1 /* Definitions of some C99 math library functions, for those platforms
2 that don't implement these functions already. */
8 /* The following copyright notice applies to the original
9 implementations of acosh, asinh and atanh. */
12 * ====================================================
13 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
15 * Developed at SunPro, a Sun Microsystems, Inc. business.
16 * Permission to use, copy, modify, and distribute this
17 * software is freely granted, provided that this notice
19 * ====================================================
22 static const double ln2
= 6.93147180559945286227E-01;
23 static const double two_pow_m28
= 3.7252902984619141E-09; /* 2**-28 */
24 static const double two_pow_p28
= 268435456.0; /* 2**28 */
25 static const double zero
= 0.0;
30 * acosh(x) = log [ x + sqrt(x*x-1) ]
32 * acosh(x) := log(x)+ln2, if x is large; else
33 * acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else
34 * acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1.
37 * acosh(x) is NaN with signal if x<1.
38 * acosh(NaN) is NaN without signal.
47 if (x
< 1.) { /* x < 1; return a signaling NaN */
55 else if (x
>= two_pow_p28
) { /* x > 2**28 */
56 if (Py_IS_INFINITY(x
)) {
59 return log(x
)+ln2
; /* acosh(huge)=log(2x) */
63 return 0.0; /* acosh(1) = 0 */
65 else if (x
> 2.) { /* 2 < x < 2**28 */
67 return log(2.0*x
- 1.0 / (x
+ sqrt(t
- 1.0)));
69 else { /* 1 < x <= 2 */
71 return m_log1p(t
+ sqrt(2.0*t
+ t
*t
));
79 * asinh(x) = sign(x) * log [ |x| + sqrt(x*x+1) ]
81 * asinh(x) := x if 1+x*x=1,
82 * := sign(x)*(log(x)+ln2)) for large |x|, else
83 * := sign(x)*log(2|x|+1/(|x|+sqrt(x*x+1))) if|x|>2, else
84 * := sign(x)*log1p(|x| + x^2/(1 + sqrt(1+x^2)))
91 double absx
= fabs(x
);
93 if (Py_IS_NAN(x
) || Py_IS_INFINITY(x
)) {
96 if (absx
< two_pow_m28
) { /* |x| < 2**-28 */
97 return x
; /* return x inexact except 0 */
99 if (absx
> two_pow_p28
) { /* |x| > 2**28 */
102 else if (absx
> 2.0) { /* 2 < |x| < 2**28 */
103 w
= log(2.0*absx
+ 1.0 / (sqrt(x
*x
+ 1.0) + absx
));
105 else { /* 2**-28 <= |x| < 2= */
107 w
= m_log1p(absx
+ t
/ (1.0 + sqrt(1.0 + t
)));
109 return copysign(w
, x
);
115 * 1.Reduced x to positive by atanh(-x) = -atanh(x)
118 * atanh(x) = --- * log(1 + -------) = 0.5 * log1p(2 * --------)
122 * atanh(x) = 0.5*log1p(2x+2x*x/(1-x))
125 * atanh(x) is NaN if |x| >= 1 with signal;
126 * atanh(NaN) is that NaN with no signal;
140 if (absx
>= 1.) { /* |x| >= 1 */
148 if (absx
< two_pow_m28
) { /* |x| < 2**-28 */
151 if (absx
< 0.5) { /* |x| < 0.5 */
153 t
= 0.5 * m_log1p(t
+ t
*absx
/ (1.0 - absx
));
155 else { /* 0.5 <= |x| <= 1.0 */
156 t
= 0.5 * m_log1p((absx
+ absx
) / (1.0 - absx
));
158 return copysign(t
, x
);
161 /* Mathematically, expm1(x) = exp(x) - 1. The expm1 function is designed
162 to avoid the significant loss of precision that arises from direct
163 evaluation of the expression exp(x) - 1, for x near 0. */
168 /* For abs(x) >= log(2), it's safe to evaluate exp(x) - 1 directly; this
169 also works fine for infinities and nans.
171 For smaller x, we can use a method due to Kahan that achieves close to
181 return (u
- 1.0) * x
/ log(u
);
187 /* log1p(x) = log(1+x). The log1p function is designed to avoid the
188 significant loss of precision that arises from direct evaluation when x is
194 /* For x small, we use the following approach. Let y be the nearest float
197 1+x = y * (1 - (y-1-x)/y)
199 so log(1+x) = log(y) + log(1-(y-1-x)/y). Since (y-1-x)/y is tiny, the
200 second term is well approximated by (y-1-x)/y. If abs(x) >=
201 DBL_EPSILON/2 or the rounding-mode is some form of round-to-nearest
202 then y-1-x will be exactly representable, and is computed exactly by
205 If abs(x) < DBL_EPSILON/2 and the rounding mode is not known to be
206 round-to-nearest then this method is slightly dangerous: 1+x could be
207 rounded up to 1+DBL_EPSILON instead of down to 1, and in that case
208 y-1-x will not be exactly representable any more and the result can be
209 off by many ulps. But this is easily fixed: for a floating-point
210 number |x| < DBL_EPSILON/2., the closest floating-point number to
211 log(1+x) is exactly x.
215 if (fabs(x
) < DBL_EPSILON
/2.) {
217 } else if (-0.5 <= x
&& x
<= 1.) {
218 /* WARNING: it's possible than an overeager compiler
219 will incorrectly optimize the following two lines
220 to the equivalent of "return log(1.+x)". If this
221 happens, then results from log1p will be inaccurate
224 return log(y
)-((y
-1.)-x
)/y
;
226 /* NaNs and infinities should end up here */