1 __all__
= ['Counter', 'deque', 'defaultdict', 'namedtuple', 'OrderedDict']
2 # For bootstrapping reasons, the collection ABCs are defined in _abcoll.py.
3 # They should however be considered an integral part of collections.py.
6 __all__
+= _abcoll
.__all
__
8 from _collections
import deque
, defaultdict
9 from operator
import itemgetter
as _itemgetter
, eq
as _eq
10 from keyword
import iskeyword
as _iskeyword
12 import heapq
as _heapq
13 from weakref
import proxy
as _proxy
14 from itertools
import repeat
as _repeat
, chain
as _chain
, starmap
as _starmap
, \
15 ifilter
as _ifilter
, imap
as _imap
, izip
as _izip
17 ################################################################################
19 ################################################################################
22 __slots__
= 'prev', 'next', 'key', '__weakref__'
24 class OrderedDict(dict, MutableMapping
):
25 'Dictionary that remembers insertion order'
26 # An inherited dict maps keys to values.
27 # The inherited dict provides __getitem__, __len__, __contains__, and get.
28 # The remaining methods are order-aware.
29 # Big-O running times for all methods are the same as for regular dictionaries.
31 # The internal self.__map dictionary maps keys to links in a doubly linked list.
32 # The circular doubly linked list starts and ends with a sentinel element.
33 # The sentinel element never gets deleted (this simplifies the algorithm).
34 # The prev/next links are weakref proxies (to prevent circular references).
35 # Individual links are kept alive by the hard reference in self.__map.
36 # Those hard references disappear when a key is deleted from an OrderedDict.
38 def __init__(self
, *args
, **kwds
):
39 '''Initialize an ordered dictionary. Signature is the same as for
40 regular dictionaries, but keyword arguments are not recommended
41 because their insertion order is arbitrary.
45 raise TypeError('expected at most 1 arguments, got %d' % len(args
))
48 except AttributeError:
49 self
.__root
= root
= _Link() # sentinel node for the doubly linked list
50 root
.prev
= root
.next
= root
52 self
.update(*args
, **kwds
)
55 'od.clear() -> None. Remove all items from od.'
57 root
.prev
= root
.next
= root
61 def __setitem__(self
, key
, value
):
62 'od.__setitem__(i, y) <==> od[i]=y'
63 # Setting a new item creates a new link which goes at the end of the linked
64 # list, and the inherited dictionary is updated with the new key/value pair.
66 self
.__map
[key
] = link
= _Link()
69 link
.prev
, link
.next
, link
.key
= last
, root
, key
70 last
.next
= root
.prev
= _proxy(link
)
71 dict.__setitem
__(self
, key
, value
)
73 def __delitem__(self
, key
):
74 'od.__delitem__(y) <==> del od[y]'
75 # Deleting an existing item uses self.__map to find the link which is
76 # then removed by updating the links in the predecessor and successor nodes.
77 dict.__delitem
__(self
, key
)
78 link
= self
.__map
.pop(key
)
79 link
.prev
.next
= link
.next
80 link
.next
.prev
= link
.prev
83 'od.__iter__() <==> iter(od)'
84 # Traverse the linked list in order.
87 while curr
is not root
:
91 def __reversed__(self
):
92 'od.__reversed__() <==> reversed(od)'
93 # Traverse the linked list in reverse order.
96 while curr
is not root
:
100 def __reduce__(self
):
101 'Return state information for pickling'
102 items
= [[k
, self
[k
]] for k
in self
]
103 tmp
= self
.__map
, self
.__root
104 del self
.__map
, self
.__root
105 inst_dict
= vars(self
).copy()
106 self
.__map
, self
.__root
= tmp
108 return (self
.__class
__, (items
,), inst_dict
)
109 return self
.__class
__, (items
,)
111 setdefault
= MutableMapping
.setdefault
112 update
= MutableMapping
.update
113 pop
= MutableMapping
.pop
114 keys
= MutableMapping
.keys
115 values
= MutableMapping
.values
116 items
= MutableMapping
.items
117 iterkeys
= MutableMapping
.iterkeys
118 itervalues
= MutableMapping
.itervalues
119 iteritems
= MutableMapping
.iteritems
120 __ne__
= MutableMapping
.__ne
__
122 def popitem(self
, last
=True):
123 '''od.popitem() -> (k, v), return and remove a (key, value) pair.
124 Pairs are returned in LIFO order if last is true or FIFO order if false.
128 raise KeyError('dictionary is empty')
129 key
= next(reversed(self
) if last
else iter(self
))
130 value
= self
.pop(key
)
134 'od.__repr__() <==> repr(od)'
136 return '%s()' % (self
.__class
__.__name
__,)
137 return '%s(%r)' % (self
.__class
__.__name
__, self
.items())
140 'od.copy() -> a shallow copy of od'
141 return self
.__class
__(self
)
144 def fromkeys(cls
, iterable
, value
=None):
145 '''OD.fromkeys(S[, v]) -> New ordered dictionary with keys from S
146 and values equal to v (which defaults to None).
154 def __eq__(self
, other
):
155 '''od.__eq__(y) <==> od==y. Comparison to another OD is order-sensitive
156 while comparison to a regular mapping is order-insensitive.
159 if isinstance(other
, OrderedDict
):
160 return len(self
)==len(other
) and \
161 all(_imap(_eq
, self
.iteritems(), other
.iteritems()))
162 return dict.__eq
__(self
, other
)
166 ################################################################################
168 ################################################################################
170 def namedtuple(typename
, field_names
, verbose
=False, rename
=False):
171 """Returns a new subclass of tuple with named fields.
173 >>> Point = namedtuple('Point', 'x y')
174 >>> Point.__doc__ # docstring for the new class
176 >>> p = Point(11, y=22) # instantiate with positional args or keywords
177 >>> p[0] + p[1] # indexable like a plain tuple
179 >>> x, y = p # unpack like a regular tuple
182 >>> p.x + p.y # fields also accessable by name
184 >>> d = p._asdict() # convert to a dictionary
187 >>> Point(**d) # convert from a dictionary
189 >>> p._replace(x=100) # _replace() is like str.replace() but targets named fields
194 # Parse and validate the field names. Validation serves two purposes,
195 # generating informative error messages and preventing template injection attacks.
196 if isinstance(field_names
, basestring
):
197 field_names
= field_names
.replace(',', ' ').split() # names separated by whitespace and/or commas
198 field_names
= tuple(map(str, field_names
))
200 names
= list(field_names
)
202 for i
, name
in enumerate(names
):
203 if (not all(c
.isalnum() or c
=='_' for c
in name
) or _iskeyword(name
)
204 or not name
or name
[0].isdigit() or name
.startswith('_')
208 field_names
= tuple(names
)
209 for name
in (typename
,) + field_names
:
210 if not all(c
.isalnum() or c
=='_' for c
in name
):
211 raise ValueError('Type names and field names can only contain alphanumeric characters and underscores: %r' % name
)
213 raise ValueError('Type names and field names cannot be a keyword: %r' % name
)
214 if name
[0].isdigit():
215 raise ValueError('Type names and field names cannot start with a number: %r' % name
)
217 for name
in field_names
:
218 if name
.startswith('_') and not rename
:
219 raise ValueError('Field names cannot start with an underscore: %r' % name
)
220 if name
in seen_names
:
221 raise ValueError('Encountered duplicate field name: %r' % name
)
224 # Create and fill-in the class template
225 numfields
= len(field_names
)
226 argtxt
= repr(field_names
).replace("'", "")[1:-1] # tuple repr without parens or quotes
227 reprtxt
= ', '.join('%s=%%r' % name
for name
in field_names
)
228 template
= '''class %(typename)s(tuple):
229 '%(typename)s(%(argtxt)s)' \n
231 _fields = %(field_names)r \n
232 def __new__(_cls, %(argtxt)s):
233 return _tuple.__new__(_cls, (%(argtxt)s)) \n
235 def _make(cls, iterable, new=tuple.__new__, len=len):
236 'Make a new %(typename)s object from a sequence or iterable'
237 result = new(cls, iterable)
238 if len(result) != %(numfields)d:
239 raise TypeError('Expected %(numfields)d arguments, got %%d' %% len(result))
242 return '%(typename)s(%(reprtxt)s)' %% self \n
244 'Return a new OrderedDict which maps field names to their values'
245 return OrderedDict(zip(self._fields, self)) \n
246 def _replace(_self, **kwds):
247 'Return a new %(typename)s object replacing specified fields with new values'
248 result = _self._make(map(kwds.pop, %(field_names)r, _self))
250 raise ValueError('Got unexpected field names: %%r' %% kwds.keys())
252 def __getnewargs__(self):
253 return tuple(self) \n\n''' % locals()
254 for i
, name
in enumerate(field_names
):
255 template
+= ' %s = _property(_itemgetter(%d))\n' % (name
, i
)
259 # Execute the template string in a temporary namespace and
260 # support tracing utilities by setting a value for frame.f_globals['__name__']
261 namespace
= dict(_itemgetter
=_itemgetter
, __name__
='namedtuple_%s' % typename
,
262 OrderedDict
=OrderedDict
, _property
=property, _tuple
=tuple)
264 exec template
in namespace
265 except SyntaxError, e
:
266 raise SyntaxError(e
.message
+ ':\n' + template
)
267 result
= namespace
[typename
]
269 # For pickling to work, the __module__ variable needs to be set to the frame
270 # where the named tuple is created. Bypass this step in enviroments where
271 # sys._getframe is not defined (Jython for example) or sys._getframe is not
272 # defined for arguments greater than 0 (IronPython).
274 result
.__module
__ = _sys
._getframe
(1).f_globals
.get('__name__', '__main__')
275 except (AttributeError, ValueError):
281 ########################################################################
283 ########################################################################
286 '''Dict subclass for counting hashable items. Sometimes called a bag
287 or multiset. Elements are stored as dictionary keys and their counts
288 are stored as dictionary values.
290 >>> c = Counter('abracadabra') # count elements from a string
292 >>> c.most_common(3) # three most common elements
293 [('a', 5), ('r', 2), ('b', 2)]
294 >>> sorted(c) # list all unique elements
295 ['a', 'b', 'c', 'd', 'r']
296 >>> ''.join(sorted(c.elements())) # list elements with repetitions
298 >>> sum(c.values()) # total of all counts
301 >>> c['a'] # count of letter 'a'
303 >>> for elem in 'shazam': # update counts from an iterable
304 ... c[elem] += 1 # by adding 1 to each element's count
305 >>> c['a'] # now there are seven 'a'
307 >>> del c['r'] # remove all 'r'
308 >>> c['r'] # now there are zero 'r'
311 >>> d = Counter('simsalabim') # make another counter
312 >>> c.update(d) # add in the second counter
313 >>> c['a'] # now there are nine 'a'
316 >>> c.clear() # empty the counter
320 Note: If a count is set to zero or reduced to zero, it will remain
321 in the counter until the entry is deleted or the counter is cleared:
323 >>> c = Counter('aaabbc')
324 >>> c['b'] -= 2 # reduce the count of 'b' by two
325 >>> c.most_common() # 'b' is still in, but its count is zero
326 [('a', 3), ('c', 1), ('b', 0)]
330 # http://en.wikipedia.org/wiki/Multiset
331 # http://www.gnu.org/software/smalltalk/manual-base/html_node/Bag.html
332 # http://www.demo2s.com/Tutorial/Cpp/0380__set-multiset/Catalog0380__set-multiset.htm
333 # http://code.activestate.com/recipes/259174/
334 # Knuth, TAOCP Vol. II section 4.6.3
336 def __init__(self
, iterable
=None, **kwds
):
337 '''Create a new, empty Counter object. And if given, count elements
338 from an input iterable. Or, initialize the count from another mapping
339 of elements to their counts.
341 >>> c = Counter() # a new, empty counter
342 >>> c = Counter('gallahad') # a new counter from an iterable
343 >>> c = Counter({'a': 4, 'b': 2}) # a new counter from a mapping
344 >>> c = Counter(a=4, b=2) # a new counter from keyword args
347 self
.update(iterable
, **kwds
)
349 def __missing__(self
, key
):
350 'The count of elements not in the Counter is zero.'
351 # Needed so that self[missing_item] does not raise KeyError
354 def most_common(self
, n
=None):
355 '''List the n most common elements and their counts from the most
356 common to the least. If n is None, then list all element counts.
358 >>> Counter('abracadabra').most_common(3)
359 [('a', 5), ('r', 2), ('b', 2)]
362 # Emulate Bag.sortedByCount from Smalltalk
364 return sorted(self
.iteritems(), key
=_itemgetter(1), reverse
=True)
365 return _heapq
.nlargest(n
, self
.iteritems(), key
=_itemgetter(1))
368 '''Iterator over elements repeating each as many times as its count.
370 >>> c = Counter('ABCABC')
371 >>> sorted(c.elements())
372 ['A', 'A', 'B', 'B', 'C', 'C']
374 # Knuth's example for prime factors of 1836: 2**2 * 3**3 * 17**1
375 >>> prime_factors = Counter({2: 2, 3: 3, 17: 1})
377 >>> for factor in prime_factors.elements(): # loop over factors
378 ... product *= factor # and multiply them
382 Note, if an element's count has been set to zero or is a negative
383 number, elements() will ignore it.
386 # Emulate Bag.do from Smalltalk and Multiset.begin from C++.
387 return _chain
.from_iterable(_starmap(_repeat
, self
.iteritems()))
389 # Override dict methods where necessary
392 def fromkeys(cls
, iterable
, v
=None):
393 # There is no equivalent method for counters because setting v=1
394 # means that no element can have a count greater than one.
395 raise NotImplementedError(
396 'Counter.fromkeys() is undefined. Use Counter(iterable) instead.')
398 def update(self
, iterable
=None, **kwds
):
399 '''Like dict.update() but add counts instead of replacing them.
401 Source can be an iterable, a dictionary, or another Counter instance.
403 >>> c = Counter('which')
404 >>> c.update('witch') # add elements from another iterable
405 >>> d = Counter('watch')
406 >>> c.update(d) # add elements from another counter
407 >>> c['h'] # four 'h' in which, witch, and watch
411 # The regular dict.update() operation makes no sense here because the
412 # replace behavior results in the some of original untouched counts
413 # being mixed-in with all of the other counts for a mismash that
414 # doesn't have a straight-forward interpretation in most counting
415 # contexts. Instead, we implement straight-addition. Both the inputs
416 # and outputs are allowed to contain zero and negative counts.
418 if iterable
is not None:
419 if isinstance(iterable
, Mapping
):
422 for elem
, count
in iterable
.iteritems():
423 self
[elem
] = self_get(elem
, 0) + count
425 dict.update(self
, iterable
) # fast path when counter is empty
428 for elem
in iterable
:
429 self
[elem
] = self_get(elem
, 0) + 1
434 'Like dict.copy() but returns a Counter instance instead of a dict.'
437 def __delitem__(self
, elem
):
438 'Like dict.__delitem__() but does not raise KeyError for missing values.'
440 dict.__delitem
__(self
, elem
)
444 return '%s()' % self
.__class
__.__name
__
445 items
= ', '.join(map('%r: %r'.__mod
__, self
.most_common()))
446 return '%s({%s})' % (self
.__class
__.__name
__, items
)
448 # Multiset-style mathematical operations discussed in:
449 # Knuth TAOCP Volume II section 4.6.3 exercise 19
450 # and at http://en.wikipedia.org/wiki/Multiset
452 # Outputs guaranteed to only include positive counts.
454 # To strip negative and zero counts, add-in an empty counter:
457 def __add__(self
, other
):
458 '''Add counts from two counters.
460 >>> Counter('abbb') + Counter('bcc')
461 Counter({'b': 4, 'c': 2, 'a': 1})
464 if not isinstance(other
, Counter
):
465 return NotImplemented
467 for elem
in set(self
) |
set(other
):
468 newcount
= self
[elem
] + other
[elem
]
470 result
[elem
] = newcount
473 def __sub__(self
, other
):
474 ''' Subtract count, but keep only results with positive counts.
476 >>> Counter('abbbc') - Counter('bccd')
477 Counter({'b': 2, 'a': 1})
480 if not isinstance(other
, Counter
):
481 return NotImplemented
483 for elem
in set(self
) |
set(other
):
484 newcount
= self
[elem
] - other
[elem
]
486 result
[elem
] = newcount
489 def __or__(self
, other
):
490 '''Union is the maximum of value in either of the input counters.
492 >>> Counter('abbb') | Counter('bcc')
493 Counter({'b': 3, 'c': 2, 'a': 1})
496 if not isinstance(other
, Counter
):
497 return NotImplemented
499 for elem
in set(self
) |
set(other
):
500 p
, q
= self
[elem
], other
[elem
]
501 newcount
= q
if p
< q
else p
503 result
[elem
] = newcount
506 def __and__(self
, other
):
507 ''' Intersection is the minimum of corresponding counts.
509 >>> Counter('abbb') & Counter('bcc')
513 if not isinstance(other
, Counter
):
514 return NotImplemented
516 if len(self
) < len(other
):
517 self
, other
= other
, self
518 for elem
in _ifilter(self
.__contains
__, other
):
519 p
, q
= self
[elem
], other
[elem
]
520 newcount
= p
if p
< q
else q
522 result
[elem
] = newcount
526 if __name__
== '__main__':
527 # verify that instances can be pickled
528 from cPickle
import loads
, dumps
529 Point
= namedtuple('Point', 'x, y', True)
530 p
= Point(x
=10, y
=20)
531 assert p
== loads(dumps(p
))
533 # test and demonstrate ability to override methods
534 class Point(namedtuple('Point', 'x y')):
538 return (self
.x
** 2 + self
.y
** 2) ** 0.5
540 return 'Point: x=%6.3f y=%6.3f hypot=%6.3f' % (self
.x
, self
.y
, self
.hypot
)
542 for p
in Point(3, 4), Point(14, 5/7.):
545 class Point(namedtuple('Point', 'x y')):
546 'Point class with optimized _make() and _replace() without error-checking'
548 _make
= classmethod(tuple.__new
__)
549 def _replace(self
, _map
=map, **kwds
):
550 return self
._make
(_map(kwds
.get
, ('x', 'y'), self
))
552 print Point(11, 22)._replace
(x
=100)
554 Point3D
= namedtuple('Point3D', Point
._fields
+ ('z',))
555 print Point3D
.__doc
__
558 TestResults
= namedtuple('TestResults', 'failed attempted')
559 print TestResults(*doctest
.testmod())