1 /* C implementation for the date/time type documented at
2 * http://www.zope.org/Members/fdrake/DateTimeWiki/FrontPage
5 #define PY_SSIZE_T_CLEAN
8 #include "modsupport.h"
9 #include "structmember.h"
13 #include "timefuncs.h"
15 /* Differentiate between building the core module and building extension
24 /* We require that C int be at least 32 bits, and use int virtually
25 * everywhere. In just a few cases we use a temp long, where a Python
26 * API returns a C long. In such cases, we have to ensure that the
27 * final result fits in a C int (this can be an issue on 64-bit boxes).
30 # error "datetime.c requires that C int have at least 32 bits"
36 /* Nine decimal digits is easy to communicate, and leaves enough room
37 * so that two delta days can be added w/o fear of overflowing a signed
38 * 32-bit int, and with plenty of room left over to absorb any possible
39 * carries from adding seconds.
41 #define MAX_DELTA_DAYS 999999999
43 /* Rename the long macros in datetime.h to more reasonable short names. */
44 #define GET_YEAR PyDateTime_GET_YEAR
45 #define GET_MONTH PyDateTime_GET_MONTH
46 #define GET_DAY PyDateTime_GET_DAY
47 #define DATE_GET_HOUR PyDateTime_DATE_GET_HOUR
48 #define DATE_GET_MINUTE PyDateTime_DATE_GET_MINUTE
49 #define DATE_GET_SECOND PyDateTime_DATE_GET_SECOND
50 #define DATE_GET_MICROSECOND PyDateTime_DATE_GET_MICROSECOND
52 /* Date accessors for date and datetime. */
53 #define SET_YEAR(o, v) (((o)->data[0] = ((v) & 0xff00) >> 8), \
54 ((o)->data[1] = ((v) & 0x00ff)))
55 #define SET_MONTH(o, v) (PyDateTime_GET_MONTH(o) = (v))
56 #define SET_DAY(o, v) (PyDateTime_GET_DAY(o) = (v))
58 /* Date/Time accessors for datetime. */
59 #define DATE_SET_HOUR(o, v) (PyDateTime_DATE_GET_HOUR(o) = (v))
60 #define DATE_SET_MINUTE(o, v) (PyDateTime_DATE_GET_MINUTE(o) = (v))
61 #define DATE_SET_SECOND(o, v) (PyDateTime_DATE_GET_SECOND(o) = (v))
62 #define DATE_SET_MICROSECOND(o, v) \
63 (((o)->data[7] = ((v) & 0xff0000) >> 16), \
64 ((o)->data[8] = ((v) & 0x00ff00) >> 8), \
65 ((o)->data[9] = ((v) & 0x0000ff)))
67 /* Time accessors for time. */
68 #define TIME_GET_HOUR PyDateTime_TIME_GET_HOUR
69 #define TIME_GET_MINUTE PyDateTime_TIME_GET_MINUTE
70 #define TIME_GET_SECOND PyDateTime_TIME_GET_SECOND
71 #define TIME_GET_MICROSECOND PyDateTime_TIME_GET_MICROSECOND
72 #define TIME_SET_HOUR(o, v) (PyDateTime_TIME_GET_HOUR(o) = (v))
73 #define TIME_SET_MINUTE(o, v) (PyDateTime_TIME_GET_MINUTE(o) = (v))
74 #define TIME_SET_SECOND(o, v) (PyDateTime_TIME_GET_SECOND(o) = (v))
75 #define TIME_SET_MICROSECOND(o, v) \
76 (((o)->data[3] = ((v) & 0xff0000) >> 16), \
77 ((o)->data[4] = ((v) & 0x00ff00) >> 8), \
78 ((o)->data[5] = ((v) & 0x0000ff)))
80 /* Delta accessors for timedelta. */
81 #define GET_TD_DAYS(o) (((PyDateTime_Delta *)(o))->days)
82 #define GET_TD_SECONDS(o) (((PyDateTime_Delta *)(o))->seconds)
83 #define GET_TD_MICROSECONDS(o) (((PyDateTime_Delta *)(o))->microseconds)
85 #define SET_TD_DAYS(o, v) ((o)->days = (v))
86 #define SET_TD_SECONDS(o, v) ((o)->seconds = (v))
87 #define SET_TD_MICROSECONDS(o, v) ((o)->microseconds = (v))
89 /* p is a pointer to a time or a datetime object; HASTZINFO(p) returns
92 #define HASTZINFO(p) (((_PyDateTime_BaseTZInfo *)(p))->hastzinfo)
94 /* M is a char or int claiming to be a valid month. The macro is equivalent
95 * to the two-sided Python test
98 #define MONTH_IS_SANE(M) ((unsigned int)(M) - 1 < 12)
100 /* Forward declarations. */
101 static PyTypeObject PyDateTime_DateType
;
102 static PyTypeObject PyDateTime_DateTimeType
;
103 static PyTypeObject PyDateTime_DeltaType
;
104 static PyTypeObject PyDateTime_TimeType
;
105 static PyTypeObject PyDateTime_TZInfoType
;
107 /* ---------------------------------------------------------------------------
111 /* k = i+j overflows iff k differs in sign from both inputs,
112 * iff k^i has sign bit set and k^j has sign bit set,
113 * iff (k^i)&(k^j) has sign bit set.
115 #define SIGNED_ADD_OVERFLOWED(RESULT, I, J) \
116 ((((RESULT) ^ (I)) & ((RESULT) ^ (J))) < 0)
118 /* Compute Python divmod(x, y), returning the quotient and storing the
119 * remainder into *r. The quotient is the floor of x/y, and that's
120 * the real point of this. C will probably truncate instead (C99
121 * requires truncation; C89 left it implementation-defined).
122 * Simplification: we *require* that y > 0 here. That's appropriate
123 * for all the uses made of it. This simplifies the code and makes
124 * the overflow case impossible (divmod(LONG_MIN, -1) is the only
128 divmod(int x
, int y
, int *r
)
139 assert(0 <= *r
&& *r
< y
);
143 /* Round a double to the nearest long. |x| must be small enough to fit
144 * in a C long; this is not checked.
147 round_to_long(double x
)
156 /* ---------------------------------------------------------------------------
157 * General calendrical helper functions
160 /* For each month ordinal in 1..12, the number of days in that month,
161 * and the number of days before that month in the same year. These
162 * are correct for non-leap years only.
164 static int _days_in_month
[] = {
165 0, /* unused; this vector uses 1-based indexing */
166 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
169 static int _days_before_month
[] = {
170 0, /* unused; this vector uses 1-based indexing */
171 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334
174 /* year -> 1 if leap year, else 0. */
178 /* Cast year to unsigned. The result is the same either way, but
179 * C can generate faster code for unsigned mod than for signed
180 * mod (especially for % 4 -- a good compiler should just grab
181 * the last 2 bits when the LHS is unsigned).
183 const unsigned int ayear
= (unsigned int)year
;
184 return ayear
% 4 == 0 && (ayear
% 100 != 0 || ayear
% 400 == 0);
187 /* year, month -> number of days in that month in that year */
189 days_in_month(int year
, int month
)
193 if (month
== 2 && is_leap(year
))
196 return _days_in_month
[month
];
199 /* year, month -> number of days in year preceeding first day of month */
201 days_before_month(int year
, int month
)
207 days
= _days_before_month
[month
];
208 if (month
> 2 && is_leap(year
))
213 /* year -> number of days before January 1st of year. Remember that we
214 * start with year 1, so days_before_year(1) == 0.
217 days_before_year(int year
)
220 /* This is incorrect if year <= 0; we really want the floor
221 * here. But so long as MINYEAR is 1, the smallest year this
222 * can see is 0 (this can happen in some normalization endcases),
223 * so we'll just special-case that.
227 return y
*365 + y
/4 - y
/100 + y
/400;
234 /* Number of days in 4, 100, and 400 year cycles. That these have
235 * the correct values is asserted in the module init function.
237 #define DI4Y 1461 /* days_before_year(5); days in 4 years */
238 #define DI100Y 36524 /* days_before_year(101); days in 100 years */
239 #define DI400Y 146097 /* days_before_year(401); days in 400 years */
241 /* ordinal -> year, month, day, considering 01-Jan-0001 as day 1. */
243 ord_to_ymd(int ordinal
, int *year
, int *month
, int *day
)
245 int n
, n1
, n4
, n100
, n400
, leapyear
, preceding
;
247 /* ordinal is a 1-based index, starting at 1-Jan-1. The pattern of
248 * leap years repeats exactly every 400 years. The basic strategy is
249 * to find the closest 400-year boundary at or before ordinal, then
250 * work with the offset from that boundary to ordinal. Life is much
251 * clearer if we subtract 1 from ordinal first -- then the values
252 * of ordinal at 400-year boundaries are exactly those divisible
256 * -- --- ---- ---------- ----------------
257 * 31 Dec -400 -DI400Y -DI400Y -1
258 * 1 Jan -399 -DI400Y +1 -DI400Y 400-year boundary
262 * 1 Jan 001 1 0 400-year boundary
266 * 31 Dec 400 DI400Y DI400Y -1
267 * 1 Jan 401 DI400Y +1 DI400Y 400-year boundary
269 assert(ordinal
>= 1);
271 n400
= ordinal
/ DI400Y
;
272 n
= ordinal
% DI400Y
;
273 *year
= n400
* 400 + 1;
275 /* Now n is the (non-negative) offset, in days, from January 1 of
276 * year, to the desired date. Now compute how many 100-year cycles
278 * Note that it's possible for n100 to equal 4! In that case 4 full
279 * 100-year cycles precede the desired day, which implies the
280 * desired day is December 31 at the end of a 400-year cycle.
285 /* Now compute how many 4-year cycles precede it. */
289 /* And now how many single years. Again n1 can be 4, and again
290 * meaning that the desired day is December 31 at the end of the
296 *year
+= n100
* 100 + n4
* 4 + n1
;
297 if (n1
== 4 || n100
== 4) {
305 /* Now the year is correct, and n is the offset from January 1. We
306 * find the month via an estimate that's either exact or one too
309 leapyear
= n1
== 3 && (n4
!= 24 || n100
== 3);
310 assert(leapyear
== is_leap(*year
));
311 *month
= (n
+ 50) >> 5;
312 preceding
= (_days_before_month
[*month
] + (*month
> 2 && leapyear
));
314 /* estimate is too large */
316 preceding
-= days_in_month(*year
, *month
);
320 assert(n
< days_in_month(*year
, *month
));
325 /* year, month, day -> ordinal, considering 01-Jan-0001 as day 1. */
327 ymd_to_ord(int year
, int month
, int day
)
329 return days_before_year(year
) + days_before_month(year
, month
) + day
;
332 /* Day of week, where Monday==0, ..., Sunday==6. 1/1/1 was a Monday. */
334 weekday(int year
, int month
, int day
)
336 return (ymd_to_ord(year
, month
, day
) + 6) % 7;
339 /* Ordinal of the Monday starting week 1 of the ISO year. Week 1 is the
340 * first calendar week containing a Thursday.
343 iso_week1_monday(int year
)
345 int first_day
= ymd_to_ord(year
, 1, 1); /* ord of 1/1 */
346 /* 0 if 1/1 is a Monday, 1 if a Tue, etc. */
347 int first_weekday
= (first_day
+ 6) % 7;
348 /* ordinal of closest Monday at or before 1/1 */
349 int week1_monday
= first_day
- first_weekday
;
351 if (first_weekday
> 3) /* if 1/1 was Fri, Sat, Sun */
356 /* ---------------------------------------------------------------------------
360 /* Check that -MAX_DELTA_DAYS <= days <= MAX_DELTA_DAYS. If so, return 0.
361 * If not, raise OverflowError and return -1.
364 check_delta_day_range(int days
)
366 if (-MAX_DELTA_DAYS
<= days
&& days
<= MAX_DELTA_DAYS
)
368 PyErr_Format(PyExc_OverflowError
,
369 "days=%d; must have magnitude <= %d",
370 days
, MAX_DELTA_DAYS
);
374 /* Check that date arguments are in range. Return 0 if they are. If they
375 * aren't, raise ValueError and return -1.
378 check_date_args(int year
, int month
, int day
)
381 if (year
< MINYEAR
|| year
> MAXYEAR
) {
382 PyErr_SetString(PyExc_ValueError
,
383 "year is out of range");
386 if (month
< 1 || month
> 12) {
387 PyErr_SetString(PyExc_ValueError
,
388 "month must be in 1..12");
391 if (day
< 1 || day
> days_in_month(year
, month
)) {
392 PyErr_SetString(PyExc_ValueError
,
393 "day is out of range for month");
399 /* Check that time arguments are in range. Return 0 if they are. If they
400 * aren't, raise ValueError and return -1.
403 check_time_args(int h
, int m
, int s
, int us
)
405 if (h
< 0 || h
> 23) {
406 PyErr_SetString(PyExc_ValueError
,
407 "hour must be in 0..23");
410 if (m
< 0 || m
> 59) {
411 PyErr_SetString(PyExc_ValueError
,
412 "minute must be in 0..59");
415 if (s
< 0 || s
> 59) {
416 PyErr_SetString(PyExc_ValueError
,
417 "second must be in 0..59");
420 if (us
< 0 || us
> 999999) {
421 PyErr_SetString(PyExc_ValueError
,
422 "microsecond must be in 0..999999");
428 /* ---------------------------------------------------------------------------
429 * Normalization utilities.
432 /* One step of a mixed-radix conversion. A "hi" unit is equivalent to
433 * factor "lo" units. factor must be > 0. If *lo is less than 0, or
434 * at least factor, enough of *lo is converted into "hi" units so that
435 * 0 <= *lo < factor. The input values must be such that int overflow
439 normalize_pair(int *hi
, int *lo
, int factor
)
443 if (*lo
< 0 || *lo
>= factor
) {
444 const int num_hi
= divmod(*lo
, factor
, lo
);
445 const int new_hi
= *hi
+ num_hi
;
446 assert(! SIGNED_ADD_OVERFLOWED(new_hi
, *hi
, num_hi
));
449 assert(0 <= *lo
&& *lo
< factor
);
452 /* Fiddle days (d), seconds (s), and microseconds (us) so that
455 * The input values must be such that the internals don't overflow.
456 * The way this routine is used, we don't get close.
459 normalize_d_s_us(int *d
, int *s
, int *us
)
461 if (*us
< 0 || *us
>= 1000000) {
462 normalize_pair(s
, us
, 1000000);
463 /* |s| can't be bigger than about
464 * |original s| + |original us|/1000000 now.
468 if (*s
< 0 || *s
>= 24*3600) {
469 normalize_pair(d
, s
, 24*3600);
470 /* |d| can't be bigger than about
472 * (|original s| + |original us|/1000000) / (24*3600) now.
475 assert(0 <= *s
&& *s
< 24*3600);
476 assert(0 <= *us
&& *us
< 1000000);
479 /* Fiddle years (y), months (m), and days (d) so that
481 * 1 <= *d <= days_in_month(*y, *m)
482 * The input values must be such that the internals don't overflow.
483 * The way this routine is used, we don't get close.
486 normalize_y_m_d(int *y
, int *m
, int *d
)
488 int dim
; /* # of days in month */
490 /* This gets muddy: the proper range for day can't be determined
491 * without knowing the correct month and year, but if day is, e.g.,
492 * plus or minus a million, the current month and year values make
493 * no sense (and may also be out of bounds themselves).
494 * Saying 12 months == 1 year should be non-controversial.
496 if (*m
< 1 || *m
> 12) {
498 normalize_pair(y
, m
, 12);
500 /* |y| can't be bigger than about
501 * |original y| + |original m|/12 now.
504 assert(1 <= *m
&& *m
<= 12);
506 /* Now only day can be out of bounds (year may also be out of bounds
507 * for a datetime object, but we don't care about that here).
508 * If day is out of bounds, what to do is arguable, but at least the
509 * method here is principled and explainable.
511 dim
= days_in_month(*y
, *m
);
512 if (*d
< 1 || *d
> dim
) {
513 /* Move day-1 days from the first of the month. First try to
514 * get off cheap if we're only one day out of range
515 * (adjustments for timezone alone can't be worse than that).
520 *d
= days_in_month(*y
, *m
);
527 else if (*d
== dim
+ 1) {
528 /* move forward a day */
537 int ordinal
= ymd_to_ord(*y
, *m
, 1) +
539 ord_to_ymd(ordinal
, y
, m
, d
);
546 /* Fiddle out-of-bounds months and days so that the result makes some kind
547 * of sense. The parameters are both inputs and outputs. Returns < 0 on
548 * failure, where failure means the adjusted year is out of bounds.
551 normalize_date(int *year
, int *month
, int *day
)
555 normalize_y_m_d(year
, month
, day
);
556 if (MINYEAR
<= *year
&& *year
<= MAXYEAR
)
559 PyErr_SetString(PyExc_OverflowError
,
560 "date value out of range");
566 /* Force all the datetime fields into range. The parameters are both
567 * inputs and outputs. Returns < 0 on error.
570 normalize_datetime(int *year
, int *month
, int *day
,
571 int *hour
, int *minute
, int *second
,
574 normalize_pair(second
, microsecond
, 1000000);
575 normalize_pair(minute
, second
, 60);
576 normalize_pair(hour
, minute
, 60);
577 normalize_pair(day
, hour
, 24);
578 return normalize_date(year
, month
, day
);
581 /* ---------------------------------------------------------------------------
582 * Basic object allocation: tp_alloc implementations. These allocate
583 * Python objects of the right size and type, and do the Python object-
584 * initialization bit. If there's not enough memory, they return NULL after
585 * setting MemoryError. All data members remain uninitialized trash.
587 * We abuse the tp_alloc "nitems" argument to communicate whether a tzinfo
588 * member is needed. This is ugly, imprecise, and possibly insecure.
589 * tp_basicsize for the time and datetime types is set to the size of the
590 * struct that has room for the tzinfo member, so subclasses in Python will
591 * allocate enough space for a tzinfo member whether or not one is actually
592 * needed. That's the "ugly and imprecise" parts. The "possibly insecure"
593 * part is that PyType_GenericAlloc() (which subclasses in Python end up
594 * using) just happens today to effectively ignore the nitems argument
595 * when tp_itemsize is 0, which it is for these type objects. If that
596 * changes, perhaps the callers of tp_alloc slots in this file should
597 * be changed to force a 0 nitems argument unless the type being allocated
598 * is a base type implemented in this file (so that tp_alloc is time_alloc
599 * or datetime_alloc below, which know about the nitems abuse).
603 time_alloc(PyTypeObject
*type
, Py_ssize_t aware
)
608 PyObject_MALLOC(aware
?
609 sizeof(PyDateTime_Time
) :
610 sizeof(_PyDateTime_BaseTime
));
612 return (PyObject
*)PyErr_NoMemory();
613 PyObject_INIT(self
, type
);
618 datetime_alloc(PyTypeObject
*type
, Py_ssize_t aware
)
623 PyObject_MALLOC(aware
?
624 sizeof(PyDateTime_DateTime
) :
625 sizeof(_PyDateTime_BaseDateTime
));
627 return (PyObject
*)PyErr_NoMemory();
628 PyObject_INIT(self
, type
);
632 /* ---------------------------------------------------------------------------
633 * Helpers for setting object fields. These work on pointers to the
634 * appropriate base class.
637 /* For date and datetime. */
639 set_date_fields(PyDateTime_Date
*self
, int y
, int m
, int d
)
647 /* ---------------------------------------------------------------------------
648 * Create various objects, mostly without range checking.
651 /* Create a date instance with no range checking. */
653 new_date_ex(int year
, int month
, int day
, PyTypeObject
*type
)
655 PyDateTime_Date
*self
;
657 self
= (PyDateTime_Date
*) (type
->tp_alloc(type
, 0));
659 set_date_fields(self
, year
, month
, day
);
660 return (PyObject
*) self
;
663 #define new_date(year, month, day) \
664 new_date_ex(year, month, day, &PyDateTime_DateType)
666 /* Create a datetime instance with no range checking. */
668 new_datetime_ex(int year
, int month
, int day
, int hour
, int minute
,
669 int second
, int usecond
, PyObject
*tzinfo
, PyTypeObject
*type
)
671 PyDateTime_DateTime
*self
;
672 char aware
= tzinfo
!= Py_None
;
674 self
= (PyDateTime_DateTime
*) (type
->tp_alloc(type
, aware
));
676 self
->hastzinfo
= aware
;
677 set_date_fields((PyDateTime_Date
*)self
, year
, month
, day
);
678 DATE_SET_HOUR(self
, hour
);
679 DATE_SET_MINUTE(self
, minute
);
680 DATE_SET_SECOND(self
, second
);
681 DATE_SET_MICROSECOND(self
, usecond
);
684 self
->tzinfo
= tzinfo
;
687 return (PyObject
*)self
;
690 #define new_datetime(y, m, d, hh, mm, ss, us, tzinfo) \
691 new_datetime_ex(y, m, d, hh, mm, ss, us, tzinfo, \
692 &PyDateTime_DateTimeType)
694 /* Create a time instance with no range checking. */
696 new_time_ex(int hour
, int minute
, int second
, int usecond
,
697 PyObject
*tzinfo
, PyTypeObject
*type
)
699 PyDateTime_Time
*self
;
700 char aware
= tzinfo
!= Py_None
;
702 self
= (PyDateTime_Time
*) (type
->tp_alloc(type
, aware
));
704 self
->hastzinfo
= aware
;
706 TIME_SET_HOUR(self
, hour
);
707 TIME_SET_MINUTE(self
, minute
);
708 TIME_SET_SECOND(self
, second
);
709 TIME_SET_MICROSECOND(self
, usecond
);
712 self
->tzinfo
= tzinfo
;
715 return (PyObject
*)self
;
718 #define new_time(hh, mm, ss, us, tzinfo) \
719 new_time_ex(hh, mm, ss, us, tzinfo, &PyDateTime_TimeType)
721 /* Create a timedelta instance. Normalize the members iff normalize is
722 * true. Passing false is a speed optimization, if you know for sure
723 * that seconds and microseconds are already in their proper ranges. In any
724 * case, raises OverflowError and returns NULL if the normalized days is out
728 new_delta_ex(int days
, int seconds
, int microseconds
, int normalize
,
731 PyDateTime_Delta
*self
;
734 normalize_d_s_us(&days
, &seconds
, µseconds
);
735 assert(0 <= seconds
&& seconds
< 24*3600);
736 assert(0 <= microseconds
&& microseconds
< 1000000);
738 if (check_delta_day_range(days
) < 0)
741 self
= (PyDateTime_Delta
*) (type
->tp_alloc(type
, 0));
744 SET_TD_DAYS(self
, days
);
745 SET_TD_SECONDS(self
, seconds
);
746 SET_TD_MICROSECONDS(self
, microseconds
);
748 return (PyObject
*) self
;
751 #define new_delta(d, s, us, normalize) \
752 new_delta_ex(d, s, us, normalize, &PyDateTime_DeltaType)
754 /* ---------------------------------------------------------------------------
758 /* Ensure that p is None or of a tzinfo subclass. Return 0 if OK; if not
759 * raise TypeError and return -1.
762 check_tzinfo_subclass(PyObject
*p
)
764 if (p
== Py_None
|| PyTZInfo_Check(p
))
766 PyErr_Format(PyExc_TypeError
,
767 "tzinfo argument must be None or of a tzinfo subclass, "
769 Py_TYPE(p
)->tp_name
);
773 /* Return tzinfo.methname(tzinfoarg), without any checking of results.
774 * If tzinfo is None, returns None.
777 call_tzinfo_method(PyObject
*tzinfo
, char *methname
, PyObject
*tzinfoarg
)
781 assert(tzinfo
&& methname
&& tzinfoarg
);
782 assert(check_tzinfo_subclass(tzinfo
) >= 0);
783 if (tzinfo
== Py_None
) {
788 result
= PyObject_CallMethod(tzinfo
, methname
, "O", tzinfoarg
);
792 /* If self has a tzinfo member, return a BORROWED reference to it. Else
793 * return NULL, which is NOT AN ERROR. There are no error returns here,
794 * and the caller must not decref the result.
797 get_tzinfo_member(PyObject
*self
)
799 PyObject
*tzinfo
= NULL
;
801 if (PyDateTime_Check(self
) && HASTZINFO(self
))
802 tzinfo
= ((PyDateTime_DateTime
*)self
)->tzinfo
;
803 else if (PyTime_Check(self
) && HASTZINFO(self
))
804 tzinfo
= ((PyDateTime_Time
*)self
)->tzinfo
;
809 /* Call getattr(tzinfo, name)(tzinfoarg), and extract an int from the
810 * result. tzinfo must be an instance of the tzinfo class. If the method
811 * returns None, this returns 0 and sets *none to 1. If the method doesn't
812 * return None or timedelta, TypeError is raised and this returns -1. If it
813 * returnsa timedelta and the value is out of range or isn't a whole number
814 * of minutes, ValueError is raised and this returns -1.
815 * Else *none is set to 0 and the integer method result is returned.
818 call_utc_tzinfo_method(PyObject
*tzinfo
, char *name
, PyObject
*tzinfoarg
,
824 assert(tzinfo
!= NULL
);
825 assert(PyTZInfo_Check(tzinfo
));
826 assert(tzinfoarg
!= NULL
);
829 u
= call_tzinfo_method(tzinfo
, name
, tzinfoarg
);
833 else if (u
== Py_None
) {
837 else if (PyDelta_Check(u
)) {
838 const int days
= GET_TD_DAYS(u
);
839 if (days
< -1 || days
> 0)
840 result
= 24*60; /* trigger ValueError below */
842 /* next line can't overflow because we know days
845 int ss
= days
* 24 * 3600 + GET_TD_SECONDS(u
);
846 result
= divmod(ss
, 60, &ss
);
847 if (ss
|| GET_TD_MICROSECONDS(u
)) {
848 PyErr_Format(PyExc_ValueError
,
849 "tzinfo.%s() must return a "
850 "whole number of minutes",
857 PyErr_Format(PyExc_TypeError
,
858 "tzinfo.%s() must return None or "
859 "timedelta, not '%s'",
860 name
, Py_TYPE(u
)->tp_name
);
864 if (result
< -1439 || result
> 1439) {
865 PyErr_Format(PyExc_ValueError
,
866 "tzinfo.%s() returned %d; must be in "
874 /* Call tzinfo.utcoffset(tzinfoarg), and extract an integer from the
875 * result. tzinfo must be an instance of the tzinfo class. If utcoffset()
876 * returns None, call_utcoffset returns 0 and sets *none to 1. If uctoffset()
877 * doesn't return None or timedelta, TypeError is raised and this returns -1.
878 * If utcoffset() returns an invalid timedelta (out of range, or not a whole
879 * # of minutes), ValueError is raised and this returns -1. Else *none is
880 * set to 0 and the offset is returned (as int # of minutes east of UTC).
883 call_utcoffset(PyObject
*tzinfo
, PyObject
*tzinfoarg
, int *none
)
885 return call_utc_tzinfo_method(tzinfo
, "utcoffset", tzinfoarg
, none
);
888 /* Call tzinfo.name(tzinfoarg), and return the offset as a timedelta or None.
891 offset_as_timedelta(PyObject
*tzinfo
, char *name
, PyObject
*tzinfoarg
) {
894 assert(tzinfo
&& name
&& tzinfoarg
);
895 if (tzinfo
== Py_None
) {
901 int offset
= call_utc_tzinfo_method(tzinfo
, name
, tzinfoarg
,
903 if (offset
< 0 && PyErr_Occurred())
910 result
= new_delta(0, offset
* 60, 0, 1);
915 /* Call tzinfo.dst(tzinfoarg), and extract an integer from the
916 * result. tzinfo must be an instance of the tzinfo class. If dst()
917 * returns None, call_dst returns 0 and sets *none to 1. If dst()
918 & doesn't return None or timedelta, TypeError is raised and this
919 * returns -1. If dst() returns an invalid timedelta for a UTC offset,
920 * ValueError is raised and this returns -1. Else *none is set to 0 and
921 * the offset is returned (as an int # of minutes east of UTC).
924 call_dst(PyObject
*tzinfo
, PyObject
*tzinfoarg
, int *none
)
926 return call_utc_tzinfo_method(tzinfo
, "dst", tzinfoarg
, none
);
929 /* Call tzinfo.tzname(tzinfoarg), and return the result. tzinfo must be
930 * an instance of the tzinfo class or None. If tzinfo isn't None, and
931 * tzname() doesn't return None or a string, TypeError is raised and this
935 call_tzname(PyObject
*tzinfo
, PyObject
*tzinfoarg
)
939 assert(tzinfo
!= NULL
);
940 assert(check_tzinfo_subclass(tzinfo
) >= 0);
941 assert(tzinfoarg
!= NULL
);
943 if (tzinfo
== Py_None
) {
948 result
= PyObject_CallMethod(tzinfo
, "tzname", "O", tzinfoarg
);
950 if (result
!= NULL
&& result
!= Py_None
&& ! PyString_Check(result
)) {
951 PyErr_Format(PyExc_TypeError
, "tzinfo.tzname() must "
952 "return None or a string, not '%s'",
953 Py_TYPE(result
)->tp_name
);
961 /* an exception has been set; the caller should pass it on */
964 /* type isn't date, datetime, or time subclass */
968 * datetime with !hastzinfo
969 * datetime with None tzinfo,
970 * datetime where utcoffset() returns None
971 * time with !hastzinfo
972 * time with None tzinfo,
973 * time where utcoffset() returns None
977 /* time or datetime where utcoffset() doesn't return None */
981 /* Classify an object as to whether it's naive or offset-aware. See
982 * the "naivety" typedef for details. If the type is aware, *offset is set
983 * to minutes east of UTC (as returned by the tzinfo.utcoffset() method).
984 * If the type is offset-naive (or unknown, or error), *offset is set to 0.
985 * tzinfoarg is the argument to pass to the tzinfo.utcoffset() method.
988 classify_utcoffset(PyObject
*op
, PyObject
*tzinfoarg
, int *offset
)
993 assert(tzinfoarg
!= NULL
);
995 tzinfo
= get_tzinfo_member(op
); /* NULL means no tzinfo, not error */
996 if (tzinfo
== Py_None
)
998 if (tzinfo
== NULL
) {
999 /* note that a datetime passes the PyDate_Check test */
1000 return (PyTime_Check(op
) || PyDate_Check(op
)) ?
1001 OFFSET_NAIVE
: OFFSET_UNKNOWN
;
1003 *offset
= call_utcoffset(tzinfo
, tzinfoarg
, &none
);
1004 if (*offset
== -1 && PyErr_Occurred())
1005 return OFFSET_ERROR
;
1006 return none
? OFFSET_NAIVE
: OFFSET_AWARE
;
1009 /* Classify two objects as to whether they're naive or offset-aware.
1010 * This isn't quite the same as calling classify_utcoffset() twice: for
1011 * binary operations (comparison and subtraction), we generally want to
1012 * ignore the tzinfo members if they're identical. This is by design,
1013 * so that results match "naive" expectations when mixing objects from a
1014 * single timezone. So in that case, this sets both offsets to 0 and
1015 * both naiveties to OFFSET_NAIVE.
1016 * The function returns 0 if everything's OK, and -1 on error.
1019 classify_two_utcoffsets(PyObject
*o1
, int *offset1
, naivety
*n1
,
1020 PyObject
*tzinfoarg1
,
1021 PyObject
*o2
, int *offset2
, naivety
*n2
,
1022 PyObject
*tzinfoarg2
)
1024 if (get_tzinfo_member(o1
) == get_tzinfo_member(o2
)) {
1025 *offset1
= *offset2
= 0;
1026 *n1
= *n2
= OFFSET_NAIVE
;
1029 *n1
= classify_utcoffset(o1
, tzinfoarg1
, offset1
);
1030 if (*n1
== OFFSET_ERROR
)
1032 *n2
= classify_utcoffset(o2
, tzinfoarg2
, offset2
);
1033 if (*n2
== OFFSET_ERROR
)
1039 /* repr is like "someclass(arg1, arg2)". If tzinfo isn't None,
1041 * ", tzinfo=" + repr(tzinfo)
1042 * before the closing ")".
1045 append_keyword_tzinfo(PyObject
*repr
, PyObject
*tzinfo
)
1049 assert(PyString_Check(repr
));
1051 if (tzinfo
== Py_None
)
1053 /* Get rid of the trailing ')'. */
1054 assert(PyString_AsString(repr
)[PyString_Size(repr
)-1] == ')');
1055 temp
= PyString_FromStringAndSize(PyString_AsString(repr
),
1056 PyString_Size(repr
) - 1);
1062 /* Append ", tzinfo=". */
1063 PyString_ConcatAndDel(&repr
, PyString_FromString(", tzinfo="));
1065 /* Append repr(tzinfo). */
1066 PyString_ConcatAndDel(&repr
, PyObject_Repr(tzinfo
));
1068 /* Add a closing paren. */
1069 PyString_ConcatAndDel(&repr
, PyString_FromString(")"));
1073 /* ---------------------------------------------------------------------------
1074 * String format helpers.
1078 format_ctime(PyDateTime_Date
*date
, int hours
, int minutes
, int seconds
)
1080 static const char *DayNames
[] = {
1081 "Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"
1083 static const char *MonthNames
[] = {
1084 "Jan", "Feb", "Mar", "Apr", "May", "Jun",
1085 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"
1089 int wday
= weekday(GET_YEAR(date
), GET_MONTH(date
), GET_DAY(date
));
1091 PyOS_snprintf(buffer
, sizeof(buffer
), "%s %s %2d %02d:%02d:%02d %04d",
1092 DayNames
[wday
], MonthNames
[GET_MONTH(date
) - 1],
1093 GET_DAY(date
), hours
, minutes
, seconds
,
1095 return PyString_FromString(buffer
);
1098 /* Add an hours & minutes UTC offset string to buf. buf has no more than
1099 * buflen bytes remaining. The UTC offset is gotten by calling
1100 * tzinfo.uctoffset(tzinfoarg). If that returns None, \0 is stored into
1101 * *buf, and that's all. Else the returned value is checked for sanity (an
1102 * integer in range), and if that's OK it's converted to an hours & minutes
1103 * string of the form
1105 * Returns 0 if everything is OK. If the return value from utcoffset() is
1106 * bogus, an appropriate exception is set and -1 is returned.
1109 format_utcoffset(char *buf
, size_t buflen
, const char *sep
,
1110 PyObject
*tzinfo
, PyObject
*tzinfoarg
)
1118 assert(buflen
>= 1);
1120 offset
= call_utcoffset(tzinfo
, tzinfoarg
, &none
);
1121 if (offset
== -1 && PyErr_Occurred())
1132 hours
= divmod(offset
, 60, &minutes
);
1133 PyOS_snprintf(buf
, buflen
, "%c%02d%s%02d", sign
, hours
, sep
, minutes
);
1138 make_freplacement(PyObject
*object
)
1140 char freplacement
[64];
1141 if (PyTime_Check(object
))
1142 sprintf(freplacement
, "%06d", TIME_GET_MICROSECOND(object
));
1143 else if (PyDateTime_Check(object
))
1144 sprintf(freplacement
, "%06d", DATE_GET_MICROSECOND(object
));
1146 sprintf(freplacement
, "%06d", 0);
1148 return PyString_FromStringAndSize(freplacement
, strlen(freplacement
));
1151 /* I sure don't want to reproduce the strftime code from the time module,
1152 * so this imports the module and calls it. All the hair is due to
1153 * giving special meanings to the %z, %Z and %f format codes via a
1154 * preprocessing step on the format string.
1155 * tzinfoarg is the argument to pass to the object's tzinfo method, if
1159 wrap_strftime(PyObject
*object
, const char *format
, size_t format_len
,
1160 PyObject
*timetuple
, PyObject
*tzinfoarg
)
1162 PyObject
*result
= NULL
; /* guilty until proved innocent */
1164 PyObject
*zreplacement
= NULL
; /* py string, replacement for %z */
1165 PyObject
*Zreplacement
= NULL
; /* py string, replacement for %Z */
1166 PyObject
*freplacement
= NULL
; /* py string, replacement for %f */
1168 const char *pin
; /* pointer to next char in input format */
1169 char ch
; /* next char in input format */
1171 PyObject
*newfmt
= NULL
; /* py string, the output format */
1172 char *pnew
; /* pointer to available byte in output format */
1173 size_t totalnew
; /* number bytes total in output format buffer,
1174 exclusive of trailing \0 */
1175 size_t usednew
; /* number bytes used so far in output format buffer */
1177 const char *ptoappend
; /* ptr to string to append to output buffer */
1178 size_t ntoappend
; /* # of bytes to append to output buffer */
1180 assert(object
&& format
&& timetuple
);
1182 /* Give up if the year is before 1900.
1183 * Python strftime() plays games with the year, and different
1184 * games depending on whether envar PYTHON2K is set. This makes
1185 * years before 1900 a nightmare, even if the platform strftime
1186 * supports them (and not all do).
1187 * We could get a lot farther here by avoiding Python's strftime
1188 * wrapper and calling the C strftime() directly, but that isn't
1189 * an option in the Python implementation of this module.
1193 PyObject
*pyyear
= PySequence_GetItem(timetuple
, 0);
1194 if (pyyear
== NULL
) return NULL
;
1195 assert(PyInt_Check(pyyear
));
1196 year
= PyInt_AsLong(pyyear
);
1199 PyErr_Format(PyExc_ValueError
, "year=%ld is before "
1200 "1900; the datetime strftime() "
1201 "methods require year >= 1900",
1207 /* Scan the input format, looking for %z/%Z/%f escapes, building
1208 * a new format. Since computing the replacements for those codes
1209 * is expensive, don't unless they're actually used.
1211 if (format_len
> INT_MAX
- 1) {
1216 totalnew
= format_len
+ 1; /* realistic if no %z/%Z/%f */
1217 newfmt
= PyString_FromStringAndSize(NULL
, totalnew
);
1218 if (newfmt
== NULL
) goto Done
;
1219 pnew
= PyString_AsString(newfmt
);
1223 while ((ch
= *pin
++) != '\0') {
1225 ptoappend
= pin
- 1;
1228 else if ((ch
= *pin
++) == '\0') {
1229 /* There's a lone trailing %; doesn't make sense. */
1230 PyErr_SetString(PyExc_ValueError
, "strftime format "
1234 /* A % has been seen and ch is the character after it. */
1235 else if (ch
== 'z') {
1236 if (zreplacement
== NULL
) {
1237 /* format utcoffset */
1239 PyObject
*tzinfo
= get_tzinfo_member(object
);
1240 zreplacement
= PyString_FromString("");
1241 if (zreplacement
== NULL
) goto Done
;
1242 if (tzinfo
!= Py_None
&& tzinfo
!= NULL
) {
1243 assert(tzinfoarg
!= NULL
);
1244 if (format_utcoffset(buf
,
1250 Py_DECREF(zreplacement
);
1251 zreplacement
= PyString_FromString(buf
);
1252 if (zreplacement
== NULL
) goto Done
;
1255 assert(zreplacement
!= NULL
);
1256 ptoappend
= PyString_AS_STRING(zreplacement
);
1257 ntoappend
= PyString_GET_SIZE(zreplacement
);
1259 else if (ch
== 'Z') {
1261 if (Zreplacement
== NULL
) {
1262 PyObject
*tzinfo
= get_tzinfo_member(object
);
1263 Zreplacement
= PyString_FromString("");
1264 if (Zreplacement
== NULL
) goto Done
;
1265 if (tzinfo
!= Py_None
&& tzinfo
!= NULL
) {
1267 assert(tzinfoarg
!= NULL
);
1268 temp
= call_tzname(tzinfo
, tzinfoarg
);
1269 if (temp
== NULL
) goto Done
;
1270 if (temp
!= Py_None
) {
1271 assert(PyString_Check(temp
));
1272 /* Since the tzname is getting
1273 * stuffed into the format, we
1274 * have to double any % signs
1275 * so that strftime doesn't
1276 * treat them as format codes.
1278 Py_DECREF(Zreplacement
);
1279 Zreplacement
= PyObject_CallMethod(
1283 if (Zreplacement
== NULL
)
1285 if (!PyString_Check(Zreplacement
)) {
1286 PyErr_SetString(PyExc_TypeError
, "tzname.replace() did not return a string");
1294 assert(Zreplacement
!= NULL
);
1295 ptoappend
= PyString_AS_STRING(Zreplacement
);
1296 ntoappend
= PyString_GET_SIZE(Zreplacement
);
1298 else if (ch
== 'f') {
1299 /* format microseconds */
1300 if (freplacement
== NULL
) {
1301 freplacement
= make_freplacement(object
);
1302 if (freplacement
== NULL
)
1305 assert(freplacement
!= NULL
);
1306 assert(PyString_Check(freplacement
));
1307 ptoappend
= PyString_AS_STRING(freplacement
);
1308 ntoappend
= PyString_GET_SIZE(freplacement
);
1311 /* percent followed by neither z nor Z */
1312 ptoappend
= pin
- 2;
1316 /* Append the ntoappend chars starting at ptoappend to
1319 assert(ptoappend
!= NULL
);
1320 assert(ntoappend
>= 0);
1323 while (usednew
+ ntoappend
> totalnew
) {
1324 size_t bigger
= totalnew
<< 1;
1325 if ((bigger
>> 1) != totalnew
) { /* overflow */
1329 if (_PyString_Resize(&newfmt
, bigger
) < 0)
1332 pnew
= PyString_AsString(newfmt
) + usednew
;
1334 memcpy(pnew
, ptoappend
, ntoappend
);
1336 usednew
+= ntoappend
;
1337 assert(usednew
<= totalnew
);
1340 if (_PyString_Resize(&newfmt
, usednew
) < 0)
1343 PyObject
*time
= PyImport_ImportModuleNoBlock("time");
1346 result
= PyObject_CallMethod(time
, "strftime", "OO",
1351 Py_XDECREF(freplacement
);
1352 Py_XDECREF(zreplacement
);
1353 Py_XDECREF(Zreplacement
);
1359 isoformat_date(PyDateTime_Date
*dt
, char buffer
[], int bufflen
)
1362 x
= PyOS_snprintf(buffer
, bufflen
,
1364 GET_YEAR(dt
), GET_MONTH(dt
), GET_DAY(dt
));
1369 isoformat_time(PyDateTime_DateTime
*dt
, char buffer
[], int bufflen
)
1371 int us
= DATE_GET_MICROSECOND(dt
);
1373 PyOS_snprintf(buffer
, bufflen
,
1374 "%02d:%02d:%02d", /* 8 characters */
1376 DATE_GET_MINUTE(dt
),
1377 DATE_GET_SECOND(dt
));
1379 PyOS_snprintf(buffer
+ 8, bufflen
- 8, ".%06d", us
);
1382 /* ---------------------------------------------------------------------------
1383 * Wrap functions from the time module. These aren't directly available
1384 * from C. Perhaps they should be.
1387 /* Call time.time() and return its result (a Python float). */
1391 PyObject
*result
= NULL
;
1392 PyObject
*time
= PyImport_ImportModuleNoBlock("time");
1395 result
= PyObject_CallMethod(time
, "time", "()");
1401 /* Build a time.struct_time. The weekday and day number are automatically
1402 * computed from the y,m,d args.
1405 build_struct_time(int y
, int m
, int d
, int hh
, int mm
, int ss
, int dstflag
)
1408 PyObject
*result
= NULL
;
1410 time
= PyImport_ImportModuleNoBlock("time");
1412 result
= PyObject_CallMethod(time
, "struct_time",
1417 days_before_month(y
, m
) + d
,
1424 /* ---------------------------------------------------------------------------
1425 * Miscellaneous helpers.
1428 /* For obscure reasons, we need to use tp_richcompare instead of tp_compare.
1429 * The comparisons here all most naturally compute a cmp()-like result.
1430 * This little helper turns that into a bool result for rich comparisons.
1433 diff_to_bool(int diff
, int op
)
1439 case Py_EQ
: istrue
= diff
== 0; break;
1440 case Py_NE
: istrue
= diff
!= 0; break;
1441 case Py_LE
: istrue
= diff
<= 0; break;
1442 case Py_GE
: istrue
= diff
>= 0; break;
1443 case Py_LT
: istrue
= diff
< 0; break;
1444 case Py_GT
: istrue
= diff
> 0; break;
1446 assert(! "op unknown");
1447 istrue
= 0; /* To shut up compiler */
1449 result
= istrue
? Py_True
: Py_False
;
1454 /* Raises a "can't compare" TypeError and returns NULL. */
1456 cmperror(PyObject
*a
, PyObject
*b
)
1458 PyErr_Format(PyExc_TypeError
,
1459 "can't compare %s to %s",
1460 Py_TYPE(a
)->tp_name
, Py_TYPE(b
)->tp_name
);
1464 /* ---------------------------------------------------------------------------
1465 * Cached Python objects; these are set by the module init function.
1468 /* Conversion factors. */
1469 static PyObject
*us_per_us
= NULL
; /* 1 */
1470 static PyObject
*us_per_ms
= NULL
; /* 1000 */
1471 static PyObject
*us_per_second
= NULL
; /* 1000000 */
1472 static PyObject
*us_per_minute
= NULL
; /* 1e6 * 60 as Python int */
1473 static PyObject
*us_per_hour
= NULL
; /* 1e6 * 3600 as Python long */
1474 static PyObject
*us_per_day
= NULL
; /* 1e6 * 3600 * 24 as Python long */
1475 static PyObject
*us_per_week
= NULL
; /* 1e6*3600*24*7 as Python long */
1476 static PyObject
*seconds_per_day
= NULL
; /* 3600*24 as Python int */
1478 /* ---------------------------------------------------------------------------
1479 * Class implementations.
1483 * PyDateTime_Delta implementation.
1486 /* Convert a timedelta to a number of us,
1487 * (24*3600*self.days + self.seconds)*1000000 + self.microseconds
1488 * as a Python int or long.
1489 * Doing mixed-radix arithmetic by hand instead is excruciating in C,
1490 * due to ubiquitous overflow possibilities.
1493 delta_to_microseconds(PyDateTime_Delta
*self
)
1495 PyObject
*x1
= NULL
;
1496 PyObject
*x2
= NULL
;
1497 PyObject
*x3
= NULL
;
1498 PyObject
*result
= NULL
;
1500 x1
= PyInt_FromLong(GET_TD_DAYS(self
));
1503 x2
= PyNumber_Multiply(x1
, seconds_per_day
); /* days in seconds */
1509 /* x2 has days in seconds */
1510 x1
= PyInt_FromLong(GET_TD_SECONDS(self
)); /* seconds */
1513 x3
= PyNumber_Add(x1
, x2
); /* days and seconds in seconds */
1520 /* x3 has days+seconds in seconds */
1521 x1
= PyNumber_Multiply(x3
, us_per_second
); /* us */
1527 /* x1 has days+seconds in us */
1528 x2
= PyInt_FromLong(GET_TD_MICROSECONDS(self
));
1531 result
= PyNumber_Add(x1
, x2
);
1540 /* Convert a number of us (as a Python int or long) to a timedelta.
1543 microseconds_to_delta_ex(PyObject
*pyus
, PyTypeObject
*type
)
1550 PyObject
*tuple
= NULL
;
1551 PyObject
*num
= NULL
;
1552 PyObject
*result
= NULL
;
1554 tuple
= PyNumber_Divmod(pyus
, us_per_second
);
1558 num
= PyTuple_GetItem(tuple
, 1); /* us */
1561 temp
= PyLong_AsLong(num
);
1563 if (temp
== -1 && PyErr_Occurred())
1565 assert(0 <= temp
&& temp
< 1000000);
1568 /* The divisor was positive, so this must be an error. */
1569 assert(PyErr_Occurred());
1573 num
= PyTuple_GetItem(tuple
, 0); /* leftover seconds */
1579 tuple
= PyNumber_Divmod(num
, seconds_per_day
);
1584 num
= PyTuple_GetItem(tuple
, 1); /* seconds */
1587 temp
= PyLong_AsLong(num
);
1589 if (temp
== -1 && PyErr_Occurred())
1591 assert(0 <= temp
&& temp
< 24*3600);
1595 /* The divisor was positive, so this must be an error. */
1596 assert(PyErr_Occurred());
1600 num
= PyTuple_GetItem(tuple
, 0); /* leftover days */
1604 temp
= PyLong_AsLong(num
);
1605 if (temp
== -1 && PyErr_Occurred())
1608 if ((long)d
!= temp
) {
1609 PyErr_SetString(PyExc_OverflowError
, "normalized days too "
1610 "large to fit in a C int");
1613 result
= new_delta_ex(d
, s
, us
, 0, type
);
1621 #define microseconds_to_delta(pymicros) \
1622 microseconds_to_delta_ex(pymicros, &PyDateTime_DeltaType)
1625 multiply_int_timedelta(PyObject
*intobj
, PyDateTime_Delta
*delta
)
1631 pyus_in
= delta_to_microseconds(delta
);
1632 if (pyus_in
== NULL
)
1635 pyus_out
= PyNumber_Multiply(pyus_in
, intobj
);
1637 if (pyus_out
== NULL
)
1640 result
= microseconds_to_delta(pyus_out
);
1641 Py_DECREF(pyus_out
);
1646 divide_timedelta_int(PyDateTime_Delta
*delta
, PyObject
*intobj
)
1652 pyus_in
= delta_to_microseconds(delta
);
1653 if (pyus_in
== NULL
)
1656 pyus_out
= PyNumber_FloorDivide(pyus_in
, intobj
);
1658 if (pyus_out
== NULL
)
1661 result
= microseconds_to_delta(pyus_out
);
1662 Py_DECREF(pyus_out
);
1667 delta_add(PyObject
*left
, PyObject
*right
)
1669 PyObject
*result
= Py_NotImplemented
;
1671 if (PyDelta_Check(left
) && PyDelta_Check(right
)) {
1673 /* The C-level additions can't overflow because of the
1676 int days
= GET_TD_DAYS(left
) + GET_TD_DAYS(right
);
1677 int seconds
= GET_TD_SECONDS(left
) + GET_TD_SECONDS(right
);
1678 int microseconds
= GET_TD_MICROSECONDS(left
) +
1679 GET_TD_MICROSECONDS(right
);
1680 result
= new_delta(days
, seconds
, microseconds
, 1);
1683 if (result
== Py_NotImplemented
)
1689 delta_negative(PyDateTime_Delta
*self
)
1691 return new_delta(-GET_TD_DAYS(self
),
1692 -GET_TD_SECONDS(self
),
1693 -GET_TD_MICROSECONDS(self
),
1698 delta_positive(PyDateTime_Delta
*self
)
1700 /* Could optimize this (by returning self) if this isn't a
1701 * subclass -- but who uses unary + ? Approximately nobody.
1703 return new_delta(GET_TD_DAYS(self
),
1704 GET_TD_SECONDS(self
),
1705 GET_TD_MICROSECONDS(self
),
1710 delta_abs(PyDateTime_Delta
*self
)
1714 assert(GET_TD_MICROSECONDS(self
) >= 0);
1715 assert(GET_TD_SECONDS(self
) >= 0);
1717 if (GET_TD_DAYS(self
) < 0)
1718 result
= delta_negative(self
);
1720 result
= delta_positive(self
);
1726 delta_subtract(PyObject
*left
, PyObject
*right
)
1728 PyObject
*result
= Py_NotImplemented
;
1730 if (PyDelta_Check(left
) && PyDelta_Check(right
)) {
1732 PyObject
*minus_right
= PyNumber_Negative(right
);
1734 result
= delta_add(left
, minus_right
);
1735 Py_DECREF(minus_right
);
1741 if (result
== Py_NotImplemented
)
1746 /* This is more natural as a tp_compare, but doesn't work then: for whatever
1747 * reason, Python's try_3way_compare ignores tp_compare unless
1748 * PyInstance_Check returns true, but these aren't old-style classes.
1751 delta_richcompare(PyDateTime_Delta
*self
, PyObject
*other
, int op
)
1753 int diff
= 42; /* nonsense */
1755 if (PyDelta_Check(other
)) {
1756 diff
= GET_TD_DAYS(self
) - GET_TD_DAYS(other
);
1758 diff
= GET_TD_SECONDS(self
) - GET_TD_SECONDS(other
);
1760 diff
= GET_TD_MICROSECONDS(self
) -
1761 GET_TD_MICROSECONDS(other
);
1764 else if (op
== Py_EQ
|| op
== Py_NE
)
1765 diff
= 1; /* any non-zero value will do */
1767 else /* stop this from falling back to address comparison */
1768 return cmperror((PyObject
*)self
, other
);
1770 return diff_to_bool(diff
, op
);
1773 static PyObject
*delta_getstate(PyDateTime_Delta
*self
);
1776 delta_hash(PyDateTime_Delta
*self
)
1778 if (self
->hashcode
== -1) {
1779 PyObject
*temp
= delta_getstate(self
);
1781 self
->hashcode
= PyObject_Hash(temp
);
1785 return self
->hashcode
;
1789 delta_multiply(PyObject
*left
, PyObject
*right
)
1791 PyObject
*result
= Py_NotImplemented
;
1793 if (PyDelta_Check(left
)) {
1795 if (PyInt_Check(right
) || PyLong_Check(right
))
1796 result
= multiply_int_timedelta(right
,
1797 (PyDateTime_Delta
*) left
);
1799 else if (PyInt_Check(left
) || PyLong_Check(left
))
1800 result
= multiply_int_timedelta(left
,
1801 (PyDateTime_Delta
*) right
);
1803 if (result
== Py_NotImplemented
)
1809 delta_divide(PyObject
*left
, PyObject
*right
)
1811 PyObject
*result
= Py_NotImplemented
;
1813 if (PyDelta_Check(left
)) {
1815 if (PyInt_Check(right
) || PyLong_Check(right
))
1816 result
= divide_timedelta_int(
1817 (PyDateTime_Delta
*)left
,
1821 if (result
== Py_NotImplemented
)
1826 /* Fold in the value of the tag ("seconds", "weeks", etc) component of a
1827 * timedelta constructor. sofar is the # of microseconds accounted for
1828 * so far, and there are factor microseconds per current unit, the number
1829 * of which is given by num. num * factor is added to sofar in a
1830 * numerically careful way, and that's the result. Any fractional
1831 * microseconds left over (this can happen if num is a float type) are
1832 * added into *leftover.
1833 * Note that there are many ways this can give an error (NULL) return.
1836 accum(const char* tag
, PyObject
*sofar
, PyObject
*num
, PyObject
*factor
,
1842 assert(num
!= NULL
);
1844 if (PyInt_Check(num
) || PyLong_Check(num
)) {
1845 prod
= PyNumber_Multiply(num
, factor
);
1848 sum
= PyNumber_Add(sofar
, prod
);
1853 if (PyFloat_Check(num
)) {
1860 /* The Plan: decompose num into an integer part and a
1861 * fractional part, num = intpart + fracpart.
1862 * Then num * factor ==
1863 * intpart * factor + fracpart * factor
1864 * and the LHS can be computed exactly in long arithmetic.
1865 * The RHS is again broken into an int part and frac part.
1866 * and the frac part is added into *leftover.
1868 dnum
= PyFloat_AsDouble(num
);
1869 if (dnum
== -1.0 && PyErr_Occurred())
1871 fracpart
= modf(dnum
, &intpart
);
1872 x
= PyLong_FromDouble(intpart
);
1876 prod
= PyNumber_Multiply(x
, factor
);
1881 sum
= PyNumber_Add(sofar
, prod
);
1886 if (fracpart
== 0.0)
1888 /* So far we've lost no information. Dealing with the
1889 * fractional part requires float arithmetic, and may
1890 * lose a little info.
1892 assert(PyInt_Check(factor
) || PyLong_Check(factor
));
1893 if (PyInt_Check(factor
))
1894 dnum
= (double)PyInt_AsLong(factor
);
1896 dnum
= PyLong_AsDouble(factor
);
1899 fracpart
= modf(dnum
, &intpart
);
1900 x
= PyLong_FromDouble(intpart
);
1906 y
= PyNumber_Add(sum
, x
);
1909 *leftover
+= fracpart
;
1913 PyErr_Format(PyExc_TypeError
,
1914 "unsupported type for timedelta %s component: %s",
1915 tag
, Py_TYPE(num
)->tp_name
);
1920 delta_new(PyTypeObject
*type
, PyObject
*args
, PyObject
*kw
)
1922 PyObject
*self
= NULL
;
1924 /* Argument objects. */
1925 PyObject
*day
= NULL
;
1926 PyObject
*second
= NULL
;
1927 PyObject
*us
= NULL
;
1928 PyObject
*ms
= NULL
;
1929 PyObject
*minute
= NULL
;
1930 PyObject
*hour
= NULL
;
1931 PyObject
*week
= NULL
;
1933 PyObject
*x
= NULL
; /* running sum of microseconds */
1934 PyObject
*y
= NULL
; /* temp sum of microseconds */
1935 double leftover_us
= 0.0;
1937 static char *keywords
[] = {
1938 "days", "seconds", "microseconds", "milliseconds",
1939 "minutes", "hours", "weeks", NULL
1942 if (PyArg_ParseTupleAndKeywords(args
, kw
, "|OOOOOOO:__new__",
1945 &ms
, &minute
, &hour
, &week
) == 0)
1948 x
= PyInt_FromLong(0);
1959 y
= accum("microseconds", x
, us
, us_per_us
, &leftover_us
);
1963 y
= accum("milliseconds", x
, ms
, us_per_ms
, &leftover_us
);
1967 y
= accum("seconds", x
, second
, us_per_second
, &leftover_us
);
1971 y
= accum("minutes", x
, minute
, us_per_minute
, &leftover_us
);
1975 y
= accum("hours", x
, hour
, us_per_hour
, &leftover_us
);
1979 y
= accum("days", x
, day
, us_per_day
, &leftover_us
);
1983 y
= accum("weeks", x
, week
, us_per_week
, &leftover_us
);
1987 /* Round to nearest whole # of us, and add into x. */
1988 PyObject
*temp
= PyLong_FromLong(round_to_long(leftover_us
));
1993 y
= PyNumber_Add(x
, temp
);
1998 self
= microseconds_to_delta_ex(x
, type
);
2007 delta_nonzero(PyDateTime_Delta
*self
)
2009 return (GET_TD_DAYS(self
) != 0
2010 || GET_TD_SECONDS(self
) != 0
2011 || GET_TD_MICROSECONDS(self
) != 0);
2015 delta_repr(PyDateTime_Delta
*self
)
2017 if (GET_TD_MICROSECONDS(self
) != 0)
2018 return PyString_FromFormat("%s(%d, %d, %d)",
2019 Py_TYPE(self
)->tp_name
,
2021 GET_TD_SECONDS(self
),
2022 GET_TD_MICROSECONDS(self
));
2023 if (GET_TD_SECONDS(self
) != 0)
2024 return PyString_FromFormat("%s(%d, %d)",
2025 Py_TYPE(self
)->tp_name
,
2027 GET_TD_SECONDS(self
));
2029 return PyString_FromFormat("%s(%d)",
2030 Py_TYPE(self
)->tp_name
,
2035 delta_str(PyDateTime_Delta
*self
)
2037 int days
= GET_TD_DAYS(self
);
2038 int seconds
= GET_TD_SECONDS(self
);
2039 int us
= GET_TD_MICROSECONDS(self
);
2044 size_t buflen
= sizeof(buf
);
2047 minutes
= divmod(seconds
, 60, &seconds
);
2048 hours
= divmod(minutes
, 60, &minutes
);
2051 n
= PyOS_snprintf(pbuf
, buflen
, "%d day%s, ", days
,
2052 (days
== 1 || days
== -1) ? "" : "s");
2053 if (n
< 0 || (size_t)n
>= buflen
)
2056 buflen
-= (size_t)n
;
2059 n
= PyOS_snprintf(pbuf
, buflen
, "%d:%02d:%02d",
2060 hours
, minutes
, seconds
);
2061 if (n
< 0 || (size_t)n
>= buflen
)
2064 buflen
-= (size_t)n
;
2067 n
= PyOS_snprintf(pbuf
, buflen
, ".%06d", us
);
2068 if (n
< 0 || (size_t)n
>= buflen
)
2073 return PyString_FromStringAndSize(buf
, pbuf
- buf
);
2076 PyErr_SetString(PyExc_SystemError
, "goofy result from PyOS_snprintf");
2080 /* Pickle support, a simple use of __reduce__. */
2082 /* __getstate__ isn't exposed */
2084 delta_getstate(PyDateTime_Delta
*self
)
2086 return Py_BuildValue("iii", GET_TD_DAYS(self
),
2087 GET_TD_SECONDS(self
),
2088 GET_TD_MICROSECONDS(self
));
2092 delta_reduce(PyDateTime_Delta
* self
)
2094 return Py_BuildValue("ON", Py_TYPE(self
), delta_getstate(self
));
2097 #define OFFSET(field) offsetof(PyDateTime_Delta, field)
2099 static PyMemberDef delta_members
[] = {
2101 {"days", T_INT
, OFFSET(days
), READONLY
,
2102 PyDoc_STR("Number of days.")},
2104 {"seconds", T_INT
, OFFSET(seconds
), READONLY
,
2105 PyDoc_STR("Number of seconds (>= 0 and less than 1 day).")},
2107 {"microseconds", T_INT
, OFFSET(microseconds
), READONLY
,
2108 PyDoc_STR("Number of microseconds (>= 0 and less than 1 second).")},
2112 static PyMethodDef delta_methods
[] = {
2113 {"__reduce__", (PyCFunction
)delta_reduce
, METH_NOARGS
,
2114 PyDoc_STR("__reduce__() -> (cls, state)")},
2119 static char delta_doc
[] =
2120 PyDoc_STR("Difference between two datetime values.");
2122 static PyNumberMethods delta_as_number
= {
2123 delta_add
, /* nb_add */
2124 delta_subtract
, /* nb_subtract */
2125 delta_multiply
, /* nb_multiply */
2126 delta_divide
, /* nb_divide */
2127 0, /* nb_remainder */
2130 (unaryfunc
)delta_negative
, /* nb_negative */
2131 (unaryfunc
)delta_positive
, /* nb_positive */
2132 (unaryfunc
)delta_abs
, /* nb_absolute */
2133 (inquiry
)delta_nonzero
, /* nb_nonzero */
2146 0, /*nb_inplace_add*/
2147 0, /*nb_inplace_subtract*/
2148 0, /*nb_inplace_multiply*/
2149 0, /*nb_inplace_divide*/
2150 0, /*nb_inplace_remainder*/
2151 0, /*nb_inplace_power*/
2152 0, /*nb_inplace_lshift*/
2153 0, /*nb_inplace_rshift*/
2154 0, /*nb_inplace_and*/
2155 0, /*nb_inplace_xor*/
2156 0, /*nb_inplace_or*/
2157 delta_divide
, /* nb_floor_divide */
2158 0, /* nb_true_divide */
2159 0, /* nb_inplace_floor_divide */
2160 0, /* nb_inplace_true_divide */
2163 static PyTypeObject PyDateTime_DeltaType
= {
2164 PyVarObject_HEAD_INIT(NULL
, 0)
2165 "datetime.timedelta", /* tp_name */
2166 sizeof(PyDateTime_Delta
), /* tp_basicsize */
2167 0, /* tp_itemsize */
2173 (reprfunc
)delta_repr
, /* tp_repr */
2174 &delta_as_number
, /* tp_as_number */
2175 0, /* tp_as_sequence */
2176 0, /* tp_as_mapping */
2177 (hashfunc
)delta_hash
, /* tp_hash */
2179 (reprfunc
)delta_str
, /* tp_str */
2180 PyObject_GenericGetAttr
, /* tp_getattro */
2181 0, /* tp_setattro */
2182 0, /* tp_as_buffer */
2183 Py_TPFLAGS_DEFAULT
| Py_TPFLAGS_CHECKTYPES
|
2184 Py_TPFLAGS_BASETYPE
, /* tp_flags */
2185 delta_doc
, /* tp_doc */
2186 0, /* tp_traverse */
2188 (richcmpfunc
)delta_richcompare
, /* tp_richcompare */
2189 0, /* tp_weaklistoffset */
2191 0, /* tp_iternext */
2192 delta_methods
, /* tp_methods */
2193 delta_members
, /* tp_members */
2197 0, /* tp_descr_get */
2198 0, /* tp_descr_set */
2199 0, /* tp_dictoffset */
2202 delta_new
, /* tp_new */
2207 * PyDateTime_Date implementation.
2210 /* Accessor properties. */
2213 date_year(PyDateTime_Date
*self
, void *unused
)
2215 return PyInt_FromLong(GET_YEAR(self
));
2219 date_month(PyDateTime_Date
*self
, void *unused
)
2221 return PyInt_FromLong(GET_MONTH(self
));
2225 date_day(PyDateTime_Date
*self
, void *unused
)
2227 return PyInt_FromLong(GET_DAY(self
));
2230 static PyGetSetDef date_getset
[] = {
2231 {"year", (getter
)date_year
},
2232 {"month", (getter
)date_month
},
2233 {"day", (getter
)date_day
},
2239 static char *date_kws
[] = {"year", "month", "day", NULL
};
2242 date_new(PyTypeObject
*type
, PyObject
*args
, PyObject
*kw
)
2244 PyObject
*self
= NULL
;
2250 /* Check for invocation from pickle with __getstate__ state */
2251 if (PyTuple_GET_SIZE(args
) == 1 &&
2252 PyString_Check(state
= PyTuple_GET_ITEM(args
, 0)) &&
2253 PyString_GET_SIZE(state
) == _PyDateTime_DATE_DATASIZE
&&
2254 MONTH_IS_SANE(PyString_AS_STRING(state
)[2]))
2256 PyDateTime_Date
*me
;
2258 me
= (PyDateTime_Date
*) (type
->tp_alloc(type
, 0));
2260 char *pdata
= PyString_AS_STRING(state
);
2261 memcpy(me
->data
, pdata
, _PyDateTime_DATE_DATASIZE
);
2264 return (PyObject
*)me
;
2267 if (PyArg_ParseTupleAndKeywords(args
, kw
, "iii", date_kws
,
2268 &year
, &month
, &day
)) {
2269 if (check_date_args(year
, month
, day
) < 0)
2271 self
= new_date_ex(year
, month
, day
, type
);
2276 /* Return new date from localtime(t). */
2278 date_local_from_time_t(PyObject
*cls
, double ts
)
2282 PyObject
*result
= NULL
;
2284 t
= _PyTime_DoubleToTimet(ts
);
2285 if (t
== (time_t)-1 && PyErr_Occurred())
2289 result
= PyObject_CallFunction(cls
, "iii",
2294 PyErr_SetString(PyExc_ValueError
,
2295 "timestamp out of range for "
2296 "platform localtime() function");
2300 /* Return new date from current time.
2301 * We say this is equivalent to fromtimestamp(time.time()), and the
2302 * only way to be sure of that is to *call* time.time(). That's not
2303 * generally the same as calling C's time.
2306 date_today(PyObject
*cls
, PyObject
*dummy
)
2315 /* Note well: today() is a class method, so this may not call
2316 * date.fromtimestamp. For example, it may call
2317 * datetime.fromtimestamp. That's why we need all the accuracy
2318 * time.time() delivers; if someone were gonzo about optimization,
2319 * date.today() could get away with plain C time().
2321 result
= PyObject_CallMethod(cls
, "fromtimestamp", "O", time
);
2326 /* Return new date from given timestamp (Python timestamp -- a double). */
2328 date_fromtimestamp(PyObject
*cls
, PyObject
*args
)
2331 PyObject
*result
= NULL
;
2333 if (PyArg_ParseTuple(args
, "d:fromtimestamp", ×tamp
))
2334 result
= date_local_from_time_t(cls
, timestamp
);
2338 /* Return new date from proleptic Gregorian ordinal. Raises ValueError if
2339 * the ordinal is out of range.
2342 date_fromordinal(PyObject
*cls
, PyObject
*args
)
2344 PyObject
*result
= NULL
;
2347 if (PyArg_ParseTuple(args
, "i:fromordinal", &ordinal
)) {
2353 PyErr_SetString(PyExc_ValueError
, "ordinal must be "
2356 ord_to_ymd(ordinal
, &year
, &month
, &day
);
2357 result
= PyObject_CallFunction(cls
, "iii",
2368 /* date + timedelta -> date. If arg negate is true, subtract the timedelta
2372 add_date_timedelta(PyDateTime_Date
*date
, PyDateTime_Delta
*delta
, int negate
)
2374 PyObject
*result
= NULL
;
2375 int year
= GET_YEAR(date
);
2376 int month
= GET_MONTH(date
);
2377 int deltadays
= GET_TD_DAYS(delta
);
2378 /* C-level overflow is impossible because |deltadays| < 1e9. */
2379 int day
= GET_DAY(date
) + (negate
? -deltadays
: deltadays
);
2381 if (normalize_date(&year
, &month
, &day
) >= 0)
2382 result
= new_date(year
, month
, day
);
2387 date_add(PyObject
*left
, PyObject
*right
)
2389 if (PyDateTime_Check(left
) || PyDateTime_Check(right
)) {
2390 Py_INCREF(Py_NotImplemented
);
2391 return Py_NotImplemented
;
2393 if (PyDate_Check(left
)) {
2395 if (PyDelta_Check(right
))
2397 return add_date_timedelta((PyDateTime_Date
*) left
,
2398 (PyDateTime_Delta
*) right
,
2403 * 'right' must be one of us, or we wouldn't have been called
2405 if (PyDelta_Check(left
))
2407 return add_date_timedelta((PyDateTime_Date
*) right
,
2408 (PyDateTime_Delta
*) left
,
2411 Py_INCREF(Py_NotImplemented
);
2412 return Py_NotImplemented
;
2416 date_subtract(PyObject
*left
, PyObject
*right
)
2418 if (PyDateTime_Check(left
) || PyDateTime_Check(right
)) {
2419 Py_INCREF(Py_NotImplemented
);
2420 return Py_NotImplemented
;
2422 if (PyDate_Check(left
)) {
2423 if (PyDate_Check(right
)) {
2425 int left_ord
= ymd_to_ord(GET_YEAR(left
),
2428 int right_ord
= ymd_to_ord(GET_YEAR(right
),
2431 return new_delta(left_ord
- right_ord
, 0, 0, 0);
2433 if (PyDelta_Check(right
)) {
2435 return add_date_timedelta((PyDateTime_Date
*) left
,
2436 (PyDateTime_Delta
*) right
,
2440 Py_INCREF(Py_NotImplemented
);
2441 return Py_NotImplemented
;
2445 /* Various ways to turn a date into a string. */
2448 date_repr(PyDateTime_Date
*self
)
2451 const char *type_name
;
2453 type_name
= Py_TYPE(self
)->tp_name
;
2454 PyOS_snprintf(buffer
, sizeof(buffer
), "%s(%d, %d, %d)",
2456 GET_YEAR(self
), GET_MONTH(self
), GET_DAY(self
));
2458 return PyString_FromString(buffer
);
2462 date_isoformat(PyDateTime_Date
*self
)
2466 isoformat_date(self
, buffer
, sizeof(buffer
));
2467 return PyString_FromString(buffer
);
2470 /* str() calls the appropriate isoformat() method. */
2472 date_str(PyDateTime_Date
*self
)
2474 return PyObject_CallMethod((PyObject
*)self
, "isoformat", "()");
2479 date_ctime(PyDateTime_Date
*self
)
2481 return format_ctime(self
, 0, 0, 0);
2485 date_strftime(PyDateTime_Date
*self
, PyObject
*args
, PyObject
*kw
)
2487 /* This method can be inherited, and needs to call the
2488 * timetuple() method appropriate to self's class.
2493 Py_ssize_t format_len
;
2494 static char *keywords
[] = {"format", NULL
};
2496 if (! PyArg_ParseTupleAndKeywords(args
, kw
, "s#:strftime", keywords
,
2497 &format
, &format_len
))
2500 tuple
= PyObject_CallMethod((PyObject
*)self
, "timetuple", "()");
2503 result
= wrap_strftime((PyObject
*)self
, format
, format_len
, tuple
,
2510 date_format(PyDateTime_Date
*self
, PyObject
*args
)
2514 if (!PyArg_ParseTuple(args
, "O:__format__", &format
))
2517 /* Check for str or unicode */
2518 if (PyString_Check(format
)) {
2519 /* If format is zero length, return str(self) */
2520 if (PyString_GET_SIZE(format
) == 0)
2521 return PyObject_Str((PyObject
*)self
);
2522 } else if (PyUnicode_Check(format
)) {
2523 /* If format is zero length, return str(self) */
2524 if (PyUnicode_GET_SIZE(format
) == 0)
2525 return PyObject_Unicode((PyObject
*)self
);
2527 PyErr_Format(PyExc_ValueError
,
2528 "__format__ expects str or unicode, not %.200s",
2529 Py_TYPE(format
)->tp_name
);
2532 return PyObject_CallMethod((PyObject
*)self
, "strftime", "O", format
);
2538 date_isoweekday(PyDateTime_Date
*self
)
2540 int dow
= weekday(GET_YEAR(self
), GET_MONTH(self
), GET_DAY(self
));
2542 return PyInt_FromLong(dow
+ 1);
2546 date_isocalendar(PyDateTime_Date
*self
)
2548 int year
= GET_YEAR(self
);
2549 int week1_monday
= iso_week1_monday(year
);
2550 int today
= ymd_to_ord(year
, GET_MONTH(self
), GET_DAY(self
));
2554 week
= divmod(today
- week1_monday
, 7, &day
);
2557 week1_monday
= iso_week1_monday(year
);
2558 week
= divmod(today
- week1_monday
, 7, &day
);
2560 else if (week
>= 52 && today
>= iso_week1_monday(year
+ 1)) {
2564 return Py_BuildValue("iii", year
, week
+ 1, day
+ 1);
2567 /* Miscellaneous methods. */
2569 /* This is more natural as a tp_compare, but doesn't work then: for whatever
2570 * reason, Python's try_3way_compare ignores tp_compare unless
2571 * PyInstance_Check returns true, but these aren't old-style classes.
2574 date_richcompare(PyDateTime_Date
*self
, PyObject
*other
, int op
)
2576 int diff
= 42; /* nonsense */
2578 if (PyDate_Check(other
))
2579 diff
= memcmp(self
->data
, ((PyDateTime_Date
*)other
)->data
,
2580 _PyDateTime_DATE_DATASIZE
);
2582 else if (PyObject_HasAttrString(other
, "timetuple")) {
2583 /* A hook for other kinds of date objects. */
2584 Py_INCREF(Py_NotImplemented
);
2585 return Py_NotImplemented
;
2587 else if (op
== Py_EQ
|| op
== Py_NE
)
2588 diff
= 1; /* any non-zero value will do */
2590 else /* stop this from falling back to address comparison */
2591 return cmperror((PyObject
*)self
, other
);
2593 return diff_to_bool(diff
, op
);
2597 date_timetuple(PyDateTime_Date
*self
)
2599 return build_struct_time(GET_YEAR(self
),
2606 date_replace(PyDateTime_Date
*self
, PyObject
*args
, PyObject
*kw
)
2610 int year
= GET_YEAR(self
);
2611 int month
= GET_MONTH(self
);
2612 int day
= GET_DAY(self
);
2614 if (! PyArg_ParseTupleAndKeywords(args
, kw
, "|iii:replace", date_kws
,
2615 &year
, &month
, &day
))
2617 tuple
= Py_BuildValue("iii", year
, month
, day
);
2620 clone
= date_new(Py_TYPE(self
), tuple
, NULL
);
2625 static PyObject
*date_getstate(PyDateTime_Date
*self
);
2628 date_hash(PyDateTime_Date
*self
)
2630 if (self
->hashcode
== -1) {
2631 PyObject
*temp
= date_getstate(self
);
2633 self
->hashcode
= PyObject_Hash(temp
);
2637 return self
->hashcode
;
2641 date_toordinal(PyDateTime_Date
*self
)
2643 return PyInt_FromLong(ymd_to_ord(GET_YEAR(self
), GET_MONTH(self
),
2648 date_weekday(PyDateTime_Date
*self
)
2650 int dow
= weekday(GET_YEAR(self
), GET_MONTH(self
), GET_DAY(self
));
2652 return PyInt_FromLong(dow
);
2655 /* Pickle support, a simple use of __reduce__. */
2657 /* __getstate__ isn't exposed */
2659 date_getstate(PyDateTime_Date
*self
)
2661 return Py_BuildValue(
2663 PyString_FromStringAndSize((char *)self
->data
,
2664 _PyDateTime_DATE_DATASIZE
));
2668 date_reduce(PyDateTime_Date
*self
, PyObject
*arg
)
2670 return Py_BuildValue("(ON)", Py_TYPE(self
), date_getstate(self
));
2673 static PyMethodDef date_methods
[] = {
2675 /* Class methods: */
2677 {"fromtimestamp", (PyCFunction
)date_fromtimestamp
, METH_VARARGS
|
2679 PyDoc_STR("timestamp -> local date from a POSIX timestamp (like "
2682 {"fromordinal", (PyCFunction
)date_fromordinal
, METH_VARARGS
|
2684 PyDoc_STR("int -> date corresponding to a proleptic Gregorian "
2687 {"today", (PyCFunction
)date_today
, METH_NOARGS
| METH_CLASS
,
2688 PyDoc_STR("Current date or datetime: same as "
2689 "self.__class__.fromtimestamp(time.time()).")},
2691 /* Instance methods: */
2693 {"ctime", (PyCFunction
)date_ctime
, METH_NOARGS
,
2694 PyDoc_STR("Return ctime() style string.")},
2696 {"strftime", (PyCFunction
)date_strftime
, METH_VARARGS
| METH_KEYWORDS
,
2697 PyDoc_STR("format -> strftime() style string.")},
2699 {"__format__", (PyCFunction
)date_format
, METH_VARARGS
,
2700 PyDoc_STR("Formats self with strftime.")},
2702 {"timetuple", (PyCFunction
)date_timetuple
, METH_NOARGS
,
2703 PyDoc_STR("Return time tuple, compatible with time.localtime().")},
2705 {"isocalendar", (PyCFunction
)date_isocalendar
, METH_NOARGS
,
2706 PyDoc_STR("Return a 3-tuple containing ISO year, week number, and "
2709 {"isoformat", (PyCFunction
)date_isoformat
, METH_NOARGS
,
2710 PyDoc_STR("Return string in ISO 8601 format, YYYY-MM-DD.")},
2712 {"isoweekday", (PyCFunction
)date_isoweekday
, METH_NOARGS
,
2713 PyDoc_STR("Return the day of the week represented by the date.\n"
2714 "Monday == 1 ... Sunday == 7")},
2716 {"toordinal", (PyCFunction
)date_toordinal
, METH_NOARGS
,
2717 PyDoc_STR("Return proleptic Gregorian ordinal. January 1 of year "
2720 {"weekday", (PyCFunction
)date_weekday
, METH_NOARGS
,
2721 PyDoc_STR("Return the day of the week represented by the date.\n"
2722 "Monday == 0 ... Sunday == 6")},
2724 {"replace", (PyCFunction
)date_replace
, METH_VARARGS
| METH_KEYWORDS
,
2725 PyDoc_STR("Return date with new specified fields.")},
2727 {"__reduce__", (PyCFunction
)date_reduce
, METH_NOARGS
,
2728 PyDoc_STR("__reduce__() -> (cls, state)")},
2733 static char date_doc
[] =
2734 PyDoc_STR("date(year, month, day) --> date object");
2736 static PyNumberMethods date_as_number
= {
2737 date_add
, /* nb_add */
2738 date_subtract
, /* nb_subtract */
2739 0, /* nb_multiply */
2741 0, /* nb_remainder */
2744 0, /* nb_negative */
2745 0, /* nb_positive */
2746 0, /* nb_absolute */
2750 static PyTypeObject PyDateTime_DateType
= {
2751 PyVarObject_HEAD_INIT(NULL
, 0)
2752 "datetime.date", /* tp_name */
2753 sizeof(PyDateTime_Date
), /* tp_basicsize */
2754 0, /* tp_itemsize */
2760 (reprfunc
)date_repr
, /* tp_repr */
2761 &date_as_number
, /* tp_as_number */
2762 0, /* tp_as_sequence */
2763 0, /* tp_as_mapping */
2764 (hashfunc
)date_hash
, /* tp_hash */
2766 (reprfunc
)date_str
, /* tp_str */
2767 PyObject_GenericGetAttr
, /* tp_getattro */
2768 0, /* tp_setattro */
2769 0, /* tp_as_buffer */
2770 Py_TPFLAGS_DEFAULT
| Py_TPFLAGS_CHECKTYPES
|
2771 Py_TPFLAGS_BASETYPE
, /* tp_flags */
2772 date_doc
, /* tp_doc */
2773 0, /* tp_traverse */
2775 (richcmpfunc
)date_richcompare
, /* tp_richcompare */
2776 0, /* tp_weaklistoffset */
2778 0, /* tp_iternext */
2779 date_methods
, /* tp_methods */
2781 date_getset
, /* tp_getset */
2784 0, /* tp_descr_get */
2785 0, /* tp_descr_set */
2786 0, /* tp_dictoffset */
2789 date_new
, /* tp_new */
2794 * PyDateTime_TZInfo implementation.
2797 /* This is a pure abstract base class, so doesn't do anything beyond
2798 * raising NotImplemented exceptions. Real tzinfo classes need
2799 * to derive from this. This is mostly for clarity, and for efficiency in
2800 * datetime and time constructors (their tzinfo arguments need to
2801 * be subclasses of this tzinfo class, which is easy and quick to check).
2803 * Note: For reasons having to do with pickling of subclasses, we have
2804 * to allow tzinfo objects to be instantiated. This wasn't an issue
2805 * in the Python implementation (__init__() could raise NotImplementedError
2806 * there without ill effect), but doing so in the C implementation hit a
2811 tzinfo_nogo(const char* methodname
)
2813 PyErr_Format(PyExc_NotImplementedError
,
2814 "a tzinfo subclass must implement %s()",
2819 /* Methods. A subclass must implement these. */
2822 tzinfo_tzname(PyDateTime_TZInfo
*self
, PyObject
*dt
)
2824 return tzinfo_nogo("tzname");
2828 tzinfo_utcoffset(PyDateTime_TZInfo
*self
, PyObject
*dt
)
2830 return tzinfo_nogo("utcoffset");
2834 tzinfo_dst(PyDateTime_TZInfo
*self
, PyObject
*dt
)
2836 return tzinfo_nogo("dst");
2840 tzinfo_fromutc(PyDateTime_TZInfo
*self
, PyDateTime_DateTime
*dt
)
2842 int y
, m
, d
, hh
, mm
, ss
, us
;
2849 if (! PyDateTime_Check(dt
)) {
2850 PyErr_SetString(PyExc_TypeError
,
2851 "fromutc: argument must be a datetime");
2854 if (! HASTZINFO(dt
) || dt
->tzinfo
!= (PyObject
*)self
) {
2855 PyErr_SetString(PyExc_ValueError
, "fromutc: dt.tzinfo "
2860 off
= call_utcoffset(dt
->tzinfo
, (PyObject
*)dt
, &none
);
2861 if (off
== -1 && PyErr_Occurred())
2864 PyErr_SetString(PyExc_ValueError
, "fromutc: non-None "
2865 "utcoffset() result required");
2869 dst
= call_dst(dt
->tzinfo
, (PyObject
*)dt
, &none
);
2870 if (dst
== -1 && PyErr_Occurred())
2873 PyErr_SetString(PyExc_ValueError
, "fromutc: non-None "
2874 "dst() result required");
2881 hh
= DATE_GET_HOUR(dt
);
2882 mm
= DATE_GET_MINUTE(dt
);
2883 ss
= DATE_GET_SECOND(dt
);
2884 us
= DATE_GET_MICROSECOND(dt
);
2888 if ((mm
< 0 || mm
>= 60) &&
2889 normalize_datetime(&y
, &m
, &d
, &hh
, &mm
, &ss
, &us
) < 0)
2891 result
= new_datetime(y
, m
, d
, hh
, mm
, ss
, us
, dt
->tzinfo
);
2895 dst
= call_dst(dt
->tzinfo
, result
, &none
);
2896 if (dst
== -1 && PyErr_Occurred())
2904 if ((mm
< 0 || mm
>= 60) &&
2905 normalize_datetime(&y
, &m
, &d
, &hh
, &mm
, &ss
, &us
) < 0)
2908 result
= new_datetime(y
, m
, d
, hh
, mm
, ss
, us
, dt
->tzinfo
);
2912 PyErr_SetString(PyExc_ValueError
, "fromutc: tz.dst() gave"
2913 "inconsistent results; cannot convert");
2915 /* fall thru to failure */
2922 * Pickle support. This is solely so that tzinfo subclasses can use
2923 * pickling -- tzinfo itself is supposed to be uninstantiable.
2927 tzinfo_reduce(PyObject
*self
)
2929 PyObject
*args
, *state
, *tmp
;
2930 PyObject
*getinitargs
, *getstate
;
2932 tmp
= PyTuple_New(0);
2936 getinitargs
= PyObject_GetAttrString(self
, "__getinitargs__");
2937 if (getinitargs
!= NULL
) {
2938 args
= PyObject_CallObject(getinitargs
, tmp
);
2939 Py_DECREF(getinitargs
);
2951 getstate
= PyObject_GetAttrString(self
, "__getstate__");
2952 if (getstate
!= NULL
) {
2953 state
= PyObject_CallObject(getstate
, tmp
);
2954 Py_DECREF(getstate
);
2955 if (state
== NULL
) {
2965 dictptr
= _PyObject_GetDictPtr(self
);
2966 if (dictptr
&& *dictptr
&& PyDict_Size(*dictptr
))
2973 if (state
== Py_None
) {
2975 return Py_BuildValue("(ON)", Py_TYPE(self
), args
);
2978 return Py_BuildValue("(ONN)", Py_TYPE(self
), args
, state
);
2981 static PyMethodDef tzinfo_methods
[] = {
2983 {"tzname", (PyCFunction
)tzinfo_tzname
, METH_O
,
2984 PyDoc_STR("datetime -> string name of time zone.")},
2986 {"utcoffset", (PyCFunction
)tzinfo_utcoffset
, METH_O
,
2987 PyDoc_STR("datetime -> minutes east of UTC (negative for "
2990 {"dst", (PyCFunction
)tzinfo_dst
, METH_O
,
2991 PyDoc_STR("datetime -> DST offset in minutes east of UTC.")},
2993 {"fromutc", (PyCFunction
)tzinfo_fromutc
, METH_O
,
2994 PyDoc_STR("datetime in UTC -> datetime in local time.")},
2996 {"__reduce__", (PyCFunction
)tzinfo_reduce
, METH_NOARGS
,
2997 PyDoc_STR("-> (cls, state)")},
3002 static char tzinfo_doc
[] =
3003 PyDoc_STR("Abstract base class for time zone info objects.");
3005 statichere PyTypeObject PyDateTime_TZInfoType
= {
3006 PyObject_HEAD_INIT(NULL
)
3008 "datetime.tzinfo", /* tp_name */
3009 sizeof(PyDateTime_TZInfo
), /* tp_basicsize */
3010 0, /* tp_itemsize */
3017 0, /* tp_as_number */
3018 0, /* tp_as_sequence */
3019 0, /* tp_as_mapping */
3023 PyObject_GenericGetAttr
, /* tp_getattro */
3024 0, /* tp_setattro */
3025 0, /* tp_as_buffer */
3026 Py_TPFLAGS_DEFAULT
| Py_TPFLAGS_CHECKTYPES
|
3027 Py_TPFLAGS_BASETYPE
, /* tp_flags */
3028 tzinfo_doc
, /* tp_doc */
3029 0, /* tp_traverse */
3031 0, /* tp_richcompare */
3032 0, /* tp_weaklistoffset */
3034 0, /* tp_iternext */
3035 tzinfo_methods
, /* tp_methods */
3040 0, /* tp_descr_get */
3041 0, /* tp_descr_set */
3042 0, /* tp_dictoffset */
3045 PyType_GenericNew
, /* tp_new */
3050 * PyDateTime_Time implementation.
3053 /* Accessor properties.
3057 time_hour(PyDateTime_Time
*self
, void *unused
)
3059 return PyInt_FromLong(TIME_GET_HOUR(self
));
3063 time_minute(PyDateTime_Time
*self
, void *unused
)
3065 return PyInt_FromLong(TIME_GET_MINUTE(self
));
3068 /* The name time_second conflicted with some platform header file. */
3070 py_time_second(PyDateTime_Time
*self
, void *unused
)
3072 return PyInt_FromLong(TIME_GET_SECOND(self
));
3076 time_microsecond(PyDateTime_Time
*self
, void *unused
)
3078 return PyInt_FromLong(TIME_GET_MICROSECOND(self
));
3082 time_tzinfo(PyDateTime_Time
*self
, void *unused
)
3084 PyObject
*result
= HASTZINFO(self
) ? self
->tzinfo
: Py_None
;
3089 static PyGetSetDef time_getset
[] = {
3090 {"hour", (getter
)time_hour
},
3091 {"minute", (getter
)time_minute
},
3092 {"second", (getter
)py_time_second
},
3093 {"microsecond", (getter
)time_microsecond
},
3094 {"tzinfo", (getter
)time_tzinfo
},
3102 static char *time_kws
[] = {"hour", "minute", "second", "microsecond",
3106 time_new(PyTypeObject
*type
, PyObject
*args
, PyObject
*kw
)
3108 PyObject
*self
= NULL
;
3114 PyObject
*tzinfo
= Py_None
;
3116 /* Check for invocation from pickle with __getstate__ state */
3117 if (PyTuple_GET_SIZE(args
) >= 1 &&
3118 PyTuple_GET_SIZE(args
) <= 2 &&
3119 PyString_Check(state
= PyTuple_GET_ITEM(args
, 0)) &&
3120 PyString_GET_SIZE(state
) == _PyDateTime_TIME_DATASIZE
&&
3121 ((unsigned char) (PyString_AS_STRING(state
)[0])) < 24)
3123 PyDateTime_Time
*me
;
3126 if (PyTuple_GET_SIZE(args
) == 2) {
3127 tzinfo
= PyTuple_GET_ITEM(args
, 1);
3128 if (check_tzinfo_subclass(tzinfo
) < 0) {
3129 PyErr_SetString(PyExc_TypeError
, "bad "
3130 "tzinfo state arg");
3134 aware
= (char)(tzinfo
!= Py_None
);
3135 me
= (PyDateTime_Time
*) (type
->tp_alloc(type
, aware
));
3137 char *pdata
= PyString_AS_STRING(state
);
3139 memcpy(me
->data
, pdata
, _PyDateTime_TIME_DATASIZE
);
3141 me
->hastzinfo
= aware
;
3144 me
->tzinfo
= tzinfo
;
3147 return (PyObject
*)me
;
3150 if (PyArg_ParseTupleAndKeywords(args
, kw
, "|iiiiO", time_kws
,
3151 &hour
, &minute
, &second
, &usecond
,
3153 if (check_time_args(hour
, minute
, second
, usecond
) < 0)
3155 if (check_tzinfo_subclass(tzinfo
) < 0)
3157 self
= new_time_ex(hour
, minute
, second
, usecond
, tzinfo
,
3168 time_dealloc(PyDateTime_Time
*self
)
3170 if (HASTZINFO(self
)) {
3171 Py_XDECREF(self
->tzinfo
);
3173 Py_TYPE(self
)->tp_free((PyObject
*)self
);
3177 * Indirect access to tzinfo methods.
3180 /* These are all METH_NOARGS, so don't need to check the arglist. */
3182 time_utcoffset(PyDateTime_Time
*self
, PyObject
*unused
) {
3183 return offset_as_timedelta(HASTZINFO(self
) ? self
->tzinfo
: Py_None
,
3184 "utcoffset", Py_None
);
3188 time_dst(PyDateTime_Time
*self
, PyObject
*unused
) {
3189 return offset_as_timedelta(HASTZINFO(self
) ? self
->tzinfo
: Py_None
,
3194 time_tzname(PyDateTime_Time
*self
, PyObject
*unused
) {
3195 return call_tzname(HASTZINFO(self
) ? self
->tzinfo
: Py_None
,
3200 * Various ways to turn a time into a string.
3204 time_repr(PyDateTime_Time
*self
)
3207 const char *type_name
= Py_TYPE(self
)->tp_name
;
3208 int h
= TIME_GET_HOUR(self
);
3209 int m
= TIME_GET_MINUTE(self
);
3210 int s
= TIME_GET_SECOND(self
);
3211 int us
= TIME_GET_MICROSECOND(self
);
3212 PyObject
*result
= NULL
;
3215 PyOS_snprintf(buffer
, sizeof(buffer
),
3216 "%s(%d, %d, %d, %d)", type_name
, h
, m
, s
, us
);
3218 PyOS_snprintf(buffer
, sizeof(buffer
),
3219 "%s(%d, %d, %d)", type_name
, h
, m
, s
);
3221 PyOS_snprintf(buffer
, sizeof(buffer
),
3222 "%s(%d, %d)", type_name
, h
, m
);
3223 result
= PyString_FromString(buffer
);
3224 if (result
!= NULL
&& HASTZINFO(self
))
3225 result
= append_keyword_tzinfo(result
, self
->tzinfo
);
3230 time_str(PyDateTime_Time
*self
)
3232 return PyObject_CallMethod((PyObject
*)self
, "isoformat", "()");
3236 time_isoformat(PyDateTime_Time
*self
, PyObject
*unused
)
3240 /* Reuse the time format code from the datetime type. */
3241 PyDateTime_DateTime datetime
;
3242 PyDateTime_DateTime
*pdatetime
= &datetime
;
3244 /* Copy over just the time bytes. */
3245 memcpy(pdatetime
->data
+ _PyDateTime_DATE_DATASIZE
,
3247 _PyDateTime_TIME_DATASIZE
);
3249 isoformat_time(pdatetime
, buf
, sizeof(buf
));
3250 result
= PyString_FromString(buf
);
3251 if (result
== NULL
|| ! HASTZINFO(self
) || self
->tzinfo
== Py_None
)
3254 /* We need to append the UTC offset. */
3255 if (format_utcoffset(buf
, sizeof(buf
), ":", self
->tzinfo
,
3260 PyString_ConcatAndDel(&result
, PyString_FromString(buf
));
3265 time_strftime(PyDateTime_Time
*self
, PyObject
*args
, PyObject
*kw
)
3270 Py_ssize_t format_len
;
3271 static char *keywords
[] = {"format", NULL
};
3273 if (! PyArg_ParseTupleAndKeywords(args
, kw
, "s#:strftime", keywords
,
3274 &format
, &format_len
))
3277 /* Python's strftime does insane things with the year part of the
3278 * timetuple. The year is forced to (the otherwise nonsensical)
3279 * 1900 to worm around that.
3281 tuple
= Py_BuildValue("iiiiiiiii",
3282 1900, 1, 1, /* year, month, day */
3283 TIME_GET_HOUR(self
),
3284 TIME_GET_MINUTE(self
),
3285 TIME_GET_SECOND(self
),
3286 0, 1, -1); /* weekday, daynum, dst */
3289 assert(PyTuple_Size(tuple
) == 9);
3290 result
= wrap_strftime((PyObject
*)self
, format
, format_len
, tuple
,
3297 * Miscellaneous methods.
3300 /* This is more natural as a tp_compare, but doesn't work then: for whatever
3301 * reason, Python's try_3way_compare ignores tp_compare unless
3302 * PyInstance_Check returns true, but these aren't old-style classes.
3305 time_richcompare(PyDateTime_Time
*self
, PyObject
*other
, int op
)
3309 int offset1
, offset2
;
3311 if (! PyTime_Check(other
)) {
3312 if (op
== Py_EQ
|| op
== Py_NE
) {
3313 PyObject
*result
= op
== Py_EQ
? Py_False
: Py_True
;
3317 /* Stop this from falling back to address comparison. */
3318 return cmperror((PyObject
*)self
, other
);
3320 if (classify_two_utcoffsets((PyObject
*)self
, &offset1
, &n1
, Py_None
,
3321 other
, &offset2
, &n2
, Py_None
) < 0)
3323 assert(n1
!= OFFSET_UNKNOWN
&& n2
!= OFFSET_UNKNOWN
);
3324 /* If they're both naive, or both aware and have the same offsets,
3325 * we get off cheap. Note that if they're both naive, offset1 ==
3326 * offset2 == 0 at this point.
3328 if (n1
== n2
&& offset1
== offset2
) {
3329 diff
= memcmp(self
->data
, ((PyDateTime_Time
*)other
)->data
,
3330 _PyDateTime_TIME_DATASIZE
);
3331 return diff_to_bool(diff
, op
);
3334 if (n1
== OFFSET_AWARE
&& n2
== OFFSET_AWARE
) {
3335 assert(offset1
!= offset2
); /* else last "if" handled it */
3336 /* Convert everything except microseconds to seconds. These
3337 * can't overflow (no more than the # of seconds in 2 days).
3339 offset1
= TIME_GET_HOUR(self
) * 3600 +
3340 (TIME_GET_MINUTE(self
) - offset1
) * 60 +
3341 TIME_GET_SECOND(self
);
3342 offset2
= TIME_GET_HOUR(other
) * 3600 +
3343 (TIME_GET_MINUTE(other
) - offset2
) * 60 +
3344 TIME_GET_SECOND(other
);
3345 diff
= offset1
- offset2
;
3347 diff
= TIME_GET_MICROSECOND(self
) -
3348 TIME_GET_MICROSECOND(other
);
3349 return diff_to_bool(diff
, op
);
3353 PyErr_SetString(PyExc_TypeError
,
3354 "can't compare offset-naive and "
3355 "offset-aware times");
3360 time_hash(PyDateTime_Time
*self
)
3362 if (self
->hashcode
== -1) {
3367 n
= classify_utcoffset((PyObject
*)self
, Py_None
, &offset
);
3368 assert(n
!= OFFSET_UNKNOWN
);
3369 if (n
== OFFSET_ERROR
)
3372 /* Reduce this to a hash of another object. */
3374 temp
= PyString_FromStringAndSize((char *)self
->data
,
3375 _PyDateTime_TIME_DATASIZE
);
3380 assert(n
== OFFSET_AWARE
);
3381 assert(HASTZINFO(self
));
3382 hour
= divmod(TIME_GET_HOUR(self
) * 60 +
3383 TIME_GET_MINUTE(self
) - offset
,
3386 if (0 <= hour
&& hour
< 24)
3387 temp
= new_time(hour
, minute
,
3388 TIME_GET_SECOND(self
),
3389 TIME_GET_MICROSECOND(self
),
3392 temp
= Py_BuildValue("iiii",
3394 TIME_GET_SECOND(self
),
3395 TIME_GET_MICROSECOND(self
));
3398 self
->hashcode
= PyObject_Hash(temp
);
3402 return self
->hashcode
;
3406 time_replace(PyDateTime_Time
*self
, PyObject
*args
, PyObject
*kw
)
3410 int hh
= TIME_GET_HOUR(self
);
3411 int mm
= TIME_GET_MINUTE(self
);
3412 int ss
= TIME_GET_SECOND(self
);
3413 int us
= TIME_GET_MICROSECOND(self
);
3414 PyObject
*tzinfo
= HASTZINFO(self
) ? self
->tzinfo
: Py_None
;
3416 if (! PyArg_ParseTupleAndKeywords(args
, kw
, "|iiiiO:replace",
3418 &hh
, &mm
, &ss
, &us
, &tzinfo
))
3420 tuple
= Py_BuildValue("iiiiO", hh
, mm
, ss
, us
, tzinfo
);
3423 clone
= time_new(Py_TYPE(self
), tuple
, NULL
);
3429 time_nonzero(PyDateTime_Time
*self
)
3434 if (TIME_GET_SECOND(self
) || TIME_GET_MICROSECOND(self
)) {
3435 /* Since utcoffset is in whole minutes, nothing can
3436 * alter the conclusion that this is nonzero.
3441 if (HASTZINFO(self
) && self
->tzinfo
!= Py_None
) {
3442 offset
= call_utcoffset(self
->tzinfo
, Py_None
, &none
);
3443 if (offset
== -1 && PyErr_Occurred())
3446 return (TIME_GET_MINUTE(self
) - offset
+ TIME_GET_HOUR(self
)*60) != 0;
3449 /* Pickle support, a simple use of __reduce__. */
3451 /* Let basestate be the non-tzinfo data string.
3452 * If tzinfo is None, this returns (basestate,), else (basestate, tzinfo).
3453 * So it's a tuple in any (non-error) case.
3454 * __getstate__ isn't exposed.
3457 time_getstate(PyDateTime_Time
*self
)
3459 PyObject
*basestate
;
3460 PyObject
*result
= NULL
;
3462 basestate
= PyString_FromStringAndSize((char *)self
->data
,
3463 _PyDateTime_TIME_DATASIZE
);
3464 if (basestate
!= NULL
) {
3465 if (! HASTZINFO(self
) || self
->tzinfo
== Py_None
)
3466 result
= PyTuple_Pack(1, basestate
);
3468 result
= PyTuple_Pack(2, basestate
, self
->tzinfo
);
3469 Py_DECREF(basestate
);
3475 time_reduce(PyDateTime_Time
*self
, PyObject
*arg
)
3477 return Py_BuildValue("(ON)", Py_TYPE(self
), time_getstate(self
));
3480 static PyMethodDef time_methods
[] = {
3482 {"isoformat", (PyCFunction
)time_isoformat
, METH_NOARGS
,
3483 PyDoc_STR("Return string in ISO 8601 format, HH:MM:SS[.mmmmmm]"
3486 {"strftime", (PyCFunction
)time_strftime
, METH_VARARGS
| METH_KEYWORDS
,
3487 PyDoc_STR("format -> strftime() style string.")},
3489 {"__format__", (PyCFunction
)date_format
, METH_VARARGS
,
3490 PyDoc_STR("Formats self with strftime.")},
3492 {"utcoffset", (PyCFunction
)time_utcoffset
, METH_NOARGS
,
3493 PyDoc_STR("Return self.tzinfo.utcoffset(self).")},
3495 {"tzname", (PyCFunction
)time_tzname
, METH_NOARGS
,
3496 PyDoc_STR("Return self.tzinfo.tzname(self).")},
3498 {"dst", (PyCFunction
)time_dst
, METH_NOARGS
,
3499 PyDoc_STR("Return self.tzinfo.dst(self).")},
3501 {"replace", (PyCFunction
)time_replace
, METH_VARARGS
| METH_KEYWORDS
,
3502 PyDoc_STR("Return time with new specified fields.")},
3504 {"__reduce__", (PyCFunction
)time_reduce
, METH_NOARGS
,
3505 PyDoc_STR("__reduce__() -> (cls, state)")},
3510 static char time_doc
[] =
3511 PyDoc_STR("time([hour[, minute[, second[, microsecond[, tzinfo]]]]]) --> a time object\n\
3513 All arguments are optional. tzinfo may be None, or an instance of\n\
3514 a tzinfo subclass. The remaining arguments may be ints or longs.\n");
3516 static PyNumberMethods time_as_number
= {
3518 0, /* nb_subtract */
3519 0, /* nb_multiply */
3521 0, /* nb_remainder */
3524 0, /* nb_negative */
3525 0, /* nb_positive */
3526 0, /* nb_absolute */
3527 (inquiry
)time_nonzero
, /* nb_nonzero */
3530 statichere PyTypeObject PyDateTime_TimeType
= {
3531 PyObject_HEAD_INIT(NULL
)
3533 "datetime.time", /* tp_name */
3534 sizeof(PyDateTime_Time
), /* tp_basicsize */
3535 0, /* tp_itemsize */
3536 (destructor
)time_dealloc
, /* tp_dealloc */
3541 (reprfunc
)time_repr
, /* tp_repr */
3542 &time_as_number
, /* tp_as_number */
3543 0, /* tp_as_sequence */
3544 0, /* tp_as_mapping */
3545 (hashfunc
)time_hash
, /* tp_hash */
3547 (reprfunc
)time_str
, /* tp_str */
3548 PyObject_GenericGetAttr
, /* tp_getattro */
3549 0, /* tp_setattro */
3550 0, /* tp_as_buffer */
3551 Py_TPFLAGS_DEFAULT
| Py_TPFLAGS_CHECKTYPES
|
3552 Py_TPFLAGS_BASETYPE
, /* tp_flags */
3553 time_doc
, /* tp_doc */
3554 0, /* tp_traverse */
3556 (richcmpfunc
)time_richcompare
, /* tp_richcompare */
3557 0, /* tp_weaklistoffset */
3559 0, /* tp_iternext */
3560 time_methods
, /* tp_methods */
3562 time_getset
, /* tp_getset */
3565 0, /* tp_descr_get */
3566 0, /* tp_descr_set */
3567 0, /* tp_dictoffset */
3569 time_alloc
, /* tp_alloc */
3570 time_new
, /* tp_new */
3575 * PyDateTime_DateTime implementation.
3578 /* Accessor properties. Properties for day, month, and year are inherited
3583 datetime_hour(PyDateTime_DateTime
*self
, void *unused
)
3585 return PyInt_FromLong(DATE_GET_HOUR(self
));
3589 datetime_minute(PyDateTime_DateTime
*self
, void *unused
)
3591 return PyInt_FromLong(DATE_GET_MINUTE(self
));
3595 datetime_second(PyDateTime_DateTime
*self
, void *unused
)
3597 return PyInt_FromLong(DATE_GET_SECOND(self
));
3601 datetime_microsecond(PyDateTime_DateTime
*self
, void *unused
)
3603 return PyInt_FromLong(DATE_GET_MICROSECOND(self
));
3607 datetime_tzinfo(PyDateTime_DateTime
*self
, void *unused
)
3609 PyObject
*result
= HASTZINFO(self
) ? self
->tzinfo
: Py_None
;
3614 static PyGetSetDef datetime_getset
[] = {
3615 {"hour", (getter
)datetime_hour
},
3616 {"minute", (getter
)datetime_minute
},
3617 {"second", (getter
)datetime_second
},
3618 {"microsecond", (getter
)datetime_microsecond
},
3619 {"tzinfo", (getter
)datetime_tzinfo
},
3627 static char *datetime_kws
[] = {
3628 "year", "month", "day", "hour", "minute", "second",
3629 "microsecond", "tzinfo", NULL
3633 datetime_new(PyTypeObject
*type
, PyObject
*args
, PyObject
*kw
)
3635 PyObject
*self
= NULL
;
3644 PyObject
*tzinfo
= Py_None
;
3646 /* Check for invocation from pickle with __getstate__ state */
3647 if (PyTuple_GET_SIZE(args
) >= 1 &&
3648 PyTuple_GET_SIZE(args
) <= 2 &&
3649 PyString_Check(state
= PyTuple_GET_ITEM(args
, 0)) &&
3650 PyString_GET_SIZE(state
) == _PyDateTime_DATETIME_DATASIZE
&&
3651 MONTH_IS_SANE(PyString_AS_STRING(state
)[2]))
3653 PyDateTime_DateTime
*me
;
3656 if (PyTuple_GET_SIZE(args
) == 2) {
3657 tzinfo
= PyTuple_GET_ITEM(args
, 1);
3658 if (check_tzinfo_subclass(tzinfo
) < 0) {
3659 PyErr_SetString(PyExc_TypeError
, "bad "
3660 "tzinfo state arg");
3664 aware
= (char)(tzinfo
!= Py_None
);
3665 me
= (PyDateTime_DateTime
*) (type
->tp_alloc(type
, aware
));
3667 char *pdata
= PyString_AS_STRING(state
);
3669 memcpy(me
->data
, pdata
, _PyDateTime_DATETIME_DATASIZE
);
3671 me
->hastzinfo
= aware
;
3674 me
->tzinfo
= tzinfo
;
3677 return (PyObject
*)me
;
3680 if (PyArg_ParseTupleAndKeywords(args
, kw
, "iii|iiiiO", datetime_kws
,
3681 &year
, &month
, &day
, &hour
, &minute
,
3682 &second
, &usecond
, &tzinfo
)) {
3683 if (check_date_args(year
, month
, day
) < 0)
3685 if (check_time_args(hour
, minute
, second
, usecond
) < 0)
3687 if (check_tzinfo_subclass(tzinfo
) < 0)
3689 self
= new_datetime_ex(year
, month
, day
,
3690 hour
, minute
, second
, usecond
,
3696 /* TM_FUNC is the shared type of localtime() and gmtime(). */
3697 typedef struct tm
*(*TM_FUNC
)(const time_t *timer
);
3700 * Build datetime from a time_t and a distinct count of microseconds.
3701 * Pass localtime or gmtime for f, to control the interpretation of timet.
3704 datetime_from_timet_and_us(PyObject
*cls
, TM_FUNC f
, time_t timet
, int us
,
3708 PyObject
*result
= NULL
;
3712 /* The platform localtime/gmtime may insert leap seconds,
3713 * indicated by tm->tm_sec > 59. We don't care about them,
3714 * except to the extent that passing them on to the datetime
3715 * constructor would raise ValueError for a reason that
3716 * made no sense to the user.
3718 if (tm
->tm_sec
> 59)
3720 result
= PyObject_CallFunction(cls
, "iiiiiiiO",
3731 PyErr_SetString(PyExc_ValueError
,
3732 "timestamp out of range for "
3733 "platform localtime()/gmtime() function");
3738 * Build datetime from a Python timestamp. Pass localtime or gmtime for f,
3739 * to control the interpretation of the timestamp. Since a double doesn't
3740 * have enough bits to cover a datetime's full range of precision, it's
3741 * better to call datetime_from_timet_and_us provided you have a way
3742 * to get that much precision (e.g., C time() isn't good enough).
3745 datetime_from_timestamp(PyObject
*cls
, TM_FUNC f
, double timestamp
,
3752 timet
= _PyTime_DoubleToTimet(timestamp
);
3753 if (timet
== (time_t)-1 && PyErr_Occurred())
3755 fraction
= timestamp
- (double)timet
;
3756 us
= (int)round_to_long(fraction
* 1e6
);
3758 /* Truncation towards zero is not what we wanted
3759 for negative numbers (Python's mod semantics) */
3763 /* If timestamp is less than one microsecond smaller than a
3764 * full second, round up. Otherwise, ValueErrors are raised
3765 * for some floats. */
3766 if (us
== 1000000) {
3770 return datetime_from_timet_and_us(cls
, f
, timet
, us
, tzinfo
);
3774 * Build most accurate possible datetime for current time. Pass localtime or
3775 * gmtime for f as appropriate.
3778 datetime_best_possible(PyObject
*cls
, TM_FUNC f
, PyObject
*tzinfo
)
3780 #ifdef HAVE_GETTIMEOFDAY
3783 #ifdef GETTIMEOFDAY_NO_TZ
3786 gettimeofday(&t
, (struct timezone
*)NULL
);
3788 return datetime_from_timet_and_us(cls
, f
, t
.tv_sec
, (int)t
.tv_usec
,
3791 #else /* ! HAVE_GETTIMEOFDAY */
3792 /* No flavor of gettimeofday exists on this platform. Python's
3793 * time.time() does a lot of other platform tricks to get the
3794 * best time it can on the platform, and we're not going to do
3795 * better than that (if we could, the better code would belong
3796 * in time.time()!) We're limited by the precision of a double,
3805 dtime
= PyFloat_AsDouble(time
);
3807 if (dtime
== -1.0 && PyErr_Occurred())
3809 return datetime_from_timestamp(cls
, f
, dtime
, tzinfo
);
3810 #endif /* ! HAVE_GETTIMEOFDAY */
3813 /* Return best possible local time -- this isn't constrained by the
3814 * precision of a timestamp.
3817 datetime_now(PyObject
*cls
, PyObject
*args
, PyObject
*kw
)
3820 PyObject
*tzinfo
= Py_None
;
3821 static char *keywords
[] = {"tz", NULL
};
3823 if (! PyArg_ParseTupleAndKeywords(args
, kw
, "|O:now", keywords
,
3826 if (check_tzinfo_subclass(tzinfo
) < 0)
3829 self
= datetime_best_possible(cls
,
3830 tzinfo
== Py_None
? localtime
: gmtime
,
3832 if (self
!= NULL
&& tzinfo
!= Py_None
) {
3833 /* Convert UTC to tzinfo's zone. */
3834 PyObject
*temp
= self
;
3835 self
= PyObject_CallMethod(tzinfo
, "fromutc", "O", self
);
3841 /* Return best possible UTC time -- this isn't constrained by the
3842 * precision of a timestamp.
3845 datetime_utcnow(PyObject
*cls
, PyObject
*dummy
)
3847 return datetime_best_possible(cls
, gmtime
, Py_None
);
3850 /* Return new local datetime from timestamp (Python timestamp -- a double). */
3852 datetime_fromtimestamp(PyObject
*cls
, PyObject
*args
, PyObject
*kw
)
3856 PyObject
*tzinfo
= Py_None
;
3857 static char *keywords
[] = {"timestamp", "tz", NULL
};
3859 if (! PyArg_ParseTupleAndKeywords(args
, kw
, "d|O:fromtimestamp",
3860 keywords
, ×tamp
, &tzinfo
))
3862 if (check_tzinfo_subclass(tzinfo
) < 0)
3865 self
= datetime_from_timestamp(cls
,
3866 tzinfo
== Py_None
? localtime
: gmtime
,
3869 if (self
!= NULL
&& tzinfo
!= Py_None
) {
3870 /* Convert UTC to tzinfo's zone. */
3871 PyObject
*temp
= self
;
3872 self
= PyObject_CallMethod(tzinfo
, "fromutc", "O", self
);
3878 /* Return new UTC datetime from timestamp (Python timestamp -- a double). */
3880 datetime_utcfromtimestamp(PyObject
*cls
, PyObject
*args
)
3883 PyObject
*result
= NULL
;
3885 if (PyArg_ParseTuple(args
, "d:utcfromtimestamp", ×tamp
))
3886 result
= datetime_from_timestamp(cls
, gmtime
, timestamp
,
3891 /* Return new datetime from time.strptime(). */
3893 datetime_strptime(PyObject
*cls
, PyObject
*args
)
3895 static PyObject
*module
= NULL
;
3896 PyObject
*result
= NULL
, *obj
, *st
= NULL
, *frac
= NULL
;
3897 const char *string
, *format
;
3899 if (!PyArg_ParseTuple(args
, "ss:strptime", &string
, &format
))
3902 if (module
== NULL
&&
3903 (module
= PyImport_ImportModuleNoBlock("_strptime")) == NULL
)
3906 /* _strptime._strptime returns a two-element tuple. The first
3907 element is a time.struct_time object. The second is the
3908 microseconds (which are not defined for time.struct_time). */
3909 obj
= PyObject_CallMethod(module
, "_strptime", "ss", string
, format
);
3911 int i
, good_timetuple
= 1;
3913 if (PySequence_Check(obj
) && PySequence_Size(obj
) == 2) {
3914 st
= PySequence_GetItem(obj
, 0);
3915 frac
= PySequence_GetItem(obj
, 1);
3916 if (st
== NULL
|| frac
== NULL
)
3918 /* copy y/m/d/h/m/s values out of the
3920 if (good_timetuple
&&
3921 PySequence_Check(st
) &&
3922 PySequence_Size(st
) >= 6) {
3923 for (i
=0; i
< 6; i
++) {
3924 PyObject
*p
= PySequence_GetItem(st
, i
);
3930 ia
[i
] = PyInt_AsLong(p
);
3938 /* follow that up with a little dose of microseconds */
3939 if (PyInt_Check(frac
))
3940 ia
[6] = PyInt_AsLong(frac
);
3947 result
= PyObject_CallFunction(cls
, "iiiiiii",
3948 ia
[0], ia
[1], ia
[2],
3949 ia
[3], ia
[4], ia
[5],
3952 PyErr_SetString(PyExc_ValueError
,
3953 "unexpected value from _strptime._strptime");
3961 /* Return new datetime from date/datetime and time arguments. */
3963 datetime_combine(PyObject
*cls
, PyObject
*args
, PyObject
*kw
)
3965 static char *keywords
[] = {"date", "time", NULL
};
3968 PyObject
*result
= NULL
;
3970 if (PyArg_ParseTupleAndKeywords(args
, kw
, "O!O!:combine", keywords
,
3971 &PyDateTime_DateType
, &date
,
3972 &PyDateTime_TimeType
, &time
)) {
3973 PyObject
*tzinfo
= Py_None
;
3975 if (HASTZINFO(time
))
3976 tzinfo
= ((PyDateTime_Time
*)time
)->tzinfo
;
3977 result
= PyObject_CallFunction(cls
, "iiiiiiiO",
3981 TIME_GET_HOUR(time
),
3982 TIME_GET_MINUTE(time
),
3983 TIME_GET_SECOND(time
),
3984 TIME_GET_MICROSECOND(time
),
3995 datetime_dealloc(PyDateTime_DateTime
*self
)
3997 if (HASTZINFO(self
)) {
3998 Py_XDECREF(self
->tzinfo
);
4000 Py_TYPE(self
)->tp_free((PyObject
*)self
);
4004 * Indirect access to tzinfo methods.
4007 /* These are all METH_NOARGS, so don't need to check the arglist. */
4009 datetime_utcoffset(PyDateTime_DateTime
*self
, PyObject
*unused
) {
4010 return offset_as_timedelta(HASTZINFO(self
) ? self
->tzinfo
: Py_None
,
4011 "utcoffset", (PyObject
*)self
);
4015 datetime_dst(PyDateTime_DateTime
*self
, PyObject
*unused
) {
4016 return offset_as_timedelta(HASTZINFO(self
) ? self
->tzinfo
: Py_None
,
4017 "dst", (PyObject
*)self
);
4021 datetime_tzname(PyDateTime_DateTime
*self
, PyObject
*unused
) {
4022 return call_tzname(HASTZINFO(self
) ? self
->tzinfo
: Py_None
,
4027 * datetime arithmetic.
4030 /* factor must be 1 (to add) or -1 (to subtract). The result inherits
4031 * the tzinfo state of date.
4034 add_datetime_timedelta(PyDateTime_DateTime
*date
, PyDateTime_Delta
*delta
,
4037 /* Note that the C-level additions can't overflow, because of
4038 * invariant bounds on the member values.
4040 int year
= GET_YEAR(date
);
4041 int month
= GET_MONTH(date
);
4042 int day
= GET_DAY(date
) + GET_TD_DAYS(delta
) * factor
;
4043 int hour
= DATE_GET_HOUR(date
);
4044 int minute
= DATE_GET_MINUTE(date
);
4045 int second
= DATE_GET_SECOND(date
) + GET_TD_SECONDS(delta
) * factor
;
4046 int microsecond
= DATE_GET_MICROSECOND(date
) +
4047 GET_TD_MICROSECONDS(delta
) * factor
;
4049 assert(factor
== 1 || factor
== -1);
4050 if (normalize_datetime(&year
, &month
, &day
,
4051 &hour
, &minute
, &second
, µsecond
) < 0)
4054 return new_datetime(year
, month
, day
,
4055 hour
, minute
, second
, microsecond
,
4056 HASTZINFO(date
) ? date
->tzinfo
: Py_None
);
4060 datetime_add(PyObject
*left
, PyObject
*right
)
4062 if (PyDateTime_Check(left
)) {
4063 /* datetime + ??? */
4064 if (PyDelta_Check(right
))
4065 /* datetime + delta */
4066 return add_datetime_timedelta(
4067 (PyDateTime_DateTime
*)left
,
4068 (PyDateTime_Delta
*)right
,
4071 else if (PyDelta_Check(left
)) {
4072 /* delta + datetime */
4073 return add_datetime_timedelta((PyDateTime_DateTime
*) right
,
4074 (PyDateTime_Delta
*) left
,
4077 Py_INCREF(Py_NotImplemented
);
4078 return Py_NotImplemented
;
4082 datetime_subtract(PyObject
*left
, PyObject
*right
)
4084 PyObject
*result
= Py_NotImplemented
;
4086 if (PyDateTime_Check(left
)) {
4087 /* datetime - ??? */
4088 if (PyDateTime_Check(right
)) {
4089 /* datetime - datetime */
4091 int offset1
, offset2
;
4092 int delta_d
, delta_s
, delta_us
;
4094 if (classify_two_utcoffsets(left
, &offset1
, &n1
, left
,
4095 right
, &offset2
, &n2
,
4098 assert(n1
!= OFFSET_UNKNOWN
&& n2
!= OFFSET_UNKNOWN
);
4100 PyErr_SetString(PyExc_TypeError
,
4101 "can't subtract offset-naive and "
4102 "offset-aware datetimes");
4105 delta_d
= ymd_to_ord(GET_YEAR(left
),
4108 ymd_to_ord(GET_YEAR(right
),
4111 /* These can't overflow, since the values are
4112 * normalized. At most this gives the number of
4113 * seconds in one day.
4115 delta_s
= (DATE_GET_HOUR(left
) -
4116 DATE_GET_HOUR(right
)) * 3600 +
4117 (DATE_GET_MINUTE(left
) -
4118 DATE_GET_MINUTE(right
)) * 60 +
4119 (DATE_GET_SECOND(left
) -
4120 DATE_GET_SECOND(right
));
4121 delta_us
= DATE_GET_MICROSECOND(left
) -
4122 DATE_GET_MICROSECOND(right
);
4123 /* (left - offset1) - (right - offset2) =
4124 * (left - right) + (offset2 - offset1)
4126 delta_s
+= (offset2
- offset1
) * 60;
4127 result
= new_delta(delta_d
, delta_s
, delta_us
, 1);
4129 else if (PyDelta_Check(right
)) {
4130 /* datetime - delta */
4131 result
= add_datetime_timedelta(
4132 (PyDateTime_DateTime
*)left
,
4133 (PyDateTime_Delta
*)right
,
4138 if (result
== Py_NotImplemented
)
4143 /* Various ways to turn a datetime into a string. */
4146 datetime_repr(PyDateTime_DateTime
*self
)
4149 const char *type_name
= Py_TYPE(self
)->tp_name
;
4152 if (DATE_GET_MICROSECOND(self
)) {
4153 PyOS_snprintf(buffer
, sizeof(buffer
),
4154 "%s(%d, %d, %d, %d, %d, %d, %d)",
4156 GET_YEAR(self
), GET_MONTH(self
), GET_DAY(self
),
4157 DATE_GET_HOUR(self
), DATE_GET_MINUTE(self
),
4158 DATE_GET_SECOND(self
),
4159 DATE_GET_MICROSECOND(self
));
4161 else if (DATE_GET_SECOND(self
)) {
4162 PyOS_snprintf(buffer
, sizeof(buffer
),
4163 "%s(%d, %d, %d, %d, %d, %d)",
4165 GET_YEAR(self
), GET_MONTH(self
), GET_DAY(self
),
4166 DATE_GET_HOUR(self
), DATE_GET_MINUTE(self
),
4167 DATE_GET_SECOND(self
));
4170 PyOS_snprintf(buffer
, sizeof(buffer
),
4171 "%s(%d, %d, %d, %d, %d)",
4173 GET_YEAR(self
), GET_MONTH(self
), GET_DAY(self
),
4174 DATE_GET_HOUR(self
), DATE_GET_MINUTE(self
));
4176 baserepr
= PyString_FromString(buffer
);
4177 if (baserepr
== NULL
|| ! HASTZINFO(self
))
4179 return append_keyword_tzinfo(baserepr
, self
->tzinfo
);
4183 datetime_str(PyDateTime_DateTime
*self
)
4185 return PyObject_CallMethod((PyObject
*)self
, "isoformat", "(s)", " ");
4189 datetime_isoformat(PyDateTime_DateTime
*self
, PyObject
*args
, PyObject
*kw
)
4192 static char *keywords
[] = {"sep", NULL
};
4197 if (!PyArg_ParseTupleAndKeywords(args
, kw
, "|c:isoformat", keywords
,
4200 cp
= isoformat_date((PyDateTime_Date
*)self
, buffer
, sizeof(buffer
));
4203 isoformat_time(self
, cp
, sizeof(buffer
) - (cp
- buffer
));
4204 result
= PyString_FromString(buffer
);
4205 if (result
== NULL
|| ! HASTZINFO(self
))
4208 /* We need to append the UTC offset. */
4209 if (format_utcoffset(buffer
, sizeof(buffer
), ":", self
->tzinfo
,
4210 (PyObject
*)self
) < 0) {
4214 PyString_ConcatAndDel(&result
, PyString_FromString(buffer
));
4219 datetime_ctime(PyDateTime_DateTime
*self
)
4221 return format_ctime((PyDateTime_Date
*)self
,
4222 DATE_GET_HOUR(self
),
4223 DATE_GET_MINUTE(self
),
4224 DATE_GET_SECOND(self
));
4227 /* Miscellaneous methods. */
4229 /* This is more natural as a tp_compare, but doesn't work then: for whatever
4230 * reason, Python's try_3way_compare ignores tp_compare unless
4231 * PyInstance_Check returns true, but these aren't old-style classes.
4234 datetime_richcompare(PyDateTime_DateTime
*self
, PyObject
*other
, int op
)
4238 int offset1
, offset2
;
4240 if (! PyDateTime_Check(other
)) {
4241 /* If other has a "timetuple" attr, that's an advertised
4242 * hook for other classes to ask to get comparison control.
4243 * However, date instances have a timetuple attr, and we
4244 * don't want to allow that comparison. Because datetime
4245 * is a subclass of date, when mixing date and datetime
4246 * in a comparison, Python gives datetime the first shot
4247 * (it's the more specific subtype). So we can stop that
4248 * combination here reliably.
4250 if (PyObject_HasAttrString(other
, "timetuple") &&
4251 ! PyDate_Check(other
)) {
4252 /* A hook for other kinds of datetime objects. */
4253 Py_INCREF(Py_NotImplemented
);
4254 return Py_NotImplemented
;
4256 if (op
== Py_EQ
|| op
== Py_NE
) {
4257 PyObject
*result
= op
== Py_EQ
? Py_False
: Py_True
;
4261 /* Stop this from falling back to address comparison. */
4262 return cmperror((PyObject
*)self
, other
);
4265 if (classify_two_utcoffsets((PyObject
*)self
, &offset1
, &n1
,
4267 other
, &offset2
, &n2
,
4270 assert(n1
!= OFFSET_UNKNOWN
&& n2
!= OFFSET_UNKNOWN
);
4271 /* If they're both naive, or both aware and have the same offsets,
4272 * we get off cheap. Note that if they're both naive, offset1 ==
4273 * offset2 == 0 at this point.
4275 if (n1
== n2
&& offset1
== offset2
) {
4276 diff
= memcmp(self
->data
, ((PyDateTime_DateTime
*)other
)->data
,
4277 _PyDateTime_DATETIME_DATASIZE
);
4278 return diff_to_bool(diff
, op
);
4281 if (n1
== OFFSET_AWARE
&& n2
== OFFSET_AWARE
) {
4282 PyDateTime_Delta
*delta
;
4284 assert(offset1
!= offset2
); /* else last "if" handled it */
4285 delta
= (PyDateTime_Delta
*)datetime_subtract((PyObject
*)self
,
4289 diff
= GET_TD_DAYS(delta
);
4291 diff
= GET_TD_SECONDS(delta
) |
4292 GET_TD_MICROSECONDS(delta
);
4294 return diff_to_bool(diff
, op
);
4298 PyErr_SetString(PyExc_TypeError
,
4299 "can't compare offset-naive and "
4300 "offset-aware datetimes");
4305 datetime_hash(PyDateTime_DateTime
*self
)
4307 if (self
->hashcode
== -1) {
4312 n
= classify_utcoffset((PyObject
*)self
, (PyObject
*)self
,
4314 assert(n
!= OFFSET_UNKNOWN
);
4315 if (n
== OFFSET_ERROR
)
4318 /* Reduce this to a hash of another object. */
4319 if (n
== OFFSET_NAIVE
)
4320 temp
= PyString_FromStringAndSize(
4322 _PyDateTime_DATETIME_DATASIZE
);
4327 assert(n
== OFFSET_AWARE
);
4328 assert(HASTZINFO(self
));
4329 days
= ymd_to_ord(GET_YEAR(self
),
4332 seconds
= DATE_GET_HOUR(self
) * 3600 +
4333 (DATE_GET_MINUTE(self
) - offset
) * 60 +
4334 DATE_GET_SECOND(self
);
4335 temp
= new_delta(days
,
4337 DATE_GET_MICROSECOND(self
),
4341 self
->hashcode
= PyObject_Hash(temp
);
4345 return self
->hashcode
;
4349 datetime_replace(PyDateTime_DateTime
*self
, PyObject
*args
, PyObject
*kw
)
4353 int y
= GET_YEAR(self
);
4354 int m
= GET_MONTH(self
);
4355 int d
= GET_DAY(self
);
4356 int hh
= DATE_GET_HOUR(self
);
4357 int mm
= DATE_GET_MINUTE(self
);
4358 int ss
= DATE_GET_SECOND(self
);
4359 int us
= DATE_GET_MICROSECOND(self
);
4360 PyObject
*tzinfo
= HASTZINFO(self
) ? self
->tzinfo
: Py_None
;
4362 if (! PyArg_ParseTupleAndKeywords(args
, kw
, "|iiiiiiiO:replace",
4364 &y
, &m
, &d
, &hh
, &mm
, &ss
, &us
,
4367 tuple
= Py_BuildValue("iiiiiiiO", y
, m
, d
, hh
, mm
, ss
, us
, tzinfo
);
4370 clone
= datetime_new(Py_TYPE(self
), tuple
, NULL
);
4376 datetime_astimezone(PyDateTime_DateTime
*self
, PyObject
*args
, PyObject
*kw
)
4378 int y
, m
, d
, hh
, mm
, ss
, us
;
4383 static char *keywords
[] = {"tz", NULL
};
4385 if (! PyArg_ParseTupleAndKeywords(args
, kw
, "O!:astimezone", keywords
,
4386 &PyDateTime_TZInfoType
, &tzinfo
))
4389 if (!HASTZINFO(self
) || self
->tzinfo
== Py_None
)
4392 /* Conversion to self's own time zone is a NOP. */
4393 if (self
->tzinfo
== tzinfo
) {
4395 return (PyObject
*)self
;
4398 /* Convert self to UTC. */
4399 offset
= call_utcoffset(self
->tzinfo
, (PyObject
*)self
, &none
);
4400 if (offset
== -1 && PyErr_Occurred())
4406 m
= GET_MONTH(self
);
4408 hh
= DATE_GET_HOUR(self
);
4409 mm
= DATE_GET_MINUTE(self
);
4410 ss
= DATE_GET_SECOND(self
);
4411 us
= DATE_GET_MICROSECOND(self
);
4414 if ((mm
< 0 || mm
>= 60) &&
4415 normalize_datetime(&y
, &m
, &d
, &hh
, &mm
, &ss
, &us
) < 0)
4418 /* Attach new tzinfo and let fromutc() do the rest. */
4419 result
= new_datetime(y
, m
, d
, hh
, mm
, ss
, us
, tzinfo
);
4420 if (result
!= NULL
) {
4421 PyObject
*temp
= result
;
4423 result
= PyObject_CallMethod(tzinfo
, "fromutc", "O", temp
);
4429 PyErr_SetString(PyExc_ValueError
, "astimezone() cannot be applied to "
4430 "a naive datetime");
4435 datetime_timetuple(PyDateTime_DateTime
*self
)
4439 if (HASTZINFO(self
) && self
->tzinfo
!= Py_None
) {
4442 dstflag
= call_dst(self
->tzinfo
, (PyObject
*)self
, &none
);
4443 if (dstflag
== -1 && PyErr_Occurred())
4448 else if (dstflag
!= 0)
4452 return build_struct_time(GET_YEAR(self
),
4455 DATE_GET_HOUR(self
),
4456 DATE_GET_MINUTE(self
),
4457 DATE_GET_SECOND(self
),
4462 datetime_getdate(PyDateTime_DateTime
*self
)
4464 return new_date(GET_YEAR(self
),
4470 datetime_gettime(PyDateTime_DateTime
*self
)
4472 return new_time(DATE_GET_HOUR(self
),
4473 DATE_GET_MINUTE(self
),
4474 DATE_GET_SECOND(self
),
4475 DATE_GET_MICROSECOND(self
),
4480 datetime_gettimetz(PyDateTime_DateTime
*self
)
4482 return new_time(DATE_GET_HOUR(self
),
4483 DATE_GET_MINUTE(self
),
4484 DATE_GET_SECOND(self
),
4485 DATE_GET_MICROSECOND(self
),
4486 HASTZINFO(self
) ? self
->tzinfo
: Py_None
);
4490 datetime_utctimetuple(PyDateTime_DateTime
*self
)
4492 int y
= GET_YEAR(self
);
4493 int m
= GET_MONTH(self
);
4494 int d
= GET_DAY(self
);
4495 int hh
= DATE_GET_HOUR(self
);
4496 int mm
= DATE_GET_MINUTE(self
);
4497 int ss
= DATE_GET_SECOND(self
);
4498 int us
= 0; /* microseconds are ignored in a timetuple */
4501 if (HASTZINFO(self
) && self
->tzinfo
!= Py_None
) {
4504 offset
= call_utcoffset(self
->tzinfo
, (PyObject
*)self
, &none
);
4505 if (offset
== -1 && PyErr_Occurred())
4508 /* Even if offset is 0, don't call timetuple() -- tm_isdst should be
4509 * 0 in a UTC timetuple regardless of what dst() says.
4512 /* Subtract offset minutes & normalize. */
4516 stat
= normalize_datetime(&y
, &m
, &d
, &hh
, &mm
, &ss
, &us
);
4518 /* At the edges, it's possible we overflowed
4519 * beyond MINYEAR or MAXYEAR.
4521 if (PyErr_ExceptionMatches(PyExc_OverflowError
))
4527 return build_struct_time(y
, m
, d
, hh
, mm
, ss
, 0);
4530 /* Pickle support, a simple use of __reduce__. */
4532 /* Let basestate be the non-tzinfo data string.
4533 * If tzinfo is None, this returns (basestate,), else (basestate, tzinfo).
4534 * So it's a tuple in any (non-error) case.
4535 * __getstate__ isn't exposed.
4538 datetime_getstate(PyDateTime_DateTime
*self
)
4540 PyObject
*basestate
;
4541 PyObject
*result
= NULL
;
4543 basestate
= PyString_FromStringAndSize((char *)self
->data
,
4544 _PyDateTime_DATETIME_DATASIZE
);
4545 if (basestate
!= NULL
) {
4546 if (! HASTZINFO(self
) || self
->tzinfo
== Py_None
)
4547 result
= PyTuple_Pack(1, basestate
);
4549 result
= PyTuple_Pack(2, basestate
, self
->tzinfo
);
4550 Py_DECREF(basestate
);
4556 datetime_reduce(PyDateTime_DateTime
*self
, PyObject
*arg
)
4558 return Py_BuildValue("(ON)", Py_TYPE(self
), datetime_getstate(self
));
4561 static PyMethodDef datetime_methods
[] = {
4563 /* Class methods: */
4565 {"now", (PyCFunction
)datetime_now
,
4566 METH_VARARGS
| METH_KEYWORDS
| METH_CLASS
,
4567 PyDoc_STR("[tz] -> new datetime with tz's local day and time.")},
4569 {"utcnow", (PyCFunction
)datetime_utcnow
,
4570 METH_NOARGS
| METH_CLASS
,
4571 PyDoc_STR("Return a new datetime representing UTC day and time.")},
4573 {"fromtimestamp", (PyCFunction
)datetime_fromtimestamp
,
4574 METH_VARARGS
| METH_KEYWORDS
| METH_CLASS
,
4575 PyDoc_STR("timestamp[, tz] -> tz's local time from POSIX timestamp.")},
4577 {"utcfromtimestamp", (PyCFunction
)datetime_utcfromtimestamp
,
4578 METH_VARARGS
| METH_CLASS
,
4579 PyDoc_STR("timestamp -> UTC datetime from a POSIX timestamp "
4580 "(like time.time()).")},
4582 {"strptime", (PyCFunction
)datetime_strptime
,
4583 METH_VARARGS
| METH_CLASS
,
4584 PyDoc_STR("string, format -> new datetime parsed from a string "
4585 "(like time.strptime()).")},
4587 {"combine", (PyCFunction
)datetime_combine
,
4588 METH_VARARGS
| METH_KEYWORDS
| METH_CLASS
,
4589 PyDoc_STR("date, time -> datetime with same date and time fields")},
4591 /* Instance methods: */
4593 {"date", (PyCFunction
)datetime_getdate
, METH_NOARGS
,
4594 PyDoc_STR("Return date object with same year, month and day.")},
4596 {"time", (PyCFunction
)datetime_gettime
, METH_NOARGS
,
4597 PyDoc_STR("Return time object with same time but with tzinfo=None.")},
4599 {"timetz", (PyCFunction
)datetime_gettimetz
, METH_NOARGS
,
4600 PyDoc_STR("Return time object with same time and tzinfo.")},
4602 {"ctime", (PyCFunction
)datetime_ctime
, METH_NOARGS
,
4603 PyDoc_STR("Return ctime() style string.")},
4605 {"timetuple", (PyCFunction
)datetime_timetuple
, METH_NOARGS
,
4606 PyDoc_STR("Return time tuple, compatible with time.localtime().")},
4608 {"utctimetuple", (PyCFunction
)datetime_utctimetuple
, METH_NOARGS
,
4609 PyDoc_STR("Return UTC time tuple, compatible with time.localtime().")},
4611 {"isoformat", (PyCFunction
)datetime_isoformat
, METH_VARARGS
| METH_KEYWORDS
,
4612 PyDoc_STR("[sep] -> string in ISO 8601 format, "
4613 "YYYY-MM-DDTHH:MM:SS[.mmmmmm][+HH:MM].\n\n"
4614 "sep is used to separate the year from the time, and "
4615 "defaults to 'T'.")},
4617 {"utcoffset", (PyCFunction
)datetime_utcoffset
, METH_NOARGS
,
4618 PyDoc_STR("Return self.tzinfo.utcoffset(self).")},
4620 {"tzname", (PyCFunction
)datetime_tzname
, METH_NOARGS
,
4621 PyDoc_STR("Return self.tzinfo.tzname(self).")},
4623 {"dst", (PyCFunction
)datetime_dst
, METH_NOARGS
,
4624 PyDoc_STR("Return self.tzinfo.dst(self).")},
4626 {"replace", (PyCFunction
)datetime_replace
, METH_VARARGS
| METH_KEYWORDS
,
4627 PyDoc_STR("Return datetime with new specified fields.")},
4629 {"astimezone", (PyCFunction
)datetime_astimezone
, METH_VARARGS
| METH_KEYWORDS
,
4630 PyDoc_STR("tz -> convert to local time in new timezone tz\n")},
4632 {"__reduce__", (PyCFunction
)datetime_reduce
, METH_NOARGS
,
4633 PyDoc_STR("__reduce__() -> (cls, state)")},
4638 static char datetime_doc
[] =
4639 PyDoc_STR("datetime(year, month, day[, hour[, minute[, second[, microsecond[,tzinfo]]]]])\n\
4641 The year, month and day arguments are required. tzinfo may be None, or an\n\
4642 instance of a tzinfo subclass. The remaining arguments may be ints or longs.\n");
4644 static PyNumberMethods datetime_as_number
= {
4645 datetime_add
, /* nb_add */
4646 datetime_subtract
, /* nb_subtract */
4647 0, /* nb_multiply */
4649 0, /* nb_remainder */
4652 0, /* nb_negative */
4653 0, /* nb_positive */
4654 0, /* nb_absolute */
4658 statichere PyTypeObject PyDateTime_DateTimeType
= {
4659 PyObject_HEAD_INIT(NULL
)
4661 "datetime.datetime", /* tp_name */
4662 sizeof(PyDateTime_DateTime
), /* tp_basicsize */
4663 0, /* tp_itemsize */
4664 (destructor
)datetime_dealloc
, /* tp_dealloc */
4669 (reprfunc
)datetime_repr
, /* tp_repr */
4670 &datetime_as_number
, /* tp_as_number */
4671 0, /* tp_as_sequence */
4672 0, /* tp_as_mapping */
4673 (hashfunc
)datetime_hash
, /* tp_hash */
4675 (reprfunc
)datetime_str
, /* tp_str */
4676 PyObject_GenericGetAttr
, /* tp_getattro */
4677 0, /* tp_setattro */
4678 0, /* tp_as_buffer */
4679 Py_TPFLAGS_DEFAULT
| Py_TPFLAGS_CHECKTYPES
|
4680 Py_TPFLAGS_BASETYPE
, /* tp_flags */
4681 datetime_doc
, /* tp_doc */
4682 0, /* tp_traverse */
4684 (richcmpfunc
)datetime_richcompare
, /* tp_richcompare */
4685 0, /* tp_weaklistoffset */
4687 0, /* tp_iternext */
4688 datetime_methods
, /* tp_methods */
4690 datetime_getset
, /* tp_getset */
4691 &PyDateTime_DateType
, /* tp_base */
4693 0, /* tp_descr_get */
4694 0, /* tp_descr_set */
4695 0, /* tp_dictoffset */
4697 datetime_alloc
, /* tp_alloc */
4698 datetime_new
, /* tp_new */
4702 /* ---------------------------------------------------------------------------
4703 * Module methods and initialization.
4706 static PyMethodDef module_methods
[] = {
4710 /* C API. Clients get at this via PyDateTime_IMPORT, defined in
4713 static PyDateTime_CAPI CAPI
= {
4714 &PyDateTime_DateType
,
4715 &PyDateTime_DateTimeType
,
4716 &PyDateTime_TimeType
,
4717 &PyDateTime_DeltaType
,
4718 &PyDateTime_TZInfoType
,
4723 datetime_fromtimestamp
,
4731 PyObject
*m
; /* a module object */
4732 PyObject
*d
; /* its dict */
4735 m
= Py_InitModule3("datetime", module_methods
,
4736 "Fast implementation of the datetime type.");
4740 if (PyType_Ready(&PyDateTime_DateType
) < 0)
4742 if (PyType_Ready(&PyDateTime_DateTimeType
) < 0)
4744 if (PyType_Ready(&PyDateTime_DeltaType
) < 0)
4746 if (PyType_Ready(&PyDateTime_TimeType
) < 0)
4748 if (PyType_Ready(&PyDateTime_TZInfoType
) < 0)
4751 /* timedelta values */
4752 d
= PyDateTime_DeltaType
.tp_dict
;
4754 x
= new_delta(0, 0, 1, 0);
4755 if (x
== NULL
|| PyDict_SetItemString(d
, "resolution", x
) < 0)
4759 x
= new_delta(-MAX_DELTA_DAYS
, 0, 0, 0);
4760 if (x
== NULL
|| PyDict_SetItemString(d
, "min", x
) < 0)
4764 x
= new_delta(MAX_DELTA_DAYS
, 24*3600-1, 1000000-1, 0);
4765 if (x
== NULL
|| PyDict_SetItemString(d
, "max", x
) < 0)
4770 d
= PyDateTime_DateType
.tp_dict
;
4772 x
= new_date(1, 1, 1);
4773 if (x
== NULL
|| PyDict_SetItemString(d
, "min", x
) < 0)
4777 x
= new_date(MAXYEAR
, 12, 31);
4778 if (x
== NULL
|| PyDict_SetItemString(d
, "max", x
) < 0)
4782 x
= new_delta(1, 0, 0, 0);
4783 if (x
== NULL
|| PyDict_SetItemString(d
, "resolution", x
) < 0)
4788 d
= PyDateTime_TimeType
.tp_dict
;
4790 x
= new_time(0, 0, 0, 0, Py_None
);
4791 if (x
== NULL
|| PyDict_SetItemString(d
, "min", x
) < 0)
4795 x
= new_time(23, 59, 59, 999999, Py_None
);
4796 if (x
== NULL
|| PyDict_SetItemString(d
, "max", x
) < 0)
4800 x
= new_delta(0, 0, 1, 0);
4801 if (x
== NULL
|| PyDict_SetItemString(d
, "resolution", x
) < 0)
4805 /* datetime values */
4806 d
= PyDateTime_DateTimeType
.tp_dict
;
4808 x
= new_datetime(1, 1, 1, 0, 0, 0, 0, Py_None
);
4809 if (x
== NULL
|| PyDict_SetItemString(d
, "min", x
) < 0)
4813 x
= new_datetime(MAXYEAR
, 12, 31, 23, 59, 59, 999999, Py_None
);
4814 if (x
== NULL
|| PyDict_SetItemString(d
, "max", x
) < 0)
4818 x
= new_delta(0, 0, 1, 0);
4819 if (x
== NULL
|| PyDict_SetItemString(d
, "resolution", x
) < 0)
4823 /* module initialization */
4824 PyModule_AddIntConstant(m
, "MINYEAR", MINYEAR
);
4825 PyModule_AddIntConstant(m
, "MAXYEAR", MAXYEAR
);
4827 Py_INCREF(&PyDateTime_DateType
);
4828 PyModule_AddObject(m
, "date", (PyObject
*) &PyDateTime_DateType
);
4830 Py_INCREF(&PyDateTime_DateTimeType
);
4831 PyModule_AddObject(m
, "datetime",
4832 (PyObject
*)&PyDateTime_DateTimeType
);
4834 Py_INCREF(&PyDateTime_TimeType
);
4835 PyModule_AddObject(m
, "time", (PyObject
*) &PyDateTime_TimeType
);
4837 Py_INCREF(&PyDateTime_DeltaType
);
4838 PyModule_AddObject(m
, "timedelta", (PyObject
*) &PyDateTime_DeltaType
);
4840 Py_INCREF(&PyDateTime_TZInfoType
);
4841 PyModule_AddObject(m
, "tzinfo", (PyObject
*) &PyDateTime_TZInfoType
);
4843 x
= PyCObject_FromVoidPtrAndDesc(&CAPI
, (void*) DATETIME_API_MAGIC
,
4847 PyModule_AddObject(m
, "datetime_CAPI", x
);
4849 /* A 4-year cycle has an extra leap day over what we'd get from
4850 * pasting together 4 single years.
4852 assert(DI4Y
== 4 * 365 + 1);
4853 assert(DI4Y
== days_before_year(4+1));
4855 /* Similarly, a 400-year cycle has an extra leap day over what we'd
4856 * get from pasting together 4 100-year cycles.
4858 assert(DI400Y
== 4 * DI100Y
+ 1);
4859 assert(DI400Y
== days_before_year(400+1));
4861 /* OTOH, a 100-year cycle has one fewer leap day than we'd get from
4862 * pasting together 25 4-year cycles.
4864 assert(DI100Y
== 25 * DI4Y
- 1);
4865 assert(DI100Y
== days_before_year(100+1));
4867 us_per_us
= PyInt_FromLong(1);
4868 us_per_ms
= PyInt_FromLong(1000);
4869 us_per_second
= PyInt_FromLong(1000000);
4870 us_per_minute
= PyInt_FromLong(60000000);
4871 seconds_per_day
= PyInt_FromLong(24 * 3600);
4872 if (us_per_us
== NULL
|| us_per_ms
== NULL
|| us_per_second
== NULL
||
4873 us_per_minute
== NULL
|| seconds_per_day
== NULL
)
4876 /* The rest are too big for 32-bit ints, but even
4877 * us_per_week fits in 40 bits, so doubles should be exact.
4879 us_per_hour
= PyLong_FromDouble(3600000000.0);
4880 us_per_day
= PyLong_FromDouble(86400000000.0);
4881 us_per_week
= PyLong_FromDouble(604800000000.0);
4882 if (us_per_hour
== NULL
|| us_per_day
== NULL
|| us_per_week
== NULL
)
4886 /* ---------------------------------------------------------------------------
4887 Some time zone algebra. For a datetime x, let
4888 x.n = x stripped of its timezone -- its naive time.
4889 x.o = x.utcoffset(), and assuming that doesn't raise an exception or
4891 x.d = x.dst(), and assuming that doesn't raise an exception or
4893 x.s = x's standard offset, x.o - x.d
4895 Now some derived rules, where k is a duration (timedelta).
4898 This follows from the definition of x.s.
4900 2. If x and y have the same tzinfo member, x.s = y.s.
4901 This is actually a requirement, an assumption we need to make about
4902 sane tzinfo classes.
4904 3. The naive UTC time corresponding to x is x.n - x.o.
4905 This is again a requirement for a sane tzinfo class.
4908 This follows from #2, and that datimetimetz+timedelta preserves tzinfo.
4910 5. (x+k).n = x.n + k
4911 Again follows from how arithmetic is defined.
4913 Now we can explain tz.fromutc(x). Let's assume it's an interesting case
4914 (meaning that the various tzinfo methods exist, and don't blow up or return
4917 The function wants to return a datetime y with timezone tz, equivalent to x.
4918 x is already in UTC.
4924 The algorithm starts by attaching tz to x.n, and calling that y. So
4925 x.n = y.n at the start. Then it wants to add a duration k to y, so that [1]
4926 becomes true; in effect, we want to solve [2] for k:
4928 (y+k).n - (y+k).o = x.n [2]
4930 By #1, this is the same as
4932 (y+k).n - ((y+k).s + (y+k).d) = x.n [3]
4934 By #5, (y+k).n = y.n + k, which equals x.n + k because x.n=y.n at the start.
4935 Substituting that into [3],
4937 x.n + k - (y+k).s - (y+k).d = x.n; the x.n terms cancel, leaving
4938 k - (y+k).s - (y+k).d = 0; rearranging,
4939 k = (y+k).s - (y+k).d; by #4, (y+k).s == y.s, so
4942 On the RHS, (y+k).d can't be computed directly, but y.s can be, and we
4943 approximate k by ignoring the (y+k).d term at first. Note that k can't be
4944 very large, since all offset-returning methods return a duration of magnitude
4945 less than 24 hours. For that reason, if y is firmly in std time, (y+k).d must
4946 be 0, so ignoring it has no consequence then.
4948 In any case, the new value is
4952 It's helpful to step back at look at [4] from a higher level: it's simply
4953 mapping from UTC to tz's standard time.
4959 we have an equivalent time, and are almost done. The insecurity here is
4960 at the start of daylight time. Picture US Eastern for concreteness. The wall
4961 time jumps from 1:59 to 3:00, and wall hours of the form 2:MM don't make good
4962 sense then. The docs ask that an Eastern tzinfo class consider such a time to
4963 be EDT (because it's "after 2"), which is a redundant spelling of 1:MM EST
4964 on the day DST starts. We want to return the 1:MM EST spelling because that's
4965 the only spelling that makes sense on the local wall clock.
4967 In fact, if [5] holds at this point, we do have the standard-time spelling,
4968 but that takes a bit of proof. We first prove a stronger result. What's the
4969 difference between the LHS and RHS of [5]? Let
4971 diff = x.n - (z.n - z.o) [6]
4976 y.n + y.s = since y.n = x.n
4977 x.n + y.s = since z and y are have the same tzinfo member,
4981 Plugging that back into [6] gives
4984 x.n - ((x.n + z.s) - z.o) = expanding
4985 x.n - x.n - z.s + z.o = cancelling
4991 If [5] is true now, diff = 0, so z.d = 0 too, and we have the standard-time
4992 spelling we wanted in the endcase described above. We're done. Contrarily,
4993 if z.d = 0, then we have a UTC equivalent, and are also done.
4995 If [5] is not true now, diff = z.d != 0, and z.d is the offset we need to
4996 add to z (in effect, z is in tz's standard time, and we need to shift the
4997 local clock into tz's daylight time).
5001 z' = z + z.d = z + diff [7]
5003 and we can again ask whether
5005 z'.n - z'.o = x.n [8]
5007 If so, we're done. If not, the tzinfo class is insane, according to the
5008 assumptions we've made. This also requires a bit of proof. As before, let's
5009 compute the difference between the LHS and RHS of [8] (and skipping some of
5010 the justifications for the kinds of substitutions we've done several times
5013 diff' = x.n - (z'.n - z'.o) = replacing z'.n via [7]
5014 x.n - (z.n + diff - z'.o) = replacing diff via [6]
5015 x.n - (z.n + x.n - (z.n - z.o) - z'.o) =
5016 x.n - z.n - x.n + z.n - z.o + z'.o = cancel x.n
5017 - z.n + z.n - z.o + z'.o = cancel z.n
5018 - z.o + z'.o = #1 twice
5019 -z.s - z.d + z'.s + z'.d = z and z' have same tzinfo
5022 So z' is UTC-equivalent to x iff z'.d = z.d at this point. If they are equal,
5023 we've found the UTC-equivalent so are done. In fact, we stop with [7] and
5024 return z', not bothering to compute z'.d.
5026 How could z.d and z'd differ? z' = z + z.d [7], so merely moving z' by
5027 a dst() offset, and starting *from* a time already in DST (we know z.d != 0),
5028 would have to change the result dst() returns: we start in DST, and moving
5029 a little further into it takes us out of DST.
5031 There isn't a sane case where this can happen. The closest it gets is at
5032 the end of DST, where there's an hour in UTC with no spelling in a hybrid
5033 tzinfo class. In US Eastern, that's 5:MM UTC = 0:MM EST = 1:MM EDT. During
5034 that hour, on an Eastern clock 1:MM is taken as being in standard time (6:MM
5035 UTC) because the docs insist on that, but 0:MM is taken as being in daylight
5036 time (4:MM UTC). There is no local time mapping to 5:MM UTC. The local
5037 clock jumps from 1:59 back to 1:00 again, and repeats the 1:MM hour in
5038 standard time. Since that's what the local clock *does*, we want to map both
5039 UTC hours 5:MM and 6:MM to 1:MM Eastern. The result is ambiguous
5040 in local time, but so it goes -- it's the way the local clock works.
5042 When x = 5:MM UTC is the input to this algorithm, x.o=0, y.o=-5 and y.d=0,
5043 so z=0:MM. z.d=60 (minutes) then, so [5] doesn't hold and we keep going.
5044 z' = z + z.d = 1:MM then, and z'.d=0, and z'.d - z.d = -60 != 0 so [8]
5045 (correctly) concludes that z' is not UTC-equivalent to x.
5047 Because we know z.d said z was in daylight time (else [5] would have held and
5048 we would have stopped then), and we know z.d != z'.d (else [8] would have held
5049 and we would have stopped then), and there are only 2 possible values dst() can
5050 return in Eastern, it follows that z'.d must be 0 (which it is in the example,
5051 but the reasoning doesn't depend on the example -- it depends on there being
5052 two possible dst() outcomes, one zero and the other non-zero). Therefore
5053 z' must be in standard time, and is the spelling we want in this case.
5055 Note again that z' is not UTC-equivalent as far as the hybrid tzinfo class is
5056 concerned (because it takes z' as being in standard time rather than the
5057 daylight time we intend here), but returning it gives the real-life "local
5058 clock repeats an hour" behavior when mapping the "unspellable" UTC hour into
5061 When the input is 6:MM, z=1:MM and z.d=0, and we stop at once, again with
5062 the 1:MM standard time spelling we want.
5064 So how can this break? One of the assumptions must be violated. Two
5067 1) [2] effectively says that y.s is invariant across all y belong to a given
5068 time zone. This isn't true if, for political reasons or continental drift,
5069 a region decides to change its base offset from UTC.
5071 2) There may be versions of "double daylight" time where the tail end of
5072 the analysis gives up a step too early. I haven't thought about that
5075 In any case, it's clear that the default fromutc() is strong enough to handle
5076 "almost all" time zones: so long as the standard offset is invariant, it
5077 doesn't matter if daylight time transition points change from year to year, or
5078 if daylight time is skipped in some years; it doesn't matter how large or
5079 small dst() may get within its bounds; and it doesn't even matter if some
5080 perverse time zone returns a negative dst()). So a breaking case must be
5081 pretty bizarre, and a tzinfo subclass can override fromutc() if it is.
5082 --------------------------------------------------------------------------- */