3 /* Long (arbitrary precision) integer object implementation */
5 /* XXX The functional organization of this file is terrible */
8 #include "longintrepr.h"
15 /* For long multiplication, use the O(N**2) school algorithm unless
16 * both operands contain more than KARATSUBA_CUTOFF digits (this
17 * being an internal Python long digit, in base PyLong_BASE).
19 #define KARATSUBA_CUTOFF 70
20 #define KARATSUBA_SQUARE_CUTOFF (2 * KARATSUBA_CUTOFF)
22 /* For exponentiation, use the binary left-to-right algorithm
23 * unless the exponent contains more than FIVEARY_CUTOFF digits.
24 * In that case, do 5 bits at a time. The potential drawback is that
25 * a table of 2**5 intermediate results is computed.
27 #define FIVEARY_CUTOFF 8
29 #define ABS(x) ((x) < 0 ? -(x) : (x))
33 #define MAX(x, y) ((x) < (y) ? (y) : (x))
34 #define MIN(x, y) ((x) > (y) ? (y) : (x))
36 #define SIGCHECK(PyTryBlock) \
37 if (--_Py_Ticker < 0) { \
38 _Py_Ticker = _Py_CheckInterval; \
39 if (PyErr_CheckSignals()) PyTryBlock \
42 /* forward declaration */
43 static int bits_in_digit(digit d
);
45 /* Normalize (remove leading zeros from) a long int object.
46 Doesn't attempt to free the storage--in most cases, due to the nature
47 of the algorithms used, this could save at most be one word anyway. */
50 long_normalize(register PyLongObject
*v
)
52 Py_ssize_t j
= ABS(Py_SIZE(v
));
55 while (i
> 0 && v
->ob_digit
[i
-1] == 0)
58 Py_SIZE(v
) = (Py_SIZE(v
) < 0) ? -(i
) : i
;
62 /* Allocate a new long int object with size digits.
63 Return NULL and set exception if we run out of memory. */
65 #define MAX_LONG_DIGITS \
66 ((PY_SSIZE_T_MAX - offsetof(PyLongObject, ob_digit))/sizeof(digit))
69 _PyLong_New(Py_ssize_t size
)
71 if (size
> (Py_ssize_t
)MAX_LONG_DIGITS
) {
72 PyErr_SetString(PyExc_OverflowError
,
73 "too many digits in integer");
76 /* coverity[ampersand_in_size] */
77 /* XXX(nnorwitz): PyObject_NEW_VAR / _PyObject_VAR_SIZE need to detect
79 return PyObject_NEW_VAR(PyLongObject
, &PyLong_Type
, size
);
83 _PyLong_Copy(PyLongObject
*src
)
92 result
= _PyLong_New(i
);
94 result
->ob_size
= src
->ob_size
;
96 result
->ob_digit
[i
] = src
->ob_digit
[i
];
98 return (PyObject
*)result
;
101 /* Create a new long int object from a C long int */
104 PyLong_FromLong(long ival
)
107 unsigned long abs_ival
;
108 unsigned long t
; /* unsigned so >> doesn't propagate sign bit */
113 /* if LONG_MIN == -LONG_MAX-1 (true on most platforms) then
114 ANSI C says that the result of -ival is undefined when ival
115 == LONG_MIN. Hence the following workaround. */
116 abs_ival
= (unsigned long)(-1-ival
) + 1;
120 abs_ival
= (unsigned long)ival
;
123 /* Count the number of Python digits.
124 We used to pick 5 ("big enough for anything"), but that's a
125 waste of time and space given that 5*15 = 75 bits are rarely
132 v
= _PyLong_New(ndigits
);
134 digit
*p
= v
->ob_digit
;
135 v
->ob_size
= negative
? -ndigits
: ndigits
;
138 *p
++ = (digit
)(t
& PyLong_MASK
);
142 return (PyObject
*)v
;
145 /* Create a new long int object from a C unsigned long int */
148 PyLong_FromUnsignedLong(unsigned long ival
)
154 /* Count the number of Python digits. */
155 t
= (unsigned long)ival
;
160 v
= _PyLong_New(ndigits
);
162 digit
*p
= v
->ob_digit
;
163 Py_SIZE(v
) = ndigits
;
165 *p
++ = (digit
)(ival
& PyLong_MASK
);
166 ival
>>= PyLong_SHIFT
;
169 return (PyObject
*)v
;
172 /* Create a new long int object from a C double */
175 PyLong_FromDouble(double dval
)
179 int i
, ndig
, expo
, neg
;
181 if (Py_IS_INFINITY(dval
)) {
182 PyErr_SetString(PyExc_OverflowError
,
183 "cannot convert float infinity to integer");
186 if (Py_IS_NAN(dval
)) {
187 PyErr_SetString(PyExc_ValueError
,
188 "cannot convert float NaN to integer");
195 frac
= frexp(dval
, &expo
); /* dval = frac*2**expo; 0.0 <= frac < 1.0 */
197 return PyLong_FromLong(0L);
198 ndig
= (expo
-1) / PyLong_SHIFT
+ 1; /* Number of 'digits' in result */
199 v
= _PyLong_New(ndig
);
202 frac
= ldexp(frac
, (expo
-1) % PyLong_SHIFT
+ 1);
203 for (i
= ndig
; --i
>= 0; ) {
204 digit bits
= (digit
)frac
;
205 v
->ob_digit
[i
] = bits
;
206 frac
= frac
- (double)bits
;
207 frac
= ldexp(frac
, PyLong_SHIFT
);
210 Py_SIZE(v
) = -(Py_SIZE(v
));
211 return (PyObject
*)v
;
214 /* Checking for overflow in PyLong_AsLong is a PITA since C doesn't define
215 * anything about what happens when a signed integer operation overflows,
216 * and some compilers think they're doing you a favor by being "clever"
217 * then. The bit pattern for the largest postive signed long is
218 * (unsigned long)LONG_MAX, and for the smallest negative signed long
219 * it is abs(LONG_MIN), which we could write -(unsigned long)LONG_MIN.
220 * However, some other compilers warn about applying unary minus to an
221 * unsigned operand. Hence the weird "0-".
223 #define PY_ABS_LONG_MIN (0-(unsigned long)LONG_MIN)
224 #define PY_ABS_SSIZE_T_MIN (0-(size_t)PY_SSIZE_T_MIN)
226 /* Get a C long int from a long int object.
227 Returns -1 and sets an error condition if overflow occurs. */
230 PyLong_AsLong(PyObject
*vv
)
232 /* This version by Tim Peters */
233 register PyLongObject
*v
;
234 unsigned long x
, prev
;
238 if (vv
== NULL
|| !PyLong_Check(vv
)) {
239 if (vv
!= NULL
&& PyInt_Check(vv
))
240 return PyInt_AsLong(vv
);
241 PyErr_BadInternalCall();
244 v
= (PyLongObject
*)vv
;
254 x
= (x
<< PyLong_SHIFT
) + v
->ob_digit
[i
];
255 if ((x
>> PyLong_SHIFT
) != prev
)
258 /* Haven't lost any bits, but casting to long requires extra care
259 * (see comment above).
261 if (x
<= (unsigned long)LONG_MAX
) {
262 return (long)x
* sign
;
264 else if (sign
< 0 && x
== PY_ABS_LONG_MIN
) {
270 PyErr_SetString(PyExc_OverflowError
,
271 "long int too large to convert to int");
275 /* Get a Py_ssize_t from a long int object.
276 Returns -1 and sets an error condition if overflow occurs. */
279 PyLong_AsSsize_t(PyObject
*vv
) {
280 register PyLongObject
*v
;
285 if (vv
== NULL
|| !PyLong_Check(vv
)) {
286 PyErr_BadInternalCall();
289 v
= (PyLongObject
*)vv
;
299 x
= (x
<< PyLong_SHIFT
) + v
->ob_digit
[i
];
300 if ((x
>> PyLong_SHIFT
) != prev
)
303 /* Haven't lost any bits, but casting to a signed type requires
304 * extra care (see comment above).
306 if (x
<= (size_t)PY_SSIZE_T_MAX
) {
307 return (Py_ssize_t
)x
* sign
;
309 else if (sign
< 0 && x
== PY_ABS_SSIZE_T_MIN
) {
310 return PY_SSIZE_T_MIN
;
315 PyErr_SetString(PyExc_OverflowError
,
316 "long int too large to convert to int");
320 /* Get a C unsigned long int from a long int object.
321 Returns -1 and sets an error condition if overflow occurs. */
324 PyLong_AsUnsignedLong(PyObject
*vv
)
326 register PyLongObject
*v
;
327 unsigned long x
, prev
;
330 if (vv
== NULL
|| !PyLong_Check(vv
)) {
331 if (vv
!= NULL
&& PyInt_Check(vv
)) {
332 long val
= PyInt_AsLong(vv
);
334 PyErr_SetString(PyExc_OverflowError
,
335 "can't convert negative value to unsigned long");
336 return (unsigned long) -1;
340 PyErr_BadInternalCall();
341 return (unsigned long) -1;
343 v
= (PyLongObject
*)vv
;
347 PyErr_SetString(PyExc_OverflowError
,
348 "can't convert negative value to unsigned long");
349 return (unsigned long) -1;
353 x
= (x
<< PyLong_SHIFT
) + v
->ob_digit
[i
];
354 if ((x
>> PyLong_SHIFT
) != prev
) {
355 PyErr_SetString(PyExc_OverflowError
,
356 "long int too large to convert");
357 return (unsigned long) -1;
363 /* Get a C unsigned long int from a long int object, ignoring the high bits.
364 Returns -1 and sets an error condition if an error occurs. */
367 PyLong_AsUnsignedLongMask(PyObject
*vv
)
369 register PyLongObject
*v
;
374 if (vv
== NULL
|| !PyLong_Check(vv
)) {
375 if (vv
!= NULL
&& PyInt_Check(vv
))
376 return PyInt_AsUnsignedLongMask(vv
);
377 PyErr_BadInternalCall();
378 return (unsigned long) -1;
380 v
= (PyLongObject
*)vv
;
389 x
= (x
<< PyLong_SHIFT
) + v
->ob_digit
[i
];
395 _PyLong_Sign(PyObject
*vv
)
397 PyLongObject
*v
= (PyLongObject
*)vv
;
400 assert(PyLong_Check(v
));
402 return Py_SIZE(v
) == 0 ? 0 : (Py_SIZE(v
) < 0 ? -1 : 1);
406 _PyLong_NumBits(PyObject
*vv
)
408 PyLongObject
*v
= (PyLongObject
*)vv
;
413 assert(PyLong_Check(v
));
414 ndigits
= ABS(Py_SIZE(v
));
415 assert(ndigits
== 0 || v
->ob_digit
[ndigits
- 1] != 0);
417 digit msd
= v
->ob_digit
[ndigits
- 1];
419 result
= (ndigits
- 1) * PyLong_SHIFT
;
420 if (result
/ PyLong_SHIFT
!= (size_t)(ndigits
- 1))
432 PyErr_SetString(PyExc_OverflowError
, "long has too many bits "
433 "to express in a platform size_t");
438 _PyLong_FromByteArray(const unsigned char* bytes
, size_t n
,
439 int little_endian
, int is_signed
)
441 const unsigned char* pstartbyte
;/* LSB of bytes */
442 int incr
; /* direction to move pstartbyte */
443 const unsigned char* pendbyte
; /* MSB of bytes */
444 size_t numsignificantbytes
; /* number of bytes that matter */
445 Py_ssize_t ndigits
; /* number of Python long digits */
446 PyLongObject
* v
; /* result */
447 Py_ssize_t idigit
= 0; /* next free index in v->ob_digit */
450 return PyLong_FromLong(0L);
454 pendbyte
= bytes
+ n
- 1;
458 pstartbyte
= bytes
+ n
- 1;
464 is_signed
= *pendbyte
>= 0x80;
466 /* Compute numsignificantbytes. This consists of finding the most
467 significant byte. Leading 0 bytes are insignficant if the number
468 is positive, and leading 0xff bytes if negative. */
471 const unsigned char* p
= pendbyte
;
472 const int pincr
= -incr
; /* search MSB to LSB */
473 const unsigned char insignficant
= is_signed
? 0xff : 0x00;
475 for (i
= 0; i
< n
; ++i
, p
+= pincr
) {
476 if (*p
!= insignficant
)
479 numsignificantbytes
= n
- i
;
480 /* 2's-comp is a bit tricky here, e.g. 0xff00 == -0x0100, so
481 actually has 2 significant bytes. OTOH, 0xff0001 ==
482 -0x00ffff, so we wouldn't *need* to bump it there; but we
483 do for 0xffff = -0x0001. To be safe without bothering to
484 check every case, bump it regardless. */
485 if (is_signed
&& numsignificantbytes
< n
)
486 ++numsignificantbytes
;
489 /* How many Python long digits do we need? We have
490 8*numsignificantbytes bits, and each Python long digit has
491 PyLong_SHIFT bits, so it's the ceiling of the quotient. */
492 /* catch overflow before it happens */
493 if (numsignificantbytes
> (PY_SSIZE_T_MAX
- PyLong_SHIFT
) / 8) {
494 PyErr_SetString(PyExc_OverflowError
,
495 "byte array too long to convert to int");
498 ndigits
= (numsignificantbytes
* 8 + PyLong_SHIFT
- 1) / PyLong_SHIFT
;
499 v
= _PyLong_New(ndigits
);
503 /* Copy the bits over. The tricky parts are computing 2's-comp on
504 the fly for signed numbers, and dealing with the mismatch between
505 8-bit bytes and (probably) 15-bit Python digits.*/
508 twodigits carry
= 1; /* for 2's-comp calculation */
509 twodigits accum
= 0; /* sliding register */
510 unsigned int accumbits
= 0; /* number of bits in accum */
511 const unsigned char* p
= pstartbyte
;
513 for (i
= 0; i
< numsignificantbytes
; ++i
, p
+= incr
) {
514 twodigits thisbyte
= *p
;
515 /* Compute correction for 2's comp, if needed. */
517 thisbyte
= (0xff ^ thisbyte
) + carry
;
518 carry
= thisbyte
>> 8;
521 /* Because we're going LSB to MSB, thisbyte is
522 more significant than what's already in accum,
523 so needs to be prepended to accum. */
524 accum
|= (twodigits
)thisbyte
<< accumbits
;
526 if (accumbits
>= PyLong_SHIFT
) {
527 /* There's enough to fill a Python digit. */
528 assert(idigit
< ndigits
);
529 v
->ob_digit
[idigit
] = (digit
)(accum
&
532 accum
>>= PyLong_SHIFT
;
533 accumbits
-= PyLong_SHIFT
;
534 assert(accumbits
< PyLong_SHIFT
);
537 assert(accumbits
< PyLong_SHIFT
);
539 assert(idigit
< ndigits
);
540 v
->ob_digit
[idigit
] = (digit
)accum
;
545 Py_SIZE(v
) = is_signed
? -idigit
: idigit
;
546 return (PyObject
*)long_normalize(v
);
550 _PyLong_AsByteArray(PyLongObject
* v
,
551 unsigned char* bytes
, size_t n
,
552 int little_endian
, int is_signed
)
554 Py_ssize_t i
; /* index into v->ob_digit */
555 Py_ssize_t ndigits
; /* |v->ob_size| */
556 twodigits accum
; /* sliding register */
557 unsigned int accumbits
; /* # bits in accum */
558 int do_twos_comp
; /* store 2's-comp? is_signed and v < 0 */
559 digit carry
; /* for computing 2's-comp */
560 size_t j
; /* # bytes filled */
561 unsigned char* p
; /* pointer to next byte in bytes */
562 int pincr
; /* direction to move p */
564 assert(v
!= NULL
&& PyLong_Check(v
));
566 if (Py_SIZE(v
) < 0) {
567 ndigits
= -(Py_SIZE(v
));
569 PyErr_SetString(PyExc_OverflowError
,
570 "can't convert negative long to unsigned");
576 ndigits
= Py_SIZE(v
);
589 /* Copy over all the Python digits.
590 It's crucial that every Python digit except for the MSD contribute
591 exactly PyLong_SHIFT bits to the total, so first assert that the long is
593 assert(ndigits
== 0 || v
->ob_digit
[ndigits
- 1] != 0);
597 carry
= do_twos_comp
? 1 : 0;
598 for (i
= 0; i
< ndigits
; ++i
) {
599 digit thisdigit
= v
->ob_digit
[i
];
601 thisdigit
= (thisdigit
^ PyLong_MASK
) + carry
;
602 carry
= thisdigit
>> PyLong_SHIFT
;
603 thisdigit
&= PyLong_MASK
;
605 /* Because we're going LSB to MSB, thisdigit is more
606 significant than what's already in accum, so needs to be
607 prepended to accum. */
608 accum
|= (twodigits
)thisdigit
<< accumbits
;
610 /* The most-significant digit may be (probably is) at least
612 if (i
== ndigits
- 1) {
613 /* Count # of sign bits -- they needn't be stored,
614 * although for signed conversion we need later to
615 * make sure at least one sign bit gets stored. */
616 digit s
= do_twos_comp
? thisdigit
^ PyLong_MASK
:
624 accumbits
+= PyLong_SHIFT
;
626 /* Store as many bytes as possible. */
627 while (accumbits
>= 8) {
631 *p
= (unsigned char)(accum
& 0xff);
638 /* Store the straggler (if any). */
639 assert(accumbits
< 8);
640 assert(carry
== 0); /* else do_twos_comp and *every* digit was 0 */
646 /* Fill leading bits of the byte with sign bits
647 (appropriately pretending that the long had an
648 infinite supply of sign bits). */
649 accum
|= (~(twodigits
)0) << accumbits
;
651 *p
= (unsigned char)(accum
& 0xff);
654 else if (j
== n
&& n
> 0 && is_signed
) {
655 /* The main loop filled the byte array exactly, so the code
656 just above didn't get to ensure there's a sign bit, and the
657 loop below wouldn't add one either. Make sure a sign bit
659 unsigned char msb
= *(p
- pincr
);
660 int sign_bit_set
= msb
>= 0x80;
661 assert(accumbits
== 0);
662 if (sign_bit_set
== do_twos_comp
)
668 /* Fill remaining bytes with copies of the sign bit. */
670 unsigned char signbyte
= do_twos_comp
? 0xffU
: 0U;
671 for ( ; j
< n
; ++j
, p
+= pincr
)
678 PyErr_SetString(PyExc_OverflowError
, "long too big to convert");
684 _PyLong_AsScaledDouble(PyObject
*vv
, int *exponent
)
686 /* NBITS_WANTED should be > the number of bits in a double's precision,
687 but small enough so that 2**NBITS_WANTED is within the normal double
688 range. nbitsneeded is set to 1 less than that because the most-significant
689 Python digit contains at least 1 significant bit, but we don't want to
690 bother counting them (catering to the worst case cheaply).
692 57 is one more than VAX-D double precision; I (Tim) don't know of a double
693 format with more precision than that; it's 1 larger so that we add in at
694 least one round bit to stand in for the ignored least-significant bits.
696 #define NBITS_WANTED 57
699 const double multiplier
= (double)(1L << PyLong_SHIFT
);
704 if (vv
== NULL
|| !PyLong_Check(vv
)) {
705 PyErr_BadInternalCall();
708 v
= (PyLongObject
*)vv
;
720 x
= (double)v
->ob_digit
[i
];
721 nbitsneeded
= NBITS_WANTED
- 1;
722 /* Invariant: i Python digits remain unaccounted for. */
723 while (i
> 0 && nbitsneeded
> 0) {
725 x
= x
* multiplier
+ (double)v
->ob_digit
[i
];
726 nbitsneeded
-= PyLong_SHIFT
;
728 /* There are i digits we didn't shift in. Pretending they're all
729 zeroes, the true value is x * 2**(i*PyLong_SHIFT). */
736 /* Get a C double from a long int object. Rounds to the nearest double,
737 using the round-half-to-even rule in the case of a tie. */
740 PyLong_AsDouble(PyObject
*vv
)
742 PyLongObject
*v
= (PyLongObject
*)vv
;
743 Py_ssize_t rnd_digit
, rnd_bit
, m
, n
;
748 if (vv
== NULL
|| !PyLong_Check(vv
)) {
749 PyErr_BadInternalCall();
753 /* Notes on the method: for simplicity, assume v is positive and >=
754 2**DBL_MANT_DIG. (For negative v we just ignore the sign until the
755 end; for small v no rounding is necessary.) Write n for the number
756 of bits in v, so that 2**(n-1) <= v < 2**n, and n > DBL_MANT_DIG.
758 Some terminology: the *rounding bit* of v is the 1st bit of v that
759 will be rounded away (bit n - DBL_MANT_DIG - 1); the *parity bit*
760 is the bit immediately above. The round-half-to-even rule says
761 that we round up if the rounding bit is set, unless v is exactly
762 halfway between two floats and the parity bit is zero.
764 Write d[0] ... d[m] for the digits of v, least to most significant.
765 Let rnd_bit be the index of the rounding bit, and rnd_digit the
766 index of the PyLong digit containing the rounding bit. Then the
767 bits of the digit d[rnd_digit] look something like:
772 msb -> sssssrttttttttt <- lsb
777 where 's' represents a 'significant bit' that will be included in
778 the mantissa of the result, 'r' is the rounding bit, and 't'
779 represents a 'trailing bit' following the rounding bit. Note that
780 if the rounding bit is at the top of d[rnd_digit] then the parity
781 bit will be the lsb of d[rnd_digit+1]. If we set
783 lsb = 1 << (rnd_bit % PyLong_SHIFT)
785 then d[rnd_digit] & (PyLong_BASE - 2*lsb) selects just the
786 significant bits of d[rnd_digit], d[rnd_digit] & (lsb-1) gets the
787 trailing bits, and d[rnd_digit] & lsb gives the rounding bit.
789 We initialize the double x to the integer given by digits
790 d[rnd_digit:m-1], but with the rounding bit and trailing bits of
791 d[rnd_digit] masked out. So the value of x comes from the top
792 DBL_MANT_DIG bits of v, multiplied by 2*lsb. Note that in the loop
793 that produces x, all floating-point operations are exact (assuming
794 that FLT_RADIX==2). Now if we're rounding down, the value we want
797 x * 2**(PyLong_SHIFT * rnd_digit).
799 and if we're rounding up, it's
801 (x + 2*lsb) * 2**(PyLong_SHIFT * rnd_digit).
803 Under the round-half-to-even rule, we round up if, and only
804 if, the rounding bit is set *and* at least one of the
805 following three conditions is satisfied:
807 (1) the parity bit is set, or
808 (2) at least one of the trailing bits of d[rnd_digit] is set, or
809 (3) at least one of the digits d[i], 0 <= i < rnd_digit
812 Finally, we have to worry about overflow. If v >= 2**DBL_MAX_EXP,
813 or equivalently n > DBL_MAX_EXP, then overflow occurs. If v <
814 2**DBL_MAX_EXP then we're usually safe, but there's a corner case
815 to consider: if v is very close to 2**DBL_MAX_EXP then it's
816 possible that v is rounded up to exactly 2**DBL_MAX_EXP, and then
817 again overflow occurs.
822 m
= ABS(Py_SIZE(v
)) - 1;
824 assert(d
[m
]); /* v should be normalized */
826 /* fast path for case where 0 < abs(v) < 2**DBL_MANT_DIG */
827 if (m
< DBL_MANT_DIG
/ PyLong_SHIFT
||
828 (m
== DBL_MANT_DIG
/ PyLong_SHIFT
&&
829 d
[m
] < (digit
)1 << DBL_MANT_DIG
%PyLong_SHIFT
)) {
832 x
= x
*PyLong_BASE
+ d
[m
];
833 return Py_SIZE(v
) < 0 ? -x
: x
;
836 /* if m is huge then overflow immediately; otherwise, compute the
837 number of bits n in v. The condition below implies n (= #bits) >=
838 m * PyLong_SHIFT + 1 > DBL_MAX_EXP, hence v >= 2**DBL_MAX_EXP. */
839 if (m
> (DBL_MAX_EXP
-1)/PyLong_SHIFT
)
841 n
= m
* PyLong_SHIFT
+ bits_in_digit(d
[m
]);
845 /* find location of rounding bit */
846 assert(n
> DBL_MANT_DIG
); /* dealt with |v| < 2**DBL_MANT_DIG above */
847 rnd_bit
= n
- DBL_MANT_DIG
- 1;
848 rnd_digit
= rnd_bit
/PyLong_SHIFT
;
849 lsb
= (digit
)1 << (rnd_bit
%PyLong_SHIFT
);
851 /* Get top DBL_MANT_DIG bits of v. Assumes PyLong_SHIFT <
852 DBL_MANT_DIG, so we'll need bits from at least 2 digits of v. */
854 assert(m
> rnd_digit
);
855 while (--m
> rnd_digit
)
856 x
= x
*PyLong_BASE
+ d
[m
];
857 x
= x
*PyLong_BASE
+ (d
[m
] & (PyLong_BASE
-2*lsb
));
859 /* decide whether to round up, using round-half-to-even */
860 assert(m
== rnd_digit
);
861 if (d
[m
] & lsb
) { /* if (rounding bit is set) */
863 if (lsb
== PyLong_BASE
/2)
864 parity_bit
= d
[m
+1] & 1;
866 parity_bit
= d
[m
] & 2*lsb
;
869 else if (d
[m
] & (lsb
-1))
881 /* and round up if necessary */
884 if (n
== DBL_MAX_EXP
&&
885 x
== ldexp((double)(2*lsb
), DBL_MANT_DIG
)) {
886 /* overflow corner case */
891 /* shift, adjust for sign, and return */
892 x
= ldexp(x
, rnd_digit
*PyLong_SHIFT
);
893 return Py_SIZE(v
) < 0 ? -x
: x
;
896 PyErr_SetString(PyExc_OverflowError
,
897 "long int too large to convert to float");
901 /* Create a new long (or int) object from a C pointer */
904 PyLong_FromVoidPtr(void *p
)
906 #if SIZEOF_VOID_P <= SIZEOF_LONG
908 return PyLong_FromUnsignedLong((unsigned long)p
);
909 return PyInt_FromLong((long)p
);
912 #ifndef HAVE_LONG_LONG
913 # error "PyLong_FromVoidPtr: sizeof(void*) > sizeof(long), but no long long"
915 #if SIZEOF_LONG_LONG < SIZEOF_VOID_P
916 # error "PyLong_FromVoidPtr: sizeof(PY_LONG_LONG) < sizeof(void*)"
918 /* optimize null pointers */
920 return PyInt_FromLong(0);
921 return PyLong_FromUnsignedLongLong((unsigned PY_LONG_LONG
)p
);
923 #endif /* SIZEOF_VOID_P <= SIZEOF_LONG */
926 /* Get a C pointer from a long object (or an int object in some cases) */
929 PyLong_AsVoidPtr(PyObject
*vv
)
931 /* This function will allow int or long objects. If vv is neither,
932 then the PyLong_AsLong*() functions will raise the exception:
933 PyExc_SystemError, "bad argument to internal function"
935 #if SIZEOF_VOID_P <= SIZEOF_LONG
939 x
= PyInt_AS_LONG(vv
);
940 else if (PyLong_Check(vv
) && _PyLong_Sign(vv
) < 0)
941 x
= PyLong_AsLong(vv
);
943 x
= PyLong_AsUnsignedLong(vv
);
946 #ifndef HAVE_LONG_LONG
947 # error "PyLong_AsVoidPtr: sizeof(void*) > sizeof(long), but no long long"
949 #if SIZEOF_LONG_LONG < SIZEOF_VOID_P
950 # error "PyLong_AsVoidPtr: sizeof(PY_LONG_LONG) < sizeof(void*)"
955 x
= PyInt_AS_LONG(vv
);
956 else if (PyLong_Check(vv
) && _PyLong_Sign(vv
) < 0)
957 x
= PyLong_AsLongLong(vv
);
959 x
= PyLong_AsUnsignedLongLong(vv
);
961 #endif /* SIZEOF_VOID_P <= SIZEOF_LONG */
963 if (x
== -1 && PyErr_Occurred())
968 #ifdef HAVE_LONG_LONG
970 /* Initial PY_LONG_LONG support by Chris Herborth (chrish@qnx.com), later
971 * rewritten to use the newer PyLong_{As,From}ByteArray API.
974 #define IS_LITTLE_ENDIAN (int)*(unsigned char*)&one
976 /* Create a new long int object from a C PY_LONG_LONG int. */
979 PyLong_FromLongLong(PY_LONG_LONG ival
)
982 unsigned PY_LONG_LONG abs_ival
;
983 unsigned PY_LONG_LONG t
; /* unsigned so >> doesn't propagate sign bit */
988 /* avoid signed overflow on negation; see comments
989 in PyLong_FromLong above. */
990 abs_ival
= (unsigned PY_LONG_LONG
)(-1-ival
) + 1;
994 abs_ival
= (unsigned PY_LONG_LONG
)ival
;
997 /* Count the number of Python digits.
998 We used to pick 5 ("big enough for anything"), but that's a
999 waste of time and space given that 5*15 = 75 bits are rarely
1006 v
= _PyLong_New(ndigits
);
1008 digit
*p
= v
->ob_digit
;
1009 Py_SIZE(v
) = negative
? -ndigits
: ndigits
;
1012 *p
++ = (digit
)(t
& PyLong_MASK
);
1016 return (PyObject
*)v
;
1019 /* Create a new long int object from a C unsigned PY_LONG_LONG int. */
1022 PyLong_FromUnsignedLongLong(unsigned PY_LONG_LONG ival
)
1025 unsigned PY_LONG_LONG t
;
1028 /* Count the number of Python digits. */
1029 t
= (unsigned PY_LONG_LONG
)ival
;
1034 v
= _PyLong_New(ndigits
);
1036 digit
*p
= v
->ob_digit
;
1037 Py_SIZE(v
) = ndigits
;
1039 *p
++ = (digit
)(ival
& PyLong_MASK
);
1040 ival
>>= PyLong_SHIFT
;
1043 return (PyObject
*)v
;
1046 /* Create a new long int object from a C Py_ssize_t. */
1049 PyLong_FromSsize_t(Py_ssize_t ival
)
1051 Py_ssize_t bytes
= ival
;
1053 return _PyLong_FromByteArray(
1054 (unsigned char *)&bytes
,
1055 SIZEOF_SIZE_T
, IS_LITTLE_ENDIAN
, 1);
1058 /* Create a new long int object from a C size_t. */
1061 PyLong_FromSize_t(size_t ival
)
1063 size_t bytes
= ival
;
1065 return _PyLong_FromByteArray(
1066 (unsigned char *)&bytes
,
1067 SIZEOF_SIZE_T
, IS_LITTLE_ENDIAN
, 0);
1070 /* Get a C PY_LONG_LONG int from a long int object.
1071 Return -1 and set an error if overflow occurs. */
1074 PyLong_AsLongLong(PyObject
*vv
)
1081 PyErr_BadInternalCall();
1084 if (!PyLong_Check(vv
)) {
1085 PyNumberMethods
*nb
;
1087 if (PyInt_Check(vv
))
1088 return (PY_LONG_LONG
)PyInt_AsLong(vv
);
1089 if ((nb
= vv
->ob_type
->tp_as_number
) == NULL
||
1090 nb
->nb_int
== NULL
) {
1091 PyErr_SetString(PyExc_TypeError
, "an integer is required");
1094 io
= (*nb
->nb_int
) (vv
);
1097 if (PyInt_Check(io
)) {
1098 bytes
= PyInt_AsLong(io
);
1102 if (PyLong_Check(io
)) {
1103 bytes
= PyLong_AsLongLong(io
);
1108 PyErr_SetString(PyExc_TypeError
, "integer conversion failed");
1112 res
= _PyLong_AsByteArray(
1113 (PyLongObject
*)vv
, (unsigned char *)&bytes
,
1114 SIZEOF_LONG_LONG
, IS_LITTLE_ENDIAN
, 1);
1116 /* Plan 9 can't handle PY_LONG_LONG in ? : expressions */
1118 return (PY_LONG_LONG
)-1;
1123 /* Get a C unsigned PY_LONG_LONG int from a long int object.
1124 Return -1 and set an error if overflow occurs. */
1126 unsigned PY_LONG_LONG
1127 PyLong_AsUnsignedLongLong(PyObject
*vv
)
1129 unsigned PY_LONG_LONG bytes
;
1133 if (vv
== NULL
|| !PyLong_Check(vv
)) {
1134 PyErr_BadInternalCall();
1135 return (unsigned PY_LONG_LONG
)-1;
1138 res
= _PyLong_AsByteArray(
1139 (PyLongObject
*)vv
, (unsigned char *)&bytes
,
1140 SIZEOF_LONG_LONG
, IS_LITTLE_ENDIAN
, 0);
1142 /* Plan 9 can't handle PY_LONG_LONG in ? : expressions */
1144 return (unsigned PY_LONG_LONG
)res
;
1149 /* Get a C unsigned long int from a long int object, ignoring the high bits.
1150 Returns -1 and sets an error condition if an error occurs. */
1152 unsigned PY_LONG_LONG
1153 PyLong_AsUnsignedLongLongMask(PyObject
*vv
)
1155 register PyLongObject
*v
;
1156 unsigned PY_LONG_LONG x
;
1160 if (vv
== NULL
|| !PyLong_Check(vv
)) {
1161 PyErr_BadInternalCall();
1162 return (unsigned long) -1;
1164 v
= (PyLongObject
*)vv
;
1173 x
= (x
<< PyLong_SHIFT
) + v
->ob_digit
[i
];
1177 #undef IS_LITTLE_ENDIAN
1179 #endif /* HAVE_LONG_LONG */
1183 convert_binop(PyObject
*v
, PyObject
*w
, PyLongObject
**a
, PyLongObject
**b
) {
1184 if (PyLong_Check(v
)) {
1185 *a
= (PyLongObject
*) v
;
1188 else if (PyInt_Check(v
)) {
1189 *a
= (PyLongObject
*) PyLong_FromLong(PyInt_AS_LONG(v
));
1194 if (PyLong_Check(w
)) {
1195 *b
= (PyLongObject
*) w
;
1198 else if (PyInt_Check(w
)) {
1199 *b
= (PyLongObject
*) PyLong_FromLong(PyInt_AS_LONG(w
));
1208 #define CONVERT_BINOP(v, w, a, b) \
1209 if (!convert_binop(v, w, a, b)) { \
1210 Py_INCREF(Py_NotImplemented); \
1211 return Py_NotImplemented; \
1214 /* bits_in_digit(d) returns the unique integer k such that 2**(k-1) <= d <
1215 2**k if d is nonzero, else 0. */
1217 static const unsigned char BitLengthTable
[32] = {
1218 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
1219 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
1223 bits_in_digit(digit d
)
1230 d_bits
+= (int)BitLengthTable
[d
];
1234 /* x[0:m] and y[0:n] are digit vectors, LSD first, m >= n required. x[0:n]
1235 * is modified in place, by adding y to it. Carries are propagated as far as
1236 * x[m-1], and the remaining carry (0 or 1) is returned.
1239 v_iadd(digit
*x
, Py_ssize_t m
, digit
*y
, Py_ssize_t n
)
1245 for (i
= 0; i
< n
; ++i
) {
1246 carry
+= x
[i
] + y
[i
];
1247 x
[i
] = carry
& PyLong_MASK
;
1248 carry
>>= PyLong_SHIFT
;
1249 assert((carry
& 1) == carry
);
1251 for (; carry
&& i
< m
; ++i
) {
1253 x
[i
] = carry
& PyLong_MASK
;
1254 carry
>>= PyLong_SHIFT
;
1255 assert((carry
& 1) == carry
);
1260 /* x[0:m] and y[0:n] are digit vectors, LSD first, m >= n required. x[0:n]
1261 * is modified in place, by subtracting y from it. Borrows are propagated as
1262 * far as x[m-1], and the remaining borrow (0 or 1) is returned.
1265 v_isub(digit
*x
, Py_ssize_t m
, digit
*y
, Py_ssize_t n
)
1271 for (i
= 0; i
< n
; ++i
) {
1272 borrow
= x
[i
] - y
[i
] - borrow
;
1273 x
[i
] = borrow
& PyLong_MASK
;
1274 borrow
>>= PyLong_SHIFT
;
1275 borrow
&= 1; /* keep only 1 sign bit */
1277 for (; borrow
&& i
< m
; ++i
) {
1278 borrow
= x
[i
] - borrow
;
1279 x
[i
] = borrow
& PyLong_MASK
;
1280 borrow
>>= PyLong_SHIFT
;
1286 /* Shift digit vector a[0:m] d bits left, with 0 <= d < PyLong_SHIFT. Put
1287 * result in z[0:m], and return the d bits shifted out of the top.
1290 v_lshift(digit
*z
, digit
*a
, Py_ssize_t m
, int d
)
1295 assert(0 <= d
&& d
< PyLong_SHIFT
);
1296 for (i
=0; i
< m
; i
++) {
1297 twodigits acc
= (twodigits
)a
[i
] << d
| carry
;
1298 z
[i
] = (digit
)acc
& PyLong_MASK
;
1299 carry
= (digit
)(acc
>> PyLong_SHIFT
);
1304 /* Shift digit vector a[0:m] d bits right, with 0 <= d < PyLong_SHIFT. Put
1305 * result in z[0:m], and return the d bits shifted out of the bottom.
1308 v_rshift(digit
*z
, digit
*a
, Py_ssize_t m
, int d
)
1312 digit mask
= ((digit
)1 << d
) - 1U;
1314 assert(0 <= d
&& d
< PyLong_SHIFT
);
1315 for (i
=m
; i
-- > 0;) {
1316 twodigits acc
= (twodigits
)carry
<< PyLong_SHIFT
| a
[i
];
1317 carry
= (digit
)acc
& mask
;
1318 z
[i
] = (digit
)(acc
>> d
);
1323 /* Divide long pin, w/ size digits, by non-zero digit n, storing quotient
1324 in pout, and returning the remainder. pin and pout point at the LSD.
1325 It's OK for pin == pout on entry, which saves oodles of mallocs/frees in
1326 _PyLong_Format, but that should be done with great care since longs are
1330 inplace_divrem1(digit
*pout
, digit
*pin
, Py_ssize_t size
, digit n
)
1334 assert(n
> 0 && n
<= PyLong_MASK
);
1337 while (--size
>= 0) {
1339 rem
= (rem
<< PyLong_SHIFT
) + *--pin
;
1340 *--pout
= hi
= (digit
)(rem
/ n
);
1341 rem
-= (twodigits
)hi
* n
;
1346 /* Divide a long integer by a digit, returning both the quotient
1347 (as function result) and the remainder (through *prem).
1348 The sign of a is ignored; n should not be zero. */
1350 static PyLongObject
*
1351 divrem1(PyLongObject
*a
, digit n
, digit
*prem
)
1353 const Py_ssize_t size
= ABS(Py_SIZE(a
));
1356 assert(n
> 0 && n
<= PyLong_MASK
);
1357 z
= _PyLong_New(size
);
1360 *prem
= inplace_divrem1(z
->ob_digit
, a
->ob_digit
, size
, n
);
1361 return long_normalize(z
);
1364 /* Convert the long to a string object with given base,
1365 appending a base prefix of 0[box] if base is 2, 8 or 16.
1366 Add a trailing "L" if addL is non-zero.
1367 If newstyle is zero, then use the pre-2.6 behavior of octal having
1368 a leading "0", instead of the prefix "0o" */
1369 PyAPI_FUNC(PyObject
*)
1370 _PyLong_Format(PyObject
*aa
, int base
, int addL
, int newstyle
)
1372 register PyLongObject
*a
= (PyLongObject
*)aa
;
1373 PyStringObject
*str
;
1374 Py_ssize_t i
, j
, sz
;
1380 if (a
== NULL
|| !PyLong_Check(a
)) {
1381 PyErr_BadInternalCall();
1384 assert(base
>= 2 && base
<= 36);
1385 size_a
= ABS(Py_SIZE(a
));
1387 /* Compute a rough upper bound for the length of the string */
1394 i
= 5 + (addL
? 1 : 0);
1395 j
= size_a
*PyLong_SHIFT
+ bits
-1;
1397 if (j
/ PyLong_SHIFT
< size_a
|| sz
< i
) {
1398 PyErr_SetString(PyExc_OverflowError
,
1399 "long is too large to format");
1402 str
= (PyStringObject
*) PyString_FromStringAndSize((char *)0, sz
);
1405 p
= PyString_AS_STRING(str
) + sz
;
1412 if (a
->ob_size
== 0) {
1415 else if ((base
& (base
- 1)) == 0) {
1416 /* JRH: special case for power-of-2 bases */
1417 twodigits accum
= 0;
1418 int accumbits
= 0; /* # of bits in accum */
1419 int basebits
= 1; /* # of bits in base-1 */
1421 while ((i
>>= 1) > 1)
1424 for (i
= 0; i
< size_a
; ++i
) {
1425 accum
|= (twodigits
)a
->ob_digit
[i
] << accumbits
;
1426 accumbits
+= PyLong_SHIFT
;
1427 assert(accumbits
>= basebits
);
1429 char cdigit
= (char)(accum
& (base
- 1));
1430 cdigit
+= (cdigit
< 10) ? '0' : 'a'-10;
1431 assert(p
> PyString_AS_STRING(str
));
1433 accumbits
-= basebits
;
1435 } while (i
< size_a
-1 ? accumbits
>= basebits
:
1440 /* Not 0, and base not a power of 2. Divide repeatedly by
1441 base, but for speed use the highest power of base that
1443 Py_ssize_t size
= size_a
;
1444 digit
*pin
= a
->ob_digit
;
1445 PyLongObject
*scratch
;
1446 /* powbasw <- largest power of base that fits in a digit. */
1447 digit powbase
= base
; /* powbase == base ** power */
1450 twodigits newpow
= powbase
* (twodigits
)base
;
1451 if (newpow
>> PyLong_SHIFT
) /* doesn't fit in a digit */
1453 powbase
= (digit
)newpow
;
1457 /* Get a scratch area for repeated division. */
1458 scratch
= _PyLong_New(size
);
1459 if (scratch
== NULL
) {
1464 /* Repeatedly divide by powbase. */
1466 int ntostore
= power
;
1467 digit rem
= inplace_divrem1(scratch
->ob_digit
,
1468 pin
, size
, powbase
);
1469 pin
= scratch
->ob_digit
; /* no need to use a again */
1470 if (pin
[size
- 1] == 0)
1478 /* Break rem into digits. */
1479 assert(ntostore
> 0);
1481 digit nextrem
= (digit
)(rem
/ base
);
1482 char c
= (char)(rem
- nextrem
* base
);
1483 assert(p
> PyString_AS_STRING(str
));
1484 c
+= (c
< 10) ? '0' : 'a'-10;
1488 /* Termination is a bit delicate: must not
1489 store leading zeroes, so must get out if
1490 remaining quotient and rem are both 0. */
1491 } while (ntostore
&& (size
|| rem
));
1492 } while (size
!= 0);
1500 else if (base
== 8) {
1509 else if (base
== 16) {
1513 else if (base
!= 10) {
1515 *--p
= '0' + base
%10;
1517 *--p
= '0' + base
/10;
1521 if (p
!= PyString_AS_STRING(str
)) {
1522 char *q
= PyString_AS_STRING(str
);
1525 } while ((*q
++ = *p
++) != '\0');
1527 _PyString_Resize((PyObject
**)&str
,
1528 (Py_ssize_t
) (q
- PyString_AS_STRING(str
)));
1530 return (PyObject
*)str
;
1533 /* Table of digit values for 8-bit string -> integer conversion.
1534 * '0' maps to 0, ..., '9' maps to 9.
1535 * 'a' and 'A' map to 10, ..., 'z' and 'Z' map to 35.
1536 * All other indices map to 37.
1537 * Note that when converting a base B string, a char c is a legitimate
1538 * base B digit iff _PyLong_DigitValue[Py_CHARMASK(c)] < B.
1540 int _PyLong_DigitValue
[256] = {
1541 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
1542 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
1543 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
1544 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 37, 37, 37, 37, 37, 37,
1545 37, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
1546 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 37, 37, 37, 37,
1547 37, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
1548 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 37, 37, 37, 37,
1549 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
1550 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
1551 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
1552 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
1553 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
1554 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
1555 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
1556 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
1559 /* *str points to the first digit in a string of base `base` digits. base
1560 * is a power of 2 (2, 4, 8, 16, or 32). *str is set to point to the first
1561 * non-digit (which may be *str!). A normalized long is returned.
1562 * The point to this routine is that it takes time linear in the number of
1563 * string characters.
1565 static PyLongObject
*
1566 long_from_binary_base(char **str
, int base
)
1577 assert(base
>= 2 && base
<= 32 && (base
& (base
- 1)) == 0);
1579 for (bits_per_char
= -1; n
; ++bits_per_char
)
1581 /* n <- total # of bits needed, while setting p to end-of-string */
1583 while (_PyLong_DigitValue
[Py_CHARMASK(*p
)] < base
)
1586 /* n <- # of Python digits needed, = ceiling(n/PyLong_SHIFT). */
1587 n
= (p
- start
) * bits_per_char
+ PyLong_SHIFT
- 1;
1588 if (n
/ bits_per_char
< p
- start
) {
1589 PyErr_SetString(PyExc_ValueError
,
1590 "long string too large to convert");
1593 n
= n
/ PyLong_SHIFT
;
1597 /* Read string from right, and fill in long from left; i.e.,
1598 * from least to most significant in both.
1602 pdigit
= z
->ob_digit
;
1603 while (--p
>= start
) {
1604 int k
= _PyLong_DigitValue
[Py_CHARMASK(*p
)];
1605 assert(k
>= 0 && k
< base
);
1606 accum
|= (twodigits
)k
<< bits_in_accum
;
1607 bits_in_accum
+= bits_per_char
;
1608 if (bits_in_accum
>= PyLong_SHIFT
) {
1609 *pdigit
++ = (digit
)(accum
& PyLong_MASK
);
1610 assert(pdigit
- z
->ob_digit
<= n
);
1611 accum
>>= PyLong_SHIFT
;
1612 bits_in_accum
-= PyLong_SHIFT
;
1613 assert(bits_in_accum
< PyLong_SHIFT
);
1616 if (bits_in_accum
) {
1617 assert(bits_in_accum
<= PyLong_SHIFT
);
1618 *pdigit
++ = (digit
)accum
;
1619 assert(pdigit
- z
->ob_digit
<= n
);
1621 while (pdigit
- z
->ob_digit
< n
)
1623 return long_normalize(z
);
1627 PyLong_FromString(char *str
, char **pend
, int base
)
1630 char *start
, *orig_str
= str
;
1632 PyObject
*strobj
, *strrepr
;
1635 if ((base
!= 0 && base
< 2) || base
> 36) {
1636 PyErr_SetString(PyExc_ValueError
,
1637 "long() arg 2 must be >= 2 and <= 36");
1640 while (*str
!= '\0' && isspace(Py_CHARMASK(*str
)))
1644 else if (*str
== '-') {
1648 while (*str
!= '\0' && isspace(Py_CHARMASK(*str
)))
1651 /* No base given. Deduce the base from the contents
1655 else if (str
[1] == 'x' || str
[1] == 'X')
1657 else if (str
[1] == 'o' || str
[1] == 'O')
1659 else if (str
[1] == 'b' || str
[1] == 'B')
1662 /* "old" (C-style) octal literal, still valid in
1663 2.x, although illegal in 3.x */
1666 /* Whether or not we were deducing the base, skip leading chars
1668 if (str
[0] == '0' &&
1669 ((base
== 16 && (str
[1] == 'x' || str
[1] == 'X')) ||
1670 (base
== 8 && (str
[1] == 'o' || str
[1] == 'O')) ||
1671 (base
== 2 && (str
[1] == 'b' || str
[1] == 'B'))))
1675 if ((base
& (base
- 1)) == 0)
1676 z
= long_from_binary_base(&str
, base
);
1679 Binary bases can be converted in time linear in the number of digits, because
1680 Python's representation base is binary. Other bases (including decimal!) use
1681 the simple quadratic-time algorithm below, complicated by some speed tricks.
1683 First some math: the largest integer that can be expressed in N base-B digits
1684 is B**N-1. Consequently, if we have an N-digit input in base B, the worst-
1685 case number of Python digits needed to hold it is the smallest integer n s.t.
1687 PyLong_BASE**n-1 >= B**N-1 [or, adding 1 to both sides]
1688 PyLong_BASE**n >= B**N [taking logs to base PyLong_BASE]
1689 n >= log(B**N)/log(PyLong_BASE) = N * log(B)/log(PyLong_BASE)
1691 The static array log_base_PyLong_BASE[base] == log(base)/log(PyLong_BASE) so we can compute
1692 this quickly. A Python long with that much space is reserved near the start,
1693 and the result is computed into it.
1695 The input string is actually treated as being in base base**i (i.e., i digits
1696 are processed at a time), where two more static arrays hold:
1698 convwidth_base[base] = the largest integer i such that base**i <= PyLong_BASE
1699 convmultmax_base[base] = base ** convwidth_base[base]
1701 The first of these is the largest i such that i consecutive input digits
1702 must fit in a single Python digit. The second is effectively the input
1703 base we're really using.
1705 Viewing the input as a sequence <c0, c1, ..., c_n-1> of digits in base
1706 convmultmax_base[base], the result is "simply"
1708 (((c0*B + c1)*B + c2)*B + c3)*B + ... ))) + c_n-1
1710 where B = convmultmax_base[base].
1712 Error analysis: as above, the number of Python digits `n` needed is worst-
1715 n >= N * log(B)/log(PyLong_BASE)
1717 where `N` is the number of input digits in base `B`. This is computed via
1719 size_z = (Py_ssize_t)((scan - str) * log_base_PyLong_BASE[base]) + 1;
1721 below. Two numeric concerns are how much space this can waste, and whether
1722 the computed result can be too small. To be concrete, assume PyLong_BASE = 2**15,
1723 which is the default (and it's unlikely anyone changes that).
1725 Waste isn't a problem: provided the first input digit isn't 0, the difference
1726 between the worst-case input with N digits and the smallest input with N
1727 digits is about a factor of B, but B is small compared to PyLong_BASE so at most
1728 one allocated Python digit can remain unused on that count. If
1729 N*log(B)/log(PyLong_BASE) is mathematically an exact integer, then truncating that
1730 and adding 1 returns a result 1 larger than necessary. However, that can't
1731 happen: whenever B is a power of 2, long_from_binary_base() is called
1732 instead, and it's impossible for B**i to be an integer power of 2**15 when
1733 B is not a power of 2 (i.e., it's impossible for N*log(B)/log(PyLong_BASE) to be
1734 an exact integer when B is not a power of 2, since B**i has a prime factor
1735 other than 2 in that case, but (2**15)**j's only prime factor is 2).
1737 The computed result can be too small if the true value of N*log(B)/log(PyLong_BASE)
1738 is a little bit larger than an exact integer, but due to roundoff errors (in
1739 computing log(B), log(PyLong_BASE), their quotient, and/or multiplying that by N)
1740 yields a numeric result a little less than that integer. Unfortunately, "how
1741 close can a transcendental function get to an integer over some range?"
1742 questions are generally theoretically intractable. Computer analysis via
1743 continued fractions is practical: expand log(B)/log(PyLong_BASE) via continued
1744 fractions, giving a sequence i/j of "the best" rational approximations. Then
1745 j*log(B)/log(PyLong_BASE) is approximately equal to (the integer) i. This shows that
1746 we can get very close to being in trouble, but very rarely. For example,
1747 76573 is a denominator in one of the continued-fraction approximations to
1748 log(10)/log(2**15), and indeed:
1750 >>> log(10)/log(2**15)*76573
1753 is very close to an integer. If we were working with IEEE single-precision,
1754 rounding errors could kill us. Finding worst cases in IEEE double-precision
1755 requires better-than-double-precision log() functions, and Tim didn't bother.
1756 Instead the code checks to see whether the allocated space is enough as each
1757 new Python digit is added, and copies the whole thing to a larger long if not.
1758 This should happen extremely rarely, and in fact I don't have a test case
1759 that triggers it(!). Instead the code was tested by artificially allocating
1760 just 1 digit at the start, so that the copying code was exercised for every
1761 digit beyond the first.
1763 register twodigits c
; /* current input character */
1767 twodigits convmultmax
, convmult
;
1771 static double log_base_PyLong_BASE
[37] = {0.0e0
,};
1772 static int convwidth_base
[37] = {0,};
1773 static twodigits convmultmax_base
[37] = {0,};
1775 if (log_base_PyLong_BASE
[base
] == 0.0) {
1776 twodigits convmax
= base
;
1779 log_base_PyLong_BASE
[base
] = log((double)base
) /
1780 log((double)PyLong_BASE
);
1782 twodigits next
= convmax
* base
;
1783 if (next
> PyLong_BASE
)
1788 convmultmax_base
[base
] = convmax
;
1790 convwidth_base
[base
] = i
;
1793 /* Find length of the string of numeric characters. */
1795 while (_PyLong_DigitValue
[Py_CHARMASK(*scan
)] < base
)
1798 /* Create a long object that can contain the largest possible
1799 * integer with this base and length. Note that there's no
1800 * need to initialize z->ob_digit -- no slot is read up before
1801 * being stored into.
1803 size_z
= (Py_ssize_t
)((scan
- str
) * log_base_PyLong_BASE
[base
]) + 1;
1804 /* Uncomment next line to test exceedingly rare copy code */
1807 z
= _PyLong_New(size_z
);
1812 /* `convwidth` consecutive input digits are treated as a single
1813 * digit in base `convmultmax`.
1815 convwidth
= convwidth_base
[base
];
1816 convmultmax
= convmultmax_base
[base
];
1819 while (str
< scan
) {
1820 /* grab up to convwidth digits from the input string */
1821 c
= (digit
)_PyLong_DigitValue
[Py_CHARMASK(*str
++)];
1822 for (i
= 1; i
< convwidth
&& str
!= scan
; ++i
, ++str
) {
1823 c
= (twodigits
)(c
* base
+
1824 _PyLong_DigitValue
[Py_CHARMASK(*str
)]);
1825 assert(c
< PyLong_BASE
);
1828 convmult
= convmultmax
;
1829 /* Calculate the shift only if we couldn't get
1832 if (i
!= convwidth
) {
1838 /* Multiply z by convmult, and add c. */
1840 pzstop
= pz
+ Py_SIZE(z
);
1841 for (; pz
< pzstop
; ++pz
) {
1842 c
+= (twodigits
)*pz
* convmult
;
1843 *pz
= (digit
)(c
& PyLong_MASK
);
1846 /* carry off the current end? */
1848 assert(c
< PyLong_BASE
);
1849 if (Py_SIZE(z
) < size_z
) {
1855 /* Extremely rare. Get more space. */
1856 assert(Py_SIZE(z
) == size_z
);
1857 tmp
= _PyLong_New(size_z
+ 1);
1862 memcpy(tmp
->ob_digit
,
1864 sizeof(digit
) * size_z
);
1867 z
->ob_digit
[size_z
] = (digit
)c
;
1878 Py_SIZE(z
) = -(Py_SIZE(z
));
1879 if (*str
== 'L' || *str
== 'l')
1881 while (*str
&& isspace(Py_CHARMASK(*str
)))
1887 return (PyObject
*) z
;
1891 slen
= strlen(orig_str
) < 200 ? strlen(orig_str
) : 200;
1892 strobj
= PyString_FromStringAndSize(orig_str
, slen
);
1895 strrepr
= PyObject_Repr(strobj
);
1897 if (strrepr
== NULL
)
1899 PyErr_Format(PyExc_ValueError
,
1900 "invalid literal for long() with base %d: %s",
1901 base
, PyString_AS_STRING(strrepr
));
1906 #ifdef Py_USING_UNICODE
1908 PyLong_FromUnicode(Py_UNICODE
*u
, Py_ssize_t length
, int base
)
1911 char *buffer
= (char *)PyMem_MALLOC(length
+1);
1916 if (PyUnicode_EncodeDecimal(u
, length
, buffer
, NULL
)) {
1920 result
= PyLong_FromString(buffer
, NULL
, base
);
1927 static PyLongObject
*x_divrem
1928 (PyLongObject
*, PyLongObject
*, PyLongObject
**);
1929 static PyObject
*long_long(PyObject
*v
);
1931 /* Long division with remainder, top-level routine */
1934 long_divrem(PyLongObject
*a
, PyLongObject
*b
,
1935 PyLongObject
**pdiv
, PyLongObject
**prem
)
1937 Py_ssize_t size_a
= ABS(Py_SIZE(a
)), size_b
= ABS(Py_SIZE(b
));
1941 PyErr_SetString(PyExc_ZeroDivisionError
,
1942 "long division or modulo by zero");
1945 if (size_a
< size_b
||
1946 (size_a
== size_b
&&
1947 a
->ob_digit
[size_a
-1] < b
->ob_digit
[size_b
-1])) {
1949 *pdiv
= _PyLong_New(0);
1953 *prem
= (PyLongObject
*) a
;
1958 z
= divrem1(a
, b
->ob_digit
[0], &rem
);
1961 *prem
= (PyLongObject
*) PyLong_FromLong((long)rem
);
1962 if (*prem
== NULL
) {
1968 z
= x_divrem(a
, b
, prem
);
1973 The quotient z has the sign of a*b;
1974 the remainder r has the sign of a,
1976 if ((a
->ob_size
< 0) != (b
->ob_size
< 0))
1977 z
->ob_size
= -(z
->ob_size
);
1978 if (a
->ob_size
< 0 && (*prem
)->ob_size
!= 0)
1979 (*prem
)->ob_size
= -((*prem
)->ob_size
);
1984 /* Unsigned long division with remainder -- the algorithm. The arguments v1
1985 and w1 should satisfy 2 <= ABS(Py_SIZE(w1)) <= ABS(Py_SIZE(v1)). */
1987 static PyLongObject
*
1988 x_divrem(PyLongObject
*v1
, PyLongObject
*w1
, PyLongObject
**prem
)
1990 PyLongObject
*v
, *w
, *a
;
1991 Py_ssize_t i
, k
, size_v
, size_w
;
1993 digit wm1
, wm2
, carry
, q
, r
, vtop
, *v0
, *vk
, *w0
, *ak
;
1998 /* We follow Knuth [The Art of Computer Programming, Vol. 2 (3rd
1999 edn.), section 4.3.1, Algorithm D], except that we don't explicitly
2000 handle the special case when the initial estimate q for a quotient
2001 digit is >= PyLong_BASE: the max value for q is PyLong_BASE+1, and
2002 that won't overflow a digit. */
2004 /* allocate space; w will also be used to hold the final remainder */
2005 size_v
= ABS(Py_SIZE(v1
));
2006 size_w
= ABS(Py_SIZE(w1
));
2007 assert(size_v
>= size_w
&& size_w
>= 2); /* Assert checks by div() */
2008 v
= _PyLong_New(size_v
+1);
2013 w
= _PyLong_New(size_w
);
2020 /* normalize: shift w1 left so that its top digit is >= PyLong_BASE/2.
2021 shift v1 left by the same amount. Results go into w and v. */
2022 d
= PyLong_SHIFT
- bits_in_digit(w1
->ob_digit
[size_w
-1]);
2023 carry
= v_lshift(w
->ob_digit
, w1
->ob_digit
, size_w
, d
);
2025 carry
= v_lshift(v
->ob_digit
, v1
->ob_digit
, size_v
, d
);
2026 if (carry
!= 0 || v
->ob_digit
[size_v
-1] >= w
->ob_digit
[size_w
-1]) {
2027 v
->ob_digit
[size_v
] = carry
;
2031 /* Now v->ob_digit[size_v-1] < w->ob_digit[size_w-1], so quotient has
2032 at most (and usually exactly) k = size_v - size_w digits. */
2033 k
= size_v
- size_w
;
2046 for (vk
= v0
+k
, ak
= a
->ob_digit
+ k
; vk
-- > v0
;) {
2047 /* inner loop: divide vk[0:size_w+1] by w0[0:size_w], giving
2048 single-digit quotient q, remainder in vk[0:size_w]. */
2058 /* estimate quotient digit q; may overestimate by 1 (rare) */
2060 assert(vtop
<= wm1
);
2061 vv
= ((twodigits
)vtop
<< PyLong_SHIFT
) | vk
[size_w
-1];
2062 q
= (digit
)(vv
/ wm1
);
2063 r
= (digit
)(vv
- (twodigits
)wm1
* q
); /* r = vv % wm1 */
2064 while ((twodigits
)wm2
* q
> (((twodigits
)r
<< PyLong_SHIFT
)
2068 if (r
>= PyLong_BASE
)
2071 assert(q
<= PyLong_BASE
);
2073 /* subtract q*w0[0:size_w] from vk[0:size_w+1] */
2075 for (i
= 0; i
< size_w
; ++i
) {
2076 /* invariants: -PyLong_BASE <= -q <= zhi <= 0;
2077 -PyLong_BASE * q <= z < PyLong_BASE */
2078 z
= (sdigit
)vk
[i
] + zhi
-
2079 (stwodigits
)q
* (stwodigits
)w0
[i
];
2080 vk
[i
] = (digit
)z
& PyLong_MASK
;
2081 zhi
= (sdigit
)Py_ARITHMETIC_RIGHT_SHIFT(stwodigits
,
2085 /* add w back if q was too large (this branch taken rarely) */
2086 assert((sdigit
)vtop
+ zhi
== -1 || (sdigit
)vtop
+ zhi
== 0);
2087 if ((sdigit
)vtop
+ zhi
< 0) {
2089 for (i
= 0; i
< size_w
; ++i
) {
2090 carry
+= vk
[i
] + w0
[i
];
2091 vk
[i
] = carry
& PyLong_MASK
;
2092 carry
>>= PyLong_SHIFT
;
2097 /* store quotient digit */
2098 assert(q
< PyLong_BASE
);
2102 /* unshift remainder; we reuse w to store the result */
2103 carry
= v_rshift(w0
, v0
, size_w
, d
);
2107 *prem
= long_normalize(w
);
2108 return long_normalize(a
);
2114 long_dealloc(PyObject
*v
)
2116 Py_TYPE(v
)->tp_free(v
);
2120 long_repr(PyObject
*v
)
2122 return _PyLong_Format(v
, 10, 1, 0);
2126 long_str(PyObject
*v
)
2128 return _PyLong_Format(v
, 10, 0, 0);
2132 long_compare(PyLongObject
*a
, PyLongObject
*b
)
2136 if (Py_SIZE(a
) != Py_SIZE(b
)) {
2137 if (ABS(Py_SIZE(a
)) == 0 && ABS(Py_SIZE(b
)) == 0)
2140 sign
= Py_SIZE(a
) - Py_SIZE(b
);
2143 Py_ssize_t i
= ABS(Py_SIZE(a
));
2144 while (--i
>= 0 && a
->ob_digit
[i
] == b
->ob_digit
[i
])
2149 sign
= (sdigit
)a
->ob_digit
[i
] - (sdigit
)b
->ob_digit
[i
];
2154 return sign
< 0 ? -1 : sign
> 0 ? 1 : 0;
2158 long_hash(PyLongObject
*v
)
2164 /* This is designed so that Python ints and longs with the
2165 same value hash to the same value, otherwise comparisons
2166 of mapping keys will turn out weird */
2174 /* The following loop produces a C unsigned long x such that x is
2175 congruent to the absolute value of v modulo ULONG_MAX. The
2176 resulting x is nonzero if and only if v is. */
2178 /* Force a native long #-bits (32 or 64) circular shift */
2179 x
= (x
>> (8*SIZEOF_LONG
-PyLong_SHIFT
)) | (x
<< PyLong_SHIFT
);
2180 x
+= v
->ob_digit
[i
];
2181 /* If the addition above overflowed we compensate by
2182 incrementing. This preserves the value modulo
2184 if (x
< v
->ob_digit
[i
])
2188 if (x
== (unsigned long)-1)
2189 x
= (unsigned long)-2;
2194 /* Add the absolute values of two long integers. */
2196 static PyLongObject
*
2197 x_add(PyLongObject
*a
, PyLongObject
*b
)
2199 Py_ssize_t size_a
= ABS(Py_SIZE(a
)), size_b
= ABS(Py_SIZE(b
));
2204 /* Ensure a is the larger of the two: */
2205 if (size_a
< size_b
) {
2206 { PyLongObject
*temp
= a
; a
= b
; b
= temp
; }
2207 { Py_ssize_t size_temp
= size_a
;
2209 size_b
= size_temp
; }
2211 z
= _PyLong_New(size_a
+1);
2214 for (i
= 0; i
< size_b
; ++i
) {
2215 carry
+= a
->ob_digit
[i
] + b
->ob_digit
[i
];
2216 z
->ob_digit
[i
] = carry
& PyLong_MASK
;
2217 carry
>>= PyLong_SHIFT
;
2219 for (; i
< size_a
; ++i
) {
2220 carry
+= a
->ob_digit
[i
];
2221 z
->ob_digit
[i
] = carry
& PyLong_MASK
;
2222 carry
>>= PyLong_SHIFT
;
2224 z
->ob_digit
[i
] = carry
;
2225 return long_normalize(z
);
2228 /* Subtract the absolute values of two integers. */
2230 static PyLongObject
*
2231 x_sub(PyLongObject
*a
, PyLongObject
*b
)
2233 Py_ssize_t size_a
= ABS(Py_SIZE(a
)), size_b
= ABS(Py_SIZE(b
));
2239 /* Ensure a is the larger of the two: */
2240 if (size_a
< size_b
) {
2242 { PyLongObject
*temp
= a
; a
= b
; b
= temp
; }
2243 { Py_ssize_t size_temp
= size_a
;
2245 size_b
= size_temp
; }
2247 else if (size_a
== size_b
) {
2248 /* Find highest digit where a and b differ: */
2250 while (--i
>= 0 && a
->ob_digit
[i
] == b
->ob_digit
[i
])
2253 return _PyLong_New(0);
2254 if (a
->ob_digit
[i
] < b
->ob_digit
[i
]) {
2256 { PyLongObject
*temp
= a
; a
= b
; b
= temp
; }
2258 size_a
= size_b
= i
+1;
2260 z
= _PyLong_New(size_a
);
2263 for (i
= 0; i
< size_b
; ++i
) {
2264 /* The following assumes unsigned arithmetic
2265 works module 2**N for some N>PyLong_SHIFT. */
2266 borrow
= a
->ob_digit
[i
] - b
->ob_digit
[i
] - borrow
;
2267 z
->ob_digit
[i
] = borrow
& PyLong_MASK
;
2268 borrow
>>= PyLong_SHIFT
;
2269 borrow
&= 1; /* Keep only one sign bit */
2271 for (; i
< size_a
; ++i
) {
2272 borrow
= a
->ob_digit
[i
] - borrow
;
2273 z
->ob_digit
[i
] = borrow
& PyLong_MASK
;
2274 borrow
>>= PyLong_SHIFT
;
2275 borrow
&= 1; /* Keep only one sign bit */
2277 assert(borrow
== 0);
2279 z
->ob_size
= -(z
->ob_size
);
2280 return long_normalize(z
);
2284 long_add(PyLongObject
*v
, PyLongObject
*w
)
2286 PyLongObject
*a
, *b
, *z
;
2288 CONVERT_BINOP((PyObject
*)v
, (PyObject
*)w
, &a
, &b
);
2290 if (a
->ob_size
< 0) {
2291 if (b
->ob_size
< 0) {
2293 if (z
!= NULL
&& z
->ob_size
!= 0)
2294 z
->ob_size
= -(z
->ob_size
);
2307 return (PyObject
*)z
;
2311 long_sub(PyLongObject
*v
, PyLongObject
*w
)
2313 PyLongObject
*a
, *b
, *z
;
2315 CONVERT_BINOP((PyObject
*)v
, (PyObject
*)w
, &a
, &b
);
2317 if (a
->ob_size
< 0) {
2322 if (z
!= NULL
&& z
->ob_size
!= 0)
2323 z
->ob_size
= -(z
->ob_size
);
2333 return (PyObject
*)z
;
2336 /* Grade school multiplication, ignoring the signs.
2337 * Returns the absolute value of the product, or NULL if error.
2339 static PyLongObject
*
2340 x_mul(PyLongObject
*a
, PyLongObject
*b
)
2343 Py_ssize_t size_a
= ABS(Py_SIZE(a
));
2344 Py_ssize_t size_b
= ABS(Py_SIZE(b
));
2347 z
= _PyLong_New(size_a
+ size_b
);
2351 memset(z
->ob_digit
, 0, Py_SIZE(z
) * sizeof(digit
));
2353 /* Efficient squaring per HAC, Algorithm 14.16:
2354 * http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf
2355 * Gives slightly less than a 2x speedup when a == b,
2356 * via exploiting that each entry in the multiplication
2357 * pyramid appears twice (except for the size_a squares).
2359 for (i
= 0; i
< size_a
; ++i
) {
2361 twodigits f
= a
->ob_digit
[i
];
2362 digit
*pz
= z
->ob_digit
+ (i
<< 1);
2363 digit
*pa
= a
->ob_digit
+ i
+ 1;
2364 digit
*paend
= a
->ob_digit
+ size_a
;
2371 carry
= *pz
+ f
* f
;
2372 *pz
++ = (digit
)(carry
& PyLong_MASK
);
2373 carry
>>= PyLong_SHIFT
;
2374 assert(carry
<= PyLong_MASK
);
2376 /* Now f is added in twice in each column of the
2377 * pyramid it appears. Same as adding f<<1 once.
2380 while (pa
< paend
) {
2381 carry
+= *pz
+ *pa
++ * f
;
2382 *pz
++ = (digit
)(carry
& PyLong_MASK
);
2383 carry
>>= PyLong_SHIFT
;
2384 assert(carry
<= (PyLong_MASK
<< 1));
2388 *pz
++ = (digit
)(carry
& PyLong_MASK
);
2389 carry
>>= PyLong_SHIFT
;
2392 *pz
+= (digit
)(carry
& PyLong_MASK
);
2393 assert((carry
>> PyLong_SHIFT
) == 0);
2396 else { /* a is not the same as b -- gradeschool long mult */
2397 for (i
= 0; i
< size_a
; ++i
) {
2398 twodigits carry
= 0;
2399 twodigits f
= a
->ob_digit
[i
];
2400 digit
*pz
= z
->ob_digit
+ i
;
2401 digit
*pb
= b
->ob_digit
;
2402 digit
*pbend
= b
->ob_digit
+ size_b
;
2409 while (pb
< pbend
) {
2410 carry
+= *pz
+ *pb
++ * f
;
2411 *pz
++ = (digit
)(carry
& PyLong_MASK
);
2412 carry
>>= PyLong_SHIFT
;
2413 assert(carry
<= PyLong_MASK
);
2416 *pz
+= (digit
)(carry
& PyLong_MASK
);
2417 assert((carry
>> PyLong_SHIFT
) == 0);
2420 return long_normalize(z
);
2423 /* A helper for Karatsuba multiplication (k_mul).
2424 Takes a long "n" and an integer "size" representing the place to
2425 split, and sets low and high such that abs(n) == (high << size) + low,
2426 viewing the shift as being by digits. The sign bit is ignored, and
2427 the return values are >= 0.
2428 Returns 0 on success, -1 on failure.
2431 kmul_split(PyLongObject
*n
, Py_ssize_t size
, PyLongObject
**high
, PyLongObject
**low
)
2433 PyLongObject
*hi
, *lo
;
2434 Py_ssize_t size_lo
, size_hi
;
2435 const Py_ssize_t size_n
= ABS(Py_SIZE(n
));
2437 size_lo
= MIN(size_n
, size
);
2438 size_hi
= size_n
- size_lo
;
2440 if ((hi
= _PyLong_New(size_hi
)) == NULL
)
2442 if ((lo
= _PyLong_New(size_lo
)) == NULL
) {
2447 memcpy(lo
->ob_digit
, n
->ob_digit
, size_lo
* sizeof(digit
));
2448 memcpy(hi
->ob_digit
, n
->ob_digit
+ size_lo
, size_hi
* sizeof(digit
));
2450 *high
= long_normalize(hi
);
2451 *low
= long_normalize(lo
);
2455 static PyLongObject
*k_lopsided_mul(PyLongObject
*a
, PyLongObject
*b
);
2457 /* Karatsuba multiplication. Ignores the input signs, and returns the
2458 * absolute value of the product (or NULL if error).
2459 * See Knuth Vol. 2 Chapter 4.3.3 (Pp. 294-295).
2461 static PyLongObject
*
2462 k_mul(PyLongObject
*a
, PyLongObject
*b
)
2464 Py_ssize_t asize
= ABS(Py_SIZE(a
));
2465 Py_ssize_t bsize
= ABS(Py_SIZE(b
));
2466 PyLongObject
*ah
= NULL
;
2467 PyLongObject
*al
= NULL
;
2468 PyLongObject
*bh
= NULL
;
2469 PyLongObject
*bl
= NULL
;
2470 PyLongObject
*ret
= NULL
;
2471 PyLongObject
*t1
, *t2
, *t3
;
2472 Py_ssize_t shift
; /* the number of digits we split off */
2475 /* (ah*X+al)(bh*X+bl) = ah*bh*X*X + (ah*bl + al*bh)*X + al*bl
2476 * Let k = (ah+al)*(bh+bl) = ah*bl + al*bh + ah*bh + al*bl
2477 * Then the original product is
2478 * ah*bh*X*X + (k - ah*bh - al*bl)*X + al*bl
2479 * By picking X to be a power of 2, "*X" is just shifting, and it's
2480 * been reduced to 3 multiplies on numbers half the size.
2483 /* We want to split based on the larger number; fiddle so that b
2486 if (asize
> bsize
) {
2496 /* Use gradeschool math when either number is too small. */
2497 i
= a
== b
? KARATSUBA_SQUARE_CUTOFF
: KARATSUBA_CUTOFF
;
2500 return _PyLong_New(0);
2505 /* If a is small compared to b, splitting on b gives a degenerate
2506 * case with ah==0, and Karatsuba may be (even much) less efficient
2507 * than "grade school" then. However, we can still win, by viewing
2508 * b as a string of "big digits", each of width a->ob_size. That
2509 * leads to a sequence of balanced calls to k_mul.
2511 if (2 * asize
<= bsize
)
2512 return k_lopsided_mul(a
, b
);
2514 /* Split a & b into hi & lo pieces. */
2516 if (kmul_split(a
, shift
, &ah
, &al
) < 0) goto fail
;
2517 assert(Py_SIZE(ah
) > 0); /* the split isn't degenerate */
2525 else if (kmul_split(b
, shift
, &bh
, &bl
) < 0) goto fail
;
2528 * 1. Allocate result space (asize + bsize digits: that's always
2530 * 2. Compute ah*bh, and copy into result at 2*shift.
2531 * 3. Compute al*bl, and copy into result at 0. Note that this
2532 * can't overlap with #2.
2533 * 4. Subtract al*bl from the result, starting at shift. This may
2534 * underflow (borrow out of the high digit), but we don't care:
2535 * we're effectively doing unsigned arithmetic mod
2536 * PyLong_BASE**(sizea + sizeb), and so long as the *final* result fits,
2537 * borrows and carries out of the high digit can be ignored.
2538 * 5. Subtract ah*bh from the result, starting at shift.
2539 * 6. Compute (ah+al)*(bh+bl), and add it into the result starting
2543 /* 1. Allocate result space. */
2544 ret
= _PyLong_New(asize
+ bsize
);
2545 if (ret
== NULL
) goto fail
;
2547 /* Fill with trash, to catch reference to uninitialized digits. */
2548 memset(ret
->ob_digit
, 0xDF, Py_SIZE(ret
) * sizeof(digit
));
2551 /* 2. t1 <- ah*bh, and copy into high digits of result. */
2552 if ((t1
= k_mul(ah
, bh
)) == NULL
) goto fail
;
2553 assert(Py_SIZE(t1
) >= 0);
2554 assert(2*shift
+ Py_SIZE(t1
) <= Py_SIZE(ret
));
2555 memcpy(ret
->ob_digit
+ 2*shift
, t1
->ob_digit
,
2556 Py_SIZE(t1
) * sizeof(digit
));
2558 /* Zero-out the digits higher than the ah*bh copy. */
2559 i
= Py_SIZE(ret
) - 2*shift
- Py_SIZE(t1
);
2561 memset(ret
->ob_digit
+ 2*shift
+ Py_SIZE(t1
), 0,
2564 /* 3. t2 <- al*bl, and copy into the low digits. */
2565 if ((t2
= k_mul(al
, bl
)) == NULL
) {
2569 assert(Py_SIZE(t2
) >= 0);
2570 assert(Py_SIZE(t2
) <= 2*shift
); /* no overlap with high digits */
2571 memcpy(ret
->ob_digit
, t2
->ob_digit
, Py_SIZE(t2
) * sizeof(digit
));
2573 /* Zero out remaining digits. */
2574 i
= 2*shift
- Py_SIZE(t2
); /* number of uninitialized digits */
2576 memset(ret
->ob_digit
+ Py_SIZE(t2
), 0, i
* sizeof(digit
));
2578 /* 4 & 5. Subtract ah*bh (t1) and al*bl (t2). We do al*bl first
2579 * because it's fresher in cache.
2581 i
= Py_SIZE(ret
) - shift
; /* # digits after shift */
2582 (void)v_isub(ret
->ob_digit
+ shift
, i
, t2
->ob_digit
, Py_SIZE(t2
));
2585 (void)v_isub(ret
->ob_digit
+ shift
, i
, t1
->ob_digit
, Py_SIZE(t1
));
2588 /* 6. t3 <- (ah+al)(bh+bl), and add into result. */
2589 if ((t1
= x_add(ah
, al
)) == NULL
) goto fail
;
2598 else if ((t2
= x_add(bh
, bl
)) == NULL
) {
2609 if (t3
== NULL
) goto fail
;
2610 assert(Py_SIZE(t3
) >= 0);
2612 /* Add t3. It's not obvious why we can't run out of room here.
2613 * See the (*) comment after this function.
2615 (void)v_iadd(ret
->ob_digit
+ shift
, i
, t3
->ob_digit
, Py_SIZE(t3
));
2618 return long_normalize(ret
);
2629 /* (*) Why adding t3 can't "run out of room" above.
2631 Let f(x) mean the floor of x and c(x) mean the ceiling of x. Some facts
2634 1. For any integer i, i = c(i/2) + f(i/2). In particular,
2635 bsize = c(bsize/2) + f(bsize/2).
2636 2. shift = f(bsize/2)
2638 4. Since we call k_lopsided_mul if asize*2 <= bsize, asize*2 > bsize in this
2639 routine, so asize > bsize/2 >= f(bsize/2) in this routine.
2641 We allocated asize + bsize result digits, and add t3 into them at an offset
2642 of shift. This leaves asize+bsize-shift allocated digit positions for t3
2643 to fit into, = (by #1 and #2) asize + f(bsize/2) + c(bsize/2) - f(bsize/2) =
2644 asize + c(bsize/2) available digit positions.
2646 bh has c(bsize/2) digits, and bl at most f(size/2) digits. So bh+hl has
2647 at most c(bsize/2) digits + 1 bit.
2649 If asize == bsize, ah has c(bsize/2) digits, else ah has at most f(bsize/2)
2650 digits, and al has at most f(bsize/2) digits in any case. So ah+al has at
2651 most (asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 1 bit.
2653 The product (ah+al)*(bh+bl) therefore has at most
2655 c(bsize/2) + (asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 2 bits
2657 and we have asize + c(bsize/2) available digit positions. We need to show
2658 this is always enough. An instance of c(bsize/2) cancels out in both, so
2659 the question reduces to whether asize digits is enough to hold
2660 (asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 2 bits. If asize < bsize,
2661 then we're asking whether asize digits >= f(bsize/2) digits + 2 bits. By #4,
2662 asize is at least f(bsize/2)+1 digits, so this in turn reduces to whether 1
2663 digit is enough to hold 2 bits. This is so since PyLong_SHIFT=15 >= 2. If
2664 asize == bsize, then we're asking whether bsize digits is enough to hold
2665 c(bsize/2) digits + 2 bits, or equivalently (by #1) whether f(bsize/2) digits
2666 is enough to hold 2 bits. This is so if bsize >= 2, which holds because
2667 bsize >= KARATSUBA_CUTOFF >= 2.
2669 Note that since there's always enough room for (ah+al)*(bh+bl), and that's
2670 clearly >= each of ah*bh and al*bl, there's always enough room to subtract
2671 ah*bh and al*bl too.
2674 /* b has at least twice the digits of a, and a is big enough that Karatsuba
2675 * would pay off *if* the inputs had balanced sizes. View b as a sequence
2676 * of slices, each with a->ob_size digits, and multiply the slices by a,
2677 * one at a time. This gives k_mul balanced inputs to work with, and is
2678 * also cache-friendly (we compute one double-width slice of the result
2679 * at a time, then move on, never bactracking except for the helpful
2680 * single-width slice overlap between successive partial sums).
2682 static PyLongObject
*
2683 k_lopsided_mul(PyLongObject
*a
, PyLongObject
*b
)
2685 const Py_ssize_t asize
= ABS(Py_SIZE(a
));
2686 Py_ssize_t bsize
= ABS(Py_SIZE(b
));
2687 Py_ssize_t nbdone
; /* # of b digits already multiplied */
2689 PyLongObject
*bslice
= NULL
;
2691 assert(asize
> KARATSUBA_CUTOFF
);
2692 assert(2 * asize
<= bsize
);
2694 /* Allocate result space, and zero it out. */
2695 ret
= _PyLong_New(asize
+ bsize
);
2698 memset(ret
->ob_digit
, 0, Py_SIZE(ret
) * sizeof(digit
));
2700 /* Successive slices of b are copied into bslice. */
2701 bslice
= _PyLong_New(asize
);
2707 PyLongObject
*product
;
2708 const Py_ssize_t nbtouse
= MIN(bsize
, asize
);
2710 /* Multiply the next slice of b by a. */
2711 memcpy(bslice
->ob_digit
, b
->ob_digit
+ nbdone
,
2712 nbtouse
* sizeof(digit
));
2713 Py_SIZE(bslice
) = nbtouse
;
2714 product
= k_mul(a
, bslice
);
2715 if (product
== NULL
)
2718 /* Add into result. */
2719 (void)v_iadd(ret
->ob_digit
+ nbdone
, Py_SIZE(ret
) - nbdone
,
2720 product
->ob_digit
, Py_SIZE(product
));
2728 return long_normalize(ret
);
2737 long_mul(PyLongObject
*v
, PyLongObject
*w
)
2739 PyLongObject
*a
, *b
, *z
;
2741 if (!convert_binop((PyObject
*)v
, (PyObject
*)w
, &a
, &b
)) {
2742 Py_INCREF(Py_NotImplemented
);
2743 return Py_NotImplemented
;
2747 /* Negate if exactly one of the inputs is negative. */
2748 if (((a
->ob_size
^ b
->ob_size
) < 0) && z
)
2749 z
->ob_size
= -(z
->ob_size
);
2752 return (PyObject
*)z
;
2755 /* The / and % operators are now defined in terms of divmod().
2756 The expression a mod b has the value a - b*floor(a/b).
2757 The long_divrem function gives the remainder after division of
2758 |a| by |b|, with the sign of a. This is also expressed
2759 as a - b*trunc(a/b), if trunc truncates towards zero.
2766 So, to get from rem to mod, we have to add b if a and b
2767 have different signs. We then subtract one from the 'div'
2768 part of the outcome to keep the invariant intact. */
2771 * *pdiv, *pmod = divmod(v, w)
2772 * NULL can be passed for pdiv or pmod, in which case that part of
2773 * the result is simply thrown away. The caller owns a reference to
2774 * each of these it requests (does not pass NULL for).
2777 l_divmod(PyLongObject
*v
, PyLongObject
*w
,
2778 PyLongObject
**pdiv
, PyLongObject
**pmod
)
2780 PyLongObject
*div
, *mod
;
2782 if (long_divrem(v
, w
, &div
, &mod
) < 0)
2784 if ((Py_SIZE(mod
) < 0 && Py_SIZE(w
) > 0) ||
2785 (Py_SIZE(mod
) > 0 && Py_SIZE(w
) < 0)) {
2788 temp
= (PyLongObject
*) long_add(mod
, w
);
2795 one
= (PyLongObject
*) PyLong_FromLong(1L);
2797 (temp
= (PyLongObject
*) long_sub(div
, one
)) == NULL
) {
2821 long_div(PyObject
*v
, PyObject
*w
)
2823 PyLongObject
*a
, *b
, *div
;
2825 CONVERT_BINOP(v
, w
, &a
, &b
);
2826 if (l_divmod(a
, b
, &div
, NULL
) < 0)
2830 return (PyObject
*)div
;
2834 long_classic_div(PyObject
*v
, PyObject
*w
)
2836 PyLongObject
*a
, *b
, *div
;
2838 CONVERT_BINOP(v
, w
, &a
, &b
);
2839 if (Py_DivisionWarningFlag
&&
2840 PyErr_Warn(PyExc_DeprecationWarning
, "classic long division") < 0)
2842 else if (l_divmod(a
, b
, &div
, NULL
) < 0)
2846 return (PyObject
*)div
;
2850 long_true_divide(PyObject
*v
, PyObject
*w
)
2852 PyLongObject
*a
, *b
;
2854 int failed
, aexp
= -1, bexp
= -1;
2856 CONVERT_BINOP(v
, w
, &a
, &b
);
2857 ad
= _PyLong_AsScaledDouble((PyObject
*)a
, &aexp
);
2858 bd
= _PyLong_AsScaledDouble((PyObject
*)b
, &bexp
);
2859 failed
= (ad
== -1.0 || bd
== -1.0) && PyErr_Occurred();
2864 /* 'aexp' and 'bexp' were initialized to -1 to silence gcc-4.0.x,
2865 but should really be set correctly after sucessful calls to
2866 _PyLong_AsScaledDouble() */
2867 assert(aexp
>= 0 && bexp
>= 0);
2870 PyErr_SetString(PyExc_ZeroDivisionError
,
2871 "long division or modulo by zero");
2875 /* True value is very close to ad/bd * 2**(PyLong_SHIFT*(aexp-bexp)) */
2876 ad
/= bd
; /* overflow/underflow impossible here */
2878 if (aexp
> INT_MAX
/ PyLong_SHIFT
)
2880 else if (aexp
< -(INT_MAX
/ PyLong_SHIFT
))
2881 return PyFloat_FromDouble(0.0); /* underflow to 0 */
2883 ad
= ldexp(ad
, aexp
* PyLong_SHIFT
);
2884 if (Py_OVERFLOWED(ad
)) /* ignore underflow to 0.0 */
2886 return PyFloat_FromDouble(ad
);
2889 PyErr_SetString(PyExc_OverflowError
,
2890 "long/long too large for a float");
2896 long_mod(PyObject
*v
, PyObject
*w
)
2898 PyLongObject
*a
, *b
, *mod
;
2900 CONVERT_BINOP(v
, w
, &a
, &b
);
2902 if (l_divmod(a
, b
, NULL
, &mod
) < 0)
2906 return (PyObject
*)mod
;
2910 long_divmod(PyObject
*v
, PyObject
*w
)
2912 PyLongObject
*a
, *b
, *div
, *mod
;
2915 CONVERT_BINOP(v
, w
, &a
, &b
);
2917 if (l_divmod(a
, b
, &div
, &mod
) < 0) {
2924 PyTuple_SetItem(z
, 0, (PyObject
*) div
);
2925 PyTuple_SetItem(z
, 1, (PyObject
*) mod
);
2938 long_pow(PyObject
*v
, PyObject
*w
, PyObject
*x
)
2940 PyLongObject
*a
, *b
, *c
; /* a,b,c = v,w,x */
2941 int negativeOutput
= 0; /* if x<0 return negative output */
2943 PyLongObject
*z
= NULL
; /* accumulated result */
2944 Py_ssize_t i
, j
, k
; /* counters */
2945 PyLongObject
*temp
= NULL
;
2947 /* 5-ary values. If the exponent is large enough, table is
2948 * precomputed so that table[i] == a**i % c for i in range(32).
2950 PyLongObject
*table
[32] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
2951 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
2953 /* a, b, c = v, w, x */
2954 CONVERT_BINOP(v
, w
, &a
, &b
);
2955 if (PyLong_Check(x
)) {
2956 c
= (PyLongObject
*)x
;
2959 else if (PyInt_Check(x
)) {
2960 c
= (PyLongObject
*)PyLong_FromLong(PyInt_AS_LONG(x
));
2964 else if (x
== Py_None
)
2969 Py_INCREF(Py_NotImplemented
);
2970 return Py_NotImplemented
;
2973 if (Py_SIZE(b
) < 0) { /* if exponent is negative */
2975 PyErr_SetString(PyExc_TypeError
, "pow() 2nd argument "
2976 "cannot be negative when 3rd argument specified");
2980 /* else return a float. This works because we know
2981 that this calls float_pow() which converts its
2982 arguments to double. */
2985 return PyFloat_Type
.tp_as_number
->nb_power(v
, w
, x
);
2991 raise ValueError() */
2992 if (Py_SIZE(c
) == 0) {
2993 PyErr_SetString(PyExc_ValueError
,
2994 "pow() 3rd argument cannot be 0");
2999 negativeOutput = True
3000 modulus = -modulus */
3001 if (Py_SIZE(c
) < 0) {
3003 temp
= (PyLongObject
*)_PyLong_Copy(c
);
3009 c
->ob_size
= - c
->ob_size
;
3014 if ((Py_SIZE(c
) == 1) && (c
->ob_digit
[0] == 1)) {
3015 z
= (PyLongObject
*)PyLong_FromLong(0L);
3020 base = base % modulus
3021 Having the base positive just makes things easier. */
3022 if (Py_SIZE(a
) < 0) {
3023 if (l_divmod(a
, c
, NULL
, &temp
) < 0)
3031 /* At this point a, b, and c are guaranteed non-negative UNLESS
3032 c is NULL, in which case a may be negative. */
3034 z
= (PyLongObject
*)PyLong_FromLong(1L);
3038 /* Perform a modular reduction, X = X % c, but leave X alone if c
3043 if (l_divmod(X, c, NULL, &temp) < 0) \
3050 /* Multiply two values, then reduce the result:
3051 result = X*Y % c. If c is NULL, skip the mod. */
3052 #define MULT(X, Y, result) \
3054 temp = (PyLongObject *)long_mul(X, Y); \
3057 Py_XDECREF(result); \
3063 if (Py_SIZE(b
) <= FIVEARY_CUTOFF
) {
3064 /* Left-to-right binary exponentiation (HAC Algorithm 14.79) */
3065 /* http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf */
3066 for (i
= Py_SIZE(b
) - 1; i
>= 0; --i
) {
3067 digit bi
= b
->ob_digit
[i
];
3069 for (j
= (digit
)1 << (PyLong_SHIFT
-1); j
!= 0; j
>>= 1) {
3077 /* Left-to-right 5-ary exponentiation (HAC Algorithm 14.82) */
3078 Py_INCREF(z
); /* still holds 1L */
3080 for (i
= 1; i
< 32; ++i
)
3081 MULT(table
[i
-1], a
, table
[i
])
3083 for (i
= Py_SIZE(b
) - 1; i
>= 0; --i
) {
3084 const digit bi
= b
->ob_digit
[i
];
3086 for (j
= PyLong_SHIFT
- 5; j
>= 0; j
-= 5) {
3087 const int index
= (bi
>> j
) & 0x1f;
3088 for (k
= 0; k
< 5; ++k
)
3091 MULT(z
, table
[index
], z
)
3096 if (negativeOutput
&& (Py_SIZE(z
) != 0)) {
3097 temp
= (PyLongObject
*)long_sub(z
, c
);
3113 if (Py_SIZE(b
) > FIVEARY_CUTOFF
) {
3114 for (i
= 0; i
< 32; ++i
)
3115 Py_XDECREF(table
[i
]);
3121 return (PyObject
*)z
;
3125 long_invert(PyLongObject
*v
)
3127 /* Implement ~x as -(x+1) */
3130 w
= (PyLongObject
*)PyLong_FromLong(1L);
3133 x
= (PyLongObject
*) long_add(v
, w
);
3137 Py_SIZE(x
) = -(Py_SIZE(x
));
3138 return (PyObject
*)x
;
3142 long_neg(PyLongObject
*v
)
3145 if (v
->ob_size
== 0 && PyLong_CheckExact(v
)) {
3148 return (PyObject
*) v
;
3150 z
= (PyLongObject
*)_PyLong_Copy(v
);
3152 z
->ob_size
= -(v
->ob_size
);
3153 return (PyObject
*)z
;
3157 long_abs(PyLongObject
*v
)
3162 return long_long((PyObject
*)v
);
3166 long_nonzero(PyLongObject
*v
)
3168 return ABS(Py_SIZE(v
)) != 0;
3172 long_rshift(PyLongObject
*v
, PyLongObject
*w
)
3174 PyLongObject
*a
, *b
;
3175 PyLongObject
*z
= NULL
;
3177 Py_ssize_t newsize
, wordshift
, loshift
, hishift
, i
, j
;
3178 digit lomask
, himask
;
3180 CONVERT_BINOP((PyObject
*)v
, (PyObject
*)w
, &a
, &b
);
3182 if (Py_SIZE(a
) < 0) {
3183 /* Right shifting negative numbers is harder */
3184 PyLongObject
*a1
, *a2
;
3185 a1
= (PyLongObject
*) long_invert(a
);
3188 a2
= (PyLongObject
*) long_rshift(a1
, b
);
3192 z
= (PyLongObject
*) long_invert(a2
);
3197 shiftby
= PyLong_AsLong((PyObject
*)b
);
3198 if (shiftby
== -1L && PyErr_Occurred())
3201 PyErr_SetString(PyExc_ValueError
,
3202 "negative shift count");
3205 wordshift
= shiftby
/ PyLong_SHIFT
;
3206 newsize
= ABS(Py_SIZE(a
)) - wordshift
;
3211 return (PyObject
*)z
;
3213 loshift
= shiftby
% PyLong_SHIFT
;
3214 hishift
= PyLong_SHIFT
- loshift
;
3215 lomask
= ((digit
)1 << hishift
) - 1;
3216 himask
= PyLong_MASK
^ lomask
;
3217 z
= _PyLong_New(newsize
);
3221 Py_SIZE(z
) = -(Py_SIZE(z
));
3222 for (i
= 0, j
= wordshift
; i
< newsize
; i
++, j
++) {
3223 z
->ob_digit
[i
] = (a
->ob_digit
[j
] >> loshift
) & lomask
;
3226 (a
->ob_digit
[j
+1] << hishift
) & himask
;
3228 z
= long_normalize(z
);
3233 return (PyObject
*) z
;
3238 long_lshift(PyObject
*v
, PyObject
*w
)
3240 /* This version due to Tim Peters */
3241 PyLongObject
*a
, *b
;
3242 PyLongObject
*z
= NULL
;
3244 Py_ssize_t oldsize
, newsize
, wordshift
, remshift
, i
, j
;
3247 CONVERT_BINOP(v
, w
, &a
, &b
);
3249 shiftby
= PyLong_AsLong((PyObject
*)b
);
3250 if (shiftby
== -1L && PyErr_Occurred())
3253 PyErr_SetString(PyExc_ValueError
, "negative shift count");
3256 if ((long)(int)shiftby
!= shiftby
) {
3257 PyErr_SetString(PyExc_ValueError
,
3258 "outrageous left shift count");
3261 /* wordshift, remshift = divmod(shiftby, PyLong_SHIFT) */
3262 wordshift
= (int)shiftby
/ PyLong_SHIFT
;
3263 remshift
= (int)shiftby
- wordshift
* PyLong_SHIFT
;
3265 oldsize
= ABS(a
->ob_size
);
3266 newsize
= oldsize
+ wordshift
;
3269 z
= _PyLong_New(newsize
);
3273 z
->ob_size
= -(z
->ob_size
);
3274 for (i
= 0; i
< wordshift
; i
++)
3277 for (i
= wordshift
, j
= 0; j
< oldsize
; i
++, j
++) {
3278 accum
|= (twodigits
)a
->ob_digit
[j
] << remshift
;
3279 z
->ob_digit
[i
] = (digit
)(accum
& PyLong_MASK
);
3280 accum
>>= PyLong_SHIFT
;
3283 z
->ob_digit
[newsize
-1] = (digit
)accum
;
3286 z
= long_normalize(z
);
3290 return (PyObject
*) z
;
3294 /* Bitwise and/xor/or operations */
3297 long_bitwise(PyLongObject
*a
,
3298 int op
, /* '&', '|', '^' */
3301 digit maska
, maskb
; /* 0 or PyLong_MASK */
3303 Py_ssize_t size_a
, size_b
, size_z
, i
;
3308 if (Py_SIZE(a
) < 0) {
3309 a
= (PyLongObject
*) long_invert(a
);
3312 maska
= PyLong_MASK
;
3318 if (Py_SIZE(b
) < 0) {
3319 b
= (PyLongObject
*) long_invert(b
);
3324 maskb
= PyLong_MASK
;
3334 if (maska
!= maskb
) {
3335 maska
^= PyLong_MASK
;
3340 if (maska
&& maskb
) {
3342 maska
^= PyLong_MASK
;
3343 maskb
^= PyLong_MASK
;
3348 if (maska
|| maskb
) {
3350 maska
^= PyLong_MASK
;
3351 maskb
^= PyLong_MASK
;
3357 /* JRH: The original logic here was to allocate the result value (z)
3358 as the longer of the two operands. However, there are some cases
3359 where the result is guaranteed to be shorter than that: AND of two
3360 positives, OR of two negatives: use the shorter number. AND with
3361 mixed signs: use the positive number. OR with mixed signs: use the
3362 negative number. After the transformations above, op will be '&'
3363 iff one of these cases applies, and mask will be non-0 for operands
3364 whose length should be ignored.
3367 size_a
= Py_SIZE(a
);
3368 size_b
= Py_SIZE(b
);
3372 : (maskb
? size_a
: MIN(size_a
, size_b
)))
3373 : MAX(size_a
, size_b
);
3374 z
= _PyLong_New(size_z
);
3381 for (i
= 0; i
< size_z
; ++i
) {
3382 diga
= (i
< size_a
? a
->ob_digit
[i
] : 0) ^ maska
;
3383 digb
= (i
< size_b
? b
->ob_digit
[i
] : 0) ^ maskb
;
3385 case '&': z
->ob_digit
[i
] = diga
& digb
; break;
3386 case '|': z
->ob_digit
[i
] = diga
| digb
; break;
3387 case '^': z
->ob_digit
[i
] = diga
^ digb
; break;
3393 z
= long_normalize(z
);
3395 return (PyObject
*) z
;
3402 long_and(PyObject
*v
, PyObject
*w
)
3404 PyLongObject
*a
, *b
;
3406 CONVERT_BINOP(v
, w
, &a
, &b
);
3407 c
= long_bitwise(a
, '&', b
);
3414 long_xor(PyObject
*v
, PyObject
*w
)
3416 PyLongObject
*a
, *b
;
3418 CONVERT_BINOP(v
, w
, &a
, &b
);
3419 c
= long_bitwise(a
, '^', b
);
3426 long_or(PyObject
*v
, PyObject
*w
)
3428 PyLongObject
*a
, *b
;
3430 CONVERT_BINOP(v
, w
, &a
, &b
);
3431 c
= long_bitwise(a
, '|', b
);
3438 long_coerce(PyObject
**pv
, PyObject
**pw
)
3440 if (PyInt_Check(*pw
)) {
3441 *pw
= PyLong_FromLong(PyInt_AS_LONG(*pw
));
3447 else if (PyLong_Check(*pw
)) {
3452 return 1; /* Can't do it */
3456 long_long(PyObject
*v
)
3458 if (PyLong_CheckExact(v
))
3461 v
= _PyLong_Copy((PyLongObject
*)v
);
3466 long_int(PyObject
*v
)
3469 x
= PyLong_AsLong(v
);
3470 if (PyErr_Occurred()) {
3471 if (PyErr_ExceptionMatches(PyExc_OverflowError
)) {
3473 if (PyLong_CheckExact(v
)) {
3478 return _PyLong_Copy((PyLongObject
*)v
);
3483 return PyInt_FromLong(x
);
3487 long_float(PyObject
*v
)
3490 result
= PyLong_AsDouble(v
);
3491 if (result
== -1.0 && PyErr_Occurred())
3493 return PyFloat_FromDouble(result
);
3497 long_oct(PyObject
*v
)
3499 return _PyLong_Format(v
, 8, 1, 0);
3503 long_hex(PyObject
*v
)
3505 return _PyLong_Format(v
, 16, 1, 0);
3509 long_subtype_new(PyTypeObject
*type
, PyObject
*args
, PyObject
*kwds
);
3512 long_new(PyTypeObject
*type
, PyObject
*args
, PyObject
*kwds
)
3515 int base
= -909; /* unlikely! */
3516 static char *kwlist
[] = {"x", "base", 0};
3518 if (type
!= &PyLong_Type
)
3519 return long_subtype_new(type
, args
, kwds
); /* Wimp out */
3520 if (!PyArg_ParseTupleAndKeywords(args
, kwds
, "|Oi:long", kwlist
,
3524 return PyLong_FromLong(0L);
3526 return PyNumber_Long(x
);
3527 else if (PyString_Check(x
)) {
3528 /* Since PyLong_FromString doesn't have a length parameter,
3529 * check here for possible NULs in the string. */
3530 char *string
= PyString_AS_STRING(x
);
3531 if (strlen(string
) != (size_t)PyString_Size(x
)) {
3532 /* create a repr() of the input string,
3533 * just like PyLong_FromString does. */
3535 srepr
= PyObject_Repr(x
);
3538 PyErr_Format(PyExc_ValueError
,
3539 "invalid literal for long() with base %d: %s",
3540 base
, PyString_AS_STRING(srepr
));
3544 return PyLong_FromString(PyString_AS_STRING(x
), NULL
, base
);
3546 #ifdef Py_USING_UNICODE
3547 else if (PyUnicode_Check(x
))
3548 return PyLong_FromUnicode(PyUnicode_AS_UNICODE(x
),
3549 PyUnicode_GET_SIZE(x
),
3553 PyErr_SetString(PyExc_TypeError
,
3554 "long() can't convert non-string with explicit base");
3559 /* Wimpy, slow approach to tp_new calls for subtypes of long:
3560 first create a regular long from whatever arguments we got,
3561 then allocate a subtype instance and initialize it from
3562 the regular long. The regular long is then thrown away.
3565 long_subtype_new(PyTypeObject
*type
, PyObject
*args
, PyObject
*kwds
)
3567 PyLongObject
*tmp
, *newobj
;
3570 assert(PyType_IsSubtype(type
, &PyLong_Type
));
3571 tmp
= (PyLongObject
*)long_new(&PyLong_Type
, args
, kwds
);
3574 assert(PyLong_CheckExact(tmp
));
3578 newobj
= (PyLongObject
*)type
->tp_alloc(type
, n
);
3579 if (newobj
== NULL
) {
3583 assert(PyLong_Check(newobj
));
3584 Py_SIZE(newobj
) = Py_SIZE(tmp
);
3585 for (i
= 0; i
< n
; i
++)
3586 newobj
->ob_digit
[i
] = tmp
->ob_digit
[i
];
3588 return (PyObject
*)newobj
;
3592 long_getnewargs(PyLongObject
*v
)
3594 return Py_BuildValue("(N)", _PyLong_Copy(v
));
3598 long_get0(PyLongObject
*v
, void *context
) {
3599 return PyLong_FromLong(0L);
3603 long_get1(PyLongObject
*v
, void *context
) {
3604 return PyLong_FromLong(1L);
3608 long__format__(PyObject
*self
, PyObject
*args
)
3610 PyObject
*format_spec
;
3612 if (!PyArg_ParseTuple(args
, "O:__format__", &format_spec
))
3614 if (PyBytes_Check(format_spec
))
3615 return _PyLong_FormatAdvanced(self
,
3616 PyBytes_AS_STRING(format_spec
),
3617 PyBytes_GET_SIZE(format_spec
));
3618 if (PyUnicode_Check(format_spec
)) {
3619 /* Convert format_spec to a str */
3621 PyObject
*str_spec
= PyObject_Str(format_spec
);
3623 if (str_spec
== NULL
)
3626 result
= _PyLong_FormatAdvanced(self
,
3627 PyBytes_AS_STRING(str_spec
),
3628 PyBytes_GET_SIZE(str_spec
));
3630 Py_DECREF(str_spec
);
3633 PyErr_SetString(PyExc_TypeError
, "__format__ requires str or unicode");
3638 long_sizeof(PyLongObject
*v
)
3642 res
= v
->ob_type
->tp_basicsize
+ ABS(Py_SIZE(v
))*sizeof(digit
);
3643 return PyInt_FromSsize_t(res
);
3647 long_bit_length(PyLongObject
*v
)
3649 PyLongObject
*result
, *x
, *y
;
3650 Py_ssize_t ndigits
, msd_bits
= 0;
3654 assert(PyLong_Check(v
));
3656 ndigits
= ABS(Py_SIZE(v
));
3658 return PyInt_FromLong(0);
3660 msd
= v
->ob_digit
[ndigits
-1];
3665 msd_bits
+= (long)(BitLengthTable
[msd
]);
3667 if (ndigits
<= PY_SSIZE_T_MAX
/PyLong_SHIFT
)
3668 return PyInt_FromSsize_t((ndigits
-1)*PyLong_SHIFT
+ msd_bits
);
3670 /* expression above may overflow; use Python integers instead */
3671 result
= (PyLongObject
*)PyLong_FromSsize_t(ndigits
- 1);
3674 x
= (PyLongObject
*)PyLong_FromLong(PyLong_SHIFT
);
3677 y
= (PyLongObject
*)long_mul(result
, x
);
3684 x
= (PyLongObject
*)PyLong_FromLong(msd_bits
);
3687 y
= (PyLongObject
*)long_add(result
, x
);
3694 return (PyObject
*)result
;
3701 PyDoc_STRVAR(long_bit_length_doc
,
3702 "long.bit_length() -> int or long\n\
3704 Number of bits necessary to represent self in binary.\n\
3707 >>> (37L).bit_length()\n\
3712 long_is_finite(PyObject
*v
)
3718 static PyMethodDef long_methods
[] = {
3719 {"conjugate", (PyCFunction
)long_long
, METH_NOARGS
,
3720 "Returns self, the complex conjugate of any long."},
3721 {"bit_length", (PyCFunction
)long_bit_length
, METH_NOARGS
,
3722 long_bit_length_doc
},
3724 {"is_finite", (PyCFunction
)long_is_finite
, METH_NOARGS
,
3725 "Returns always True."},
3727 {"__trunc__", (PyCFunction
)long_long
, METH_NOARGS
,
3728 "Truncating an Integral returns itself."},
3729 {"__getnewargs__", (PyCFunction
)long_getnewargs
, METH_NOARGS
},
3730 {"__format__", (PyCFunction
)long__format__
, METH_VARARGS
},
3731 {"__sizeof__", (PyCFunction
)long_sizeof
, METH_NOARGS
,
3732 "Returns size in memory, in bytes"},
3733 {NULL
, NULL
} /* sentinel */
3736 static PyGetSetDef long_getset
[] = {
3738 (getter
)long_long
, (setter
)NULL
,
3739 "the real part of a complex number",
3742 (getter
)long_get0
, (setter
)NULL
,
3743 "the imaginary part of a complex number",
3746 (getter
)long_long
, (setter
)NULL
,
3747 "the numerator of a rational number in lowest terms",
3750 (getter
)long_get1
, (setter
)NULL
,
3751 "the denominator of a rational number in lowest terms",
3753 {NULL
} /* Sentinel */
3756 PyDoc_STRVAR(long_doc
,
3757 "long(x[, base]) -> integer\n\
3759 Convert a string or number to a long integer, if possible. A floating\n\
3760 point argument will be truncated towards zero (this does not include a\n\
3761 string representation of a floating point number!) When converting a\n\
3762 string, use the optional base. It is an error to supply a base when\n\
3763 converting a non-string.");
3765 static PyNumberMethods long_as_number
= {
3766 (binaryfunc
) long_add
, /*nb_add*/
3767 (binaryfunc
) long_sub
, /*nb_subtract*/
3768 (binaryfunc
) long_mul
, /*nb_multiply*/
3769 long_classic_div
, /*nb_divide*/
3770 long_mod
, /*nb_remainder*/
3771 long_divmod
, /*nb_divmod*/
3772 long_pow
, /*nb_power*/
3773 (unaryfunc
) long_neg
, /*nb_negative*/
3774 (unaryfunc
) long_long
, /*tp_positive*/
3775 (unaryfunc
) long_abs
, /*tp_absolute*/
3776 (inquiry
) long_nonzero
, /*tp_nonzero*/
3777 (unaryfunc
) long_invert
, /*nb_invert*/
3778 long_lshift
, /*nb_lshift*/
3779 (binaryfunc
) long_rshift
, /*nb_rshift*/
3780 long_and
, /*nb_and*/
3781 long_xor
, /*nb_xor*/
3783 long_coerce
, /*nb_coerce*/
3784 long_int
, /*nb_int*/
3785 long_long
, /*nb_long*/
3786 long_float
, /*nb_float*/
3787 long_oct
, /*nb_oct*/
3788 long_hex
, /*nb_hex*/
3789 0, /* nb_inplace_add */
3790 0, /* nb_inplace_subtract */
3791 0, /* nb_inplace_multiply */
3792 0, /* nb_inplace_divide */
3793 0, /* nb_inplace_remainder */
3794 0, /* nb_inplace_power */
3795 0, /* nb_inplace_lshift */
3796 0, /* nb_inplace_rshift */
3797 0, /* nb_inplace_and */
3798 0, /* nb_inplace_xor */
3799 0, /* nb_inplace_or */
3800 long_div
, /* nb_floor_divide */
3801 long_true_divide
, /* nb_true_divide */
3802 0, /* nb_inplace_floor_divide */
3803 0, /* nb_inplace_true_divide */
3804 long_long
, /* nb_index */
3807 PyTypeObject PyLong_Type
= {
3808 PyObject_HEAD_INIT(&PyType_Type
)
3810 "long", /* tp_name */
3811 offsetof(PyLongObject
, ob_digit
), /* tp_basicsize */
3812 sizeof(digit
), /* tp_itemsize */
3813 long_dealloc
, /* tp_dealloc */
3817 (cmpfunc
)long_compare
, /* tp_compare */
3818 long_repr
, /* tp_repr */
3819 &long_as_number
, /* tp_as_number */
3820 0, /* tp_as_sequence */
3821 0, /* tp_as_mapping */
3822 (hashfunc
)long_hash
, /* tp_hash */
3824 long_str
, /* tp_str */
3825 PyObject_GenericGetAttr
, /* tp_getattro */
3826 0, /* tp_setattro */
3827 0, /* tp_as_buffer */
3828 Py_TPFLAGS_DEFAULT
| Py_TPFLAGS_CHECKTYPES
|
3829 Py_TPFLAGS_BASETYPE
| Py_TPFLAGS_LONG_SUBCLASS
, /* tp_flags */
3830 long_doc
, /* tp_doc */
3831 0, /* tp_traverse */
3833 0, /* tp_richcompare */
3834 0, /* tp_weaklistoffset */
3836 0, /* tp_iternext */
3837 long_methods
, /* tp_methods */
3839 long_getset
, /* tp_getset */
3842 0, /* tp_descr_get */
3843 0, /* tp_descr_set */
3844 0, /* tp_dictoffset */
3847 long_new
, /* tp_new */
3848 PyObject_Del
, /* tp_free */
3851 static PyTypeObject Long_InfoType
;
3853 PyDoc_STRVAR(long_info__doc__
,
3856 A struct sequence that holds information about Python's\n\
3857 internal representation of integers. The attributes are read only.");
3859 static PyStructSequence_Field long_info_fields
[] = {
3860 {"bits_per_digit", "size of a digit in bits"},
3861 {"sizeof_digit", "size in bytes of the C type used to "
3862 "represent a digit"},
3866 static PyStructSequence_Desc long_info_desc
= {
3867 "sys.long_info", /* name */
3868 long_info__doc__
, /* doc */
3869 long_info_fields
, /* fields */
3870 2 /* number of fields */
3874 PyLong_GetInfo(void)
3876 PyObject
* long_info
;
3878 long_info
= PyStructSequence_New(&Long_InfoType
);
3879 if (long_info
== NULL
)
3881 PyStructSequence_SET_ITEM(long_info
, field
++,
3882 PyInt_FromLong(PyLong_SHIFT
));
3883 PyStructSequence_SET_ITEM(long_info
, field
++,
3884 PyInt_FromLong(sizeof(digit
)));
3885 if (PyErr_Occurred()) {
3886 Py_CLEAR(long_info
);
3895 /* initialize long_info */
3896 if (Long_InfoType
.tp_name
== 0)
3897 PyStructSequence_InitType(&Long_InfoType
, &long_info_desc
);