2 /* audioopmodule - Module to detect peak values in arrays */
8 typedef unsigned int Py_UInt32
;
11 typedef long Py_Int32
;
12 typedef unsigned long Py_UInt32
;
14 #error "No 4-byte integral type"
18 typedef short PyInt16
;
20 #if defined(__CHAR_UNSIGNED__)
22 /* This module currently does not work on systems where only unsigned
23 characters are available. Take it out of Setup. Sorry. */
27 /* Code shamelessly stolen from sox, 12.17.7, g711.c
28 ** (c) Craig Reese, Joe Campbell and Jeff Poskanzer 1989 */
33 * Functions linear2alaw, linear2ulaw have been updated to correctly
34 * convert unquantized 16 bit values.
35 * Tables for direct u- to A-law and A- to u-law conversions have been
37 * Borge Lindberg, Center for PersonKommunikation, Aalborg University.
41 #define BIAS 0x84 /* define the add-in bias for 16 bit samples */
43 #define SIGN_BIT (0x80) /* Sign bit for a A-law byte. */
44 #define QUANT_MASK (0xf) /* Quantization field mask. */
45 #define SEG_SHIFT (4) /* Left shift for segment number. */
46 #define SEG_MASK (0x70) /* Segment field mask. */
48 static PyInt16 seg_aend
[8] = {0x1F, 0x3F, 0x7F, 0xFF,
49 0x1FF, 0x3FF, 0x7FF, 0xFFF};
50 static PyInt16 seg_uend
[8] = {0x3F, 0x7F, 0xFF, 0x1FF,
51 0x3FF, 0x7FF, 0xFFF, 0x1FFF};
54 search(PyInt16 val
, PyInt16
*table
, int size
)
58 for (i
= 0; i
< size
; i
++) {
64 #define st_ulaw2linear16(uc) (_st_ulaw2linear16[uc])
65 #define st_alaw2linear16(uc) (_st_alaw2linear16[uc])
67 static PyInt16 _st_ulaw2linear16
[256] = {
68 -32124, -31100, -30076, -29052, -28028, -27004, -25980,
69 -24956, -23932, -22908, -21884, -20860, -19836, -18812,
70 -17788, -16764, -15996, -15484, -14972, -14460, -13948,
71 -13436, -12924, -12412, -11900, -11388, -10876, -10364,
72 -9852, -9340, -8828, -8316, -7932, -7676, -7420,
73 -7164, -6908, -6652, -6396, -6140, -5884, -5628,
74 -5372, -5116, -4860, -4604, -4348, -4092, -3900,
75 -3772, -3644, -3516, -3388, -3260, -3132, -3004,
76 -2876, -2748, -2620, -2492, -2364, -2236, -2108,
77 -1980, -1884, -1820, -1756, -1692, -1628, -1564,
78 -1500, -1436, -1372, -1308, -1244, -1180, -1116,
79 -1052, -988, -924, -876, -844, -812, -780,
80 -748, -716, -684, -652, -620, -588, -556,
81 -524, -492, -460, -428, -396, -372, -356,
82 -340, -324, -308, -292, -276, -260, -244,
83 -228, -212, -196, -180, -164, -148, -132,
84 -120, -112, -104, -96, -88, -80, -72,
85 -64, -56, -48, -40, -32, -24, -16,
86 -8, 0, 32124, 31100, 30076, 29052, 28028,
87 27004, 25980, 24956, 23932, 22908, 21884, 20860,
88 19836, 18812, 17788, 16764, 15996, 15484, 14972,
89 14460, 13948, 13436, 12924, 12412, 11900, 11388,
90 10876, 10364, 9852, 9340, 8828, 8316, 7932,
91 7676, 7420, 7164, 6908, 6652, 6396, 6140,
92 5884, 5628, 5372, 5116, 4860, 4604, 4348,
93 4092, 3900, 3772, 3644, 3516, 3388, 3260,
94 3132, 3004, 2876, 2748, 2620, 2492, 2364,
95 2236, 2108, 1980, 1884, 1820, 1756, 1692,
96 1628, 1564, 1500, 1436, 1372, 1308, 1244,
97 1180, 1116, 1052, 988, 924, 876, 844,
98 812, 780, 748, 716, 684, 652, 620,
99 588, 556, 524, 492, 460, 428, 396,
100 372, 356, 340, 324, 308, 292, 276,
101 260, 244, 228, 212, 196, 180, 164,
102 148, 132, 120, 112, 104, 96, 88,
103 80, 72, 64, 56, 48, 40, 32,
108 * linear2ulaw() accepts a 14-bit signed integer and encodes it as u-law data
109 * stored in a unsigned char. This function should only be called with
110 * the data shifted such that it only contains information in the lower
113 * In order to simplify the encoding process, the original linear magnitude
114 * is biased by adding 33 which shifts the encoding range from (0 - 8158) to
115 * (33 - 8191). The result can be seen in the following encoding table:
117 * Biased Linear Input Code Compressed Code
118 * ------------------------ ---------------
119 * 00000001wxyza 000wxyz
120 * 0000001wxyzab 001wxyz
121 * 000001wxyzabc 010wxyz
122 * 00001wxyzabcd 011wxyz
123 * 0001wxyzabcde 100wxyz
124 * 001wxyzabcdef 101wxyz
125 * 01wxyzabcdefg 110wxyz
126 * 1wxyzabcdefgh 111wxyz
128 * Each biased linear code has a leading 1 which identifies the segment
129 * number. The value of the segment number is equal to 7 minus the number
130 * of leading 0's. The quantization interval is directly available as the
131 * four bits wxyz. * The trailing bits (a - h) are ignored.
133 * Ordinarily the complement of the resulting code word is used for
134 * transmission, and so the code word is complemented before it is returned.
136 * For further information see John C. Bellamy's Digital Telephony, 1982,
137 * John Wiley & Sons, pps 98-111 and 472-476.
140 st_14linear2ulaw(PyInt16 pcm_val
) /* 2's complement (14-bit range) */
146 /* The original sox code does this in the calling function, not here */
147 pcm_val
= pcm_val
>> 2;
149 /* u-law inverts all bits */
150 /* Get the sign and the magnitude of the value. */
157 if ( pcm_val
> CLIP
) pcm_val
= CLIP
; /* clip the magnitude */
158 pcm_val
+= (BIAS
>> 2);
160 /* Convert the scaled magnitude to segment number. */
161 seg
= search(pcm_val
, seg_uend
, 8);
164 * Combine the sign, segment, quantization bits;
165 * and complement the code word.
167 if (seg
>= 8) /* out of range, return maximum value. */
168 return (unsigned char) (0x7F ^ mask
);
170 uval
= (unsigned char) (seg
<< 4) | ((pcm_val
>> (seg
+ 1)) & 0xF);
171 return (uval
^ mask
);
176 static PyInt16 _st_alaw2linear16
[256] = {
177 -5504, -5248, -6016, -5760, -4480, -4224, -4992,
178 -4736, -7552, -7296, -8064, -7808, -6528, -6272,
179 -7040, -6784, -2752, -2624, -3008, -2880, -2240,
180 -2112, -2496, -2368, -3776, -3648, -4032, -3904,
181 -3264, -3136, -3520, -3392, -22016, -20992, -24064,
182 -23040, -17920, -16896, -19968, -18944, -30208, -29184,
183 -32256, -31232, -26112, -25088, -28160, -27136, -11008,
184 -10496, -12032, -11520, -8960, -8448, -9984, -9472,
185 -15104, -14592, -16128, -15616, -13056, -12544, -14080,
186 -13568, -344, -328, -376, -360, -280, -264,
187 -312, -296, -472, -456, -504, -488, -408,
188 -392, -440, -424, -88, -72, -120, -104,
189 -24, -8, -56, -40, -216, -200, -248,
190 -232, -152, -136, -184, -168, -1376, -1312,
191 -1504, -1440, -1120, -1056, -1248, -1184, -1888,
192 -1824, -2016, -1952, -1632, -1568, -1760, -1696,
193 -688, -656, -752, -720, -560, -528, -624,
194 -592, -944, -912, -1008, -976, -816, -784,
195 -880, -848, 5504, 5248, 6016, 5760, 4480,
196 4224, 4992, 4736, 7552, 7296, 8064, 7808,
197 6528, 6272, 7040, 6784, 2752, 2624, 3008,
198 2880, 2240, 2112, 2496, 2368, 3776, 3648,
199 4032, 3904, 3264, 3136, 3520, 3392, 22016,
200 20992, 24064, 23040, 17920, 16896, 19968, 18944,
201 30208, 29184, 32256, 31232, 26112, 25088, 28160,
202 27136, 11008, 10496, 12032, 11520, 8960, 8448,
203 9984, 9472, 15104, 14592, 16128, 15616, 13056,
204 12544, 14080, 13568, 344, 328, 376, 360,
205 280, 264, 312, 296, 472, 456, 504,
206 488, 408, 392, 440, 424, 88, 72,
207 120, 104, 24, 8, 56, 40, 216,
208 200, 248, 232, 152, 136, 184, 168,
209 1376, 1312, 1504, 1440, 1120, 1056, 1248,
210 1184, 1888, 1824, 2016, 1952, 1632, 1568,
211 1760, 1696, 688, 656, 752, 720, 560,
212 528, 624, 592, 944, 912, 1008, 976,
217 * linear2alaw() accepts an 13-bit signed integer and encodes it as A-law data
218 * stored in a unsigned char. This function should only be called with
219 * the data shifted such that it only contains information in the lower
222 * Linear Input Code Compressed Code
223 * ------------------------ ---------------
224 * 0000000wxyza 000wxyz
225 * 0000001wxyza 001wxyz
226 * 000001wxyzab 010wxyz
227 * 00001wxyzabc 011wxyz
228 * 0001wxyzabcd 100wxyz
229 * 001wxyzabcde 101wxyz
230 * 01wxyzabcdef 110wxyz
231 * 1wxyzabcdefg 111wxyz
233 * For further information see John C. Bellamy's Digital Telephony, 1982,
234 * John Wiley & Sons, pps 98-111 and 472-476.
237 st_linear2alaw(PyInt16 pcm_val
) /* 2's complement (13-bit range) */
243 /* The original sox code does this in the calling function, not here */
244 pcm_val
= pcm_val
>> 3;
246 /* A-law using even bit inversion */
248 mask
= 0xD5; /* sign (7th) bit = 1 */
250 mask
= 0x55; /* sign bit = 0 */
251 pcm_val
= -pcm_val
- 1;
254 /* Convert the scaled magnitude to segment number. */
255 seg
= search(pcm_val
, seg_aend
, 8);
257 /* Combine the sign, segment, and quantization bits. */
259 if (seg
>= 8) /* out of range, return maximum value. */
260 return (unsigned char) (0x7F ^ mask
);
262 aval
= (unsigned char) seg
<< SEG_SHIFT
;
264 aval
|= (pcm_val
>> 1) & QUANT_MASK
;
266 aval
|= (pcm_val
>> seg
) & QUANT_MASK
;
267 return (aval
^ mask
);
270 /* End of code taken from sox */
272 /* Intel ADPCM step variation table */
273 static int indexTable
[16] = {
274 -1, -1, -1, -1, 2, 4, 6, 8,
275 -1, -1, -1, -1, 2, 4, 6, 8,
278 static int stepsizeTable
[89] = {
279 7, 8, 9, 10, 11, 12, 13, 14, 16, 17,
280 19, 21, 23, 25, 28, 31, 34, 37, 41, 45,
281 50, 55, 60, 66, 73, 80, 88, 97, 107, 118,
282 130, 143, 157, 173, 190, 209, 230, 253, 279, 307,
283 337, 371, 408, 449, 494, 544, 598, 658, 724, 796,
284 876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066,
285 2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358,
286 5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899,
287 15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767
290 #define CHARP(cp, i) ((signed char *)(cp+i))
291 #define SHORTP(cp, i) ((short *)(cp+i))
292 #define LONGP(cp, i) ((Py_Int32 *)(cp+i))
296 static PyObject
*AudioopError
;
299 audioop_getsample(PyObject
*self
, PyObject
*args
)
302 int len
, size
, val
= 0;
305 if ( !PyArg_ParseTuple(args
, "s#ii:getsample", &cp
, &len
, &size
, &i
) )
307 if ( size
!= 1 && size
!= 2 && size
!= 4 ) {
308 PyErr_SetString(AudioopError
, "Size should be 1, 2 or 4");
311 if ( i
< 0 || i
>= len
/size
) {
312 PyErr_SetString(AudioopError
, "Index out of range");
315 if ( size
== 1 ) val
= (int)*CHARP(cp
, i
);
316 else if ( size
== 2 ) val
= (int)*SHORTP(cp
, i
*2);
317 else if ( size
== 4 ) val
= (int)*LONGP(cp
, i
*4);
318 return PyInt_FromLong(val
);
322 audioop_max(PyObject
*self
, PyObject
*args
)
325 int len
, size
, val
= 0;
329 if ( !PyArg_ParseTuple(args
, "s#i:max", &cp
, &len
, &size
) )
331 if ( size
!= 1 && size
!= 2 && size
!= 4 ) {
332 PyErr_SetString(AudioopError
, "Size should be 1, 2 or 4");
335 for ( i
=0; i
<len
; i
+= size
) {
336 if ( size
== 1 ) val
= (int)*CHARP(cp
, i
);
337 else if ( size
== 2 ) val
= (int)*SHORTP(cp
, i
);
338 else if ( size
== 4 ) val
= (int)*LONGP(cp
, i
);
339 if ( val
< 0 ) val
= (-val
);
340 if ( val
> max
) max
= val
;
342 return PyInt_FromLong(max
);
346 audioop_minmax(PyObject
*self
, PyObject
*args
)
349 int len
, size
, val
= 0;
351 int min
= 0x7fffffff, max
= -0x7fffffff;
353 if (!PyArg_ParseTuple(args
, "s#i:minmax", &cp
, &len
, &size
))
355 if (size
!= 1 && size
!= 2 && size
!= 4) {
356 PyErr_SetString(AudioopError
, "Size should be 1, 2 or 4");
359 for (i
= 0; i
< len
; i
+= size
) {
360 if (size
== 1) val
= (int) *CHARP(cp
, i
);
361 else if (size
== 2) val
= (int) *SHORTP(cp
, i
);
362 else if (size
== 4) val
= (int) *LONGP(cp
, i
);
363 if (val
> max
) max
= val
;
364 if (val
< min
) min
= val
;
366 return Py_BuildValue("(ii)", min
, max
);
370 audioop_avg(PyObject
*self
, PyObject
*args
)
373 int len
, size
, val
= 0;
377 if ( !PyArg_ParseTuple(args
, "s#i:avg", &cp
, &len
, &size
) )
379 if ( size
!= 1 && size
!= 2 && size
!= 4 ) {
380 PyErr_SetString(AudioopError
, "Size should be 1, 2 or 4");
383 for ( i
=0; i
<len
; i
+= size
) {
384 if ( size
== 1 ) val
= (int)*CHARP(cp
, i
);
385 else if ( size
== 2 ) val
= (int)*SHORTP(cp
, i
);
386 else if ( size
== 4 ) val
= (int)*LONGP(cp
, i
);
392 val
= (int)(avg
/ (double)(len
/size
));
393 return PyInt_FromLong(val
);
397 audioop_rms(PyObject
*self
, PyObject
*args
)
400 int len
, size
, val
= 0;
402 double sum_squares
= 0.0;
404 if ( !PyArg_ParseTuple(args
, "s#i:rms", &cp
, &len
, &size
) )
406 if ( size
!= 1 && size
!= 2 && size
!= 4 ) {
407 PyErr_SetString(AudioopError
, "Size should be 1, 2 or 4");
410 for ( i
=0; i
<len
; i
+= size
) {
411 if ( size
== 1 ) val
= (int)*CHARP(cp
, i
);
412 else if ( size
== 2 ) val
= (int)*SHORTP(cp
, i
);
413 else if ( size
== 4 ) val
= (int)*LONGP(cp
, i
);
414 sum_squares
+= (double)val
*(double)val
;
419 val
= (int)sqrt(sum_squares
/ (double)(len
/size
));
420 return PyInt_FromLong(val
);
423 static double _sum2(short *a
, short *b
, int len
)
428 for( i
=0; i
<len
; i
++) {
429 sum
= sum
+ (double)a
[i
]*(double)b
[i
];
435 ** Findfit tries to locate a sample within another sample. Its main use
436 ** is in echo-cancellation (to find the feedback of the output signal in
437 ** the input signal).
438 ** The method used is as follows:
440 ** let R be the reference signal (length n) and A the input signal (length N)
441 ** with N > n, and let all sums be over i from 0 to n-1.
443 ** Now, for each j in {0..N-n} we compute a factor fj so that -fj*R matches A
444 ** as good as possible, i.e. sum( (A[j+i]+fj*R[i])^2 ) is minimal. This
445 ** equation gives fj = sum( A[j+i]R[i] ) / sum(R[i]^2).
447 ** Next, we compute the relative distance between the original signal and
448 ** the modified signal and minimize that over j:
449 ** vj = sum( (A[j+i]-fj*R[i])^2 ) / sum( A[j+i]^2 ) =>
450 ** vj = ( sum(A[j+i]^2)*sum(R[i]^2) - sum(A[j+i]R[i])^2 ) / sum( A[j+i]^2 )
452 ** In the code variables correspond as follows:
459 ** sum_ri_2 sum(R[i]^2)
460 ** sum_aij_2 sum(A[i+j]^2)
461 ** sum_aij_ri sum(A[i+j]R[i])
463 ** sum_ri is calculated once, sum_aij_2 is updated each step and sum_aij_ri
464 ** is completely recalculated each step.
467 audioop_findfit(PyObject
*self
, PyObject
*args
)
472 double aj_m1
, aj_lm1
;
473 double sum_ri_2
, sum_aij_2
, sum_aij_ri
, result
, best_result
, factor
;
475 /* Passing a short** for an 's' argument is correct only
476 if the string contents is aligned for interpretation
477 as short[]. Due to the definition of PyStringObject,
478 this is currently (Python 2.6) the case. */
479 if ( !PyArg_ParseTuple(args
, "s#s#:findfit",
480 (char**)&cp1
, &len1
, (char**)&cp2
, &len2
) )
482 if ( len1
& 1 || len2
& 1 ) {
483 PyErr_SetString(AudioopError
, "Strings should be even-sized");
490 PyErr_SetString(AudioopError
, "First sample should be longer");
493 sum_ri_2
= _sum2(cp2
, cp2
, len2
);
494 sum_aij_2
= _sum2(cp1
, cp1
, len2
);
495 sum_aij_ri
= _sum2(cp1
, cp2
, len2
);
497 result
= (sum_ri_2
*sum_aij_2
- sum_aij_ri
*sum_aij_ri
) / sum_aij_2
;
499 best_result
= result
;
503 for ( j
=1; j
<=len1
-len2
; j
++) {
504 aj_m1
= (double)cp1
[j
-1];
505 aj_lm1
= (double)cp1
[j
+len2
-1];
507 sum_aij_2
= sum_aij_2
+ aj_lm1
*aj_lm1
- aj_m1
*aj_m1
;
508 sum_aij_ri
= _sum2(cp1
+j
, cp2
, len2
);
510 result
= (sum_ri_2
*sum_aij_2
- sum_aij_ri
*sum_aij_ri
)
513 if ( result
< best_result
) {
514 best_result
= result
;
520 factor
= _sum2(cp1
+best_j
, cp2
, len2
) / sum_ri_2
;
522 return Py_BuildValue("(if)", best_j
, factor
);
526 ** findfactor finds a factor f so that the energy in A-fB is minimal.
527 ** See the comment for findfit for details.
530 audioop_findfactor(PyObject
*self
, PyObject
*args
)
534 double sum_ri_2
, sum_aij_ri
, result
;
536 if ( !PyArg_ParseTuple(args
, "s#s#:findfactor",
537 (char**)&cp1
, &len1
, (char**)&cp2
, &len2
) )
539 if ( len1
& 1 || len2
& 1 ) {
540 PyErr_SetString(AudioopError
, "Strings should be even-sized");
543 if ( len1
!= len2
) {
544 PyErr_SetString(AudioopError
, "Samples should be same size");
548 sum_ri_2
= _sum2(cp2
, cp2
, len2
);
549 sum_aij_ri
= _sum2(cp1
, cp2
, len2
);
551 result
= sum_aij_ri
/ sum_ri_2
;
553 return PyFloat_FromDouble(result
);
557 ** findmax returns the index of the n-sized segment of the input sample
558 ** that contains the most energy.
561 audioop_findmax(PyObject
*self
, PyObject
*args
)
566 double aj_m1
, aj_lm1
;
567 double result
, best_result
;
569 if ( !PyArg_ParseTuple(args
, "s#i:findmax",
570 (char**)&cp1
, &len1
, &len2
) )
573 PyErr_SetString(AudioopError
, "Strings should be even-sized");
579 PyErr_SetString(AudioopError
, "Input sample should be longer");
583 result
= _sum2(cp1
, cp1
, len2
);
585 best_result
= result
;
589 for ( j
=1; j
<=len1
-len2
; j
++) {
590 aj_m1
= (double)cp1
[j
-1];
591 aj_lm1
= (double)cp1
[j
+len2
-1];
593 result
= result
+ aj_lm1
*aj_lm1
- aj_m1
*aj_m1
;
595 if ( result
> best_result
) {
596 best_result
= result
;
602 return PyInt_FromLong(best_j
);
606 audioop_avgpp(PyObject
*self
, PyObject
*args
)
609 int len
, size
, val
= 0, prevval
= 0, prevextremevalid
= 0,
613 int diff
, prevdiff
, extremediff
, nextreme
= 0;
615 if ( !PyArg_ParseTuple(args
, "s#i:avgpp", &cp
, &len
, &size
) )
617 if ( size
!= 1 && size
!= 2 && size
!= 4 ) {
618 PyErr_SetString(AudioopError
, "Size should be 1, 2 or 4");
621 /* Compute first delta value ahead. Also automatically makes us
622 ** skip the first extreme value
624 if ( size
== 1 ) prevval
= (int)*CHARP(cp
, 0);
625 else if ( size
== 2 ) prevval
= (int)*SHORTP(cp
, 0);
626 else if ( size
== 4 ) prevval
= (int)*LONGP(cp
, 0);
627 if ( size
== 1 ) val
= (int)*CHARP(cp
, size
);
628 else if ( size
== 2 ) val
= (int)*SHORTP(cp
, size
);
629 else if ( size
== 4 ) val
= (int)*LONGP(cp
, size
);
630 prevdiff
= val
- prevval
;
632 for ( i
=size
; i
<len
; i
+= size
) {
633 if ( size
== 1 ) val
= (int)*CHARP(cp
, i
);
634 else if ( size
== 2 ) val
= (int)*SHORTP(cp
, i
);
635 else if ( size
== 4 ) val
= (int)*LONGP(cp
, i
);
636 diff
= val
- prevval
;
637 if ( diff
*prevdiff
< 0 ) {
638 /* Derivative changed sign. Compute difference to last
639 ** extreme value and remember.
641 if ( prevextremevalid
) {
642 extremediff
= prevval
- prevextreme
;
643 if ( extremediff
< 0 )
644 extremediff
= -extremediff
;
648 prevextremevalid
= 1;
649 prevextreme
= prevval
;
658 val
= (int)(avg
/ (double)nextreme
);
659 return PyInt_FromLong(val
);
663 audioop_maxpp(PyObject
*self
, PyObject
*args
)
666 int len
, size
, val
= 0, prevval
= 0, prevextremevalid
= 0,
670 int diff
, prevdiff
, extremediff
;
672 if ( !PyArg_ParseTuple(args
, "s#i:maxpp", &cp
, &len
, &size
) )
674 if ( size
!= 1 && size
!= 2 && size
!= 4 ) {
675 PyErr_SetString(AudioopError
, "Size should be 1, 2 or 4");
678 /* Compute first delta value ahead. Also automatically makes us
679 ** skip the first extreme value
681 if ( size
== 1 ) prevval
= (int)*CHARP(cp
, 0);
682 else if ( size
== 2 ) prevval
= (int)*SHORTP(cp
, 0);
683 else if ( size
== 4 ) prevval
= (int)*LONGP(cp
, 0);
684 if ( size
== 1 ) val
= (int)*CHARP(cp
, size
);
685 else if ( size
== 2 ) val
= (int)*SHORTP(cp
, size
);
686 else if ( size
== 4 ) val
= (int)*LONGP(cp
, size
);
687 prevdiff
= val
- prevval
;
689 for ( i
=size
; i
<len
; i
+= size
) {
690 if ( size
== 1 ) val
= (int)*CHARP(cp
, i
);
691 else if ( size
== 2 ) val
= (int)*SHORTP(cp
, i
);
692 else if ( size
== 4 ) val
= (int)*LONGP(cp
, i
);
693 diff
= val
- prevval
;
694 if ( diff
*prevdiff
< 0 ) {
695 /* Derivative changed sign. Compute difference to
696 ** last extreme value and remember.
698 if ( prevextremevalid
) {
699 extremediff
= prevval
- prevextreme
;
700 if ( extremediff
< 0 )
701 extremediff
= -extremediff
;
702 if ( extremediff
> max
)
705 prevextremevalid
= 1;
706 prevextreme
= prevval
;
712 return PyInt_FromLong(max
);
716 audioop_cross(PyObject
*self
, PyObject
*args
)
719 int len
, size
, val
= 0;
723 if ( !PyArg_ParseTuple(args
, "s#i:cross", &cp
, &len
, &size
) )
725 if ( size
!= 1 && size
!= 2 && size
!= 4 ) {
726 PyErr_SetString(AudioopError
, "Size should be 1, 2 or 4");
730 prevval
= 17; /* Anything <> 0,1 */
731 for ( i
=0; i
<len
; i
+= size
) {
732 if ( size
== 1 ) val
= ((int)*CHARP(cp
, i
)) >> 7;
733 else if ( size
== 2 ) val
= ((int)*SHORTP(cp
, i
)) >> 15;
734 else if ( size
== 4 ) val
= ((int)*LONGP(cp
, i
)) >> 31;
736 if ( val
!= prevval
) ncross
++;
739 return PyInt_FromLong(ncross
);
743 audioop_mul(PyObject
*self
, PyObject
*args
)
745 signed char *cp
, *ncp
;
746 int len
, size
, val
= 0;
747 double factor
, fval
, maxval
;
751 if ( !PyArg_ParseTuple(args
, "s#id:mul", &cp
, &len
, &size
, &factor
) )
754 if ( size
== 1 ) maxval
= (double) 0x7f;
755 else if ( size
== 2 ) maxval
= (double) 0x7fff;
756 else if ( size
== 4 ) maxval
= (double) 0x7fffffff;
758 PyErr_SetString(AudioopError
, "Size should be 1, 2 or 4");
762 rv
= PyString_FromStringAndSize(NULL
, len
);
765 ncp
= (signed char *)PyString_AsString(rv
);
768 for ( i
=0; i
< len
; i
+= size
) {
769 if ( size
== 1 ) val
= (int)*CHARP(cp
, i
);
770 else if ( size
== 2 ) val
= (int)*SHORTP(cp
, i
);
771 else if ( size
== 4 ) val
= (int)*LONGP(cp
, i
);
772 fval
= (double)val
*factor
;
773 if ( fval
> maxval
) fval
= maxval
;
774 else if ( fval
< -maxval
) fval
= -maxval
;
776 if ( size
== 1 ) *CHARP(ncp
, i
) = (signed char)val
;
777 else if ( size
== 2 ) *SHORTP(ncp
, i
) = (short)val
;
778 else if ( size
== 4 ) *LONGP(ncp
, i
) = (Py_Int32
)val
;
784 audioop_tomono(PyObject
*self
, PyObject
*args
)
786 signed char *cp
, *ncp
;
787 int len
, size
, val1
= 0, val2
= 0;
788 double fac1
, fac2
, fval
, maxval
;
792 if ( !PyArg_ParseTuple(args
, "s#idd:tomono",
793 &cp
, &len
, &size
, &fac1
, &fac2
) )
796 if ( size
== 1 ) maxval
= (double) 0x7f;
797 else if ( size
== 2 ) maxval
= (double) 0x7fff;
798 else if ( size
== 4 ) maxval
= (double) 0x7fffffff;
800 PyErr_SetString(AudioopError
, "Size should be 1, 2 or 4");
804 rv
= PyString_FromStringAndSize(NULL
, len
/2);
807 ncp
= (signed char *)PyString_AsString(rv
);
810 for ( i
=0; i
< len
; i
+= size
*2 ) {
811 if ( size
== 1 ) val1
= (int)*CHARP(cp
, i
);
812 else if ( size
== 2 ) val1
= (int)*SHORTP(cp
, i
);
813 else if ( size
== 4 ) val1
= (int)*LONGP(cp
, i
);
814 if ( size
== 1 ) val2
= (int)*CHARP(cp
, i
+1);
815 else if ( size
== 2 ) val2
= (int)*SHORTP(cp
, i
+2);
816 else if ( size
== 4 ) val2
= (int)*LONGP(cp
, i
+4);
817 fval
= (double)val1
*fac1
+ (double)val2
*fac2
;
818 if ( fval
> maxval
) fval
= maxval
;
819 else if ( fval
< -maxval
) fval
= -maxval
;
821 if ( size
== 1 ) *CHARP(ncp
, i
/2) = (signed char)val1
;
822 else if ( size
== 2 ) *SHORTP(ncp
, i
/2) = (short)val1
;
823 else if ( size
== 4 ) *LONGP(ncp
, i
/2)= (Py_Int32
)val1
;
829 audioop_tostereo(PyObject
*self
, PyObject
*args
)
831 signed char *cp
, *ncp
;
832 int len
, size
, val1
, val2
, val
= 0;
833 double fac1
, fac2
, fval
, maxval
;
837 if ( !PyArg_ParseTuple(args
, "s#idd:tostereo",
838 &cp
, &len
, &size
, &fac1
, &fac2
) )
841 if ( size
== 1 ) maxval
= (double) 0x7f;
842 else if ( size
== 2 ) maxval
= (double) 0x7fff;
843 else if ( size
== 4 ) maxval
= (double) 0x7fffffff;
845 PyErr_SetString(AudioopError
, "Size should be 1, 2 or 4");
849 rv
= PyString_FromStringAndSize(NULL
, len
*2);
852 ncp
= (signed char *)PyString_AsString(rv
);
855 for ( i
=0; i
< len
; i
+= size
) {
856 if ( size
== 1 ) val
= (int)*CHARP(cp
, i
);
857 else if ( size
== 2 ) val
= (int)*SHORTP(cp
, i
);
858 else if ( size
== 4 ) val
= (int)*LONGP(cp
, i
);
860 fval
= (double)val
*fac1
;
861 if ( fval
> maxval
) fval
= maxval
;
862 else if ( fval
< -maxval
) fval
= -maxval
;
865 fval
= (double)val
*fac2
;
866 if ( fval
> maxval
) fval
= maxval
;
867 else if ( fval
< -maxval
) fval
= -maxval
;
870 if ( size
== 1 ) *CHARP(ncp
, i
*2) = (signed char)val1
;
871 else if ( size
== 2 ) *SHORTP(ncp
, i
*2) = (short)val1
;
872 else if ( size
== 4 ) *LONGP(ncp
, i
*2) = (Py_Int32
)val1
;
874 if ( size
== 1 ) *CHARP(ncp
, i
*2+1) = (signed char)val2
;
875 else if ( size
== 2 ) *SHORTP(ncp
, i
*2+2) = (short)val2
;
876 else if ( size
== 4 ) *LONGP(ncp
, i
*2+4) = (Py_Int32
)val2
;
882 audioop_add(PyObject
*self
, PyObject
*args
)
884 signed char *cp1
, *cp2
, *ncp
;
885 int len1
, len2
, size
, val1
= 0, val2
= 0, maxval
, newval
;
889 if ( !PyArg_ParseTuple(args
, "s#s#i:add",
890 &cp1
, &len1
, &cp2
, &len2
, &size
) )
893 if ( len1
!= len2
) {
894 PyErr_SetString(AudioopError
, "Lengths should be the same");
898 if ( size
== 1 ) maxval
= 0x7f;
899 else if ( size
== 2 ) maxval
= 0x7fff;
900 else if ( size
== 4 ) maxval
= 0x7fffffff;
902 PyErr_SetString(AudioopError
, "Size should be 1, 2 or 4");
906 rv
= PyString_FromStringAndSize(NULL
, len1
);
909 ncp
= (signed char *)PyString_AsString(rv
);
911 for ( i
=0; i
< len1
; i
+= size
) {
912 if ( size
== 1 ) val1
= (int)*CHARP(cp1
, i
);
913 else if ( size
== 2 ) val1
= (int)*SHORTP(cp1
, i
);
914 else if ( size
== 4 ) val1
= (int)*LONGP(cp1
, i
);
916 if ( size
== 1 ) val2
= (int)*CHARP(cp2
, i
);
917 else if ( size
== 2 ) val2
= (int)*SHORTP(cp2
, i
);
918 else if ( size
== 4 ) val2
= (int)*LONGP(cp2
, i
);
920 newval
= val1
+ val2
;
921 /* truncate in case of overflow */
922 if (newval
> maxval
) newval
= maxval
;
923 else if (newval
< -maxval
) newval
= -maxval
;
924 else if (size
== 4 && (newval
^val1
) < 0 && (newval
^val2
) < 0)
925 newval
= val1
> 0 ? maxval
: - maxval
;
927 if ( size
== 1 ) *CHARP(ncp
, i
) = (signed char)newval
;
928 else if ( size
== 2 ) *SHORTP(ncp
, i
) = (short)newval
;
929 else if ( size
== 4 ) *LONGP(ncp
, i
) = (Py_Int32
)newval
;
935 audioop_bias(PyObject
*self
, PyObject
*args
)
937 signed char *cp
, *ncp
;
938 int len
, size
, val
= 0;
943 if ( !PyArg_ParseTuple(args
, "s#ii:bias",
944 &cp
, &len
, &size
, &bias
) )
947 if ( size
!= 1 && size
!= 2 && size
!= 4) {
948 PyErr_SetString(AudioopError
, "Size should be 1, 2 or 4");
952 rv
= PyString_FromStringAndSize(NULL
, len
);
955 ncp
= (signed char *)PyString_AsString(rv
);
958 for ( i
=0; i
< len
; i
+= size
) {
959 if ( size
== 1 ) val
= (int)*CHARP(cp
, i
);
960 else if ( size
== 2 ) val
= (int)*SHORTP(cp
, i
);
961 else if ( size
== 4 ) val
= (int)*LONGP(cp
, i
);
963 if ( size
== 1 ) *CHARP(ncp
, i
) = (signed char)(val
+bias
);
964 else if ( size
== 2 ) *SHORTP(ncp
, i
) = (short)(val
+bias
);
965 else if ( size
== 4 ) *LONGP(ncp
, i
) = (Py_Int32
)(val
+bias
);
971 audioop_reverse(PyObject
*self
, PyObject
*args
)
975 int len
, size
, val
= 0;
979 if ( !PyArg_ParseTuple(args
, "s#i:reverse",
983 if ( size
!= 1 && size
!= 2 && size
!= 4 ) {
984 PyErr_SetString(AudioopError
, "Size should be 1, 2 or 4");
988 rv
= PyString_FromStringAndSize(NULL
, len
);
991 ncp
= (unsigned char *)PyString_AsString(rv
);
993 for ( i
=0; i
< len
; i
+= size
) {
994 if ( size
== 1 ) val
= ((int)*CHARP(cp
, i
)) << 8;
995 else if ( size
== 2 ) val
= (int)*SHORTP(cp
, i
);
996 else if ( size
== 4 ) val
= ((int)*LONGP(cp
, i
)) >> 16;
1000 if ( size
== 1 ) *CHARP(ncp
, j
) = (signed char)(val
>> 8);
1001 else if ( size
== 2 ) *SHORTP(ncp
, j
) = (short)(val
);
1002 else if ( size
== 4 ) *LONGP(ncp
, j
) = (Py_Int32
)(val
<<16);
1008 audioop_lin2lin(PyObject
*self
, PyObject
*args
)
1012 int len
, size
, size2
, val
= 0;
1016 if ( !PyArg_ParseTuple(args
, "s#ii:lin2lin",
1017 &cp
, &len
, &size
, &size2
) )
1020 if ( (size
!= 1 && size
!= 2 && size
!= 4) ||
1021 (size2
!= 1 && size2
!= 2 && size2
!= 4)) {
1022 PyErr_SetString(AudioopError
, "Size should be 1, 2 or 4");
1026 rv
= PyString_FromStringAndSize(NULL
, (len
/size
)*size2
);
1029 ncp
= (unsigned char *)PyString_AsString(rv
);
1031 for ( i
=0, j
=0; i
< len
; i
+= size
, j
+= size2
) {
1032 if ( size
== 1 ) val
= ((int)*CHARP(cp
, i
)) << 8;
1033 else if ( size
== 2 ) val
= (int)*SHORTP(cp
, i
);
1034 else if ( size
== 4 ) val
= ((int)*LONGP(cp
, i
)) >> 16;
1036 if ( size2
== 1 ) *CHARP(ncp
, j
) = (signed char)(val
>> 8);
1037 else if ( size2
== 2 ) *SHORTP(ncp
, j
) = (short)(val
);
1038 else if ( size2
== 4 ) *LONGP(ncp
, j
) = (Py_Int32
)(val
<<16);
1055 audioop_ratecv(PyObject
*self
, PyObject
*args
)
1058 int len
, size
, nchannels
, inrate
, outrate
, weightA
, weightB
;
1059 int chan
, d
, *prev_i
, *cur_i
, cur_o
;
1060 PyObject
*state
, *samps
, *str
, *rv
= NULL
;
1061 int bytes_per_frame
;
1065 if (!PyArg_ParseTuple(args
, "s#iiiiO|ii:ratecv", &cp
, &len
, &size
,
1066 &nchannels
, &inrate
, &outrate
, &state
,
1067 &weightA
, &weightB
))
1069 if (size
!= 1 && size
!= 2 && size
!= 4) {
1070 PyErr_SetString(AudioopError
, "Size should be 1, 2 or 4");
1073 if (nchannels
< 1) {
1074 PyErr_SetString(AudioopError
, "# of channels should be >= 1");
1077 bytes_per_frame
= size
* nchannels
;
1078 if (bytes_per_frame
/ nchannels
!= size
) {
1079 /* This overflow test is rigorously correct because
1080 both multiplicands are >= 1. Use the argument names
1081 from the docs for the error msg. */
1082 PyErr_SetString(PyExc_OverflowError
,
1083 "width * nchannels too big for a C int");
1086 if (weightA
< 1 || weightB
< 0) {
1087 PyErr_SetString(AudioopError
,
1088 "weightA should be >= 1, weightB should be >= 0");
1091 if (len
% bytes_per_frame
!= 0) {
1092 PyErr_SetString(AudioopError
, "not a whole number of frames");
1095 if (inrate
<= 0 || outrate
<= 0) {
1096 PyErr_SetString(AudioopError
, "sampling rate not > 0");
1099 /* divide inrate and outrate by their greatest common divisor */
1100 d
= gcd(inrate
, outrate
);
1104 prev_i
= (int *) malloc(nchannels
* sizeof(int));
1105 cur_i
= (int *) malloc(nchannels
* sizeof(int));
1106 if (prev_i
== NULL
|| cur_i
== NULL
) {
1107 (void) PyErr_NoMemory();
1111 len
/= bytes_per_frame
; /* # of frames */
1113 if (state
== Py_None
) {
1115 for (chan
= 0; chan
< nchannels
; chan
++)
1116 prev_i
[chan
] = cur_i
[chan
] = 0;
1119 if (!PyArg_ParseTuple(state
,
1120 "iO!;audioop.ratecv: illegal state argument",
1121 &d
, &PyTuple_Type
, &samps
))
1123 if (PyTuple_Size(samps
) != nchannels
) {
1124 PyErr_SetString(AudioopError
,
1125 "illegal state argument");
1128 for (chan
= 0; chan
< nchannels
; chan
++) {
1129 if (!PyArg_ParseTuple(PyTuple_GetItem(samps
, chan
),
1130 "ii:ratecv", &prev_i
[chan
],
1136 /* str <- Space for the output buffer. */
1138 /* There are len input frames, so we need (mathematically)
1139 ceiling(len*outrate/inrate) output frames, and each frame
1140 requires bytes_per_frame bytes. Computing this
1141 without spurious overflow is the challenge; we can
1142 settle for a reasonable upper bound, though. */
1143 int ceiling
; /* the number of output frames */
1144 int nbytes
; /* the number of output bytes needed */
1145 int q
= len
/ inrate
;
1146 /* Now len = q * inrate + r exactly (with r = len % inrate),
1147 and this is less than q * inrate + inrate = (q+1)*inrate.
1148 So a reasonable upper bound on len*outrate/inrate is
1149 ((q+1)*inrate)*outrate/inrate =
1152 ceiling
= (q
+1) * outrate
;
1153 nbytes
= ceiling
* bytes_per_frame
;
1154 /* See whether anything overflowed; if not, get the space. */
1156 ceiling
/ outrate
!= q
+1 ||
1157 nbytes
/ bytes_per_frame
!= ceiling
)
1160 str
= PyString_FromStringAndSize(NULL
, nbytes
);
1163 PyErr_SetString(PyExc_MemoryError
,
1164 "not enough memory for output buffer");
1168 ncp
= PyString_AsString(str
);
1173 samps
= PyTuple_New(nchannels
);
1176 for (chan
= 0; chan
< nchannels
; chan
++)
1177 PyTuple_SetItem(samps
, chan
,
1178 Py_BuildValue("(ii)",
1181 if (PyErr_Occurred())
1183 /* We have checked before that the length
1184 * of the string fits into int. */
1185 len
= (int)(ncp
- PyString_AsString(str
));
1187 /*don't want to resize to zero length*/
1188 rv
= PyString_FromStringAndSize("", 0);
1191 } else if (_PyString_Resize(&str
, len
) < 0)
1193 rv
= Py_BuildValue("(O(iO))", str
, d
, samps
);
1196 goto exit
; /* return rv */
1198 for (chan
= 0; chan
< nchannels
; chan
++) {
1199 prev_i
[chan
] = cur_i
[chan
];
1201 cur_i
[chan
] = ((int)*CHARP(cp
, 0)) << 8;
1203 cur_i
[chan
] = (int)*SHORTP(cp
, 0);
1205 cur_i
[chan
] = ((int)*LONGP(cp
, 0)) >> 16;
1207 /* implements a simple digital filter */
1209 (weightA
* cur_i
[chan
] +
1210 weightB
* prev_i
[chan
]) /
1211 (weightA
+ weightB
);
1217 for (chan
= 0; chan
< nchannels
; chan
++) {
1218 cur_o
= (prev_i
[chan
] * d
+
1219 cur_i
[chan
] * (outrate
- d
)) /
1222 *CHARP(ncp
, 0) = (signed char)(cur_o
>> 8);
1224 *SHORTP(ncp
, 0) = (short)(cur_o
);
1226 *LONGP(ncp
, 0) = (Py_Int32
)(cur_o
<<16);
1241 audioop_lin2ulaw(PyObject
*self
, PyObject
*args
)
1245 int len
, size
, val
= 0;
1249 if ( !PyArg_ParseTuple(args
, "s#i:lin2ulaw",
1253 if ( size
!= 1 && size
!= 2 && size
!= 4) {
1254 PyErr_SetString(AudioopError
, "Size should be 1, 2 or 4");
1258 rv
= PyString_FromStringAndSize(NULL
, len
/size
);
1261 ncp
= (unsigned char *)PyString_AsString(rv
);
1263 for ( i
=0; i
< len
; i
+= size
) {
1264 if ( size
== 1 ) val
= ((int)*CHARP(cp
, i
)) << 8;
1265 else if ( size
== 2 ) val
= (int)*SHORTP(cp
, i
);
1266 else if ( size
== 4 ) val
= ((int)*LONGP(cp
, i
)) >> 16;
1268 *ncp
++ = st_14linear2ulaw(val
);
1274 audioop_ulaw2lin(PyObject
*self
, PyObject
*args
)
1283 if ( !PyArg_ParseTuple(args
, "s#i:ulaw2lin",
1287 if ( size
!= 1 && size
!= 2 && size
!= 4) {
1288 PyErr_SetString(AudioopError
, "Size should be 1, 2 or 4");
1292 rv
= PyString_FromStringAndSize(NULL
, len
*size
);
1295 ncp
= (signed char *)PyString_AsString(rv
);
1297 for ( i
=0; i
< len
*size
; i
+= size
) {
1299 val
= st_ulaw2linear16(cval
);
1301 if ( size
== 1 ) *CHARP(ncp
, i
) = (signed char)(val
>> 8);
1302 else if ( size
== 2 ) *SHORTP(ncp
, i
) = (short)(val
);
1303 else if ( size
== 4 ) *LONGP(ncp
, i
) = (Py_Int32
)(val
<<16);
1309 audioop_lin2alaw(PyObject
*self
, PyObject
*args
)
1313 int len
, size
, val
= 0;
1317 if ( !PyArg_ParseTuple(args
, "s#i:lin2alaw",
1321 if ( size
!= 1 && size
!= 2 && size
!= 4) {
1322 PyErr_SetString(AudioopError
, "Size should be 1, 2 or 4");
1326 rv
= PyString_FromStringAndSize(NULL
, len
/size
);
1329 ncp
= (unsigned char *)PyString_AsString(rv
);
1331 for ( i
=0; i
< len
; i
+= size
) {
1332 if ( size
== 1 ) val
= ((int)*CHARP(cp
, i
)) << 8;
1333 else if ( size
== 2 ) val
= (int)*SHORTP(cp
, i
);
1334 else if ( size
== 4 ) val
= ((int)*LONGP(cp
, i
)) >> 16;
1336 *ncp
++ = st_linear2alaw(val
);
1342 audioop_alaw2lin(PyObject
*self
, PyObject
*args
)
1351 if ( !PyArg_ParseTuple(args
, "s#i:alaw2lin",
1355 if ( size
!= 1 && size
!= 2 && size
!= 4) {
1356 PyErr_SetString(AudioopError
, "Size should be 1, 2 or 4");
1360 rv
= PyString_FromStringAndSize(NULL
, len
*size
);
1363 ncp
= (signed char *)PyString_AsString(rv
);
1365 for ( i
=0; i
< len
*size
; i
+= size
) {
1367 val
= st_alaw2linear16(cval
);
1369 if ( size
== 1 ) *CHARP(ncp
, i
) = (signed char)(val
>> 8);
1370 else if ( size
== 2 ) *SHORTP(ncp
, i
) = (short)(val
);
1371 else if ( size
== 4 ) *LONGP(ncp
, i
) = (Py_Int32
)(val
<<16);
1377 audioop_lin2adpcm(PyObject
*self
, PyObject
*args
)
1381 int len
, size
, val
= 0, step
, valpred
, delta
,
1382 index
, sign
, vpdiff
, diff
;
1383 PyObject
*rv
, *state
, *str
;
1384 int i
, outputbuffer
= 0, bufferstep
;
1386 if ( !PyArg_ParseTuple(args
, "s#iO:lin2adpcm",
1387 &cp
, &len
, &size
, &state
) )
1391 if ( size
!= 1 && size
!= 2 && size
!= 4) {
1392 PyErr_SetString(AudioopError
, "Size should be 1, 2 or 4");
1396 str
= PyString_FromStringAndSize(NULL
, len
/(size
*2));
1399 ncp
= (signed char *)PyString_AsString(str
);
1401 /* Decode state, should have (value, step) */
1402 if ( state
== Py_None
) {
1403 /* First time, it seems. Set defaults */
1407 } else if ( !PyArg_ParseTuple(state
, "ii", &valpred
, &index
) )
1410 step
= stepsizeTable
[index
];
1413 for ( i
=0; i
< len
; i
+= size
) {
1414 if ( size
== 1 ) val
= ((int)*CHARP(cp
, i
)) << 8;
1415 else if ( size
== 2 ) val
= (int)*SHORTP(cp
, i
);
1416 else if ( size
== 4 ) val
= ((int)*LONGP(cp
, i
)) >> 16;
1418 /* Step 1 - compute difference with previous value */
1419 diff
= val
- valpred
;
1420 sign
= (diff
< 0) ? 8 : 0;
1421 if ( sign
) diff
= (-diff
);
1423 /* Step 2 - Divide and clamp */
1425 ** This code *approximately* computes:
1426 ** delta = diff*4/step;
1427 ** vpdiff = (delta+0.5)*step/4;
1428 ** but in shift step bits are dropped. The net result of this
1429 ** is that even if you have fast mul/div hardware you cannot
1430 ** put it to good use since the fixup would be too expensive.
1433 vpdiff
= (step
>> 3);
1435 if ( diff
>= step
) {
1441 if ( diff
>= step
) {
1447 if ( diff
>= step
) {
1452 /* Step 3 - Update previous value */
1458 /* Step 4 - Clamp previous value to 16 bits */
1459 if ( valpred
> 32767 )
1461 else if ( valpred
< -32768 )
1464 /* Step 5 - Assemble value, update index and step values */
1467 index
+= indexTable
[delta
];
1468 if ( index
< 0 ) index
= 0;
1469 if ( index
> 88 ) index
= 88;
1470 step
= stepsizeTable
[index
];
1472 /* Step 6 - Output value */
1474 outputbuffer
= (delta
<< 4) & 0xf0;
1476 *ncp
++ = (delta
& 0x0f) | outputbuffer
;
1478 bufferstep
= !bufferstep
;
1480 rv
= Py_BuildValue("(O(ii))", str
, valpred
, index
);
1486 audioop_adpcm2lin(PyObject
*self
, PyObject
*args
)
1490 int len
, size
, valpred
, step
, delta
, index
, sign
, vpdiff
;
1491 PyObject
*rv
, *str
, *state
;
1492 int i
, inputbuffer
= 0, bufferstep
;
1494 if ( !PyArg_ParseTuple(args
, "s#iO:adpcm2lin",
1495 &cp
, &len
, &size
, &state
) )
1498 if ( size
!= 1 && size
!= 2 && size
!= 4) {
1499 PyErr_SetString(AudioopError
, "Size should be 1, 2 or 4");
1503 /* Decode state, should have (value, step) */
1504 if ( state
== Py_None
) {
1505 /* First time, it seems. Set defaults */
1509 } else if ( !PyArg_ParseTuple(state
, "ii", &valpred
, &index
) )
1512 str
= PyString_FromStringAndSize(NULL
, len
*size
*2);
1515 ncp
= (signed char *)PyString_AsString(str
);
1517 step
= stepsizeTable
[index
];
1520 for ( i
=0; i
< len
*size
*2; i
+= size
) {
1521 /* Step 1 - get the delta value and compute next index */
1523 delta
= inputbuffer
& 0xf;
1525 inputbuffer
= *cp
++;
1526 delta
= (inputbuffer
>> 4) & 0xf;
1529 bufferstep
= !bufferstep
;
1531 /* Step 2 - Find new index value (for later) */
1532 index
+= indexTable
[delta
];
1533 if ( index
< 0 ) index
= 0;
1534 if ( index
> 88 ) index
= 88;
1536 /* Step 3 - Separate sign and magnitude */
1540 /* Step 4 - Compute difference and new predicted value */
1542 ** Computes 'vpdiff = (delta+0.5)*step/4', but see comment
1546 if ( delta
& 4 ) vpdiff
+= step
;
1547 if ( delta
& 2 ) vpdiff
+= step
>>1;
1548 if ( delta
& 1 ) vpdiff
+= step
>>2;
1555 /* Step 5 - clamp output value */
1556 if ( valpred
> 32767 )
1558 else if ( valpred
< -32768 )
1561 /* Step 6 - Update step value */
1562 step
= stepsizeTable
[index
];
1564 /* Step 6 - Output value */
1565 if ( size
== 1 ) *CHARP(ncp
, i
) = (signed char)(valpred
>> 8);
1566 else if ( size
== 2 ) *SHORTP(ncp
, i
) = (short)(valpred
);
1567 else if ( size
== 4 ) *LONGP(ncp
, i
) = (Py_Int32
)(valpred
<<16);
1570 rv
= Py_BuildValue("(O(ii))", str
, valpred
, index
);
1575 static PyMethodDef audioop_methods
[] = {
1576 { "max", audioop_max
, METH_VARARGS
},
1577 { "minmax", audioop_minmax
, METH_VARARGS
},
1578 { "avg", audioop_avg
, METH_VARARGS
},
1579 { "maxpp", audioop_maxpp
, METH_VARARGS
},
1580 { "avgpp", audioop_avgpp
, METH_VARARGS
},
1581 { "rms", audioop_rms
, METH_VARARGS
},
1582 { "findfit", audioop_findfit
, METH_VARARGS
},
1583 { "findmax", audioop_findmax
, METH_VARARGS
},
1584 { "findfactor", audioop_findfactor
, METH_VARARGS
},
1585 { "cross", audioop_cross
, METH_VARARGS
},
1586 { "mul", audioop_mul
, METH_VARARGS
},
1587 { "add", audioop_add
, METH_VARARGS
},
1588 { "bias", audioop_bias
, METH_VARARGS
},
1589 { "ulaw2lin", audioop_ulaw2lin
, METH_VARARGS
},
1590 { "lin2ulaw", audioop_lin2ulaw
, METH_VARARGS
},
1591 { "alaw2lin", audioop_alaw2lin
, METH_VARARGS
},
1592 { "lin2alaw", audioop_lin2alaw
, METH_VARARGS
},
1593 { "lin2lin", audioop_lin2lin
, METH_VARARGS
},
1594 { "adpcm2lin", audioop_adpcm2lin
, METH_VARARGS
},
1595 { "lin2adpcm", audioop_lin2adpcm
, METH_VARARGS
},
1596 { "tomono", audioop_tomono
, METH_VARARGS
},
1597 { "tostereo", audioop_tostereo
, METH_VARARGS
},
1598 { "getsample", audioop_getsample
, METH_VARARGS
},
1599 { "reverse", audioop_reverse
, METH_VARARGS
},
1600 { "ratecv", audioop_ratecv
, METH_VARARGS
},
1608 m
= Py_InitModule("audioop", audioop_methods
);
1611 d
= PyModule_GetDict(m
);
1614 AudioopError
= PyErr_NewException("audioop.error", NULL
, NULL
);
1615 if (AudioopError
!= NULL
)
1616 PyDict_SetItemString(d
,"error",AudioopError
);