2 :mod:`collections` --- High-performance container datatypes
3 ===========================================================
5 .. module:: collections
6 :synopsis: High-performance datatypes
7 .. moduleauthor:: Raymond Hettinger <python@rcn.com>
8 .. sectionauthor:: Raymond Hettinger <python@rcn.com>
14 from collections import *
16 __name__ = '<doctest>'
18 This module implements high-performance container datatypes. Currently,
19 there are four datatypes, :class:`Counter`, :class:`deque`, :class:`OrderedDict` and
20 :class:`defaultdict`, and one datatype factory function, :func:`namedtuple`.
22 The specialized containers provided in this module provide alternatives
23 to Python's general purpose built-in containers, :class:`dict`,
24 :class:`list`, :class:`set`, and :class:`tuple`.
26 .. versionchanged:: 2.4
29 .. versionchanged:: 2.5
30 Added :class:`defaultdict`.
32 .. versionchanged:: 2.6
33 Added :func:`namedtuple` and added abstract base classes.
35 .. versionchanged:: 2.7
36 Added :class:`Counter` and :class:`OrderedDict`.
38 In addition to containers, the collections module provides some ABCs
39 (abstract base classes) that can be used to test whether a class
40 provides a particular interface, for example, whether it is hashable or
44 ABCs - abstract base classes
45 ----------------------------
47 The collections module offers the following ABCs:
49 ========================= ===================== ====================== ====================================================
50 ABC Inherits Abstract Methods Mixin Methods
51 ========================= ===================== ====================== ====================================================
52 :class:`Container` ``__contains__``
53 :class:`Hashable` ``__hash__``
54 :class:`Iterable` ``__iter__``
55 :class:`Iterator` :class:`Iterable` ``__next__`` ``__iter__``
56 :class:`Sized` ``__len__``
57 :class:`Callable` ``__call__``
59 :class:`Sequence` :class:`Sized`, ``__getitem__`` ``__contains__``. ``__iter__``, ``__reversed__``.
60 :class:`Iterable`, ``index``, and ``count``
63 :class:`MutableSequence` :class:`Sequence` ``__setitem__`` Inherited Sequence methods and
64 ``__delitem__``, ``append``, ``reverse``, ``extend``, ``pop``,
65 and ``insert`` ``remove``, and ``__iadd__``
67 :class:`Set` :class:`Sized`, ``__le__``, ``__lt__``, ``__eq__``, ``__ne__``,
68 :class:`Iterable`, ``__gt__``, ``__ge__``, ``__and__``, ``__or__``
69 :class:`Container` ``__sub__``, ``__xor__``, and ``isdisjoint``
71 :class:`MutableSet` :class:`Set` ``add`` and Inherited Set methods and
72 ``discard`` ``clear``, ``pop``, ``remove``, ``__ior__``,
73 ``__iand__``, ``__ixor__``, and ``__isub__``
75 :class:`Mapping` :class:`Sized`, ``__getitem__`` ``__contains__``, ``keys``, ``items``, ``values``,
76 :class:`Iterable`, ``get``, ``__eq__``, and ``__ne__``
79 :class:`MutableMapping` :class:`Mapping` ``__setitem__`` and Inherited Mapping methods and
80 ``__delitem__`` ``pop``, ``popitem``, ``clear``, ``update``,
84 :class:`MappingView` :class:`Sized` ``__len__``
85 :class:`KeysView` :class:`MappingView`, ``__contains__``,
86 :class:`Set` ``__iter__``
87 :class:`ItemsView` :class:`MappingView`, ``__contains__``,
88 :class:`Set` ``__iter__``
89 :class:`ValuesView` :class:`MappingView` ``__contains__``, ``__iter__``
90 ========================= ===================== ====================== ====================================================
92 These ABCs allow us to ask classes or instances if they provide
93 particular functionality, for example::
96 if isinstance(myvar, collections.Sized):
99 Several of the ABCs are also useful as mixins that make it easier to develop
100 classes supporting container APIs. For example, to write a class supporting
101 the full :class:`Set` API, it only necessary to supply the three underlying
102 abstract methods: :meth:`__contains__`, :meth:`__iter__`, and :meth:`__len__`.
103 The ABC supplies the remaining methods such as :meth:`__and__` and
104 :meth:`isdisjoint` ::
106 class ListBasedSet(collections.Set):
107 ''' Alternate set implementation favoring space over speed
108 and not requiring the set elements to be hashable. '''
109 def __init__(self, iterable):
110 self.elements = lst = []
111 for value in iterable:
115 return iter(self.elements)
116 def __contains__(self, value):
117 return value in self.elements
119 return len(self.elements)
121 s1 = ListBasedSet('abcdef')
122 s2 = ListBasedSet('defghi')
123 overlap = s1 & s2 # The __and__() method is supported automatically
125 Notes on using :class:`Set` and :class:`MutableSet` as a mixin:
128 Since some set operations create new sets, the default mixin methods need
129 a way to create new instances from an iterable. The class constructor is
130 assumed to have a signature in the form ``ClassName(iterable)``.
131 That assumption is factored-out to an internal classmethod called
132 :meth:`_from_iterable` which calls ``cls(iterable)`` to produce a new set.
133 If the :class:`Set` mixin is being used in a class with a different
134 constructor signature, you will need to override :meth:`from_iterable`
135 with a classmethod that can construct new instances from
136 an iterable argument.
139 To override the comparisons (presumably for speed, as the
140 semantics are fixed), redefine :meth:`__le__` and
141 then the other operations will automatically follow suit.
144 The :class:`Set` mixin provides a :meth:`_hash` method to compute a hash value
145 for the set; however, :meth:`__hash__` is not defined because not all sets
146 are hashable or immutable. To add set hashabilty using mixins,
147 inherit from both :meth:`Set` and :meth:`Hashable`, then define
148 ``__hash__ = Set._hash``.
152 * `OrderedSet recipe <http://code.activestate.com/recipes/576694/>`_ for an
153 example built on :class:`MutableSet`.
155 * For more about ABCs, see the :mod:`abc` module and :pep:`3119`.
158 :class:`Counter` objects
159 ------------------------
161 A counter tool is provided to support convenient and rapid tallies.
164 >>> # Tally occurrences of words in a list
166 >>> for word in ['red', 'blue', 'red', 'green', 'blue', 'blue']:
169 Counter({'blue': 3, 'red': 2, 'green': 1})
171 >>> # Find the ten most common words in Hamlet
173 >>> words = re.findall('\w+', open('hamlet.txt').read().lower())
174 >>> Counter(words).most_common(10)
175 [('the', 1143), ('and', 966), ('to', 762), ('of', 669), ('i', 631),
176 ('you', 554), ('a', 546), ('my', 514), ('hamlet', 471), ('in', 451)]
178 .. class:: Counter([iterable-or-mapping])
180 A :class:`Counter` is a :class:`dict` subclass for counting hashable objects.
181 It is an unordered collection where elements are stored as dictionary keys
182 and their counts are stored as dictionary values. Counts are allowed to be
183 any integer value including zero or negative counts. The :class:`Counter`
184 class is similar to bags or multisets in other languages.
186 Elements are counted from an *iterable* or initialized from another
187 *mapping* (or counter):
189 >>> c = Counter() # a new, empty counter
190 >>> c = Counter('gallahad') # a new counter from an iterable
191 >>> c = Counter({'red': 4, 'blue': 2}) # a new counter from a mapping
192 >>> c = Counter(cats=4, dogs=8) # a new counter from keyword args
194 Counter objects have a dictionary interface except that they return a zero
195 count for missing items instead of raising a :exc:`KeyError`:
197 >>> c = Counter(['eggs', 'ham'])
198 >>> c['bacon'] # count of a missing element is zero
201 Setting a count to zero does not remove an element from a counter.
202 Use ``del`` to remove it entirely:
204 >>> c['sausage'] = 0 # counter entry with a zero count
205 >>> del c['sausage'] # del actually removes the entry
207 .. versionadded:: 2.7
210 Counter objects support two methods beyond those available for all
213 .. method:: elements()
215 Return an iterator over elements repeating each as many times as its
216 count. Elements are returned in arbitrary order. If an element's count
217 is less than one, :meth:`elements` will ignore it.
219 >>> c = Counter(a=4, b=2, c=0, d=-2)
220 >>> list(c.elements())
221 ['a', 'a', 'a', 'a', 'b', 'b']
223 .. method:: most_common([n])
225 Return a list of the *n* most common elements and their counts from the
226 most common to the least. If *n* is not specified, :func:`most_common`
227 returns *all* elements in the counter. Elements with equal counts are
230 >>> Counter('abracadabra').most_common(3)
231 [('a', 5), ('r', 2), ('b', 2)]
233 The usual dictionary methods are available for :class:`Counter` objects
234 except for two which work differently for counters.
236 .. method:: fromkeys(iterable)
238 This class method is not implemented for :class:`Counter` objects.
240 .. method:: update([iterable-or-mapping])
242 Elements are counted from an *iterable* or added-in from another
243 *mapping* (or counter). Like :meth:`dict.update` but adds counts
244 instead of replacing them. Also, the *iterable* is expected to be a
245 sequence of elements, not a sequence of ``(key, value)`` pairs.
247 Common patterns for working with :class:`Counter` objects::
249 sum(c.values()) # total of all counts
250 c.clear() # reset all counts
251 list(c) # list unique elements
252 set(c) # convert to a set
253 dict(c) # convert to a regular dictionary
254 c.items() # convert to a list of (elem, cnt) pairs
255 Counter(dict(list_of_pairs)) # convert from a list of (elem, cnt) pairs
256 c.most_common()[:-n:-1] # n least common elements
257 c += Counter() # remove zero and negative counts
259 Several mathematical operations are provided for combining :class:`Counter`
260 objects to produce multisets (counters that have counts greater than zero).
261 Addition and subtraction combine counters by adding or subtracting the counts
262 of corresponding elements. Intersection and union return the minimum and
263 maximum of corresponding counts. Each operation can accept inputs with signed
264 counts, but the output will exclude results with counts of zero or less.
266 >>> c = Counter(a=3, b=1)
267 >>> d = Counter(a=1, b=2)
268 >>> c + d # add two counters together: c[x] + d[x]
269 Counter({'a': 4, 'b': 3})
270 >>> c - d # subtract (keeping only positive counts)
272 >>> c & d # intersection: min(c[x], d[x])
273 Counter({'a': 1, 'b': 1})
274 >>> c | d # union: max(c[x], d[x])
275 Counter({'a': 3, 'b': 2})
279 * `Counter class <http://code.activestate.com/recipes/576611/>`_
280 adapted for Python 2.5 and an early `Bag recipe
281 <http://code.activestate.com/recipes/259174/>`_ for Python 2.4.
283 * `Bag class <http://www.gnu.org/software/smalltalk/manual-base/html_node/Bag.html>`_
286 * Wikipedia entry for `Multisets <http://en.wikipedia.org/wiki/Multiset>`_\.
288 * `C++ multisets <http://www.demo2s.com/Tutorial/Cpp/0380__set-multiset/Catalog0380__set-multiset.htm>`_
289 tutorial with examples.
291 * For mathematical operations on multisets and their use cases, see
292 *Knuth, Donald. The Art of Computer Programming Volume II,
293 Section 4.6.3, Exercise 19*\.
295 * To enumerate all distinct multisets of a given size over a given set of
296 elements, see :func:`itertools.combinations_with_replacement`.
298 map(Counter, combinations_with_replacement('ABC', 2)) --> AA AB AC BB BC CC
301 :class:`deque` objects
302 ----------------------
304 .. class:: deque([iterable[, maxlen]])
306 Returns a new deque object initialized left-to-right (using :meth:`append`) with
307 data from *iterable*. If *iterable* is not specified, the new deque is empty.
309 Deques are a generalization of stacks and queues (the name is pronounced "deck"
310 and is short for "double-ended queue"). Deques support thread-safe, memory
311 efficient appends and pops from either side of the deque with approximately the
312 same O(1) performance in either direction.
314 Though :class:`list` objects support similar operations, they are optimized for
315 fast fixed-length operations and incur O(n) memory movement costs for
316 ``pop(0)`` and ``insert(0, v)`` operations which change both the size and
317 position of the underlying data representation.
319 .. versionadded:: 2.4
321 If *maxlen* is not specified or is *None*, deques may grow to an
322 arbitrary length. Otherwise, the deque is bounded to the specified maximum
323 length. Once a bounded length deque is full, when new items are added, a
324 corresponding number of items are discarded from the opposite end. Bounded
325 length deques provide functionality similar to the ``tail`` filter in
326 Unix. They are also useful for tracking transactions and other pools of data
327 where only the most recent activity is of interest.
329 .. versionchanged:: 2.6
330 Added *maxlen* parameter.
332 Deque objects support the following methods:
335 .. method:: append(x)
337 Add *x* to the right side of the deque.
340 .. method:: appendleft(x)
342 Add *x* to the left side of the deque.
347 Remove all elements from the deque leaving it with length 0.
350 .. method:: extend(iterable)
352 Extend the right side of the deque by appending elements from the iterable
356 .. method:: extendleft(iterable)
358 Extend the left side of the deque by appending elements from *iterable*.
359 Note, the series of left appends results in reversing the order of
360 elements in the iterable argument.
365 Remove and return an element from the right side of the deque. If no
366 elements are present, raises an :exc:`IndexError`.
369 .. method:: popleft()
371 Remove and return an element from the left side of the deque. If no
372 elements are present, raises an :exc:`IndexError`.
375 .. method:: remove(value)
377 Removed the first occurrence of *value*. If not found, raises a
380 .. versionadded:: 2.5
383 .. method:: rotate(n)
385 Rotate the deque *n* steps to the right. If *n* is negative, rotate to
386 the left. Rotating one step to the right is equivalent to:
387 ``d.appendleft(d.pop())``.
390 Deque objects also provide one read-only attribute:
392 .. attribute:: maxlen
394 Maximum size of a deque or *None* if unbounded.
396 .. versionadded:: 2.7
399 In addition to the above, deques support iteration, pickling, ``len(d)``,
400 ``reversed(d)``, ``copy.copy(d)``, ``copy.deepcopy(d)``, membership testing with
401 the :keyword:`in` operator, and subscript references such as ``d[-1]``. Indexed
402 access is O(1) at both ends but slows to O(n) in the middle. For fast random
403 access, use lists instead.
409 >>> from collections import deque
410 >>> d = deque('ghi') # make a new deque with three items
411 >>> for elem in d: # iterate over the deque's elements
412 ... print elem.upper()
417 >>> d.append('j') # add a new entry to the right side
418 >>> d.appendleft('f') # add a new entry to the left side
419 >>> d # show the representation of the deque
420 deque(['f', 'g', 'h', 'i', 'j'])
422 >>> d.pop() # return and remove the rightmost item
424 >>> d.popleft() # return and remove the leftmost item
426 >>> list(d) # list the contents of the deque
428 >>> d[0] # peek at leftmost item
430 >>> d[-1] # peek at rightmost item
433 >>> list(reversed(d)) # list the contents of a deque in reverse
435 >>> 'h' in d # search the deque
437 >>> d.extend('jkl') # add multiple elements at once
439 deque(['g', 'h', 'i', 'j', 'k', 'l'])
440 >>> d.rotate(1) # right rotation
442 deque(['l', 'g', 'h', 'i', 'j', 'k'])
443 >>> d.rotate(-1) # left rotation
445 deque(['g', 'h', 'i', 'j', 'k', 'l'])
447 >>> deque(reversed(d)) # make a new deque in reverse order
448 deque(['l', 'k', 'j', 'i', 'h', 'g'])
449 >>> d.clear() # empty the deque
450 >>> d.pop() # cannot pop from an empty deque
451 Traceback (most recent call last):
452 File "<pyshell#6>", line 1, in -toplevel-
454 IndexError: pop from an empty deque
456 >>> d.extendleft('abc') # extendleft() reverses the input order
458 deque(['c', 'b', 'a'])
461 :class:`deque` Recipes
462 ^^^^^^^^^^^^^^^^^^^^^^
464 This section shows various approaches to working with deques.
466 Bounded length deques provide functionality similar to the ``tail`` filter
469 def tail(filename, n=10):
470 'Return the last n lines of a file'
471 return deque(open(filename), n)
473 Another approach to using deques is to maintain a sequence of recently
474 added elements by appending to the right and popping to the left::
476 def moving_average(iterable, n=3):
477 # moving_average([40, 30, 50, 46, 39, 44]) --> 40.0 42.0 45.0 43.0
478 # http://en.wikipedia.org/wiki/Moving_average
480 d = deque(itertools.islice(it, n-1))
484 s += elem - d.popleft()
488 The :meth:`rotate` method provides a way to implement :class:`deque` slicing and
489 deletion. For example, a pure python implementation of ``del d[n]`` relies on
490 the :meth:`rotate` method to position elements to be popped::
492 def delete_nth(d, n):
497 To implement :class:`deque` slicing, use a similar approach applying
498 :meth:`rotate` to bring a target element to the left side of the deque. Remove
499 old entries with :meth:`popleft`, add new entries with :meth:`extend`, and then
500 reverse the rotation.
501 With minor variations on that approach, it is easy to implement Forth style
502 stack manipulations such as ``dup``, ``drop``, ``swap``, ``over``, ``pick``,
503 ``rot``, and ``roll``.
506 :class:`defaultdict` objects
507 ----------------------------
509 .. class:: defaultdict([default_factory[, ...]])
511 Returns a new dictionary-like object. :class:`defaultdict` is a subclass of the
512 built-in :class:`dict` class. It overrides one method and adds one writable
513 instance variable. The remaining functionality is the same as for the
514 :class:`dict` class and is not documented here.
516 The first argument provides the initial value for the :attr:`default_factory`
517 attribute; it defaults to ``None``. All remaining arguments are treated the same
518 as if they were passed to the :class:`dict` constructor, including keyword
521 .. versionadded:: 2.5
523 :class:`defaultdict` objects support the following method in addition to the
524 standard :class:`dict` operations:
527 .. method:: defaultdict.__missing__(key)
529 If the :attr:`default_factory` attribute is ``None``, this raises a
530 :exc:`KeyError` exception with the *key* as argument.
532 If :attr:`default_factory` is not ``None``, it is called without arguments
533 to provide a default value for the given *key*, this value is inserted in
534 the dictionary for the *key*, and returned.
536 If calling :attr:`default_factory` raises an exception this exception is
537 propagated unchanged.
539 This method is called by the :meth:`__getitem__` method of the
540 :class:`dict` class when the requested key is not found; whatever it
541 returns or raises is then returned or raised by :meth:`__getitem__`.
544 :class:`defaultdict` objects support the following instance variable:
547 .. attribute:: defaultdict.default_factory
549 This attribute is used by the :meth:`__missing__` method; it is
550 initialized from the first argument to the constructor, if present, or to
554 :class:`defaultdict` Examples
555 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
557 Using :class:`list` as the :attr:`default_factory`, it is easy to group a
558 sequence of key-value pairs into a dictionary of lists:
560 >>> s = [('yellow', 1), ('blue', 2), ('yellow', 3), ('blue', 4), ('red', 1)]
561 >>> d = defaultdict(list)
566 [('blue', [2, 4]), ('red', [1]), ('yellow', [1, 3])]
568 When each key is encountered for the first time, it is not already in the
569 mapping; so an entry is automatically created using the :attr:`default_factory`
570 function which returns an empty :class:`list`. The :meth:`list.append`
571 operation then attaches the value to the new list. When keys are encountered
572 again, the look-up proceeds normally (returning the list for that key) and the
573 :meth:`list.append` operation adds another value to the list. This technique is
574 simpler and faster than an equivalent technique using :meth:`dict.setdefault`:
578 ... d.setdefault(k, []).append(v)
581 [('blue', [2, 4]), ('red', [1]), ('yellow', [1, 3])]
583 Setting the :attr:`default_factory` to :class:`int` makes the
584 :class:`defaultdict` useful for counting (like a bag or multiset in other
587 >>> s = 'mississippi'
588 >>> d = defaultdict(int)
593 [('i', 4), ('p', 2), ('s', 4), ('m', 1)]
595 When a letter is first encountered, it is missing from the mapping, so the
596 :attr:`default_factory` function calls :func:`int` to supply a default count of
597 zero. The increment operation then builds up the count for each letter.
599 The function :func:`int` which always returns zero is just a special case of
600 constant functions. A faster and more flexible way to create constant functions
601 is to use :func:`itertools.repeat` which can supply any constant value (not just
604 >>> def constant_factory(value):
605 ... return itertools.repeat(value).next
606 >>> d = defaultdict(constant_factory('<missing>'))
607 >>> d.update(name='John', action='ran')
608 >>> '%(name)s %(action)s to %(object)s' % d
609 'John ran to <missing>'
611 Setting the :attr:`default_factory` to :class:`set` makes the
612 :class:`defaultdict` useful for building a dictionary of sets:
614 >>> s = [('red', 1), ('blue', 2), ('red', 3), ('blue', 4), ('red', 1), ('blue', 4)]
615 >>> d = defaultdict(set)
620 [('blue', set([2, 4])), ('red', set([1, 3]))]
623 :func:`namedtuple` Factory Function for Tuples with Named Fields
624 ----------------------------------------------------------------
626 Named tuples assign meaning to each position in a tuple and allow for more readable,
627 self-documenting code. They can be used wherever regular tuples are used, and
628 they add the ability to access fields by name instead of position index.
630 .. function:: namedtuple(typename, field_names, [verbose], [rename])
632 Returns a new tuple subclass named *typename*. The new subclass is used to
633 create tuple-like objects that have fields accessible by attribute lookup as
634 well as being indexable and iterable. Instances of the subclass also have a
635 helpful docstring (with typename and field_names) and a helpful :meth:`__repr__`
636 method which lists the tuple contents in a ``name=value`` format.
638 The *field_names* are a single string with each fieldname separated by whitespace
639 and/or commas, for example ``'x y'`` or ``'x, y'``. Alternatively, *field_names*
640 can be a sequence of strings such as ``['x', 'y']``.
642 Any valid Python identifier may be used for a fieldname except for names
643 starting with an underscore. Valid identifiers consist of letters, digits,
644 and underscores but do not start with a digit or underscore and cannot be
645 a :mod:`keyword` such as *class*, *for*, *return*, *global*, *pass*, *print*,
648 If *rename* is true, invalid fieldnames are automatically replaced
649 with positional names. For example, ``['abc', 'def', 'ghi', 'abc']`` is
650 converted to ``['abc', '_1', 'ghi', '_3']``, eliminating the keyword
651 ``def`` and the duplicate fieldname ``abc``.
653 If *verbose* is true, the class definition is printed just before being built.
655 Named tuple instances do not have per-instance dictionaries, so they are
656 lightweight and require no more memory than regular tuples.
658 .. versionadded:: 2.6
660 .. versionchanged:: 2.7
661 added support for *rename*.
666 :options: +NORMALIZE_WHITESPACE
668 >>> Point = namedtuple('Point', 'x y', verbose=True)
676 def __new__(_cls, x, y):
677 return _tuple.__new__(_cls, (x, y))
680 def _make(cls, iterable, new=tuple.__new__, len=len):
681 'Make a new Point object from a sequence or iterable'
682 result = new(cls, iterable)
684 raise TypeError('Expected 2 arguments, got %d' % len(result))
688 return 'Point(x=%r, y=%r)' % self
691 'Return a new OrderedDict which maps field names to their values'
692 return OrderedDict(zip(self._fields, self))
694 def _replace(_self, **kwds):
695 'Return a new Point object replacing specified fields with new values'
696 result = _self._make(map(kwds.pop, ('x', 'y'), _self))
698 raise ValueError('Got unexpected field names: %r' % kwds.keys())
701 def __getnewargs__(self):
704 x = _property(_itemgetter(0))
705 y = _property(_itemgetter(1))
707 >>> p = Point(11, y=22) # instantiate with positional or keyword arguments
708 >>> p[0] + p[1] # indexable like the plain tuple (11, 22)
710 >>> x, y = p # unpack like a regular tuple
713 >>> p.x + p.y # fields also accessible by name
715 >>> p # readable __repr__ with a name=value style
718 Named tuples are especially useful for assigning field names to result tuples returned
719 by the :mod:`csv` or :mod:`sqlite3` modules::
721 EmployeeRecord = namedtuple('EmployeeRecord', 'name, age, title, department, paygrade')
724 for emp in map(EmployeeRecord._make, csv.reader(open("employees.csv", "rb"))):
725 print emp.name, emp.title
728 conn = sqlite3.connect('/companydata')
729 cursor = conn.cursor()
730 cursor.execute('SELECT name, age, title, department, paygrade FROM employees')
731 for emp in map(EmployeeRecord._make, cursor.fetchall()):
732 print emp.name, emp.title
734 In addition to the methods inherited from tuples, named tuples support
735 three additional methods and one attribute. To prevent conflicts with
736 field names, the method and attribute names start with an underscore.
738 .. method:: somenamedtuple._make(iterable)
740 Class method that makes a new instance from an existing sequence or iterable.
748 .. method:: somenamedtuple._asdict()
750 Return a new :class:`OrderedDict` which maps field names to their corresponding
754 OrderedDict([('x', 11), ('y', 22)])
756 .. versionchanged:: 2.7
757 Returns an :class:`OrderedDict` instead of a regular :class:`dict`.
759 .. method:: somenamedtuple._replace(kwargs)
761 Return a new instance of the named tuple replacing specified fields with new
764 >>> p = Point(x=11, y=22)
768 >>> for partnum, record in inventory.items():
769 ... inventory[partnum] = record._replace(price=newprices[partnum], timestamp=time.now())
771 .. attribute:: somenamedtuple._fields
773 Tuple of strings listing the field names. Useful for introspection
774 and for creating new named tuple types from existing named tuples.
778 >>> p._fields # view the field names
781 >>> Color = namedtuple('Color', 'red green blue')
782 >>> Pixel = namedtuple('Pixel', Point._fields + Color._fields)
783 >>> Pixel(11, 22, 128, 255, 0)
784 Pixel(x=11, y=22, red=128, green=255, blue=0)
786 To retrieve a field whose name is stored in a string, use the :func:`getattr`
792 To convert a dictionary to a named tuple, use the double-star-operator
793 (as described in :ref:`tut-unpacking-arguments`):
795 >>> d = {'x': 11, 'y': 22}
799 Since a named tuple is a regular Python class, it is easy to add or change
800 functionality with a subclass. Here is how to add a calculated field and
801 a fixed-width print format:
803 >>> class Point(namedtuple('Point', 'x y')):
807 ... return (self.x ** 2 + self.y ** 2) ** 0.5
808 ... def __str__(self):
809 ... return 'Point: x=%6.3f y=%6.3f hypot=%6.3f' % (self.x, self.y, self.hypot)
811 >>> for p in Point(3, 4), Point(14, 5/7.):
813 Point: x= 3.000 y= 4.000 hypot= 5.000
814 Point: x=14.000 y= 0.714 hypot=14.018
816 The subclass shown above sets ``__slots__`` to an empty tuple. This keeps
817 keep memory requirements low by preventing the creation of instance dictionaries.
819 Subclassing is not useful for adding new, stored fields. Instead, simply
820 create a new named tuple type from the :attr:`_fields` attribute:
822 >>> Point3D = namedtuple('Point3D', Point._fields + ('z',))
824 Default values can be implemented by using :meth:`_replace` to
825 customize a prototype instance:
827 >>> Account = namedtuple('Account', 'owner balance transaction_count')
828 >>> default_account = Account('<owner name>', 0.0, 0)
829 >>> johns_account = default_account._replace(owner='John')
831 Enumerated constants can be implemented with named tuples, but it is simpler
832 and more efficient to use a simple class declaration:
834 >>> Status = namedtuple('Status', 'open pending closed')._make(range(3))
835 >>> Status.open, Status.pending, Status.closed
838 ... open, pending, closed = range(3)
842 `Named tuple recipe <http://code.activestate.com/recipes/500261/>`_
843 adapted for Python 2.4.
846 :class:`OrderedDict` objects
847 ----------------------------
849 Ordered dictionaries are just like regular dictionaries but they remember the
850 order that items were inserted. When iterating over an ordered dictionary,
851 the items are returned in the order their keys were first added.
853 .. class:: OrderedDict([items])
855 Return an instance of a dict subclass, supporting the usual :class:`dict`
856 methods. An *OrderedDict* is a dict that remembers the order that keys
857 were first inserted. If a new entry overwrites an existing entry, the
858 original insertion position is left unchanged. Deleting an entry and
859 reinserting it will move it to the end.
861 .. versionadded:: 2.7
863 .. method:: OrderedDict.popitem(last=True)
865 The :meth:`popitem` method for ordered dictionaries returns and removes
866 a (key, value) pair. The pairs are returned in LIFO order if *last* is
867 true or FIFO order if false.
869 In addition to the usual mapping methods, ordered dictionaries also support
870 reverse iteration using :func:`reversed`.
872 Equality tests between :class:`OrderedDict` objects are order-sensitive
873 and are implemented as ``list(od1.items())==list(od2.items())``.
874 Equality tests between :class:`OrderedDict` objects and other
875 :class:`Mapping` objects are order-insensitive like regular dictionaries.
876 This allows :class:`OrderedDict` objects to be substituted anywhere a
877 regular dictionary is used.
879 The :class:`OrderedDict` constructor and :meth:`update` method both accept
880 keyword arguments, but their order is lost because Python's function call
881 semantics pass-in keyword arguments using a regular unordered dictionary.
885 `Equivalent OrderedDict recipe <http://code.activestate.com/recipes/576693/>`_
886 that runs on Python 2.4 or later.