1 /* Complex math module */
3 /* much code borrowed from mathmodule.c */
6 /* we need DBL_MAX, DBL_MIN, DBL_EPSILON, DBL_MANT_DIG and FLT_RADIX from
7 float.h. We assume that FLT_RADIX is either 2 or 16. */
10 #if (FLT_RADIX != 2 && FLT_RADIX != 16)
11 #error "Modules/cmathmodule.c expects FLT_RADIX to be 2 or 16"
15 #define M_LN2 (0.6931471805599453094) /* natural log of 2 */
19 #define M_LN10 (2.302585092994045684) /* natural log of 10 */
23 CM_LARGE_DOUBLE is used to avoid spurious overflow in the sqrt, log,
24 inverse trig and inverse hyperbolic trig functions. Its log is used in the
25 evaluation of exp, cos, cosh, sin, sinh, tan, and tanh to avoid unecessary
29 #define CM_LARGE_DOUBLE (DBL_MAX/4.)
30 #define CM_SQRT_LARGE_DOUBLE (sqrt(CM_LARGE_DOUBLE))
31 #define CM_LOG_LARGE_DOUBLE (log(CM_LARGE_DOUBLE))
32 #define CM_SQRT_DBL_MIN (sqrt(DBL_MIN))
35 CM_SCALE_UP is an odd integer chosen such that multiplication by
36 2**CM_SCALE_UP is sufficient to turn a subnormal into a normal.
37 CM_SCALE_DOWN is (-(CM_SCALE_UP+1)/2). These scalings are used to compute
38 square roots accurately when the real and imaginary parts of the argument
43 #define CM_SCALE_UP (2*(DBL_MANT_DIG/2) + 1)
45 #define CM_SCALE_UP (4*DBL_MANT_DIG+1)
47 #define CM_SCALE_DOWN (-(CM_SCALE_UP+1)/2)
49 /* forward declarations */
50 static Py_complex
c_asinh(Py_complex
);
51 static Py_complex
c_atanh(Py_complex
);
52 static Py_complex
c_cosh(Py_complex
);
53 static Py_complex
c_sinh(Py_complex
);
54 static Py_complex
c_sqrt(Py_complex
);
55 static Py_complex
c_tanh(Py_complex
);
56 static PyObject
* math_error(void);
58 /* Code to deal with special values (infinities, NaNs, etc.). */
60 /* special_type takes a double and returns an integer code indicating
61 the type of the double as follows:
65 ST_NINF
, /* 0, negative infinity */
66 ST_NEG
, /* 1, negative finite number (nonzero) */
67 ST_NZERO
, /* 2, -0. */
68 ST_PZERO
, /* 3, +0. */
69 ST_POS
, /* 4, positive finite number (nonzero) */
70 ST_PINF
, /* 5, positive infinity */
71 ST_NAN
, /* 6, Not a Number */
74 static enum special_types
75 special_type(double d
)
77 if (Py_IS_FINITE(d
)) {
79 if (copysign(1., d
) == 1.)
85 if (copysign(1., d
) == 1.)
93 if (copysign(1., d
) == 1.)
99 #define SPECIAL_VALUE(z, table) \
100 if (!Py_IS_FINITE((z).real) || !Py_IS_FINITE((z).imag)) { \
102 return table[special_type((z).real)] \
103 [special_type((z).imag)]; \
107 #define P14 0.25*Py_MATH_PI
108 #define P12 0.5*Py_MATH_PI
109 #define P34 0.75*Py_MATH_PI
110 #define INF Py_HUGE_VAL
112 #define U -9.5426319407711027e33 /* unlikely value, used as placeholder */
114 /* First, the C functions that do the real work. Each of the c_*
115 functions computes and returns the C99 Annex G recommended result
116 and also sets errno as follows: errno = 0 if no floating-point
117 exception is associated with the result; errno = EDOM if C99 Annex
118 G recommends raising divide-by-zero or invalid for this result; and
119 errno = ERANGE where the overflow floating-point signal should be
123 static Py_complex acos_special_values
[7][7];
128 Py_complex s1
, s2
, r
;
130 SPECIAL_VALUE(z
, acos_special_values
);
132 if (fabs(z
.real
) > CM_LARGE_DOUBLE
|| fabs(z
.imag
) > CM_LARGE_DOUBLE
) {
133 /* avoid unnecessary overflow for large arguments */
134 r
.real
= atan2(fabs(z
.imag
), z
.real
);
135 /* split into cases to make sure that the branch cut has the
136 correct continuity on systems with unsigned zeros */
138 r
.imag
= -copysign(log(hypot(z
.real
/2., z
.imag
/2.)) +
141 r
.imag
= copysign(log(hypot(z
.real
/2., z
.imag
/2.)) +
151 r
.real
= 2.*atan2(s1
.real
, s2
.real
);
152 r
.imag
= asinh(s2
.real
*s1
.imag
- s2
.imag
*s1
.real
);
158 PyDoc_STRVAR(c_acos_doc
,
161 "Return the arc cosine of x.");
164 static Py_complex acosh_special_values
[7][7];
167 c_acosh(Py_complex z
)
169 Py_complex s1
, s2
, r
;
171 SPECIAL_VALUE(z
, acosh_special_values
);
173 if (fabs(z
.real
) > CM_LARGE_DOUBLE
|| fabs(z
.imag
) > CM_LARGE_DOUBLE
) {
174 /* avoid unnecessary overflow for large arguments */
175 r
.real
= log(hypot(z
.real
/2., z
.imag
/2.)) + M_LN2
*2.;
176 r
.imag
= atan2(z
.imag
, z
.real
);
178 s1
.real
= z
.real
- 1.;
181 s2
.real
= z
.real
+ 1.;
184 r
.real
= asinh(s1
.real
*s2
.real
+ s1
.imag
*s2
.imag
);
185 r
.imag
= 2.*atan2(s1
.imag
, s2
.real
);
191 PyDoc_STRVAR(c_acosh_doc
,
194 "Return the hyperbolic arccosine of x.");
200 /* asin(z) = -i asinh(iz) */
210 PyDoc_STRVAR(c_asin_doc
,
213 "Return the arc sine of x.");
216 static Py_complex asinh_special_values
[7][7];
219 c_asinh(Py_complex z
)
221 Py_complex s1
, s2
, r
;
223 SPECIAL_VALUE(z
, asinh_special_values
);
225 if (fabs(z
.real
) > CM_LARGE_DOUBLE
|| fabs(z
.imag
) > CM_LARGE_DOUBLE
) {
227 r
.real
= copysign(log(hypot(z
.real
/2., z
.imag
/2.)) +
230 r
.real
= -copysign(log(hypot(z
.real
/2., z
.imag
/2.)) +
233 r
.imag
= atan2(z
.imag
, fabs(z
.real
));
241 r
.real
= asinh(s1
.real
*s2
.imag
-s2
.real
*s1
.imag
);
242 r
.imag
= atan2(z
.imag
, s1
.real
*s2
.real
-s1
.imag
*s2
.imag
);
248 PyDoc_STRVAR(c_asinh_doc
,
251 "Return the hyperbolic arc sine of x.");
257 /* atan(z) = -i atanh(iz) */
267 /* Windows screws up atan2 for inf and nan, and alpha Tru64 5.1 doesn't follow
268 C99 for atan2(0., 0.). */
270 c_atan2(Py_complex z
)
272 if (Py_IS_NAN(z
.real
) || Py_IS_NAN(z
.imag
))
274 if (Py_IS_INFINITY(z
.imag
)) {
275 if (Py_IS_INFINITY(z
.real
)) {
276 if (copysign(1., z
.real
) == 1.)
277 /* atan2(+-inf, +inf) == +-pi/4 */
278 return copysign(0.25*Py_MATH_PI
, z
.imag
);
280 /* atan2(+-inf, -inf) == +-pi*3/4 */
281 return copysign(0.75*Py_MATH_PI
, z
.imag
);
283 /* atan2(+-inf, x) == +-pi/2 for finite x */
284 return copysign(0.5*Py_MATH_PI
, z
.imag
);
286 if (Py_IS_INFINITY(z
.real
) || z
.imag
== 0.) {
287 if (copysign(1., z
.real
) == 1.)
288 /* atan2(+-y, +inf) = atan2(+-0, +x) = +-0. */
289 return copysign(0., z
.imag
);
291 /* atan2(+-y, -inf) = atan2(+-0., -x) = +-pi. */
292 return copysign(Py_MATH_PI
, z
.imag
);
294 return atan2(z
.imag
, z
.real
);
297 PyDoc_STRVAR(c_atan_doc
,
300 "Return the arc tangent of x.");
303 static Py_complex atanh_special_values
[7][7];
306 c_atanh(Py_complex z
)
311 SPECIAL_VALUE(z
, atanh_special_values
);
313 /* Reduce to case where z.real >= 0., using atanh(z) = -atanh(-z). */
315 return c_neg(c_atanh(c_neg(z
)));
319 if (z
.real
> CM_SQRT_LARGE_DOUBLE
|| ay
> CM_SQRT_LARGE_DOUBLE
) {
321 if abs(z) is large then we use the approximation
322 atanh(z) ~ 1/z +/- i*pi/2 (+/- depending on the sign
325 h
= hypot(z
.real
/2., z
.imag
/2.); /* safe from overflow */
326 r
.real
= z
.real
/4./h
/h
;
327 /* the two negations in the next line cancel each other out
328 except when working with unsigned zeros: they're there to
329 ensure that the branch cut has the correct continuity on
330 systems that don't support signed zeros */
331 r
.imag
= -copysign(Py_MATH_PI
/2., -z
.imag
);
333 } else if (z
.real
== 1. && ay
< CM_SQRT_DBL_MIN
) {
334 /* C99 standard says: atanh(1+/-0.) should be inf +/- 0i */
340 r
.real
= -log(sqrt(ay
)/sqrt(hypot(ay
, 2.)));
341 r
.imag
= copysign(atan2(2., -ay
)/2, z
.imag
);
345 r
.real
= log1p(4.*z
.real
/((1-z
.real
)*(1-z
.real
) + ay
*ay
))/4.;
346 r
.imag
= -atan2(-2.*z
.imag
, (1-z
.real
)*(1+z
.real
) - ay
*ay
)/2.;
352 PyDoc_STRVAR(c_atanh_doc
,
355 "Return the hyperbolic arc tangent of x.");
361 /* cos(z) = cosh(iz) */
369 PyDoc_STRVAR(c_cos_doc
,
372 "Return the cosine of x.");
375 /* cosh(infinity + i*y) needs to be dealt with specially */
376 static Py_complex cosh_special_values
[7][7];
384 /* special treatment for cosh(+/-inf + iy) if y is not a NaN */
385 if (!Py_IS_FINITE(z
.real
) || !Py_IS_FINITE(z
.imag
)) {
386 if (Py_IS_INFINITY(z
.real
) && Py_IS_FINITE(z
.imag
) &&
389 r
.real
= copysign(INF
, cos(z
.imag
));
390 r
.imag
= copysign(INF
, sin(z
.imag
));
393 r
.real
= copysign(INF
, cos(z
.imag
));
394 r
.imag
= -copysign(INF
, sin(z
.imag
));
398 r
= cosh_special_values
[special_type(z
.real
)]
399 [special_type(z
.imag
)];
401 /* need to set errno = EDOM if y is +/- infinity and x is not
403 if (Py_IS_INFINITY(z
.imag
) && !Py_IS_NAN(z
.real
))
410 if (fabs(z
.real
) > CM_LOG_LARGE_DOUBLE
) {
411 /* deal correctly with cases where cosh(z.real) overflows but
413 x_minus_one
= z
.real
- copysign(1., z
.real
);
414 r
.real
= cos(z
.imag
) * cosh(x_minus_one
) * Py_MATH_E
;
415 r
.imag
= sin(z
.imag
) * sinh(x_minus_one
) * Py_MATH_E
;
417 r
.real
= cos(z
.imag
) * cosh(z
.real
);
418 r
.imag
= sin(z
.imag
) * sinh(z
.real
);
420 /* detect overflow, and set errno accordingly */
421 if (Py_IS_INFINITY(r
.real
) || Py_IS_INFINITY(r
.imag
))
428 PyDoc_STRVAR(c_cosh_doc
,
431 "Return the hyperbolic cosine of x.");
434 /* exp(infinity + i*y) and exp(-infinity + i*y) need special treatment for
436 static Py_complex exp_special_values
[7][7];
444 if (!Py_IS_FINITE(z
.real
) || !Py_IS_FINITE(z
.imag
)) {
445 if (Py_IS_INFINITY(z
.real
) && Py_IS_FINITE(z
.imag
)
448 r
.real
= copysign(INF
, cos(z
.imag
));
449 r
.imag
= copysign(INF
, sin(z
.imag
));
452 r
.real
= copysign(0., cos(z
.imag
));
453 r
.imag
= copysign(0., sin(z
.imag
));
457 r
= exp_special_values
[special_type(z
.real
)]
458 [special_type(z
.imag
)];
460 /* need to set errno = EDOM if y is +/- infinity and x is not
461 a NaN and not -infinity */
462 if (Py_IS_INFINITY(z
.imag
) &&
463 (Py_IS_FINITE(z
.real
) ||
464 (Py_IS_INFINITY(z
.real
) && z
.real
> 0)))
471 if (z
.real
> CM_LOG_LARGE_DOUBLE
) {
473 r
.real
= l
*cos(z
.imag
)*Py_MATH_E
;
474 r
.imag
= l
*sin(z
.imag
)*Py_MATH_E
;
477 r
.real
= l
*cos(z
.imag
);
478 r
.imag
= l
*sin(z
.imag
);
480 /* detect overflow, and set errno accordingly */
481 if (Py_IS_INFINITY(r
.real
) || Py_IS_INFINITY(r
.imag
))
488 PyDoc_STRVAR(c_exp_doc
,
491 "Return the exponential value e**x.");
494 static Py_complex log_special_values
[7][7];
500 The usual formula for the real part is log(hypot(z.real, z.imag)).
501 There are four situations where this formula is potentially
504 (1) the absolute value of z is subnormal. Then hypot is subnormal,
505 so has fewer than the usual number of bits of accuracy, hence may
506 have large relative error. This then gives a large absolute error
507 in the log. This can be solved by rescaling z by a suitable power
510 (2) the absolute value of z is greater than DBL_MAX (e.g. when both
511 z.real and z.imag are within a factor of 1/sqrt(2) of DBL_MAX)
512 Again, rescaling solves this.
514 (3) the absolute value of z is close to 1. In this case it's
515 difficult to achieve good accuracy, at least in part because a
516 change of 1ulp in the real or imaginary part of z can result in a
517 change of billions of ulps in the correctly rounded answer.
519 (4) z = 0. The simplest thing to do here is to call the
520 floating-point log with an argument of 0, and let its behaviour
521 (returning -infinity, signaling a floating-point exception, setting
522 errno, or whatever) determine that of c_log. So the usual formula
528 double ax
, ay
, am
, an
, h
;
530 SPECIAL_VALUE(z
, log_special_values
);
535 if (ax
> CM_LARGE_DOUBLE
|| ay
> CM_LARGE_DOUBLE
) {
536 r
.real
= log(hypot(ax
/2., ay
/2.)) + M_LN2
;
537 } else if (ax
< DBL_MIN
&& ay
< DBL_MIN
) {
538 if (ax
> 0. || ay
> 0.) {
539 /* catch cases where hypot(ax, ay) is subnormal */
540 r
.real
= log(hypot(ldexp(ax
, DBL_MANT_DIG
),
541 ldexp(ay
, DBL_MANT_DIG
))) - DBL_MANT_DIG
*M_LN2
;
544 /* log(+/-0. +/- 0i) */
546 r
.imag
= atan2(z
.imag
, z
.real
);
552 if (0.71 <= h
&& h
<= 1.73) {
553 am
= ax
> ay
? ax
: ay
; /* max(ax, ay) */
554 an
= ax
> ay
? ay
: ax
; /* min(ax, ay) */
555 r
.real
= log1p((am
-1)*(am
+1)+an
*an
)/2.;
560 r
.imag
= atan2(z
.imag
, z
.real
);
567 c_log10(Py_complex z
)
573 errno_save
= errno
; /* just in case the divisions affect errno */
574 r
.real
= r
.real
/ M_LN10
;
575 r
.imag
= r
.imag
/ M_LN10
;
580 PyDoc_STRVAR(c_log10_doc
,
583 "Return the base-10 logarithm of x.");
589 /* sin(z) = -i sin(iz) */
599 PyDoc_STRVAR(c_sin_doc
,
602 "Return the sine of x.");
605 /* sinh(infinity + i*y) needs to be dealt with specially */
606 static Py_complex sinh_special_values
[7][7];
614 /* special treatment for sinh(+/-inf + iy) if y is finite and
616 if (!Py_IS_FINITE(z
.real
) || !Py_IS_FINITE(z
.imag
)) {
617 if (Py_IS_INFINITY(z
.real
) && Py_IS_FINITE(z
.imag
)
620 r
.real
= copysign(INF
, cos(z
.imag
));
621 r
.imag
= copysign(INF
, sin(z
.imag
));
624 r
.real
= -copysign(INF
, cos(z
.imag
));
625 r
.imag
= copysign(INF
, sin(z
.imag
));
629 r
= sinh_special_values
[special_type(z
.real
)]
630 [special_type(z
.imag
)];
632 /* need to set errno = EDOM if y is +/- infinity and x is not
634 if (Py_IS_INFINITY(z
.imag
) && !Py_IS_NAN(z
.real
))
641 if (fabs(z
.real
) > CM_LOG_LARGE_DOUBLE
) {
642 x_minus_one
= z
.real
- copysign(1., z
.real
);
643 r
.real
= cos(z
.imag
) * sinh(x_minus_one
) * Py_MATH_E
;
644 r
.imag
= sin(z
.imag
) * cosh(x_minus_one
) * Py_MATH_E
;
646 r
.real
= cos(z
.imag
) * sinh(z
.real
);
647 r
.imag
= sin(z
.imag
) * cosh(z
.real
);
649 /* detect overflow, and set errno accordingly */
650 if (Py_IS_INFINITY(r
.real
) || Py_IS_INFINITY(r
.imag
))
657 PyDoc_STRVAR(c_sinh_doc
,
660 "Return the hyperbolic sine of x.");
663 static Py_complex sqrt_special_values
[7][7];
669 Method: use symmetries to reduce to the case when x = z.real and y
670 = z.imag are nonnegative. Then the real part of the result is
673 s = sqrt((x + hypot(x, y))/2)
675 and the imaginary part is
679 If either x or y is very large then there's a risk of overflow in
680 computation of the expression x + hypot(x, y). We can avoid this
681 by rewriting the formula for s as:
683 s = 2*sqrt(x/8 + hypot(x/8, y/8))
685 This costs us two extra multiplications/divisions, but avoids the
686 overhead of checking for x and y large.
688 If both x and y are subnormal then hypot(x, y) may also be
689 subnormal, so will lack full precision. We solve this by rescaling
690 x and y by a sufficiently large power of 2 to ensure that x and y
699 SPECIAL_VALUE(z
, sqrt_special_values
);
701 if (z
.real
== 0. && z
.imag
== 0.) {
710 if (ax
< DBL_MIN
&& ay
< DBL_MIN
&& (ax
> 0. || ay
> 0.)) {
711 /* here we catch cases where hypot(ax, ay) is subnormal */
712 ax
= ldexp(ax
, CM_SCALE_UP
);
713 s
= ldexp(sqrt(ax
+ hypot(ax
, ldexp(ay
, CM_SCALE_UP
))),
717 s
= 2.*sqrt(ax
+ hypot(ax
, ay
/8.));
723 r
.imag
= copysign(d
, z
.imag
);
726 r
.imag
= copysign(s
, z
.imag
);
732 PyDoc_STRVAR(c_sqrt_doc
,
735 "Return the square root of x.");
741 /* tan(z) = -i tanh(iz) */
751 PyDoc_STRVAR(c_tan_doc
,
754 "Return the tangent of x.");
757 /* tanh(infinity + i*y) needs to be dealt with specially */
758 static Py_complex tanh_special_values
[7][7];
765 tanh(x+iy) = (tanh(x)(1+tan(y)^2) + i tan(y)(1-tanh(x))^2) /
766 (1+tan(y)^2 tanh(x)^2)
768 To avoid excessive roundoff error, 1-tanh(x)^2 is better computed
769 as 1/cosh(x)^2. When abs(x) is large, we approximate 1-tanh(x)^2
770 by 4 exp(-2*x) instead, to avoid possible overflow in the
771 computation of cosh(x).
776 double tx
, ty
, cx
, txty
, denom
;
778 /* special treatment for tanh(+/-inf + iy) if y is finite and
780 if (!Py_IS_FINITE(z
.real
) || !Py_IS_FINITE(z
.imag
)) {
781 if (Py_IS_INFINITY(z
.real
) && Py_IS_FINITE(z
.imag
)
785 r
.imag
= copysign(0.,
786 2.*sin(z
.imag
)*cos(z
.imag
));
790 r
.imag
= copysign(0.,
791 2.*sin(z
.imag
)*cos(z
.imag
));
795 r
= tanh_special_values
[special_type(z
.real
)]
796 [special_type(z
.imag
)];
798 /* need to set errno = EDOM if z.imag is +/-infinity and
800 if (Py_IS_INFINITY(z
.imag
) && Py_IS_FINITE(z
.real
))
807 /* danger of overflow in 2.*z.imag !*/
808 if (fabs(z
.real
) > CM_LOG_LARGE_DOUBLE
) {
809 r
.real
= copysign(1., z
.real
);
810 r
.imag
= 4.*sin(z
.imag
)*cos(z
.imag
)*exp(-2.*fabs(z
.real
));
814 cx
= 1./cosh(z
.real
);
816 denom
= 1. + txty
*txty
;
817 r
.real
= tx
*(1.+ty
*ty
)/denom
;
818 r
.imag
= ((ty
/denom
)*cx
)*cx
;
824 PyDoc_STRVAR(c_tanh_doc
,
827 "Return the hyperbolic tangent of x.");
831 cmath_log(PyObject
*self
, PyObject
*args
)
836 if (!PyArg_ParseTuple(args
, "D|D", &x
, &y
))
840 PyFPE_START_PROTECT("complex function", return 0)
842 if (PyTuple_GET_SIZE(args
) == 2) {
849 return PyComplex_FromCComplex(x
);
852 PyDoc_STRVAR(cmath_log_doc
,
853 "log(x[, base]) -> the logarithm of x to the given base.\n\
854 If the base not specified, returns the natural logarithm (base e) of x.");
857 /* And now the glue to make them available from Python: */
863 PyErr_SetString(PyExc_ValueError
, "math domain error");
864 else if (errno
== ERANGE
)
865 PyErr_SetString(PyExc_OverflowError
, "math range error");
866 else /* Unexpected math error */
867 PyErr_SetFromErrno(PyExc_ValueError
);
872 math_1(PyObject
*args
, Py_complex (*func
)(Py_complex
))
875 if (!PyArg_ParseTuple(args
, "D", &x
))
878 PyFPE_START_PROTECT("complex function", return 0);
880 PyFPE_END_PROTECT(r
);
882 PyErr_SetString(PyExc_ValueError
, "math domain error");
885 else if (errno
== ERANGE
) {
886 PyErr_SetString(PyExc_OverflowError
, "math range error");
890 return PyComplex_FromCComplex(r
);
894 #define FUNC1(stubname, func) \
895 static PyObject * stubname(PyObject *self, PyObject *args) { \
896 return math_1(args, func); \
899 FUNC1(cmath_acos
, c_acos
)
900 FUNC1(cmath_acosh
, c_acosh
)
901 FUNC1(cmath_asin
, c_asin
)
902 FUNC1(cmath_asinh
, c_asinh
)
903 FUNC1(cmath_atan
, c_atan
)
904 FUNC1(cmath_atanh
, c_atanh
)
905 FUNC1(cmath_cos
, c_cos
)
906 FUNC1(cmath_cosh
, c_cosh
)
907 FUNC1(cmath_exp
, c_exp
)
908 FUNC1(cmath_log10
, c_log10
)
909 FUNC1(cmath_sin
, c_sin
)
910 FUNC1(cmath_sinh
, c_sinh
)
911 FUNC1(cmath_sqrt
, c_sqrt
)
912 FUNC1(cmath_tan
, c_tan
)
913 FUNC1(cmath_tanh
, c_tanh
)
916 cmath_phase(PyObject
*self
, PyObject
*args
)
920 if (!PyArg_ParseTuple(args
, "D:phase", &z
))
923 PyFPE_START_PROTECT("arg function", return 0)
925 PyFPE_END_PROTECT(phi
)
929 return PyFloat_FromDouble(phi
);
932 PyDoc_STRVAR(cmath_phase_doc
,
933 "phase(z) -> float\n\n\
934 Return argument, also known as the phase angle, of a complex.");
937 cmath_polar(PyObject
*self
, PyObject
*args
)
941 if (!PyArg_ParseTuple(args
, "D:polar", &z
))
943 PyFPE_START_PROTECT("polar function", return 0)
944 phi
= c_atan2(z
); /* should not cause any exception */
945 r
= c_abs(z
); /* sets errno to ERANGE on overflow; otherwise 0 */
950 return Py_BuildValue("dd", r
, phi
);
953 PyDoc_STRVAR(cmath_polar_doc
,
954 "polar(z) -> r: float, phi: float\n\n\
955 Convert a complex from rectangular coordinates to polar coordinates. r is\n\
956 the distance from 0 and phi the phase angle.");
959 rect() isn't covered by the C99 standard, but it's not too hard to
960 figure out 'spirit of C99' rules for special value handing:
962 rect(x, t) should behave like exp(log(x) + it) for positive-signed x
963 rect(x, t) should behave like -exp(log(-x) + it) for negative-signed x
964 rect(nan, t) should behave like exp(nan + it), except that rect(nan, 0)
965 gives nan +- i0 with the sign of the imaginary part unspecified.
969 static Py_complex rect_special_values
[7][7];
972 cmath_rect(PyObject
*self
, PyObject
*args
)
976 if (!PyArg_ParseTuple(args
, "dd:rect", &r
, &phi
))
979 PyFPE_START_PROTECT("rect function", return 0)
981 /* deal with special values */
982 if (!Py_IS_FINITE(r
) || !Py_IS_FINITE(phi
)) {
983 /* if r is +/-infinity and phi is finite but nonzero then
984 result is (+-INF +-INF i), but we need to compute cos(phi)
985 and sin(phi) to figure out the signs. */
986 if (Py_IS_INFINITY(r
) && (Py_IS_FINITE(phi
)
989 z
.real
= copysign(INF
, cos(phi
));
990 z
.imag
= copysign(INF
, sin(phi
));
993 z
.real
= -copysign(INF
, cos(phi
));
994 z
.imag
= -copysign(INF
, sin(phi
));
998 z
= rect_special_values
[special_type(r
)]
1001 /* need to set errno = EDOM if r is a nonzero number and phi
1003 if (r
!= 0. && !Py_IS_NAN(r
) && Py_IS_INFINITY(phi
))
1009 z
.real
= r
* cos(phi
);
1010 z
.imag
= r
* sin(phi
);
1014 PyFPE_END_PROTECT(z
)
1016 return math_error();
1018 return PyComplex_FromCComplex(z
);
1021 PyDoc_STRVAR(cmath_rect_doc
,
1022 "rect(r, phi) -> z: complex\n\n\
1023 Convert from polar coordinates to rectangular coordinates.");
1026 cmath_isnan(PyObject
*self
, PyObject
*args
)
1029 if (!PyArg_ParseTuple(args
, "D:isnan", &z
))
1031 return PyBool_FromLong(Py_IS_NAN(z
.real
) || Py_IS_NAN(z
.imag
));
1034 PyDoc_STRVAR(cmath_isnan_doc
,
1035 "isnan(z) -> bool\n\
1036 Checks if the real or imaginary part of z not a number (NaN)");
1039 cmath_isinf(PyObject
*self
, PyObject
*args
)
1042 if (!PyArg_ParseTuple(args
, "D:isnan", &z
))
1044 return PyBool_FromLong(Py_IS_INFINITY(z
.real
) ||
1045 Py_IS_INFINITY(z
.imag
));
1048 PyDoc_STRVAR(cmath_isinf_doc
,
1049 "isinf(z) -> bool\n\
1050 Checks if the real or imaginary part of z is infinite.");
1053 PyDoc_STRVAR(module_doc
,
1054 "This module is always available. It provides access to mathematical\n"
1055 "functions for complex numbers.");
1057 static PyMethodDef cmath_methods
[] = {
1058 {"acos", cmath_acos
, METH_VARARGS
, c_acos_doc
},
1059 {"acosh", cmath_acosh
, METH_VARARGS
, c_acosh_doc
},
1060 {"asin", cmath_asin
, METH_VARARGS
, c_asin_doc
},
1061 {"asinh", cmath_asinh
, METH_VARARGS
, c_asinh_doc
},
1062 {"atan", cmath_atan
, METH_VARARGS
, c_atan_doc
},
1063 {"atanh", cmath_atanh
, METH_VARARGS
, c_atanh_doc
},
1064 {"cos", cmath_cos
, METH_VARARGS
, c_cos_doc
},
1065 {"cosh", cmath_cosh
, METH_VARARGS
, c_cosh_doc
},
1066 {"exp", cmath_exp
, METH_VARARGS
, c_exp_doc
},
1067 {"isinf", cmath_isinf
, METH_VARARGS
, cmath_isinf_doc
},
1068 {"isnan", cmath_isnan
, METH_VARARGS
, cmath_isnan_doc
},
1069 {"log", cmath_log
, METH_VARARGS
, cmath_log_doc
},
1070 {"log10", cmath_log10
, METH_VARARGS
, c_log10_doc
},
1071 {"phase", cmath_phase
, METH_VARARGS
, cmath_phase_doc
},
1072 {"polar", cmath_polar
, METH_VARARGS
, cmath_polar_doc
},
1073 {"rect", cmath_rect
, METH_VARARGS
, cmath_rect_doc
},
1074 {"sin", cmath_sin
, METH_VARARGS
, c_sin_doc
},
1075 {"sinh", cmath_sinh
, METH_VARARGS
, c_sinh_doc
},
1076 {"sqrt", cmath_sqrt
, METH_VARARGS
, c_sqrt_doc
},
1077 {"tan", cmath_tan
, METH_VARARGS
, c_tan_doc
},
1078 {"tanh", cmath_tanh
, METH_VARARGS
, c_tanh_doc
},
1079 {NULL
, NULL
} /* sentinel */
1087 m
= Py_InitModule3("cmath", cmath_methods
, module_doc
);
1091 PyModule_AddObject(m
, "pi",
1092 PyFloat_FromDouble(Py_MATH_PI
));
1093 PyModule_AddObject(m
, "e", PyFloat_FromDouble(Py_MATH_E
));
1095 /* initialize special value tables */
1097 #define INIT_SPECIAL_VALUES(NAME, BODY) { Py_complex* p = (Py_complex*)NAME; BODY }
1098 #define C(REAL, IMAG) p->real = REAL; p->imag = IMAG; ++p;
1100 INIT_SPECIAL_VALUES(acos_special_values
, {
1101 C(P34
,INF
) C(P
,INF
) C(P
,INF
) C(P
,-INF
) C(P
,-INF
) C(P34
,-INF
) C(N
,INF
)
1102 C(P12
,INF
) C(U
,U
) C(U
,U
) C(U
,U
) C(U
,U
) C(P12
,-INF
) C(N
,N
)
1103 C(P12
,INF
) C(U
,U
) C(P12
,0.) C(P12
,-0.) C(U
,U
) C(P12
,-INF
) C(P12
,N
)
1104 C(P12
,INF
) C(U
,U
) C(P12
,0.) C(P12
,-0.) C(U
,U
) C(P12
,-INF
) C(P12
,N
)
1105 C(P12
,INF
) C(U
,U
) C(U
,U
) C(U
,U
) C(U
,U
) C(P12
,-INF
) C(N
,N
)
1106 C(P14
,INF
) C(0.,INF
) C(0.,INF
) C(0.,-INF
) C(0.,-INF
) C(P14
,-INF
) C(N
,INF
)
1107 C(N
,INF
) C(N
,N
) C(N
,N
) C(N
,N
) C(N
,N
) C(N
,-INF
) C(N
,N
)
1110 INIT_SPECIAL_VALUES(acosh_special_values
, {
1111 C(INF
,-P34
) C(INF
,-P
) C(INF
,-P
) C(INF
,P
) C(INF
,P
) C(INF
,P34
) C(INF
,N
)
1112 C(INF
,-P12
) C(U
,U
) C(U
,U
) C(U
,U
) C(U
,U
) C(INF
,P12
) C(N
,N
)
1113 C(INF
,-P12
) C(U
,U
) C(0.,-P12
) C(0.,P12
) C(U
,U
) C(INF
,P12
) C(N
,N
)
1114 C(INF
,-P12
) C(U
,U
) C(0.,-P12
) C(0.,P12
) C(U
,U
) C(INF
,P12
) C(N
,N
)
1115 C(INF
,-P12
) C(U
,U
) C(U
,U
) C(U
,U
) C(U
,U
) C(INF
,P12
) C(N
,N
)
1116 C(INF
,-P14
) C(INF
,-0.) C(INF
,-0.) C(INF
,0.) C(INF
,0.) C(INF
,P14
) C(INF
,N
)
1117 C(INF
,N
) C(N
,N
) C(N
,N
) C(N
,N
) C(N
,N
) C(INF
,N
) C(N
,N
)
1120 INIT_SPECIAL_VALUES(asinh_special_values
, {
1121 C(-INF
,-P14
) C(-INF
,-0.) C(-INF
,-0.) C(-INF
,0.) C(-INF
,0.) C(-INF
,P14
) C(-INF
,N
)
1122 C(-INF
,-P12
) C(U
,U
) C(U
,U
) C(U
,U
) C(U
,U
) C(-INF
,P12
) C(N
,N
)
1123 C(-INF
,-P12
) C(U
,U
) C(-0.,-0.) C(-0.,0.) C(U
,U
) C(-INF
,P12
) C(N
,N
)
1124 C(INF
,-P12
) C(U
,U
) C(0.,-0.) C(0.,0.) C(U
,U
) C(INF
,P12
) C(N
,N
)
1125 C(INF
,-P12
) C(U
,U
) C(U
,U
) C(U
,U
) C(U
,U
) C(INF
,P12
) C(N
,N
)
1126 C(INF
,-P14
) C(INF
,-0.) C(INF
,-0.) C(INF
,0.) C(INF
,0.) C(INF
,P14
) C(INF
,N
)
1127 C(INF
,N
) C(N
,N
) C(N
,-0.) C(N
,0.) C(N
,N
) C(INF
,N
) C(N
,N
)
1130 INIT_SPECIAL_VALUES(atanh_special_values
, {
1131 C(-0.,-P12
) C(-0.,-P12
) C(-0.,-P12
) C(-0.,P12
) C(-0.,P12
) C(-0.,P12
) C(-0.,N
)
1132 C(-0.,-P12
) C(U
,U
) C(U
,U
) C(U
,U
) C(U
,U
) C(-0.,P12
) C(N
,N
)
1133 C(-0.,-P12
) C(U
,U
) C(-0.,-0.) C(-0.,0.) C(U
,U
) C(-0.,P12
) C(-0.,N
)
1134 C(0.,-P12
) C(U
,U
) C(0.,-0.) C(0.,0.) C(U
,U
) C(0.,P12
) C(0.,N
)
1135 C(0.,-P12
) C(U
,U
) C(U
,U
) C(U
,U
) C(U
,U
) C(0.,P12
) C(N
,N
)
1136 C(0.,-P12
) C(0.,-P12
) C(0.,-P12
) C(0.,P12
) C(0.,P12
) C(0.,P12
) C(0.,N
)
1137 C(0.,-P12
) C(N
,N
) C(N
,N
) C(N
,N
) C(N
,N
) C(0.,P12
) C(N
,N
)
1140 INIT_SPECIAL_VALUES(cosh_special_values
, {
1141 C(INF
,N
) C(U
,U
) C(INF
,0.) C(INF
,-0.) C(U
,U
) C(INF
,N
) C(INF
,N
)
1142 C(N
,N
) C(U
,U
) C(U
,U
) C(U
,U
) C(U
,U
) C(N
,N
) C(N
,N
)
1143 C(N
,0.) C(U
,U
) C(1.,0.) C(1.,-0.) C(U
,U
) C(N
,0.) C(N
,0.)
1144 C(N
,0.) C(U
,U
) C(1.,-0.) C(1.,0.) C(U
,U
) C(N
,0.) C(N
,0.)
1145 C(N
,N
) C(U
,U
) C(U
,U
) C(U
,U
) C(U
,U
) C(N
,N
) C(N
,N
)
1146 C(INF
,N
) C(U
,U
) C(INF
,-0.) C(INF
,0.) C(U
,U
) C(INF
,N
) C(INF
,N
)
1147 C(N
,N
) C(N
,N
) C(N
,0.) C(N
,0.) C(N
,N
) C(N
,N
) C(N
,N
)
1150 INIT_SPECIAL_VALUES(exp_special_values
, {
1151 C(0.,0.) C(U
,U
) C(0.,-0.) C(0.,0.) C(U
,U
) C(0.,0.) C(0.,0.)
1152 C(N
,N
) C(U
,U
) C(U
,U
) C(U
,U
) C(U
,U
) C(N
,N
) C(N
,N
)
1153 C(N
,N
) C(U
,U
) C(1.,-0.) C(1.,0.) C(U
,U
) C(N
,N
) C(N
,N
)
1154 C(N
,N
) C(U
,U
) C(1.,-0.) C(1.,0.) C(U
,U
) C(N
,N
) C(N
,N
)
1155 C(N
,N
) C(U
,U
) C(U
,U
) C(U
,U
) C(U
,U
) C(N
,N
) C(N
,N
)
1156 C(INF
,N
) C(U
,U
) C(INF
,-0.) C(INF
,0.) C(U
,U
) C(INF
,N
) C(INF
,N
)
1157 C(N
,N
) C(N
,N
) C(N
,-0.) C(N
,0.) C(N
,N
) C(N
,N
) C(N
,N
)
1160 INIT_SPECIAL_VALUES(log_special_values
, {
1161 C(INF
,-P34
) C(INF
,-P
) C(INF
,-P
) C(INF
,P
) C(INF
,P
) C(INF
,P34
) C(INF
,N
)
1162 C(INF
,-P12
) C(U
,U
) C(U
,U
) C(U
,U
) C(U
,U
) C(INF
,P12
) C(N
,N
)
1163 C(INF
,-P12
) C(U
,U
) C(-INF
,-P
) C(-INF
,P
) C(U
,U
) C(INF
,P12
) C(N
,N
)
1164 C(INF
,-P12
) C(U
,U
) C(-INF
,-0.) C(-INF
,0.) C(U
,U
) C(INF
,P12
) C(N
,N
)
1165 C(INF
,-P12
) C(U
,U
) C(U
,U
) C(U
,U
) C(U
,U
) C(INF
,P12
) C(N
,N
)
1166 C(INF
,-P14
) C(INF
,-0.) C(INF
,-0.) C(INF
,0.) C(INF
,0.) C(INF
,P14
) C(INF
,N
)
1167 C(INF
,N
) C(N
,N
) C(N
,N
) C(N
,N
) C(N
,N
) C(INF
,N
) C(N
,N
)
1170 INIT_SPECIAL_VALUES(sinh_special_values
, {
1171 C(INF
,N
) C(U
,U
) C(-INF
,-0.) C(-INF
,0.) C(U
,U
) C(INF
,N
) C(INF
,N
)
1172 C(N
,N
) C(U
,U
) C(U
,U
) C(U
,U
) C(U
,U
) C(N
,N
) C(N
,N
)
1173 C(0.,N
) C(U
,U
) C(-0.,-0.) C(-0.,0.) C(U
,U
) C(0.,N
) C(0.,N
)
1174 C(0.,N
) C(U
,U
) C(0.,-0.) C(0.,0.) C(U
,U
) C(0.,N
) C(0.,N
)
1175 C(N
,N
) C(U
,U
) C(U
,U
) C(U
,U
) C(U
,U
) C(N
,N
) C(N
,N
)
1176 C(INF
,N
) C(U
,U
) C(INF
,-0.) C(INF
,0.) C(U
,U
) C(INF
,N
) C(INF
,N
)
1177 C(N
,N
) C(N
,N
) C(N
,-0.) C(N
,0.) C(N
,N
) C(N
,N
) C(N
,N
)
1180 INIT_SPECIAL_VALUES(sqrt_special_values
, {
1181 C(INF
,-INF
) C(0.,-INF
) C(0.,-INF
) C(0.,INF
) C(0.,INF
) C(INF
,INF
) C(N
,INF
)
1182 C(INF
,-INF
) C(U
,U
) C(U
,U
) C(U
,U
) C(U
,U
) C(INF
,INF
) C(N
,N
)
1183 C(INF
,-INF
) C(U
,U
) C(0.,-0.) C(0.,0.) C(U
,U
) C(INF
,INF
) C(N
,N
)
1184 C(INF
,-INF
) C(U
,U
) C(0.,-0.) C(0.,0.) C(U
,U
) C(INF
,INF
) C(N
,N
)
1185 C(INF
,-INF
) C(U
,U
) C(U
,U
) C(U
,U
) C(U
,U
) C(INF
,INF
) C(N
,N
)
1186 C(INF
,-INF
) C(INF
,-0.) C(INF
,-0.) C(INF
,0.) C(INF
,0.) C(INF
,INF
) C(INF
,N
)
1187 C(INF
,-INF
) C(N
,N
) C(N
,N
) C(N
,N
) C(N
,N
) C(INF
,INF
) C(N
,N
)
1190 INIT_SPECIAL_VALUES(tanh_special_values
, {
1191 C(-1.,0.) C(U
,U
) C(-1.,-0.) C(-1.,0.) C(U
,U
) C(-1.,0.) C(-1.,0.)
1192 C(N
,N
) C(U
,U
) C(U
,U
) C(U
,U
) C(U
,U
) C(N
,N
) C(N
,N
)
1193 C(N
,N
) C(U
,U
) C(-0.,-0.) C(-0.,0.) C(U
,U
) C(N
,N
) C(N
,N
)
1194 C(N
,N
) C(U
,U
) C(0.,-0.) C(0.,0.) C(U
,U
) C(N
,N
) C(N
,N
)
1195 C(N
,N
) C(U
,U
) C(U
,U
) C(U
,U
) C(U
,U
) C(N
,N
) C(N
,N
)
1196 C(1.,0.) C(U
,U
) C(1.,-0.) C(1.,0.) C(U
,U
) C(1.,0.) C(1.,0.)
1197 C(N
,N
) C(N
,N
) C(N
,-0.) C(N
,0.) C(N
,N
) C(N
,N
) C(N
,N
)
1200 INIT_SPECIAL_VALUES(rect_special_values
, {
1201 C(INF
,N
) C(U
,U
) C(-INF
,0.) C(-INF
,-0.) C(U
,U
) C(INF
,N
) C(INF
,N
)
1202 C(N
,N
) C(U
,U
) C(U
,U
) C(U
,U
) C(U
,U
) C(N
,N
) C(N
,N
)
1203 C(0.,0.) C(U
,U
) C(-0.,0.) C(-0.,-0.) C(U
,U
) C(0.,0.) C(0.,0.)
1204 C(0.,0.) C(U
,U
) C(0.,-0.) C(0.,0.) C(U
,U
) C(0.,0.) C(0.,0.)
1205 C(N
,N
) C(U
,U
) C(U
,U
) C(U
,U
) C(U
,U
) C(N
,N
) C(N
,N
)
1206 C(INF
,N
) C(U
,U
) C(INF
,-0.) C(INF
,0.) C(U
,U
) C(INF
,N
) C(INF
,N
)
1207 C(N
,N
) C(N
,N
) C(N
,0.) C(N
,0.) C(N
,N
) C(N
,N
) C(N
,N
)