use the Taylor series
5076 # expansion
5078 # log1p(y) ~ y - y**2/2 + y**3/3 - ... - (-y)**T/T
5080 # truncating at T such that y**T is small enough. The whole
5081 # computation is carried out in a form of fixed-point arithmetic,
5082 # with a real number z being represented by an integer
5083 # approximation to z*M. To avoid loss of precision, the y below
5084 # is actually an integer approximation to 2**R*y*M, where R is the
5085 # number of reductions performed so far.
5087 y = x-M
5088 # argument reduction; R = number of reductions performed
5089 R = 0
5090 while (R <= L and long(abs(y)) << L-R >= M or
5091 R > L and abs(y) >> R-L >= M):
5092 y = _div_nearest(long(M*y) << 1,
5093 M + _sqrt_nearest(M*(M+_rshift_nearest(y, R)), M))
5094 R += 1
5096 # Taylor series with T terms
5097 T = -int(-10*len(str(M))//(3*L))
5098 yshift = _rshift_nearest(y, R)
5099 w = _div_nearest(M, T)
5100 for k in xrange(T-1, 0, -1):
5101 w = _div_nearest(M, k) - _div_nearest(yshift*w, M)
5103 return _div_nearest(w*y, M)
5105 def _dlog10(c, e, p):
5106 """Given integers c, e and p with c > 0, p >= 0, compute an integer
5107 approximation to 10**p * log10(c*10**e), with an absolute error of
5108 at most 1. Assumes that c*10**e is not exactly 1."""
5110 # increase precision by 2; compensate for this by dividing
5111 # final result by 100
5112 p += 2
5114 # write c*10**e as d*10**f with either:
5115 # f >= 0 and 1 <= d <= 10, or
5116 # f <= 0 and 0.1 <= d <= 1.
5117 # Thus for c*10**e close to 1, f = 0
5118 l = len(str(c))
5119 f = e+l - (e+l >= 1)
5121 if p > 0:
5122 M = 10**p
5123 k = e+p-f
5124 if k >= 0:
5125 c *= 10**k
5126 else:
5127 c = _div_nearest(c, 10**-k)
5129 log_d = _ilog(c, M) # error < 5 + 22 = 27
5130 log_10 = _log10_digits(p) # error < 1
5131 log_d = _div_nearest(log_d*M, log_10)
5132 log_tenpower = f*M # exact
5133 else:
5134 log_d = 0 # error < 2.31
5135 log_tenpower = _div_nearest(f, 10**-p) # error < 0.5
5137 return _div_nearest(log_tenpower+log_d, 100)
5139 def _dlog(c, e, p):
5140 """Given integers c, e and p with c > 0, compute an integer
5141 approximation to 10**p * log(c*10**e), with an absolute error of
5142 at most 1. Assumes that c*10**e is not exactly 1."""
5144 # Increase precision by 2. The precision increase is compensated
5145 # for at the end with a division by 100.
5146 p += 2
5148 # rewrite c*10**e as d*10**f with either f >= 0 and 1 <= d <= 10,
5149 # or f <= 0 and 0.1 <= d <= 1. Then we can compute 10**p * log(c*10**e)
5150 # as 10**p * log(d) + 10**p*f * log(10).
5151 l = len(str(c))
5152 f = e+l - (e+l >= 1)
5154 # compute approximation to 10**p*log(d), with error < 27
5155 if p > 0:
5156 k = e+p-f
5157 if k >= 0:
5158 c *= 10**k
5159 else:
5160 c = _div_nearest(c, 10**-k) # error of <= 0.5 in c
5162 # _ilog magnifies existing error in c by a factor of at most 10
5163 log_d = _ilog(c, 10**p) # error < 5 + 22 = 27
5164 else:
5165 # p <= 0: just approximate the whole thing by 0; error < 2.31
5166 log_d = 0
5168 # compute approximation to f*10**p*log(10), with error < 11.
5169 if f:
5170 extra = len(str(abs(f)))-1
5171 if p + extra >= 0:
5172 # error in f * _log10_digits(p+extra) < |f| * 1 = |f|
5173 # after division, error < |f|/10**extra + 0.5 < 10 + 0.5 < 11
5174 f_log_ten = _div_nearest(f*_log10_digits(p+extra), 10**extra)
5175 else:
5176 f_log_ten = 0
5177 else:
5178 f_log_ten = 0
5180 # error in sum < 11+27 = 38; error after division < 0.38 + 0.5 < 1
5181 return _div_nearest(f_log_ten + log_d, 100)
5183 class _Log10Memoize(object):
5184 """Class to compute, store, and allow retrieval of, digits of the
5185 constant log(10) = 2.302585.... This constant is needed by
5186 Decimal.ln, Decimal.log10, Decimal.exp and Decimal.__pow__."""
5187 def __init__(self):
5188 self.digits = "23025850929940456840179914546843642076011014886"
5190 def getdigits(self, p):
5191 """Given an integer p >= 0, return floor(10**p)*log(10).
5193 For example, self.getdigits(3) returns 2302.
5195 # digits are stored as a string, for quick conversion to
5196 # integer in the case that we've already computed enough
5197 # digits; the stored digits should always be correct
5198 # (truncated, not rounded to nearest).
5199 if p < 0:
5200 raise ValueError("p should be nonnegative")
5202 if p >= len(self.digits):
5203 # compute p+3, p+6, p+9, ... digits; continue until at
5204 # least one of the extra digits is nonzero
5205 extra = 3
5206 while True:
5207 # compute p+extra digits, correct to within 1ulp
5208 M = 10**(p+extra+2)
5209 digits = str(_div_nearest(_ilog(10*M, M), 100))
5210 if digits[-extra:] != '0'*extra:
5211 break
5212 extra += 3
5213 # keep all reliable digits so far; remove trailing zeros
5214 # and next nonzero digit
5215 self.digits = digits.rstrip('0')[:-1]
5216 return int(self.digits[:p+1])
5218 _log10_digits = _Log10Memoize().getdigits
5220 def _iexp(x, M, L=8):
5221 """Given integers x and M, M > 0, such that x/M is small in absolute
5222 value, compute an integer approximation to M*exp(x/M). For 0 <=
5223 x/M <= 2.4, the absolute error in the result is bounded by 60 (and
5224 is usually much smaller)."""
5226 # Algorithm: to compute exp(z) for a real number z, first divide z
5227 # by a suitable power R of 2 so that |z/2**R| < 2**-L. Then
5228 # compute expm1(z/2**R) = exp(z/2**R) - 1 using the usual Taylor
5229 # series
5231 # expm1(x) = x + x**2/2! + x**3/3! + ...
5233 # Now use the identity
5235 # expm1(2x) = expm1(x)*(expm1(x)+2)
5237 # R times to compute the sequence expm1(z/2**R),
5238 # expm1(z/2**(R-1)), ... , exp(z/2), exp(z).
5240 # Find R such that x/2**R/M <= 2**-L
5241 R = _nbits((long(x)<<L)//M)
5243 # Taylor series. (2**L)**T > M
5244 T = -int(-10*len(str(M))//(3*L))
5245 y = _div_nearest(x, T)
5246 Mshift = long(M)<<R
5247 for i in xrange(T-1, 0, -1):
5248 y = _div_nearest(x*(Mshift + y), Mshift * i)
5250 # Expansion
5251 for k in xrange(R-1, -1, -1):
5252 Mshift = long(M)<<(k+2)
5253 y = _div_nearest(y*(y+Mshift), Mshift)
5255 return M+y
5257 def _dexp(c, e, p):
5258 """Compute an approximation to exp(c*10**e), with p decimal places of
5259 precision.
5261 Returns integers d, f such that:
5263 10**(p-1) <= d <= 10**p, and
5264 (d-1)*10**f < exp(c*10**e) < (d+1)*10**f
5266 In other words, d*10**f is an approximation to exp(c*10**e) with p
5267 digits of precision, and with an error in d of at most 1. This is
5268 almost, but not quite, the same as the error being < 1ulp: when d
5269 = 10**(p-1) the error could be up to 10 ulp."""
5271 # we'll call iexp with M = 10**(p+2), giving p+3 digits of precision
5272 p += 2
5274 # compute log(10) with extra precision = adjusted exponent of c*10**e
5275 extra = max(0, e + len(str(c)) - 1)
5276 q = p + extra
5278 # compute quotient c*10**e/(log(10)) = c*10**(e+q)/(log(10)*10**q),
5279 # rounding down
5280 shift = e+q
5281 if shift >= 0:
5282 cshift = c*10**shift
5283 else:
5284 cshift = c//10**-shift
5285 quot, rem = divmod(cshift, _log10_digits(q))
5287 # reduce remainder back to original precision
5288 rem = _div_nearest(rem, 10**extra)
5290 # error in result of _iexp < 120; error after division < 0.62
5291 return _div_nearest(_iexp(rem, 10**p), 1000), quot - p + 3
5293 def _dpower(xc, xe, yc, ye, p):
5294 """Given integers xc, xe, yc and ye representing Decimals x = xc*10**xe and
5295 y = yc*10**ye, compute x**y. Returns a pair of integers (c, e) such that:
5297 10**(p-1) <= c <= 10**p, and
5298 (c-1)*10**e < x**y < (c+1)*10**e
5300 in other words, c*10**e is an approximation to x**y with p digits
5301 of precision, and with an error in c of at most 1. (This is
5302 almost, but not quite, the same as the error being < 1ulp: when c
5303 == 10**(p-1) we can only guarantee error < 10ulp.)
5305 We assume that: x is positive and not equal to 1, and y is nonzero.
5308 # Find b such that 10**(b-1) <= |y| <= 10**b
5309 b = len(str(abs(yc))) + ye
5311 # log(x) = lxc*10**(-p-b-1), to p+b+1 places after the decimal point
5312 lxc = _dlog(xc, xe, p+b+1)
5314 # compute product y*log(x) = yc*lxc*10**(-p-b-1+ye) = pc*10**(-p-1)
5315 shift = ye-b
5316 if shift >= 0:
5317 pc = lxc*yc*10**shift
5318 else:
5319 pc = _div_nearest(lxc*yc, 10**-shift)
5321 if pc == 0:
5322 # we prefer a result that isn't exactly 1; this makes it
5323 # easier to compute a correctly rounded result in __pow__
5324 if ((len(str(xc)) + xe >= 1) == (yc > 0)): # if x**y > 1:
5325 coeff, exp = 10**(p-1)+1, 1-p
5326 else:
5327 coeff, exp = 10**p-1, -p
5328 else:
5329 coeff, exp = _dexp(pc, -(p+1), p+1)
5330 coeff = _div_nearest(coeff, 10)
5331 exp += 1
5333 return coeff, exp
5335 def _log10_lb(c, correction = {
5336 '1': 100, '2': 70, '3': 53, '4': 40, '5': 31,
5337 '6': 23, '7': 16, '8': 10, '9': 5}):
5338 """Compute a lower bound for 100*log10(c) for a positive integer c."""
5339 if c <= 0:
5340 raise ValueError("The argument to _log10_lb should be nonnegative.")
5341 str_c = str(c)
5342 return 100*len(str_c) - correction[str_c[0]]
5344 ##### Helper Functions ####################################################
5346 def _convert_other(other, raiseit=False):
5347 """Convert other to Decimal.
5349 Verifies that it's ok to use in an implicit construction.
5351 if isinstance(other, Decimal):
5352 return other
5353 if isinstance(other, (int, long)):
5354 return Decimal(other)
5355 if raiseit:
5356 raise TypeError("Unable to convert %s to Decimal" % other)
5357 return NotImplemented
5359 ##### Setup Specific Contexts ############################################
5361 # The default context prototype used by Context()
5362 # Is mutable, so that new contexts can have different default values
5364 DefaultContext = Context(
5365 prec=28, rounding=ROUND_HALF_EVEN,
5366 traps=[DivisionByZero, Overflow, InvalidOperation],
5367 flags=[],
5368 Emax=999999999,
5369 Emin=-999999999,
5370 capitals=1
5373 # Pre-made alternate contexts offered by the specification
5374 # Don't change these; the user should be able to select these
5375 # contexts and be able to reproduce results from other implementations
5376 # of the spec.
5378 BasicContext = Context(
5379 prec=9, rounding=ROUND_HALF_UP,
5380 traps=[DivisionByZero, Overflow, InvalidOperation, Clamped, Underflow],
5381 flags=[],
5384 ExtendedContext = Context(
5385 prec=9, rounding=ROUND_HALF_EVEN,
5386 traps=[],
5387 flags=[],
5391 ##### crud for parsing strings #############################################
5393 # Regular expression used for parsing numeric strings. Additional
5394 # comments:
5396 # 1. Uncomment the two '\s*' lines to allow leading and/or trailing
5397 # whitespace. But note that the specification disallows whitespace in
5398 # a numeric string.
5400 # 2. For finite numbers (not infinities and NaNs) the body of the
5401 # number between the optional sign and the optional exponent must have
5402 # at least one decimal digit, possibly after the decimal point. The
5403 # lookahead expression '(?=\d|\.\d)' checks this.
5405 import re
5406 _parser = re.compile(r""" # A numeric string consists of:
5407 # \s*
5408 (?P<sign>[-+])? # an optional sign, followed by either...
5410 (?=\d|\.\d) # ...a number (with at least one digit)
5411 (?P<int>\d*) # having a (possibly empty) integer part
5412 (\.(?P<frac>\d*))? # followed by an optional fractional part
5413 (E(?P<exp>[-+]?\d+))? # followed by an optional exponent, or...
5415 Inf(inity)? # ...an infinity, or...
5417 (?P<signal>s)? # ...an (optionally signaling)
5418 NaN # NaN
5419 (?P<diag>\d*) # with (possibly empty) diagnostic info.
5421 # \s*
5423 """, re.VERBOSE | re.IGNORECASE | re.UNICODE).match
5425 _all_zeros = re.compile('0*$').match
5426 _exact_half = re.compile('50*$').match
5428 ##### PEP3101 support functions ##############################################
5429 # The functions in this section have little to do with the Decimal
5430 # class, and could potentially be reused or adapted for other pure
5431 # Python numeric classes that want to implement __format__
5433 # A format specifier for Decimal looks like:
5435 # [[fill]align][sign][0][minimumwidth][,][.precision][type]
5437 _parse_format_specifier_regex = re.compile(r"""\A
5439 (?P<fill>.)?
5440 (?P<align>[<>=^])
5442 (?P<sign>[-+ ])?
5443 (?P<zeropad>0)?
5444 (?P<minimumwidth>(?!0)\d+)?
5445 (?P<thousands_sep>,)?
5446 (?:\.(?P<precision>0|(?!0)\d+))?
5447 (?P<type>[eEfFgGn%])?
5449 """, re.VERBOSE)
5451 del re
5453 # The locale module is only needed for the 'n' format specifier. The
5454 # rest of the PEP 3101 code functions quite happily without it, so we
5455 # don't care too much if locale isn't present.
5456 try:
5457 import locale as _locale
5458 except ImportError:
5459 pass
5461 def _parse_format_specifier(format_spec, _localeconv=None):
5462 """Parse and validate a format specifier.
5464 Turns a standard numeric format specifier into a dict, with the
5465 following entries:
5467 fill: fill character to pad field to minimum width
5468 align: alignment type, either '<', '>', '=' or '^'
5469 sign: either '+', '-' or ' '
5470 minimumwidth: nonnegative integer giving minimum width
5471 zeropad: boolean, indicating whether to pad with zeros
5472 thousands_sep: string to use as thousands separator, or ''
5473 grouping: grouping for thousands separators, in format
5474 used by localeconv
5475 decimal_point: string to use for decimal point
5476 precision: nonnegative integer giving precision, or None
5477 type: one of the characters 'eEfFgG%', or None
5478 unicode: boolean (always True for Python 3.x)
5481 m = _parse_format_specifier_regex.match(format_spec)
5482 if m is None:
5483 raise ValueError("Invalid format specifier: " + format_spec)
5485 # get the dictionary
5486 format_dict = m.groupdict()
5488 # zeropad; defaults for fill and alignment. If zero padding
5489 # is requested, the fill and align fields should be absent.
5490 fill = format_dict['fill']
5491 align = format_dict['align']
5492 format_dict['zeropad'] = (format_dict['zeropad'] is not None)
5493 if format_dict['zeropad']:
5494 if fill is not None:
5495 raise ValueError("Fill character conflicts with '0'"
5496 " in format specifier: " + format_spec)
5497 if align is not None:
5498 raise ValueError("Alignment conflicts with '0' in "
5499 "format specifier: " + format_spec)
5500 format_dict['fill'] = fill or ' '
5501 format_dict['align'] = align or '<'
5503 # default sign handling: '-' for negative, '' for positive
5504 if format_dict['sign'] is None:
5505 format_dict['sign'] = '-'
5507 # minimumwidth defaults to 0; precision remains None if not given
5508 format_dict['minimumwidth'] = int(format_dict['minimumwidth'] or '0')
5509 if format_dict['precision'] is not None:
5510 format_dict['precision'] = int(format_dict['precision'])
5512 # if format type is 'g' or 'G' then a precision of 0 makes little
5513 # sense; convert it to 1. Same if format type is unspecified.
5514 if format_dict['precision'] == 0:
5515 if format_dict['type'] is None or format_dict['type'] in 'gG':
5516 format_dict['precision'] = 1
5518 # determine thousands separator, grouping, and decimal separator, and
5519 # add appropriate entries to format_dict
5520 if format_dict['type'] == 'n':
5521 # apart from separators, 'n' behaves just like 'g'
5522 format_dict['type'] = 'g'
5523 if _localeconv is None:
5524 _localeconv = _locale.localeconv()
5525 if format_dict['thousands_sep'] is not None:
5526 raise ValueError("Explicit thousands separator conflicts with "
5527 "'n' type in format specifier: " + format_spec)
5528 format_dict['thousands_sep'] = _localeconv['thousands_sep']
5529 format_dict['grouping'] = _localeconv['grouping']
5530 format_dict['decimal_point'] = _localeconv['decimal_point']
5531 else:
5532 if format_dict['thousands_sep'] is None:
5533 format_dict['thousands_sep'] = ''
5534 format_dict['grouping'] = [3, 0]
5535 format_dict['decimal_point'] = '.'
5537 # record whether return type should be str or unicode
5538 format_dict['unicode'] = isinstance(format_spec, unicode)
5540 return format_dict
5542 def _format_align(sign, body, spec):
5543 """Given an unpadded, non-aligned numeric string 'body' and sign
5544 string 'sign', add padding and aligment conforming to the given
5545 format specifier dictionary 'spec' (as produced by
5546 parse_format_specifier).
5548 Also converts result to unicode if necessary.
5551 # how much extra space do we have to play with?
5552 minimumwidth = spec['minimumwidth']
5553 fill = spec['fill']
5554 padding = fill*(minimumwidth - len(sign) - len(body))
5556 align = spec['align']
5557 if align == '<':
5558 result = sign + body + padding
5559 elif align == '>':
5560 result = padding + sign + body
5561 elif align == '=':
5562 result = sign + padding + body
5563 elif align == '^':
5564 half = len(padding)//2
5565 result = padding[:half] + sign + body + padding[half:]
5566 else:
5567 raise ValueError('Unrecognised alignment field')
5569 # make sure that result is unicode if necessary
5570 if spec['unicode']:
5571 result = unicode(result)
5573 return result
5575 def _group_lengths(grouping):
5576 """Convert a localeconv-style grouping into a (possibly infinite)
5577 iterable of integers representing group lengths.
5580 # The result from localeconv()['grouping'], and the input to this
5581 # function, should be a list of integers in one of the
5582 # following three forms:
5584 # (1) an empty list, or
5585 # (2) nonempty list of positive integers + [0]
5586 # (3) list of positive integers + [locale.CHAR_MAX], or
5588 from itertools import chain, repeat
5589 if not grouping:
5590 return []
5591 elif grouping[-1] == 0 and len(grouping) >= 2:
5592 return chain(grouping[:-1], repeat(grouping[-2]))
5593 elif grouping[-1] == _locale.CHAR_MAX:
5594 return grouping[:-1]
5595 else:
5596 raise ValueError('unrecognised format for grouping')
5598 def _insert_thousands_sep(digits, spec, min_width=1):
5599 """Insert thousands separators into a digit string.
5601 spec is a dictionary whose keys should include 'thousands_sep' and
5602 'grouping'; typically it's the result of parsing the format
5603 specifier using _parse_format_specifier.
5605 The min_width keyword argument gives the minimum length of the
5606 result, which will be padded on the left with zeros if necessary.
5608 If necessary, the zero padding adds an extra '0' on the left to
5609 avoid a leading thousands separator. For example, inserting
5610 commas every three digits in '123456', with min_width=8, gives
5611 '0,123,456', even though that has length 9.
5615 sep = spec['thousands_sep']
5616 grouping = spec['grouping']
5618 groups = []
5619 for l in _group_lengths(grouping):
5620 if l <= 0:
5621 raise ValueError("group length should be positive")
5622 # max(..., 1) forces at least 1 digit to the left of a separator
5623 l = min(max(len(digits), min_width, 1), l)
5624 groups.append('0'*(l - len(digits)) + digits[-l:])
5625 digits = digits[:-l]
5626 min_width -= l
5627 if not digits and min_width <= 0:
5628 break
5629 min_width -= len(sep)
5630 else:
5631 l = max(len(digits), min_width, 1)
5632 groups.append('0'*(l - len(digits)) + digits[-l:])
5633 return sep.join(reversed(groups))
5635 def _format_sign(is_negative, spec):
5636 """Determine sign character."""
5638 if is_negative:
5639 return '-'
5640 elif spec['sign'] in ' +':
5641 return spec['sign']
5642 else:
5643 return ''
5645 def _format_number(is_negative, intpart, fracpart, exp, spec):
5646 """Format a number, given the following data:
5648 is_negative: true if the number is negative, else false
5649 intpart: string of digits that must appear before the decimal point
5650 fracpart: string of digits that must come after the point
5651 exp: exponent, as an integer
5652 spec: dictionary resulting from parsing the format specifier
5654 This function uses the information in spec to:
5655 insert separators (decimal separator and thousands separators)
5656 format the sign
5657 format the exponent
5658 add trailing '%' for the '%' type
5659 zero-pad if necessary
5660 fill and align if necessary
5663 sign = _format_sign(is_negative, spec)
5665 if fracpart:
5666 fracpart = spec['decimal_point'] + fracpart
5668 if exp != 0 or spec['type'] in 'eE':
5669 echar = {'E': 'E', 'e': 'e', 'G': 'E', 'g': 'e'}[spec['type']]
5670 fracpart += "{0}{1:+}".format(echar, exp)
5671 if spec['type'] == '%':
5672 fracpart += '%'
5674 if spec['zeropad']:
5675 min_width = spec['minimumwidth'] - len(fracpart) - len(sign)
5676 else:
5677 min_width = 0
5678 intpart = _insert_thousands_sep(intpart, spec, min_width)
5680 return _format_align(sign, intpart+fracpart, spec)
5683 ##### Useful Constants (internal use only) ################################
5685 # Reusable defaults
5686 _Infinity = Decimal('Inf')
5687 _NegativeInfinity = Decimal('-Inf')
5688 _NaN = Decimal('NaN')
5689 _Zero = Decimal(0)
5690 _One = Decimal(1)
5691 _NegativeOne = Decimal(-1)
5693 # _SignedInfinity[sign] is infinity w/ that sign
5694 _SignedInfinity = (_Infinity, _NegativeInfinity)
5698 if __name__ == '__main__':
5699 import doctest, sys
5700 doctest.testmod(sys.modules[__name__])