Remove temporary define from r75653
[python.git] / Python / ceval.c
blobea4bd053c6bdaaefe5a0fde972788d8a72d61aae
2 /* Execute compiled code */
4 /* XXX TO DO:
5 XXX speed up searching for keywords by using a dictionary
6 XXX document it!
7 */
9 /* enable more aggressive intra-module optimizations, where available */
10 #define PY_LOCAL_AGGRESSIVE
12 #include "Python.h"
14 #include "code.h"
15 #include "frameobject.h"
16 #include "eval.h"
17 #include "opcode.h"
18 #include "structmember.h"
20 #include <ctype.h>
22 #ifndef WITH_TSC
24 #define READ_TIMESTAMP(var)
26 #else
28 typedef unsigned long long uint64;
30 #if defined(__ppc__) /* <- Don't know if this is the correct symbol; this
31 section should work for GCC on any PowerPC
32 platform, irrespective of OS.
33 POWER? Who knows :-) */
35 #define READ_TIMESTAMP(var) ppc_getcounter(&var)
37 static void
38 ppc_getcounter(uint64 *v)
40 register unsigned long tbu, tb, tbu2;
42 loop:
43 asm volatile ("mftbu %0" : "=r" (tbu) );
44 asm volatile ("mftb %0" : "=r" (tb) );
45 asm volatile ("mftbu %0" : "=r" (tbu2));
46 if (__builtin_expect(tbu != tbu2, 0)) goto loop;
48 /* The slightly peculiar way of writing the next lines is
49 compiled better by GCC than any other way I tried. */
50 ((long*)(v))[0] = tbu;
51 ((long*)(v))[1] = tb;
54 #else /* this is for linux/x86 (and probably any other GCC/x86 combo) */
56 #define READ_TIMESTAMP(val) \
57 __asm__ __volatile__("rdtsc" : "=A" (val))
59 #endif
61 void dump_tsc(int opcode, int ticked, uint64 inst0, uint64 inst1,
62 uint64 loop0, uint64 loop1, uint64 intr0, uint64 intr1)
64 uint64 intr, inst, loop;
65 PyThreadState *tstate = PyThreadState_Get();
66 if (!tstate->interp->tscdump)
67 return;
68 intr = intr1 - intr0;
69 inst = inst1 - inst0 - intr;
70 loop = loop1 - loop0 - intr;
71 fprintf(stderr, "opcode=%03d t=%d inst=%06lld loop=%06lld\n",
72 opcode, ticked, inst, loop);
75 #endif
77 /* Turn this on if your compiler chokes on the big switch: */
78 /* #define CASE_TOO_BIG 1 */
80 #ifdef Py_DEBUG
81 /* For debugging the interpreter: */
82 #define LLTRACE 1 /* Low-level trace feature */
83 #define CHECKEXC 1 /* Double-check exception checking */
84 #endif
86 typedef PyObject *(*callproc)(PyObject *, PyObject *, PyObject *);
88 /* Forward declarations */
89 #ifdef WITH_TSC
90 static PyObject * call_function(PyObject ***, int, uint64*, uint64*);
91 #else
92 static PyObject * call_function(PyObject ***, int);
93 #endif
94 static PyObject * fast_function(PyObject *, PyObject ***, int, int, int);
95 static PyObject * do_call(PyObject *, PyObject ***, int, int);
96 static PyObject * ext_do_call(PyObject *, PyObject ***, int, int, int);
97 static PyObject * update_keyword_args(PyObject *, int, PyObject ***,
98 PyObject *);
99 static PyObject * update_star_args(int, int, PyObject *, PyObject ***);
100 static PyObject * load_args(PyObject ***, int);
101 #define CALL_FLAG_VAR 1
102 #define CALL_FLAG_KW 2
104 #ifdef LLTRACE
105 static int lltrace;
106 static int prtrace(PyObject *, char *);
107 #endif
108 static int call_trace(Py_tracefunc, PyObject *, PyFrameObject *,
109 int, PyObject *);
110 static int call_trace_protected(Py_tracefunc, PyObject *,
111 PyFrameObject *, int, PyObject *);
112 static void call_exc_trace(Py_tracefunc, PyObject *, PyFrameObject *);
113 static int maybe_call_line_trace(Py_tracefunc, PyObject *,
114 PyFrameObject *, int *, int *, int *);
116 static PyObject * apply_slice(PyObject *, PyObject *, PyObject *);
117 static int assign_slice(PyObject *, PyObject *,
118 PyObject *, PyObject *);
119 static PyObject * cmp_outcome(int, PyObject *, PyObject *);
120 static PyObject * import_from(PyObject *, PyObject *);
121 static int import_all_from(PyObject *, PyObject *);
122 static PyObject * build_class(PyObject *, PyObject *, PyObject *);
123 static int exec_statement(PyFrameObject *,
124 PyObject *, PyObject *, PyObject *);
125 static void set_exc_info(PyThreadState *, PyObject *, PyObject *, PyObject *);
126 static void reset_exc_info(PyThreadState *);
127 static void format_exc_check_arg(PyObject *, char *, PyObject *);
128 static PyObject * string_concatenate(PyObject *, PyObject *,
129 PyFrameObject *, unsigned char *);
130 static PyObject * kwd_as_string(PyObject *);
131 static PyObject * special_lookup(PyObject *, char *, PyObject **);
133 #define NAME_ERROR_MSG \
134 "name '%.200s' is not defined"
135 #define GLOBAL_NAME_ERROR_MSG \
136 "global name '%.200s' is not defined"
137 #define UNBOUNDLOCAL_ERROR_MSG \
138 "local variable '%.200s' referenced before assignment"
139 #define UNBOUNDFREE_ERROR_MSG \
140 "free variable '%.200s' referenced before assignment" \
141 " in enclosing scope"
143 /* Dynamic execution profile */
144 #ifdef DYNAMIC_EXECUTION_PROFILE
145 #ifdef DXPAIRS
146 static long dxpairs[257][256];
147 #define dxp dxpairs[256]
148 #else
149 static long dxp[256];
150 #endif
151 #endif
153 /* Function call profile */
154 #ifdef CALL_PROFILE
155 #define PCALL_NUM 11
156 static int pcall[PCALL_NUM];
158 #define PCALL_ALL 0
159 #define PCALL_FUNCTION 1
160 #define PCALL_FAST_FUNCTION 2
161 #define PCALL_FASTER_FUNCTION 3
162 #define PCALL_METHOD 4
163 #define PCALL_BOUND_METHOD 5
164 #define PCALL_CFUNCTION 6
165 #define PCALL_TYPE 7
166 #define PCALL_GENERATOR 8
167 #define PCALL_OTHER 9
168 #define PCALL_POP 10
170 /* Notes about the statistics
172 PCALL_FAST stats
174 FAST_FUNCTION means no argument tuple needs to be created.
175 FASTER_FUNCTION means that the fast-path frame setup code is used.
177 If there is a method call where the call can be optimized by changing
178 the argument tuple and calling the function directly, it gets recorded
179 twice.
181 As a result, the relationship among the statistics appears to be
182 PCALL_ALL == PCALL_FUNCTION + PCALL_METHOD - PCALL_BOUND_METHOD +
183 PCALL_CFUNCTION + PCALL_TYPE + PCALL_GENERATOR + PCALL_OTHER
184 PCALL_FUNCTION > PCALL_FAST_FUNCTION > PCALL_FASTER_FUNCTION
185 PCALL_METHOD > PCALL_BOUND_METHOD
188 #define PCALL(POS) pcall[POS]++
190 PyObject *
191 PyEval_GetCallStats(PyObject *self)
193 return Py_BuildValue("iiiiiiiiiii",
194 pcall[0], pcall[1], pcall[2], pcall[3],
195 pcall[4], pcall[5], pcall[6], pcall[7],
196 pcall[8], pcall[9], pcall[10]);
198 #else
199 #define PCALL(O)
201 PyObject *
202 PyEval_GetCallStats(PyObject *self)
204 Py_INCREF(Py_None);
205 return Py_None;
207 #endif
210 #ifdef WITH_THREAD
212 #ifdef HAVE_ERRNO_H
213 #include <errno.h>
214 #endif
215 #include "pythread.h"
217 static PyThread_type_lock interpreter_lock = 0; /* This is the GIL */
218 static PyThread_type_lock pending_lock = 0; /* for pending calls */
219 static long main_thread = 0;
222 PyEval_ThreadsInitialized(void)
224 return interpreter_lock != 0;
227 void
228 PyEval_InitThreads(void)
230 if (interpreter_lock)
231 return;
232 interpreter_lock = PyThread_allocate_lock();
233 PyThread_acquire_lock(interpreter_lock, 1);
234 main_thread = PyThread_get_thread_ident();
237 void
238 PyEval_AcquireLock(void)
240 PyThread_acquire_lock(interpreter_lock, 1);
243 void
244 PyEval_ReleaseLock(void)
246 PyThread_release_lock(interpreter_lock);
249 void
250 PyEval_AcquireThread(PyThreadState *tstate)
252 if (tstate == NULL)
253 Py_FatalError("PyEval_AcquireThread: NULL new thread state");
254 /* Check someone has called PyEval_InitThreads() to create the lock */
255 assert(interpreter_lock);
256 PyThread_acquire_lock(interpreter_lock, 1);
257 if (PyThreadState_Swap(tstate) != NULL)
258 Py_FatalError(
259 "PyEval_AcquireThread: non-NULL old thread state");
262 void
263 PyEval_ReleaseThread(PyThreadState *tstate)
265 if (tstate == NULL)
266 Py_FatalError("PyEval_ReleaseThread: NULL thread state");
267 if (PyThreadState_Swap(NULL) != tstate)
268 Py_FatalError("PyEval_ReleaseThread: wrong thread state");
269 PyThread_release_lock(interpreter_lock);
272 /* This function is called from PyOS_AfterFork to ensure that newly
273 created child processes don't hold locks referring to threads which
274 are not running in the child process. (This could also be done using
275 pthread_atfork mechanism, at least for the pthreads implementation.) */
277 void
278 PyEval_ReInitThreads(void)
280 PyObject *threading, *result;
281 PyThreadState *tstate;
283 if (!interpreter_lock)
284 return;
285 /*XXX Can't use PyThread_free_lock here because it does too
286 much error-checking. Doing this cleanly would require
287 adding a new function to each thread_*.h. Instead, just
288 create a new lock and waste a little bit of memory */
289 interpreter_lock = PyThread_allocate_lock();
290 pending_lock = PyThread_allocate_lock();
291 PyThread_acquire_lock(interpreter_lock, 1);
292 main_thread = PyThread_get_thread_ident();
294 /* Update the threading module with the new state.
296 tstate = PyThreadState_GET();
297 threading = PyMapping_GetItemString(tstate->interp->modules,
298 "threading");
299 if (threading == NULL) {
300 /* threading not imported */
301 PyErr_Clear();
302 return;
304 result = PyObject_CallMethod(threading, "_after_fork", NULL);
305 if (result == NULL)
306 PyErr_WriteUnraisable(threading);
307 else
308 Py_DECREF(result);
309 Py_DECREF(threading);
311 #endif
313 /* Functions save_thread and restore_thread are always defined so
314 dynamically loaded modules needn't be compiled separately for use
315 with and without threads: */
317 PyThreadState *
318 PyEval_SaveThread(void)
320 PyThreadState *tstate = PyThreadState_Swap(NULL);
321 if (tstate == NULL)
322 Py_FatalError("PyEval_SaveThread: NULL tstate");
323 #ifdef WITH_THREAD
324 if (interpreter_lock)
325 PyThread_release_lock(interpreter_lock);
326 #endif
327 return tstate;
330 void
331 PyEval_RestoreThread(PyThreadState *tstate)
333 if (tstate == NULL)
334 Py_FatalError("PyEval_RestoreThread: NULL tstate");
335 #ifdef WITH_THREAD
336 if (interpreter_lock) {
337 int err = errno;
338 PyThread_acquire_lock(interpreter_lock, 1);
339 errno = err;
341 #endif
342 PyThreadState_Swap(tstate);
346 /* Mechanism whereby asynchronously executing callbacks (e.g. UNIX
347 signal handlers or Mac I/O completion routines) can schedule calls
348 to a function to be called synchronously.
349 The synchronous function is called with one void* argument.
350 It should return 0 for success or -1 for failure -- failure should
351 be accompanied by an exception.
353 If registry succeeds, the registry function returns 0; if it fails
354 (e.g. due to too many pending calls) it returns -1 (without setting
355 an exception condition).
357 Note that because registry may occur from within signal handlers,
358 or other asynchronous events, calling malloc() is unsafe!
360 #ifdef WITH_THREAD
361 Any thread can schedule pending calls, but only the main thread
362 will execute them.
363 There is no facility to schedule calls to a particular thread, but
364 that should be easy to change, should that ever be required. In
365 that case, the static variables here should go into the python
366 threadstate.
367 #endif
370 #ifdef WITH_THREAD
372 /* The WITH_THREAD implementation is thread-safe. It allows
373 scheduling to be made from any thread, and even from an executing
374 callback.
377 #define NPENDINGCALLS 32
378 static struct {
379 int (*func)(void *);
380 void *arg;
381 } pendingcalls[NPENDINGCALLS];
382 static int pendingfirst = 0;
383 static int pendinglast = 0;
384 static volatile int pendingcalls_to_do = 1; /* trigger initialization of lock */
385 static char pendingbusy = 0;
388 Py_AddPendingCall(int (*func)(void *), void *arg)
390 int i, j, result=0;
391 PyThread_type_lock lock = pending_lock;
393 /* try a few times for the lock. Since this mechanism is used
394 * for signal handling (on the main thread), there is a (slim)
395 * chance that a signal is delivered on the same thread while we
396 * hold the lock during the Py_MakePendingCalls() function.
397 * This avoids a deadlock in that case.
398 * Note that signals can be delivered on any thread. In particular,
399 * on Windows, a SIGINT is delivered on a system-created worker
400 * thread.
401 * We also check for lock being NULL, in the unlikely case that
402 * this function is called before any bytecode evaluation takes place.
404 if (lock != NULL) {
405 for (i = 0; i<100; i++) {
406 if (PyThread_acquire_lock(lock, NOWAIT_LOCK))
407 break;
409 if (i == 100)
410 return -1;
413 i = pendinglast;
414 j = (i + 1) % NPENDINGCALLS;
415 if (j == pendingfirst) {
416 result = -1; /* Queue full */
417 } else {
418 pendingcalls[i].func = func;
419 pendingcalls[i].arg = arg;
420 pendinglast = j;
422 /* signal main loop */
423 _Py_Ticker = 0;
424 pendingcalls_to_do = 1;
425 if (lock != NULL)
426 PyThread_release_lock(lock);
427 return result;
431 Py_MakePendingCalls(void)
433 int i;
434 int r = 0;
436 if (!pending_lock) {
437 /* initial allocation of the lock */
438 pending_lock = PyThread_allocate_lock();
439 if (pending_lock == NULL)
440 return -1;
443 /* only service pending calls on main thread */
444 if (main_thread && PyThread_get_thread_ident() != main_thread)
445 return 0;
446 /* don't perform recursive pending calls */
447 if (pendingbusy)
448 return 0;
449 pendingbusy = 1;
450 /* perform a bounded number of calls, in case of recursion */
451 for (i=0; i<NPENDINGCALLS; i++) {
452 int j;
453 int (*func)(void *);
454 void *arg = NULL;
456 /* pop one item off the queue while holding the lock */
457 PyThread_acquire_lock(pending_lock, WAIT_LOCK);
458 j = pendingfirst;
459 if (j == pendinglast) {
460 func = NULL; /* Queue empty */
461 } else {
462 func = pendingcalls[j].func;
463 arg = pendingcalls[j].arg;
464 pendingfirst = (j + 1) % NPENDINGCALLS;
466 pendingcalls_to_do = pendingfirst != pendinglast;
467 PyThread_release_lock(pending_lock);
468 /* having released the lock, perform the callback */
469 if (func == NULL)
470 break;
471 r = func(arg);
472 if (r)
473 break;
475 pendingbusy = 0;
476 return r;
479 #else /* if ! defined WITH_THREAD */
482 WARNING! ASYNCHRONOUSLY EXECUTING CODE!
483 This code is used for signal handling in python that isn't built
484 with WITH_THREAD.
485 Don't use this implementation when Py_AddPendingCalls() can happen
486 on a different thread!
488 There are two possible race conditions:
489 (1) nested asynchronous calls to Py_AddPendingCall()
490 (2) AddPendingCall() calls made while pending calls are being processed.
492 (1) is very unlikely because typically signal delivery
493 is blocked during signal handling. So it should be impossible.
494 (2) is a real possibility.
495 The current code is safe against (2), but not against (1).
496 The safety against (2) is derived from the fact that only one
497 thread is present, interrupted by signals, and that the critical
498 section is protected with the "busy" variable. On Windows, which
499 delivers SIGINT on a system thread, this does not hold and therefore
500 Windows really shouldn't use this version.
501 The two threads could theoretically wiggle around the "busy" variable.
504 #define NPENDINGCALLS 32
505 static struct {
506 int (*func)(void *);
507 void *arg;
508 } pendingcalls[NPENDINGCALLS];
509 static volatile int pendingfirst = 0;
510 static volatile int pendinglast = 0;
511 static volatile int pendingcalls_to_do = 0;
514 Py_AddPendingCall(int (*func)(void *), void *arg)
516 static volatile int busy = 0;
517 int i, j;
518 /* XXX Begin critical section */
519 if (busy)
520 return -1;
521 busy = 1;
522 i = pendinglast;
523 j = (i + 1) % NPENDINGCALLS;
524 if (j == pendingfirst) {
525 busy = 0;
526 return -1; /* Queue full */
528 pendingcalls[i].func = func;
529 pendingcalls[i].arg = arg;
530 pendinglast = j;
532 _Py_Ticker = 0;
533 pendingcalls_to_do = 1; /* Signal main loop */
534 busy = 0;
535 /* XXX End critical section */
536 return 0;
540 Py_MakePendingCalls(void)
542 static int busy = 0;
543 if (busy)
544 return 0;
545 busy = 1;
546 pendingcalls_to_do = 0;
547 for (;;) {
548 int i;
549 int (*func)(void *);
550 void *arg;
551 i = pendingfirst;
552 if (i == pendinglast)
553 break; /* Queue empty */
554 func = pendingcalls[i].func;
555 arg = pendingcalls[i].arg;
556 pendingfirst = (i + 1) % NPENDINGCALLS;
557 if (func(arg) < 0) {
558 busy = 0;
559 pendingcalls_to_do = 1; /* We're not done yet */
560 return -1;
563 busy = 0;
564 return 0;
567 #endif /* WITH_THREAD */
570 /* The interpreter's recursion limit */
572 #ifndef Py_DEFAULT_RECURSION_LIMIT
573 #define Py_DEFAULT_RECURSION_LIMIT 1000
574 #endif
575 static int recursion_limit = Py_DEFAULT_RECURSION_LIMIT;
576 int _Py_CheckRecursionLimit = Py_DEFAULT_RECURSION_LIMIT;
579 Py_GetRecursionLimit(void)
581 return recursion_limit;
584 void
585 Py_SetRecursionLimit(int new_limit)
587 recursion_limit = new_limit;
588 _Py_CheckRecursionLimit = recursion_limit;
591 /* the macro Py_EnterRecursiveCall() only calls _Py_CheckRecursiveCall()
592 if the recursion_depth reaches _Py_CheckRecursionLimit.
593 If USE_STACKCHECK, the macro decrements _Py_CheckRecursionLimit
594 to guarantee that _Py_CheckRecursiveCall() is regularly called.
595 Without USE_STACKCHECK, there is no need for this. */
597 _Py_CheckRecursiveCall(char *where)
599 PyThreadState *tstate = PyThreadState_GET();
601 #ifdef USE_STACKCHECK
602 if (PyOS_CheckStack()) {
603 --tstate->recursion_depth;
604 PyErr_SetString(PyExc_MemoryError, "Stack overflow");
605 return -1;
607 #endif
608 if (tstate->recursion_depth > recursion_limit) {
609 --tstate->recursion_depth;
610 PyErr_Format(PyExc_RuntimeError,
611 "maximum recursion depth exceeded%s",
612 where);
613 return -1;
615 _Py_CheckRecursionLimit = recursion_limit;
616 return 0;
619 /* Status code for main loop (reason for stack unwind) */
620 enum why_code {
621 WHY_NOT = 0x0001, /* No error */
622 WHY_EXCEPTION = 0x0002, /* Exception occurred */
623 WHY_RERAISE = 0x0004, /* Exception re-raised by 'finally' */
624 WHY_RETURN = 0x0008, /* 'return' statement */
625 WHY_BREAK = 0x0010, /* 'break' statement */
626 WHY_CONTINUE = 0x0020, /* 'continue' statement */
627 WHY_YIELD = 0x0040 /* 'yield' operator */
630 static enum why_code do_raise(PyObject *, PyObject *, PyObject *);
631 static int unpack_iterable(PyObject *, int, PyObject **);
633 /* Records whether tracing is on for any thread. Counts the number of
634 threads for which tstate->c_tracefunc is non-NULL, so if the value
635 is 0, we know we don't have to check this thread's c_tracefunc.
636 This speeds up the if statement in PyEval_EvalFrameEx() after
637 fast_next_opcode*/
638 static int _Py_TracingPossible = 0;
640 /* for manipulating the thread switch and periodic "stuff" - used to be
641 per thread, now just a pair o' globals */
642 int _Py_CheckInterval = 100;
643 volatile int _Py_Ticker = 0; /* so that we hit a "tick" first thing */
645 PyObject *
646 PyEval_EvalCode(PyCodeObject *co, PyObject *globals, PyObject *locals)
648 return PyEval_EvalCodeEx(co,
649 globals, locals,
650 (PyObject **)NULL, 0,
651 (PyObject **)NULL, 0,
652 (PyObject **)NULL, 0,
653 NULL);
657 /* Interpreter main loop */
659 PyObject *
660 PyEval_EvalFrame(PyFrameObject *f) {
661 /* This is for backward compatibility with extension modules that
662 used this API; core interpreter code should call
663 PyEval_EvalFrameEx() */
664 return PyEval_EvalFrameEx(f, 0);
667 PyObject *
668 PyEval_EvalFrameEx(PyFrameObject *f, int throwflag)
670 #ifdef DXPAIRS
671 int lastopcode = 0;
672 #endif
673 register PyObject **stack_pointer; /* Next free slot in value stack */
674 register unsigned char *next_instr;
675 register int opcode; /* Current opcode */
676 register int oparg; /* Current opcode argument, if any */
677 register enum why_code why; /* Reason for block stack unwind */
678 register int err; /* Error status -- nonzero if error */
679 register PyObject *x; /* Result object -- NULL if error */
680 register PyObject *v; /* Temporary objects popped off stack */
681 register PyObject *w;
682 register PyObject *u;
683 register PyObject *t;
684 register PyObject *stream = NULL; /* for PRINT opcodes */
685 register PyObject **fastlocals, **freevars;
686 PyObject *retval = NULL; /* Return value */
687 PyThreadState *tstate = PyThreadState_GET();
688 PyCodeObject *co;
690 /* when tracing we set things up so that
692 not (instr_lb <= current_bytecode_offset < instr_ub)
694 is true when the line being executed has changed. The
695 initial values are such as to make this false the first
696 time it is tested. */
697 int instr_ub = -1, instr_lb = 0, instr_prev = -1;
699 unsigned char *first_instr;
700 PyObject *names;
701 PyObject *consts;
702 #if defined(Py_DEBUG) || defined(LLTRACE)
703 /* Make it easier to find out where we are with a debugger */
704 char *filename;
705 #endif
707 /* Tuple access macros */
709 #ifndef Py_DEBUG
710 #define GETITEM(v, i) PyTuple_GET_ITEM((PyTupleObject *)(v), (i))
711 #else
712 #define GETITEM(v, i) PyTuple_GetItem((v), (i))
713 #endif
715 #ifdef WITH_TSC
716 /* Use Pentium timestamp counter to mark certain events:
717 inst0 -- beginning of switch statement for opcode dispatch
718 inst1 -- end of switch statement (may be skipped)
719 loop0 -- the top of the mainloop
720 loop1 -- place where control returns again to top of mainloop
721 (may be skipped)
722 intr1 -- beginning of long interruption
723 intr2 -- end of long interruption
725 Many opcodes call out to helper C functions. In some cases, the
726 time in those functions should be counted towards the time for the
727 opcode, but not in all cases. For example, a CALL_FUNCTION opcode
728 calls another Python function; there's no point in charge all the
729 bytecode executed by the called function to the caller.
731 It's hard to make a useful judgement statically. In the presence
732 of operator overloading, it's impossible to tell if a call will
733 execute new Python code or not.
735 It's a case-by-case judgement. I'll use intr1 for the following
736 cases:
738 EXEC_STMT
739 IMPORT_STAR
740 IMPORT_FROM
741 CALL_FUNCTION (and friends)
744 uint64 inst0, inst1, loop0, loop1, intr0 = 0, intr1 = 0;
745 int ticked = 0;
747 READ_TIMESTAMP(inst0);
748 READ_TIMESTAMP(inst1);
749 READ_TIMESTAMP(loop0);
750 READ_TIMESTAMP(loop1);
752 /* shut up the compiler */
753 opcode = 0;
754 #endif
756 /* Code access macros */
758 #define INSTR_OFFSET() ((int)(next_instr - first_instr))
759 #define NEXTOP() (*next_instr++)
760 #define NEXTARG() (next_instr += 2, (next_instr[-1]<<8) + next_instr[-2])
761 #define PEEKARG() ((next_instr[2]<<8) + next_instr[1])
762 #define JUMPTO(x) (next_instr = first_instr + (x))
763 #define JUMPBY(x) (next_instr += (x))
765 /* OpCode prediction macros
766 Some opcodes tend to come in pairs thus making it possible to
767 predict the second code when the first is run. For example,
768 GET_ITER is often followed by FOR_ITER. And FOR_ITER is often
769 followed by STORE_FAST or UNPACK_SEQUENCE.
771 Verifying the prediction costs a single high-speed test of a register
772 variable against a constant. If the pairing was good, then the
773 processor's own internal branch predication has a high likelihood of
774 success, resulting in a nearly zero-overhead transition to the
775 next opcode. A successful prediction saves a trip through the eval-loop
776 including its two unpredictable branches, the HAS_ARG test and the
777 switch-case. Combined with the processor's internal branch prediction,
778 a successful PREDICT has the effect of making the two opcodes run as if
779 they were a single new opcode with the bodies combined.
781 If collecting opcode statistics, your choices are to either keep the
782 predictions turned-on and interpret the results as if some opcodes
783 had been combined or turn-off predictions so that the opcode frequency
784 counter updates for both opcodes.
787 #ifdef DYNAMIC_EXECUTION_PROFILE
788 #define PREDICT(op) if (0) goto PRED_##op
789 #else
790 #define PREDICT(op) if (*next_instr == op) goto PRED_##op
791 #endif
793 #define PREDICTED(op) PRED_##op: next_instr++
794 #define PREDICTED_WITH_ARG(op) PRED_##op: oparg = PEEKARG(); next_instr += 3
796 /* Stack manipulation macros */
798 /* The stack can grow at most MAXINT deep, as co_nlocals and
799 co_stacksize are ints. */
800 #define STACK_LEVEL() ((int)(stack_pointer - f->f_valuestack))
801 #define EMPTY() (STACK_LEVEL() == 0)
802 #define TOP() (stack_pointer[-1])
803 #define SECOND() (stack_pointer[-2])
804 #define THIRD() (stack_pointer[-3])
805 #define FOURTH() (stack_pointer[-4])
806 #define PEEK(n) (stack_pointer[-(n)])
807 #define SET_TOP(v) (stack_pointer[-1] = (v))
808 #define SET_SECOND(v) (stack_pointer[-2] = (v))
809 #define SET_THIRD(v) (stack_pointer[-3] = (v))
810 #define SET_FOURTH(v) (stack_pointer[-4] = (v))
811 #define SET_VALUE(n, v) (stack_pointer[-(n)] = (v))
812 #define BASIC_STACKADJ(n) (stack_pointer += n)
813 #define BASIC_PUSH(v) (*stack_pointer++ = (v))
814 #define BASIC_POP() (*--stack_pointer)
816 #ifdef LLTRACE
817 #define PUSH(v) { (void)(BASIC_PUSH(v), \
818 lltrace && prtrace(TOP(), "push")); \
819 assert(STACK_LEVEL() <= co->co_stacksize); }
820 #define POP() ((void)(lltrace && prtrace(TOP(), "pop")), \
821 BASIC_POP())
822 #define STACKADJ(n) { (void)(BASIC_STACKADJ(n), \
823 lltrace && prtrace(TOP(), "stackadj")); \
824 assert(STACK_LEVEL() <= co->co_stacksize); }
825 #define EXT_POP(STACK_POINTER) ((void)(lltrace && \
826 prtrace((STACK_POINTER)[-1], "ext_pop")), \
827 *--(STACK_POINTER))
828 #else
829 #define PUSH(v) BASIC_PUSH(v)
830 #define POP() BASIC_POP()
831 #define STACKADJ(n) BASIC_STACKADJ(n)
832 #define EXT_POP(STACK_POINTER) (*--(STACK_POINTER))
833 #endif
835 /* Local variable macros */
837 #define GETLOCAL(i) (fastlocals[i])
839 /* The SETLOCAL() macro must not DECREF the local variable in-place and
840 then store the new value; it must copy the old value to a temporary
841 value, then store the new value, and then DECREF the temporary value.
842 This is because it is possible that during the DECREF the frame is
843 accessed by other code (e.g. a __del__ method or gc.collect()) and the
844 variable would be pointing to already-freed memory. */
845 #define SETLOCAL(i, value) do { PyObject *tmp = GETLOCAL(i); \
846 GETLOCAL(i) = value; \
847 Py_XDECREF(tmp); } while (0)
849 /* Start of code */
851 if (f == NULL)
852 return NULL;
854 /* push frame */
855 if (Py_EnterRecursiveCall(""))
856 return NULL;
858 tstate->frame = f;
860 if (tstate->use_tracing) {
861 if (tstate->c_tracefunc != NULL) {
862 /* tstate->c_tracefunc, if defined, is a
863 function that will be called on *every* entry
864 to a code block. Its return value, if not
865 None, is a function that will be called at
866 the start of each executed line of code.
867 (Actually, the function must return itself
868 in order to continue tracing.) The trace
869 functions are called with three arguments:
870 a pointer to the current frame, a string
871 indicating why the function is called, and
872 an argument which depends on the situation.
873 The global trace function is also called
874 whenever an exception is detected. */
875 if (call_trace_protected(tstate->c_tracefunc,
876 tstate->c_traceobj,
877 f, PyTrace_CALL, Py_None)) {
878 /* Trace function raised an error */
879 goto exit_eval_frame;
882 if (tstate->c_profilefunc != NULL) {
883 /* Similar for c_profilefunc, except it needn't
884 return itself and isn't called for "line" events */
885 if (call_trace_protected(tstate->c_profilefunc,
886 tstate->c_profileobj,
887 f, PyTrace_CALL, Py_None)) {
888 /* Profile function raised an error */
889 goto exit_eval_frame;
894 co = f->f_code;
895 names = co->co_names;
896 consts = co->co_consts;
897 fastlocals = f->f_localsplus;
898 freevars = f->f_localsplus + co->co_nlocals;
899 first_instr = (unsigned char*) PyString_AS_STRING(co->co_code);
900 /* An explanation is in order for the next line.
902 f->f_lasti now refers to the index of the last instruction
903 executed. You might think this was obvious from the name, but
904 this wasn't always true before 2.3! PyFrame_New now sets
905 f->f_lasti to -1 (i.e. the index *before* the first instruction)
906 and YIELD_VALUE doesn't fiddle with f_lasti any more. So this
907 does work. Promise.
909 When the PREDICT() macros are enabled, some opcode pairs follow in
910 direct succession without updating f->f_lasti. A successful
911 prediction effectively links the two codes together as if they
912 were a single new opcode; accordingly,f->f_lasti will point to
913 the first code in the pair (for instance, GET_ITER followed by
914 FOR_ITER is effectively a single opcode and f->f_lasti will point
915 at to the beginning of the combined pair.)
917 next_instr = first_instr + f->f_lasti + 1;
918 stack_pointer = f->f_stacktop;
919 assert(stack_pointer != NULL);
920 f->f_stacktop = NULL; /* remains NULL unless yield suspends frame */
922 #ifdef LLTRACE
923 lltrace = PyDict_GetItemString(f->f_globals, "__lltrace__") != NULL;
924 #endif
925 #if defined(Py_DEBUG) || defined(LLTRACE)
926 filename = PyString_AsString(co->co_filename);
927 #endif
929 why = WHY_NOT;
930 err = 0;
931 x = Py_None; /* Not a reference, just anything non-NULL */
932 w = NULL;
934 if (throwflag) { /* support for generator.throw() */
935 why = WHY_EXCEPTION;
936 goto on_error;
939 for (;;) {
940 #ifdef WITH_TSC
941 if (inst1 == 0) {
942 /* Almost surely, the opcode executed a break
943 or a continue, preventing inst1 from being set
944 on the way out of the loop.
946 READ_TIMESTAMP(inst1);
947 loop1 = inst1;
949 dump_tsc(opcode, ticked, inst0, inst1, loop0, loop1,
950 intr0, intr1);
951 ticked = 0;
952 inst1 = 0;
953 intr0 = 0;
954 intr1 = 0;
955 READ_TIMESTAMP(loop0);
956 #endif
957 assert(stack_pointer >= f->f_valuestack); /* else underflow */
958 assert(STACK_LEVEL() <= co->co_stacksize); /* else overflow */
960 /* Do periodic things. Doing this every time through
961 the loop would add too much overhead, so we do it
962 only every Nth instruction. We also do it if
963 ``pendingcalls_to_do'' is set, i.e. when an asynchronous
964 event needs attention (e.g. a signal handler or
965 async I/O handler); see Py_AddPendingCall() and
966 Py_MakePendingCalls() above. */
968 if (--_Py_Ticker < 0) {
969 if (*next_instr == SETUP_FINALLY) {
970 /* Make the last opcode before
971 a try: finally: block uninterruptable. */
972 goto fast_next_opcode;
974 _Py_Ticker = _Py_CheckInterval;
975 tstate->tick_counter++;
976 #ifdef WITH_TSC
977 ticked = 1;
978 #endif
979 if (pendingcalls_to_do) {
980 if (Py_MakePendingCalls() < 0) {
981 why = WHY_EXCEPTION;
982 goto on_error;
984 if (pendingcalls_to_do)
985 /* MakePendingCalls() didn't succeed.
986 Force early re-execution of this
987 "periodic" code, possibly after
988 a thread switch */
989 _Py_Ticker = 0;
991 #ifdef WITH_THREAD
992 if (interpreter_lock) {
993 /* Give another thread a chance */
995 if (PyThreadState_Swap(NULL) != tstate)
996 Py_FatalError("ceval: tstate mix-up");
997 PyThread_release_lock(interpreter_lock);
999 /* Other threads may run now */
1001 PyThread_acquire_lock(interpreter_lock, 1);
1002 if (PyThreadState_Swap(tstate) != NULL)
1003 Py_FatalError("ceval: orphan tstate");
1005 /* Check for thread interrupts */
1007 if (tstate->async_exc != NULL) {
1008 x = tstate->async_exc;
1009 tstate->async_exc = NULL;
1010 PyErr_SetNone(x);
1011 Py_DECREF(x);
1012 why = WHY_EXCEPTION;
1013 goto on_error;
1016 #endif
1019 fast_next_opcode:
1020 f->f_lasti = INSTR_OFFSET();
1022 /* line-by-line tracing support */
1024 if (_Py_TracingPossible &&
1025 tstate->c_tracefunc != NULL && !tstate->tracing) {
1026 /* see maybe_call_line_trace
1027 for expository comments */
1028 f->f_stacktop = stack_pointer;
1030 err = maybe_call_line_trace(tstate->c_tracefunc,
1031 tstate->c_traceobj,
1032 f, &instr_lb, &instr_ub,
1033 &instr_prev);
1034 /* Reload possibly changed frame fields */
1035 JUMPTO(f->f_lasti);
1036 if (f->f_stacktop != NULL) {
1037 stack_pointer = f->f_stacktop;
1038 f->f_stacktop = NULL;
1040 if (err) {
1041 /* trace function raised an exception */
1042 goto on_error;
1046 /* Extract opcode and argument */
1048 opcode = NEXTOP();
1049 oparg = 0; /* allows oparg to be stored in a register because
1050 it doesn't have to be remembered across a full loop */
1051 if (HAS_ARG(opcode))
1052 oparg = NEXTARG();
1053 dispatch_opcode:
1054 #ifdef DYNAMIC_EXECUTION_PROFILE
1055 #ifdef DXPAIRS
1056 dxpairs[lastopcode][opcode]++;
1057 lastopcode = opcode;
1058 #endif
1059 dxp[opcode]++;
1060 #endif
1062 #ifdef LLTRACE
1063 /* Instruction tracing */
1065 if (lltrace) {
1066 if (HAS_ARG(opcode)) {
1067 printf("%d: %d, %d\n",
1068 f->f_lasti, opcode, oparg);
1070 else {
1071 printf("%d: %d\n",
1072 f->f_lasti, opcode);
1075 #endif
1077 /* Main switch on opcode */
1078 READ_TIMESTAMP(inst0);
1080 switch (opcode) {
1082 /* BEWARE!
1083 It is essential that any operation that fails sets either
1084 x to NULL, err to nonzero, or why to anything but WHY_NOT,
1085 and that no operation that succeeds does this! */
1087 /* case STOP_CODE: this is an error! */
1089 case NOP:
1090 goto fast_next_opcode;
1092 case LOAD_FAST:
1093 x = GETLOCAL(oparg);
1094 if (x != NULL) {
1095 Py_INCREF(x);
1096 PUSH(x);
1097 goto fast_next_opcode;
1099 format_exc_check_arg(PyExc_UnboundLocalError,
1100 UNBOUNDLOCAL_ERROR_MSG,
1101 PyTuple_GetItem(co->co_varnames, oparg));
1102 break;
1104 case LOAD_CONST:
1105 x = GETITEM(consts, oparg);
1106 Py_INCREF(x);
1107 PUSH(x);
1108 goto fast_next_opcode;
1110 PREDICTED_WITH_ARG(STORE_FAST);
1111 case STORE_FAST:
1112 v = POP();
1113 SETLOCAL(oparg, v);
1114 goto fast_next_opcode;
1116 case POP_TOP:
1117 v = POP();
1118 Py_DECREF(v);
1119 goto fast_next_opcode;
1121 case ROT_TWO:
1122 v = TOP();
1123 w = SECOND();
1124 SET_TOP(w);
1125 SET_SECOND(v);
1126 goto fast_next_opcode;
1128 case ROT_THREE:
1129 v = TOP();
1130 w = SECOND();
1131 x = THIRD();
1132 SET_TOP(w);
1133 SET_SECOND(x);
1134 SET_THIRD(v);
1135 goto fast_next_opcode;
1137 case ROT_FOUR:
1138 u = TOP();
1139 v = SECOND();
1140 w = THIRD();
1141 x = FOURTH();
1142 SET_TOP(v);
1143 SET_SECOND(w);
1144 SET_THIRD(x);
1145 SET_FOURTH(u);
1146 goto fast_next_opcode;
1148 case DUP_TOP:
1149 v = TOP();
1150 Py_INCREF(v);
1151 PUSH(v);
1152 goto fast_next_opcode;
1154 case DUP_TOPX:
1155 if (oparg == 2) {
1156 x = TOP();
1157 Py_INCREF(x);
1158 w = SECOND();
1159 Py_INCREF(w);
1160 STACKADJ(2);
1161 SET_TOP(x);
1162 SET_SECOND(w);
1163 goto fast_next_opcode;
1164 } else if (oparg == 3) {
1165 x = TOP();
1166 Py_INCREF(x);
1167 w = SECOND();
1168 Py_INCREF(w);
1169 v = THIRD();
1170 Py_INCREF(v);
1171 STACKADJ(3);
1172 SET_TOP(x);
1173 SET_SECOND(w);
1174 SET_THIRD(v);
1175 goto fast_next_opcode;
1177 Py_FatalError("invalid argument to DUP_TOPX"
1178 " (bytecode corruption?)");
1179 /* Never returns, so don't bother to set why. */
1180 break;
1182 case UNARY_POSITIVE:
1183 v = TOP();
1184 x = PyNumber_Positive(v);
1185 Py_DECREF(v);
1186 SET_TOP(x);
1187 if (x != NULL) continue;
1188 break;
1190 case UNARY_NEGATIVE:
1191 v = TOP();
1192 x = PyNumber_Negative(v);
1193 Py_DECREF(v);
1194 SET_TOP(x);
1195 if (x != NULL) continue;
1196 break;
1198 case UNARY_NOT:
1199 v = TOP();
1200 err = PyObject_IsTrue(v);
1201 Py_DECREF(v);
1202 if (err == 0) {
1203 Py_INCREF(Py_True);
1204 SET_TOP(Py_True);
1205 continue;
1207 else if (err > 0) {
1208 Py_INCREF(Py_False);
1209 SET_TOP(Py_False);
1210 err = 0;
1211 continue;
1213 STACKADJ(-1);
1214 break;
1216 case UNARY_CONVERT:
1217 v = TOP();
1218 x = PyObject_Repr(v);
1219 Py_DECREF(v);
1220 SET_TOP(x);
1221 if (x != NULL) continue;
1222 break;
1224 case UNARY_INVERT:
1225 v = TOP();
1226 x = PyNumber_Invert(v);
1227 Py_DECREF(v);
1228 SET_TOP(x);
1229 if (x != NULL) continue;
1230 break;
1232 case BINARY_POWER:
1233 w = POP();
1234 v = TOP();
1235 x = PyNumber_Power(v, w, Py_None);
1236 Py_DECREF(v);
1237 Py_DECREF(w);
1238 SET_TOP(x);
1239 if (x != NULL) continue;
1240 break;
1242 case BINARY_MULTIPLY:
1243 w = POP();
1244 v = TOP();
1245 x = PyNumber_Multiply(v, w);
1246 Py_DECREF(v);
1247 Py_DECREF(w);
1248 SET_TOP(x);
1249 if (x != NULL) continue;
1250 break;
1252 case BINARY_DIVIDE:
1253 if (!_Py_QnewFlag) {
1254 w = POP();
1255 v = TOP();
1256 x = PyNumber_Divide(v, w);
1257 Py_DECREF(v);
1258 Py_DECREF(w);
1259 SET_TOP(x);
1260 if (x != NULL) continue;
1261 break;
1263 /* -Qnew is in effect: fall through to
1264 BINARY_TRUE_DIVIDE */
1265 case BINARY_TRUE_DIVIDE:
1266 w = POP();
1267 v = TOP();
1268 x = PyNumber_TrueDivide(v, w);
1269 Py_DECREF(v);
1270 Py_DECREF(w);
1271 SET_TOP(x);
1272 if (x != NULL) continue;
1273 break;
1275 case BINARY_FLOOR_DIVIDE:
1276 w = POP();
1277 v = TOP();
1278 x = PyNumber_FloorDivide(v, w);
1279 Py_DECREF(v);
1280 Py_DECREF(w);
1281 SET_TOP(x);
1282 if (x != NULL) continue;
1283 break;
1285 case BINARY_MODULO:
1286 w = POP();
1287 v = TOP();
1288 if (PyString_CheckExact(v))
1289 x = PyString_Format(v, w);
1290 else
1291 x = PyNumber_Remainder(v, w);
1292 Py_DECREF(v);
1293 Py_DECREF(w);
1294 SET_TOP(x);
1295 if (x != NULL) continue;
1296 break;
1298 case BINARY_ADD:
1299 w = POP();
1300 v = TOP();
1301 if (PyInt_CheckExact(v) && PyInt_CheckExact(w)) {
1302 /* INLINE: int + int */
1303 register long a, b, i;
1304 a = PyInt_AS_LONG(v);
1305 b = PyInt_AS_LONG(w);
1306 i = a + b;
1307 if ((i^a) < 0 && (i^b) < 0)
1308 goto slow_add;
1309 x = PyInt_FromLong(i);
1311 else if (PyString_CheckExact(v) &&
1312 PyString_CheckExact(w)) {
1313 x = string_concatenate(v, w, f, next_instr);
1314 /* string_concatenate consumed the ref to v */
1315 goto skip_decref_vx;
1317 else {
1318 slow_add:
1319 x = PyNumber_Add(v, w);
1321 Py_DECREF(v);
1322 skip_decref_vx:
1323 Py_DECREF(w);
1324 SET_TOP(x);
1325 if (x != NULL) continue;
1326 break;
1328 case BINARY_SUBTRACT:
1329 w = POP();
1330 v = TOP();
1331 if (PyInt_CheckExact(v) && PyInt_CheckExact(w)) {
1332 /* INLINE: int - int */
1333 register long a, b, i;
1334 a = PyInt_AS_LONG(v);
1335 b = PyInt_AS_LONG(w);
1336 i = a - b;
1337 if ((i^a) < 0 && (i^~b) < 0)
1338 goto slow_sub;
1339 x = PyInt_FromLong(i);
1341 else {
1342 slow_sub:
1343 x = PyNumber_Subtract(v, w);
1345 Py_DECREF(v);
1346 Py_DECREF(w);
1347 SET_TOP(x);
1348 if (x != NULL) continue;
1349 break;
1351 case BINARY_SUBSCR:
1352 w = POP();
1353 v = TOP();
1354 if (PyList_CheckExact(v) && PyInt_CheckExact(w)) {
1355 /* INLINE: list[int] */
1356 Py_ssize_t i = PyInt_AsSsize_t(w);
1357 if (i < 0)
1358 i += PyList_GET_SIZE(v);
1359 if (i >= 0 && i < PyList_GET_SIZE(v)) {
1360 x = PyList_GET_ITEM(v, i);
1361 Py_INCREF(x);
1363 else
1364 goto slow_get;
1366 else
1367 slow_get:
1368 x = PyObject_GetItem(v, w);
1369 Py_DECREF(v);
1370 Py_DECREF(w);
1371 SET_TOP(x);
1372 if (x != NULL) continue;
1373 break;
1375 case BINARY_LSHIFT:
1376 w = POP();
1377 v = TOP();
1378 x = PyNumber_Lshift(v, w);
1379 Py_DECREF(v);
1380 Py_DECREF(w);
1381 SET_TOP(x);
1382 if (x != NULL) continue;
1383 break;
1385 case BINARY_RSHIFT:
1386 w = POP();
1387 v = TOP();
1388 x = PyNumber_Rshift(v, w);
1389 Py_DECREF(v);
1390 Py_DECREF(w);
1391 SET_TOP(x);
1392 if (x != NULL) continue;
1393 break;
1395 case BINARY_AND:
1396 w = POP();
1397 v = TOP();
1398 x = PyNumber_And(v, w);
1399 Py_DECREF(v);
1400 Py_DECREF(w);
1401 SET_TOP(x);
1402 if (x != NULL) continue;
1403 break;
1405 case BINARY_XOR:
1406 w = POP();
1407 v = TOP();
1408 x = PyNumber_Xor(v, w);
1409 Py_DECREF(v);
1410 Py_DECREF(w);
1411 SET_TOP(x);
1412 if (x != NULL) continue;
1413 break;
1415 case BINARY_OR:
1416 w = POP();
1417 v = TOP();
1418 x = PyNumber_Or(v, w);
1419 Py_DECREF(v);
1420 Py_DECREF(w);
1421 SET_TOP(x);
1422 if (x != NULL) continue;
1423 break;
1425 case LIST_APPEND:
1426 w = POP();
1427 v = PEEK(oparg);
1428 err = PyList_Append(v, w);
1429 Py_DECREF(w);
1430 if (err == 0) {
1431 PREDICT(JUMP_ABSOLUTE);
1432 continue;
1434 break;
1436 case INPLACE_POWER:
1437 w = POP();
1438 v = TOP();
1439 x = PyNumber_InPlacePower(v, w, Py_None);
1440 Py_DECREF(v);
1441 Py_DECREF(w);
1442 SET_TOP(x);
1443 if (x != NULL) continue;
1444 break;
1446 case INPLACE_MULTIPLY:
1447 w = POP();
1448 v = TOP();
1449 x = PyNumber_InPlaceMultiply(v, w);
1450 Py_DECREF(v);
1451 Py_DECREF(w);
1452 SET_TOP(x);
1453 if (x != NULL) continue;
1454 break;
1456 case INPLACE_DIVIDE:
1457 if (!_Py_QnewFlag) {
1458 w = POP();
1459 v = TOP();
1460 x = PyNumber_InPlaceDivide(v, w);
1461 Py_DECREF(v);
1462 Py_DECREF(w);
1463 SET_TOP(x);
1464 if (x != NULL) continue;
1465 break;
1467 /* -Qnew is in effect: fall through to
1468 INPLACE_TRUE_DIVIDE */
1469 case INPLACE_TRUE_DIVIDE:
1470 w = POP();
1471 v = TOP();
1472 x = PyNumber_InPlaceTrueDivide(v, w);
1473 Py_DECREF(v);
1474 Py_DECREF(w);
1475 SET_TOP(x);
1476 if (x != NULL) continue;
1477 break;
1479 case INPLACE_FLOOR_DIVIDE:
1480 w = POP();
1481 v = TOP();
1482 x = PyNumber_InPlaceFloorDivide(v, w);
1483 Py_DECREF(v);
1484 Py_DECREF(w);
1485 SET_TOP(x);
1486 if (x != NULL) continue;
1487 break;
1489 case INPLACE_MODULO:
1490 w = POP();
1491 v = TOP();
1492 x = PyNumber_InPlaceRemainder(v, w);
1493 Py_DECREF(v);
1494 Py_DECREF(w);
1495 SET_TOP(x);
1496 if (x != NULL) continue;
1497 break;
1499 case INPLACE_ADD:
1500 w = POP();
1501 v = TOP();
1502 if (PyInt_CheckExact(v) && PyInt_CheckExact(w)) {
1503 /* INLINE: int + int */
1504 register long a, b, i;
1505 a = PyInt_AS_LONG(v);
1506 b = PyInt_AS_LONG(w);
1507 i = a + b;
1508 if ((i^a) < 0 && (i^b) < 0)
1509 goto slow_iadd;
1510 x = PyInt_FromLong(i);
1512 else if (PyString_CheckExact(v) &&
1513 PyString_CheckExact(w)) {
1514 x = string_concatenate(v, w, f, next_instr);
1515 /* string_concatenate consumed the ref to v */
1516 goto skip_decref_v;
1518 else {
1519 slow_iadd:
1520 x = PyNumber_InPlaceAdd(v, w);
1522 Py_DECREF(v);
1523 skip_decref_v:
1524 Py_DECREF(w);
1525 SET_TOP(x);
1526 if (x != NULL) continue;
1527 break;
1529 case INPLACE_SUBTRACT:
1530 w = POP();
1531 v = TOP();
1532 if (PyInt_CheckExact(v) && PyInt_CheckExact(w)) {
1533 /* INLINE: int - int */
1534 register long a, b, i;
1535 a = PyInt_AS_LONG(v);
1536 b = PyInt_AS_LONG(w);
1537 i = a - b;
1538 if ((i^a) < 0 && (i^~b) < 0)
1539 goto slow_isub;
1540 x = PyInt_FromLong(i);
1542 else {
1543 slow_isub:
1544 x = PyNumber_InPlaceSubtract(v, w);
1546 Py_DECREF(v);
1547 Py_DECREF(w);
1548 SET_TOP(x);
1549 if (x != NULL) continue;
1550 break;
1552 case INPLACE_LSHIFT:
1553 w = POP();
1554 v = TOP();
1555 x = PyNumber_InPlaceLshift(v, w);
1556 Py_DECREF(v);
1557 Py_DECREF(w);
1558 SET_TOP(x);
1559 if (x != NULL) continue;
1560 break;
1562 case INPLACE_RSHIFT:
1563 w = POP();
1564 v = TOP();
1565 x = PyNumber_InPlaceRshift(v, w);
1566 Py_DECREF(v);
1567 Py_DECREF(w);
1568 SET_TOP(x);
1569 if (x != NULL) continue;
1570 break;
1572 case INPLACE_AND:
1573 w = POP();
1574 v = TOP();
1575 x = PyNumber_InPlaceAnd(v, w);
1576 Py_DECREF(v);
1577 Py_DECREF(w);
1578 SET_TOP(x);
1579 if (x != NULL) continue;
1580 break;
1582 case INPLACE_XOR:
1583 w = POP();
1584 v = TOP();
1585 x = PyNumber_InPlaceXor(v, w);
1586 Py_DECREF(v);
1587 Py_DECREF(w);
1588 SET_TOP(x);
1589 if (x != NULL) continue;
1590 break;
1592 case INPLACE_OR:
1593 w = POP();
1594 v = TOP();
1595 x = PyNumber_InPlaceOr(v, w);
1596 Py_DECREF(v);
1597 Py_DECREF(w);
1598 SET_TOP(x);
1599 if (x != NULL) continue;
1600 break;
1602 case SLICE+0:
1603 case SLICE+1:
1604 case SLICE+2:
1605 case SLICE+3:
1606 if ((opcode-SLICE) & 2)
1607 w = POP();
1608 else
1609 w = NULL;
1610 if ((opcode-SLICE) & 1)
1611 v = POP();
1612 else
1613 v = NULL;
1614 u = TOP();
1615 x = apply_slice(u, v, w);
1616 Py_DECREF(u);
1617 Py_XDECREF(v);
1618 Py_XDECREF(w);
1619 SET_TOP(x);
1620 if (x != NULL) continue;
1621 break;
1623 case STORE_SLICE+0:
1624 case STORE_SLICE+1:
1625 case STORE_SLICE+2:
1626 case STORE_SLICE+3:
1627 if ((opcode-STORE_SLICE) & 2)
1628 w = POP();
1629 else
1630 w = NULL;
1631 if ((opcode-STORE_SLICE) & 1)
1632 v = POP();
1633 else
1634 v = NULL;
1635 u = POP();
1636 t = POP();
1637 err = assign_slice(u, v, w, t); /* u[v:w] = t */
1638 Py_DECREF(t);
1639 Py_DECREF(u);
1640 Py_XDECREF(v);
1641 Py_XDECREF(w);
1642 if (err == 0) continue;
1643 break;
1645 case DELETE_SLICE+0:
1646 case DELETE_SLICE+1:
1647 case DELETE_SLICE+2:
1648 case DELETE_SLICE+3:
1649 if ((opcode-DELETE_SLICE) & 2)
1650 w = POP();
1651 else
1652 w = NULL;
1653 if ((opcode-DELETE_SLICE) & 1)
1654 v = POP();
1655 else
1656 v = NULL;
1657 u = POP();
1658 err = assign_slice(u, v, w, (PyObject *)NULL);
1659 /* del u[v:w] */
1660 Py_DECREF(u);
1661 Py_XDECREF(v);
1662 Py_XDECREF(w);
1663 if (err == 0) continue;
1664 break;
1666 case STORE_SUBSCR:
1667 w = TOP();
1668 v = SECOND();
1669 u = THIRD();
1670 STACKADJ(-3);
1671 /* v[w] = u */
1672 err = PyObject_SetItem(v, w, u);
1673 Py_DECREF(u);
1674 Py_DECREF(v);
1675 Py_DECREF(w);
1676 if (err == 0) continue;
1677 break;
1679 case DELETE_SUBSCR:
1680 w = TOP();
1681 v = SECOND();
1682 STACKADJ(-2);
1683 /* del v[w] */
1684 err = PyObject_DelItem(v, w);
1685 Py_DECREF(v);
1686 Py_DECREF(w);
1687 if (err == 0) continue;
1688 break;
1690 case PRINT_EXPR:
1691 v = POP();
1692 w = PySys_GetObject("displayhook");
1693 if (w == NULL) {
1694 PyErr_SetString(PyExc_RuntimeError,
1695 "lost sys.displayhook");
1696 err = -1;
1697 x = NULL;
1699 if (err == 0) {
1700 x = PyTuple_Pack(1, v);
1701 if (x == NULL)
1702 err = -1;
1704 if (err == 0) {
1705 w = PyEval_CallObject(w, x);
1706 Py_XDECREF(w);
1707 if (w == NULL)
1708 err = -1;
1710 Py_DECREF(v);
1711 Py_XDECREF(x);
1712 break;
1714 case PRINT_ITEM_TO:
1715 w = stream = POP();
1716 /* fall through to PRINT_ITEM */
1718 case PRINT_ITEM:
1719 v = POP();
1720 if (stream == NULL || stream == Py_None) {
1721 w = PySys_GetObject("stdout");
1722 if (w == NULL) {
1723 PyErr_SetString(PyExc_RuntimeError,
1724 "lost sys.stdout");
1725 err = -1;
1728 /* PyFile_SoftSpace() can exececute arbitrary code
1729 if sys.stdout is an instance with a __getattr__.
1730 If __getattr__ raises an exception, w will
1731 be freed, so we need to prevent that temporarily. */
1732 Py_XINCREF(w);
1733 if (w != NULL && PyFile_SoftSpace(w, 0))
1734 err = PyFile_WriteString(" ", w);
1735 if (err == 0)
1736 err = PyFile_WriteObject(v, w, Py_PRINT_RAW);
1737 if (err == 0) {
1738 /* XXX move into writeobject() ? */
1739 if (PyString_Check(v)) {
1740 char *s = PyString_AS_STRING(v);
1741 Py_ssize_t len = PyString_GET_SIZE(v);
1742 if (len == 0 ||
1743 !isspace(Py_CHARMASK(s[len-1])) ||
1744 s[len-1] == ' ')
1745 PyFile_SoftSpace(w, 1);
1747 #ifdef Py_USING_UNICODE
1748 else if (PyUnicode_Check(v)) {
1749 Py_UNICODE *s = PyUnicode_AS_UNICODE(v);
1750 Py_ssize_t len = PyUnicode_GET_SIZE(v);
1751 if (len == 0 ||
1752 !Py_UNICODE_ISSPACE(s[len-1]) ||
1753 s[len-1] == ' ')
1754 PyFile_SoftSpace(w, 1);
1756 #endif
1757 else
1758 PyFile_SoftSpace(w, 1);
1760 Py_XDECREF(w);
1761 Py_DECREF(v);
1762 Py_XDECREF(stream);
1763 stream = NULL;
1764 if (err == 0)
1765 continue;
1766 break;
1768 case PRINT_NEWLINE_TO:
1769 w = stream = POP();
1770 /* fall through to PRINT_NEWLINE */
1772 case PRINT_NEWLINE:
1773 if (stream == NULL || stream == Py_None) {
1774 w = PySys_GetObject("stdout");
1775 if (w == NULL) {
1776 PyErr_SetString(PyExc_RuntimeError,
1777 "lost sys.stdout");
1778 why = WHY_EXCEPTION;
1781 if (w != NULL) {
1782 /* w.write() may replace sys.stdout, so we
1783 * have to keep our reference to it */
1784 Py_INCREF(w);
1785 err = PyFile_WriteString("\n", w);
1786 if (err == 0)
1787 PyFile_SoftSpace(w, 0);
1788 Py_DECREF(w);
1790 Py_XDECREF(stream);
1791 stream = NULL;
1792 break;
1795 #ifdef CASE_TOO_BIG
1796 default: switch (opcode) {
1797 #endif
1798 case RAISE_VARARGS:
1799 u = v = w = NULL;
1800 switch (oparg) {
1801 case 3:
1802 u = POP(); /* traceback */
1803 /* Fallthrough */
1804 case 2:
1805 v = POP(); /* value */
1806 /* Fallthrough */
1807 case 1:
1808 w = POP(); /* exc */
1809 case 0: /* Fallthrough */
1810 why = do_raise(w, v, u);
1811 break;
1812 default:
1813 PyErr_SetString(PyExc_SystemError,
1814 "bad RAISE_VARARGS oparg");
1815 why = WHY_EXCEPTION;
1816 break;
1818 break;
1820 case LOAD_LOCALS:
1821 if ((x = f->f_locals) != NULL) {
1822 Py_INCREF(x);
1823 PUSH(x);
1824 continue;
1826 PyErr_SetString(PyExc_SystemError, "no locals");
1827 break;
1829 case RETURN_VALUE:
1830 retval = POP();
1831 why = WHY_RETURN;
1832 goto fast_block_end;
1834 case YIELD_VALUE:
1835 retval = POP();
1836 f->f_stacktop = stack_pointer;
1837 why = WHY_YIELD;
1838 goto fast_yield;
1840 case EXEC_STMT:
1841 w = TOP();
1842 v = SECOND();
1843 u = THIRD();
1844 STACKADJ(-3);
1845 READ_TIMESTAMP(intr0);
1846 err = exec_statement(f, u, v, w);
1847 READ_TIMESTAMP(intr1);
1848 Py_DECREF(u);
1849 Py_DECREF(v);
1850 Py_DECREF(w);
1851 break;
1853 case POP_BLOCK:
1855 PyTryBlock *b = PyFrame_BlockPop(f);
1856 while (STACK_LEVEL() > b->b_level) {
1857 v = POP();
1858 Py_DECREF(v);
1861 continue;
1863 PREDICTED(END_FINALLY);
1864 case END_FINALLY:
1865 v = POP();
1866 if (PyInt_Check(v)) {
1867 why = (enum why_code) PyInt_AS_LONG(v);
1868 assert(why != WHY_YIELD);
1869 if (why == WHY_RETURN ||
1870 why == WHY_CONTINUE)
1871 retval = POP();
1873 else if (PyExceptionClass_Check(v) ||
1874 PyString_Check(v)) {
1875 w = POP();
1876 u = POP();
1877 PyErr_Restore(v, w, u);
1878 why = WHY_RERAISE;
1879 break;
1881 else if (v != Py_None) {
1882 PyErr_SetString(PyExc_SystemError,
1883 "'finally' pops bad exception");
1884 why = WHY_EXCEPTION;
1886 Py_DECREF(v);
1887 break;
1889 case BUILD_CLASS:
1890 u = TOP();
1891 v = SECOND();
1892 w = THIRD();
1893 STACKADJ(-2);
1894 x = build_class(u, v, w);
1895 SET_TOP(x);
1896 Py_DECREF(u);
1897 Py_DECREF(v);
1898 Py_DECREF(w);
1899 break;
1901 case STORE_NAME:
1902 w = GETITEM(names, oparg);
1903 v = POP();
1904 if ((x = f->f_locals) != NULL) {
1905 if (PyDict_CheckExact(x))
1906 err = PyDict_SetItem(x, w, v);
1907 else
1908 err = PyObject_SetItem(x, w, v);
1909 Py_DECREF(v);
1910 if (err == 0) continue;
1911 break;
1913 PyErr_Format(PyExc_SystemError,
1914 "no locals found when storing %s",
1915 PyObject_REPR(w));
1916 break;
1918 case DELETE_NAME:
1919 w = GETITEM(names, oparg);
1920 if ((x = f->f_locals) != NULL) {
1921 if ((err = PyObject_DelItem(x, w)) != 0)
1922 format_exc_check_arg(PyExc_NameError,
1923 NAME_ERROR_MSG,
1925 break;
1927 PyErr_Format(PyExc_SystemError,
1928 "no locals when deleting %s",
1929 PyObject_REPR(w));
1930 break;
1932 PREDICTED_WITH_ARG(UNPACK_SEQUENCE);
1933 case UNPACK_SEQUENCE:
1934 v = POP();
1935 if (PyTuple_CheckExact(v) &&
1936 PyTuple_GET_SIZE(v) == oparg) {
1937 PyObject **items = \
1938 ((PyTupleObject *)v)->ob_item;
1939 while (oparg--) {
1940 w = items[oparg];
1941 Py_INCREF(w);
1942 PUSH(w);
1944 Py_DECREF(v);
1945 continue;
1946 } else if (PyList_CheckExact(v) &&
1947 PyList_GET_SIZE(v) == oparg) {
1948 PyObject **items = \
1949 ((PyListObject *)v)->ob_item;
1950 while (oparg--) {
1951 w = items[oparg];
1952 Py_INCREF(w);
1953 PUSH(w);
1955 } else if (unpack_iterable(v, oparg,
1956 stack_pointer + oparg)) {
1957 STACKADJ(oparg);
1958 } else {
1959 /* unpack_iterable() raised an exception */
1960 why = WHY_EXCEPTION;
1962 Py_DECREF(v);
1963 break;
1965 case STORE_ATTR:
1966 w = GETITEM(names, oparg);
1967 v = TOP();
1968 u = SECOND();
1969 STACKADJ(-2);
1970 err = PyObject_SetAttr(v, w, u); /* v.w = u */
1971 Py_DECREF(v);
1972 Py_DECREF(u);
1973 if (err == 0) continue;
1974 break;
1976 case DELETE_ATTR:
1977 w = GETITEM(names, oparg);
1978 v = POP();
1979 err = PyObject_SetAttr(v, w, (PyObject *)NULL);
1980 /* del v.w */
1981 Py_DECREF(v);
1982 break;
1984 case STORE_GLOBAL:
1985 w = GETITEM(names, oparg);
1986 v = POP();
1987 err = PyDict_SetItem(f->f_globals, w, v);
1988 Py_DECREF(v);
1989 if (err == 0) continue;
1990 break;
1992 case DELETE_GLOBAL:
1993 w = GETITEM(names, oparg);
1994 if ((err = PyDict_DelItem(f->f_globals, w)) != 0)
1995 format_exc_check_arg(
1996 PyExc_NameError, GLOBAL_NAME_ERROR_MSG, w);
1997 break;
1999 case LOAD_NAME:
2000 w = GETITEM(names, oparg);
2001 if ((v = f->f_locals) == NULL) {
2002 PyErr_Format(PyExc_SystemError,
2003 "no locals when loading %s",
2004 PyObject_REPR(w));
2005 why = WHY_EXCEPTION;
2006 break;
2008 if (PyDict_CheckExact(v)) {
2009 x = PyDict_GetItem(v, w);
2010 Py_XINCREF(x);
2012 else {
2013 x = PyObject_GetItem(v, w);
2014 if (x == NULL && PyErr_Occurred()) {
2015 if (!PyErr_ExceptionMatches(
2016 PyExc_KeyError))
2017 break;
2018 PyErr_Clear();
2021 if (x == NULL) {
2022 x = PyDict_GetItem(f->f_globals, w);
2023 if (x == NULL) {
2024 x = PyDict_GetItem(f->f_builtins, w);
2025 if (x == NULL) {
2026 format_exc_check_arg(
2027 PyExc_NameError,
2028 NAME_ERROR_MSG, w);
2029 break;
2032 Py_INCREF(x);
2034 PUSH(x);
2035 continue;
2037 case LOAD_GLOBAL:
2038 w = GETITEM(names, oparg);
2039 if (PyString_CheckExact(w)) {
2040 /* Inline the PyDict_GetItem() calls.
2041 WARNING: this is an extreme speed hack.
2042 Do not try this at home. */
2043 long hash = ((PyStringObject *)w)->ob_shash;
2044 if (hash != -1) {
2045 PyDictObject *d;
2046 PyDictEntry *e;
2047 d = (PyDictObject *)(f->f_globals);
2048 e = d->ma_lookup(d, w, hash);
2049 if (e == NULL) {
2050 x = NULL;
2051 break;
2053 x = e->me_value;
2054 if (x != NULL) {
2055 Py_INCREF(x);
2056 PUSH(x);
2057 continue;
2059 d = (PyDictObject *)(f->f_builtins);
2060 e = d->ma_lookup(d, w, hash);
2061 if (e == NULL) {
2062 x = NULL;
2063 break;
2065 x = e->me_value;
2066 if (x != NULL) {
2067 Py_INCREF(x);
2068 PUSH(x);
2069 continue;
2071 goto load_global_error;
2074 /* This is the un-inlined version of the code above */
2075 x = PyDict_GetItem(f->f_globals, w);
2076 if (x == NULL) {
2077 x = PyDict_GetItem(f->f_builtins, w);
2078 if (x == NULL) {
2079 load_global_error:
2080 format_exc_check_arg(
2081 PyExc_NameError,
2082 GLOBAL_NAME_ERROR_MSG, w);
2083 break;
2086 Py_INCREF(x);
2087 PUSH(x);
2088 continue;
2090 case DELETE_FAST:
2091 x = GETLOCAL(oparg);
2092 if (x != NULL) {
2093 SETLOCAL(oparg, NULL);
2094 continue;
2096 format_exc_check_arg(
2097 PyExc_UnboundLocalError,
2098 UNBOUNDLOCAL_ERROR_MSG,
2099 PyTuple_GetItem(co->co_varnames, oparg)
2101 break;
2103 case LOAD_CLOSURE:
2104 x = freevars[oparg];
2105 Py_INCREF(x);
2106 PUSH(x);
2107 if (x != NULL) continue;
2108 break;
2110 case LOAD_DEREF:
2111 x = freevars[oparg];
2112 w = PyCell_Get(x);
2113 if (w != NULL) {
2114 PUSH(w);
2115 continue;
2117 err = -1;
2118 /* Don't stomp existing exception */
2119 if (PyErr_Occurred())
2120 break;
2121 if (oparg < PyTuple_GET_SIZE(co->co_cellvars)) {
2122 v = PyTuple_GET_ITEM(co->co_cellvars,
2123 oparg);
2124 format_exc_check_arg(
2125 PyExc_UnboundLocalError,
2126 UNBOUNDLOCAL_ERROR_MSG,
2128 } else {
2129 v = PyTuple_GET_ITEM(co->co_freevars, oparg -
2130 PyTuple_GET_SIZE(co->co_cellvars));
2131 format_exc_check_arg(PyExc_NameError,
2132 UNBOUNDFREE_ERROR_MSG, v);
2134 break;
2136 case STORE_DEREF:
2137 w = POP();
2138 x = freevars[oparg];
2139 PyCell_Set(x, w);
2140 Py_DECREF(w);
2141 continue;
2143 case BUILD_TUPLE:
2144 x = PyTuple_New(oparg);
2145 if (x != NULL) {
2146 for (; --oparg >= 0;) {
2147 w = POP();
2148 PyTuple_SET_ITEM(x, oparg, w);
2150 PUSH(x);
2151 continue;
2153 break;
2155 case BUILD_LIST:
2156 x = PyList_New(oparg);
2157 if (x != NULL) {
2158 for (; --oparg >= 0;) {
2159 w = POP();
2160 PyList_SET_ITEM(x, oparg, w);
2162 PUSH(x);
2163 continue;
2165 break;
2167 case BUILD_MAP:
2168 x = _PyDict_NewPresized((Py_ssize_t)oparg);
2169 PUSH(x);
2170 if (x != NULL) continue;
2171 break;
2173 case STORE_MAP:
2174 w = TOP(); /* key */
2175 u = SECOND(); /* value */
2176 v = THIRD(); /* dict */
2177 STACKADJ(-2);
2178 assert (PyDict_CheckExact(v));
2179 err = PyDict_SetItem(v, w, u); /* v[w] = u */
2180 Py_DECREF(u);
2181 Py_DECREF(w);
2182 if (err == 0) continue;
2183 break;
2185 case LOAD_ATTR:
2186 w = GETITEM(names, oparg);
2187 v = TOP();
2188 x = PyObject_GetAttr(v, w);
2189 Py_DECREF(v);
2190 SET_TOP(x);
2191 if (x != NULL) continue;
2192 break;
2194 case COMPARE_OP:
2195 w = POP();
2196 v = TOP();
2197 if (PyInt_CheckExact(w) && PyInt_CheckExact(v)) {
2198 /* INLINE: cmp(int, int) */
2199 register long a, b;
2200 register int res;
2201 a = PyInt_AS_LONG(v);
2202 b = PyInt_AS_LONG(w);
2203 switch (oparg) {
2204 case PyCmp_LT: res = a < b; break;
2205 case PyCmp_LE: res = a <= b; break;
2206 case PyCmp_EQ: res = a == b; break;
2207 case PyCmp_NE: res = a != b; break;
2208 case PyCmp_GT: res = a > b; break;
2209 case PyCmp_GE: res = a >= b; break;
2210 case PyCmp_IS: res = v == w; break;
2211 case PyCmp_IS_NOT: res = v != w; break;
2212 default: goto slow_compare;
2214 x = res ? Py_True : Py_False;
2215 Py_INCREF(x);
2217 else {
2218 slow_compare:
2219 x = cmp_outcome(oparg, v, w);
2221 Py_DECREF(v);
2222 Py_DECREF(w);
2223 SET_TOP(x);
2224 if (x == NULL) break;
2225 PREDICT(POP_JUMP_IF_FALSE);
2226 PREDICT(POP_JUMP_IF_TRUE);
2227 continue;
2229 case IMPORT_NAME:
2230 w = GETITEM(names, oparg);
2231 x = PyDict_GetItemString(f->f_builtins, "__import__");
2232 if (x == NULL) {
2233 PyErr_SetString(PyExc_ImportError,
2234 "__import__ not found");
2235 break;
2237 Py_INCREF(x);
2238 v = POP();
2239 u = TOP();
2240 if (PyInt_AsLong(u) != -1 || PyErr_Occurred())
2241 w = PyTuple_Pack(5,
2243 f->f_globals,
2244 f->f_locals == NULL ?
2245 Py_None : f->f_locals,
2248 else
2249 w = PyTuple_Pack(4,
2251 f->f_globals,
2252 f->f_locals == NULL ?
2253 Py_None : f->f_locals,
2255 Py_DECREF(v);
2256 Py_DECREF(u);
2257 if (w == NULL) {
2258 u = POP();
2259 Py_DECREF(x);
2260 x = NULL;
2261 break;
2263 READ_TIMESTAMP(intr0);
2264 v = x;
2265 x = PyEval_CallObject(v, w);
2266 Py_DECREF(v);
2267 READ_TIMESTAMP(intr1);
2268 Py_DECREF(w);
2269 SET_TOP(x);
2270 if (x != NULL) continue;
2271 break;
2273 case IMPORT_STAR:
2274 v = POP();
2275 PyFrame_FastToLocals(f);
2276 if ((x = f->f_locals) == NULL) {
2277 PyErr_SetString(PyExc_SystemError,
2278 "no locals found during 'import *'");
2279 break;
2281 READ_TIMESTAMP(intr0);
2282 err = import_all_from(x, v);
2283 READ_TIMESTAMP(intr1);
2284 PyFrame_LocalsToFast(f, 0);
2285 Py_DECREF(v);
2286 if (err == 0) continue;
2287 break;
2289 case IMPORT_FROM:
2290 w = GETITEM(names, oparg);
2291 v = TOP();
2292 READ_TIMESTAMP(intr0);
2293 x = import_from(v, w);
2294 READ_TIMESTAMP(intr1);
2295 PUSH(x);
2296 if (x != NULL) continue;
2297 break;
2299 case JUMP_FORWARD:
2300 JUMPBY(oparg);
2301 goto fast_next_opcode;
2303 PREDICTED_WITH_ARG(POP_JUMP_IF_FALSE);
2304 case POP_JUMP_IF_FALSE:
2305 w = POP();
2306 if (w == Py_True) {
2307 Py_DECREF(w);
2308 goto fast_next_opcode;
2310 if (w == Py_False) {
2311 Py_DECREF(w);
2312 JUMPTO(oparg);
2313 goto fast_next_opcode;
2315 err = PyObject_IsTrue(w);
2316 Py_DECREF(w);
2317 if (err > 0)
2318 err = 0;
2319 else if (err == 0)
2320 JUMPTO(oparg);
2321 else
2322 break;
2323 continue;
2325 PREDICTED_WITH_ARG(POP_JUMP_IF_TRUE);
2326 case POP_JUMP_IF_TRUE:
2327 w = POP();
2328 if (w == Py_False) {
2329 Py_DECREF(w);
2330 goto fast_next_opcode;
2332 if (w == Py_True) {
2333 Py_DECREF(w);
2334 JUMPTO(oparg);
2335 goto fast_next_opcode;
2337 err = PyObject_IsTrue(w);
2338 Py_DECREF(w);
2339 if (err > 0) {
2340 err = 0;
2341 JUMPTO(oparg);
2343 else if (err == 0)
2345 else
2346 break;
2347 continue;
2349 case JUMP_IF_FALSE_OR_POP:
2350 w = TOP();
2351 if (w == Py_True) {
2352 STACKADJ(-1);
2353 Py_DECREF(w);
2354 goto fast_next_opcode;
2356 if (w == Py_False) {
2357 JUMPTO(oparg);
2358 goto fast_next_opcode;
2360 err = PyObject_IsTrue(w);
2361 if (err > 0) {
2362 STACKADJ(-1);
2363 Py_DECREF(w);
2364 err = 0;
2366 else if (err == 0)
2367 JUMPTO(oparg);
2368 else
2369 break;
2370 continue;
2372 case JUMP_IF_TRUE_OR_POP:
2373 w = TOP();
2374 if (w == Py_False) {
2375 STACKADJ(-1);
2376 Py_DECREF(w);
2377 goto fast_next_opcode;
2379 if (w == Py_True) {
2380 JUMPTO(oparg);
2381 goto fast_next_opcode;
2383 err = PyObject_IsTrue(w);
2384 if (err > 0) {
2385 err = 0;
2386 JUMPTO(oparg);
2388 else if (err == 0) {
2389 STACKADJ(-1);
2390 Py_DECREF(w);
2392 else
2393 break;
2394 continue;
2396 PREDICTED_WITH_ARG(JUMP_ABSOLUTE);
2397 case JUMP_ABSOLUTE:
2398 JUMPTO(oparg);
2399 #if FAST_LOOPS
2400 /* Enabling this path speeds-up all while and for-loops by bypassing
2401 the per-loop checks for signals. By default, this should be turned-off
2402 because it prevents detection of a control-break in tight loops like
2403 "while 1: pass". Compile with this option turned-on when you need
2404 the speed-up and do not need break checking inside tight loops (ones
2405 that contain only instructions ending with goto fast_next_opcode).
2407 goto fast_next_opcode;
2408 #else
2409 continue;
2410 #endif
2412 case GET_ITER:
2413 /* before: [obj]; after [getiter(obj)] */
2414 v = TOP();
2415 x = PyObject_GetIter(v);
2416 Py_DECREF(v);
2417 if (x != NULL) {
2418 SET_TOP(x);
2419 PREDICT(FOR_ITER);
2420 continue;
2422 STACKADJ(-1);
2423 break;
2425 PREDICTED_WITH_ARG(FOR_ITER);
2426 case FOR_ITER:
2427 /* before: [iter]; after: [iter, iter()] *or* [] */
2428 v = TOP();
2429 x = (*v->ob_type->tp_iternext)(v);
2430 if (x != NULL) {
2431 PUSH(x);
2432 PREDICT(STORE_FAST);
2433 PREDICT(UNPACK_SEQUENCE);
2434 continue;
2436 if (PyErr_Occurred()) {
2437 if (!PyErr_ExceptionMatches(
2438 PyExc_StopIteration))
2439 break;
2440 PyErr_Clear();
2442 /* iterator ended normally */
2443 x = v = POP();
2444 Py_DECREF(v);
2445 JUMPBY(oparg);
2446 continue;
2448 case BREAK_LOOP:
2449 why = WHY_BREAK;
2450 goto fast_block_end;
2452 case CONTINUE_LOOP:
2453 retval = PyInt_FromLong(oparg);
2454 if (!retval) {
2455 x = NULL;
2456 break;
2458 why = WHY_CONTINUE;
2459 goto fast_block_end;
2461 case SETUP_LOOP:
2462 case SETUP_EXCEPT:
2463 case SETUP_FINALLY:
2464 /* NOTE: If you add any new block-setup opcodes that
2465 are not try/except/finally handlers, you may need
2466 to update the PyGen_NeedsFinalizing() function.
2469 PyFrame_BlockSetup(f, opcode, INSTR_OFFSET() + oparg,
2470 STACK_LEVEL());
2471 continue;
2473 case SETUP_WITH:
2475 static PyObject *exit, *enter;
2476 w = TOP();
2477 x = special_lookup(w, "__exit__", &exit);
2478 if (!x)
2479 break;
2480 SET_TOP(x);
2481 u = special_lookup(w, "__enter__", &enter);
2482 Py_DECREF(w);
2483 if (!u) {
2484 x = NULL;
2485 break;
2487 x = PyObject_CallFunctionObjArgs(u, NULL);
2488 Py_DECREF(u);
2489 if (!x)
2490 break;
2491 /* Setup the finally block before pushing the result
2492 of __enter__ on the stack. */
2493 PyFrame_BlockSetup(f, SETUP_FINALLY, INSTR_OFFSET() + oparg,
2494 STACK_LEVEL());
2496 PUSH(x);
2497 continue;
2500 case WITH_CLEANUP:
2502 /* At the top of the stack are 1-3 values indicating
2503 how/why we entered the finally clause:
2504 - TOP = None
2505 - (TOP, SECOND) = (WHY_{RETURN,CONTINUE}), retval
2506 - TOP = WHY_*; no retval below it
2507 - (TOP, SECOND, THIRD) = exc_info()
2508 Below them is EXIT, the context.__exit__ bound method.
2509 In the last case, we must call
2510 EXIT(TOP, SECOND, THIRD)
2511 otherwise we must call
2512 EXIT(None, None, None)
2514 In all cases, we remove EXIT from the stack, leaving
2515 the rest in the same order.
2517 In addition, if the stack represents an exception,
2518 *and* the function call returns a 'true' value, we
2519 "zap" this information, to prevent END_FINALLY from
2520 re-raising the exception. (But non-local gotos
2521 should still be resumed.)
2524 PyObject *exit_func;
2526 u = POP();
2527 if (u == Py_None) {
2528 exit_func = TOP();
2529 SET_TOP(u);
2530 v = w = Py_None;
2532 else if (PyInt_Check(u)) {
2533 switch(PyInt_AS_LONG(u)) {
2534 case WHY_RETURN:
2535 case WHY_CONTINUE:
2536 /* Retval in TOP. */
2537 exit_func = SECOND();
2538 SET_SECOND(TOP());
2539 SET_TOP(u);
2540 break;
2541 default:
2542 exit_func = TOP();
2543 SET_TOP(u);
2544 break;
2546 u = v = w = Py_None;
2548 else {
2549 v = TOP();
2550 w = SECOND();
2551 exit_func = THIRD();
2552 SET_TOP(u);
2553 SET_SECOND(v);
2554 SET_THIRD(w);
2556 /* XXX Not the fastest way to call it... */
2557 x = PyObject_CallFunctionObjArgs(exit_func, u, v, w,
2558 NULL);
2559 Py_DECREF(exit_func);
2560 if (x == NULL)
2561 break; /* Go to error exit */
2563 if (u != Py_None)
2564 err = PyObject_IsTrue(x);
2565 else
2566 err = 0;
2567 Py_DECREF(x);
2569 if (err < 0)
2570 break; /* Go to error exit */
2571 else if (err > 0) {
2572 err = 0;
2573 /* There was an exception and a true return */
2574 STACKADJ(-2);
2575 Py_INCREF(Py_None);
2576 SET_TOP(Py_None);
2577 Py_DECREF(u);
2578 Py_DECREF(v);
2579 Py_DECREF(w);
2580 } else {
2581 /* The stack was rearranged to remove EXIT
2582 above. Let END_FINALLY do its thing */
2584 PREDICT(END_FINALLY);
2585 break;
2588 case CALL_FUNCTION:
2590 PyObject **sp;
2591 PCALL(PCALL_ALL);
2592 sp = stack_pointer;
2593 #ifdef WITH_TSC
2594 x = call_function(&sp, oparg, &intr0, &intr1);
2595 #else
2596 x = call_function(&sp, oparg);
2597 #endif
2598 stack_pointer = sp;
2599 PUSH(x);
2600 if (x != NULL)
2601 continue;
2602 break;
2605 case CALL_FUNCTION_VAR:
2606 case CALL_FUNCTION_KW:
2607 case CALL_FUNCTION_VAR_KW:
2609 int na = oparg & 0xff;
2610 int nk = (oparg>>8) & 0xff;
2611 int flags = (opcode - CALL_FUNCTION) & 3;
2612 int n = na + 2 * nk;
2613 PyObject **pfunc, *func, **sp;
2614 PCALL(PCALL_ALL);
2615 if (flags & CALL_FLAG_VAR)
2616 n++;
2617 if (flags & CALL_FLAG_KW)
2618 n++;
2619 pfunc = stack_pointer - n - 1;
2620 func = *pfunc;
2622 if (PyMethod_Check(func)
2623 && PyMethod_GET_SELF(func) != NULL) {
2624 PyObject *self = PyMethod_GET_SELF(func);
2625 Py_INCREF(self);
2626 func = PyMethod_GET_FUNCTION(func);
2627 Py_INCREF(func);
2628 Py_DECREF(*pfunc);
2629 *pfunc = self;
2630 na++;
2631 n++;
2632 } else
2633 Py_INCREF(func);
2634 sp = stack_pointer;
2635 READ_TIMESTAMP(intr0);
2636 x = ext_do_call(func, &sp, flags, na, nk);
2637 READ_TIMESTAMP(intr1);
2638 stack_pointer = sp;
2639 Py_DECREF(func);
2641 while (stack_pointer > pfunc) {
2642 w = POP();
2643 Py_DECREF(w);
2645 PUSH(x);
2646 if (x != NULL)
2647 continue;
2648 break;
2651 case MAKE_FUNCTION:
2652 v = POP(); /* code object */
2653 x = PyFunction_New(v, f->f_globals);
2654 Py_DECREF(v);
2655 /* XXX Maybe this should be a separate opcode? */
2656 if (x != NULL && oparg > 0) {
2657 v = PyTuple_New(oparg);
2658 if (v == NULL) {
2659 Py_DECREF(x);
2660 x = NULL;
2661 break;
2663 while (--oparg >= 0) {
2664 w = POP();
2665 PyTuple_SET_ITEM(v, oparg, w);
2667 err = PyFunction_SetDefaults(x, v);
2668 Py_DECREF(v);
2670 PUSH(x);
2671 break;
2673 case MAKE_CLOSURE:
2675 v = POP(); /* code object */
2676 x = PyFunction_New(v, f->f_globals);
2677 Py_DECREF(v);
2678 if (x != NULL) {
2679 v = POP();
2680 if (PyFunction_SetClosure(x, v) != 0) {
2681 /* Can't happen unless bytecode is corrupt. */
2682 why = WHY_EXCEPTION;
2684 Py_DECREF(v);
2686 if (x != NULL && oparg > 0) {
2687 v = PyTuple_New(oparg);
2688 if (v == NULL) {
2689 Py_DECREF(x);
2690 x = NULL;
2691 break;
2693 while (--oparg >= 0) {
2694 w = POP();
2695 PyTuple_SET_ITEM(v, oparg, w);
2697 if (PyFunction_SetDefaults(x, v) != 0) {
2698 /* Can't happen unless
2699 PyFunction_SetDefaults changes. */
2700 why = WHY_EXCEPTION;
2702 Py_DECREF(v);
2704 PUSH(x);
2705 break;
2708 case BUILD_SLICE:
2709 if (oparg == 3)
2710 w = POP();
2711 else
2712 w = NULL;
2713 v = POP();
2714 u = TOP();
2715 x = PySlice_New(u, v, w);
2716 Py_DECREF(u);
2717 Py_DECREF(v);
2718 Py_XDECREF(w);
2719 SET_TOP(x);
2720 if (x != NULL) continue;
2721 break;
2723 case EXTENDED_ARG:
2724 opcode = NEXTOP();
2725 oparg = oparg<<16 | NEXTARG();
2726 goto dispatch_opcode;
2728 default:
2729 fprintf(stderr,
2730 "XXX lineno: %d, opcode: %d\n",
2731 PyFrame_GetLineNumber(f),
2732 opcode);
2733 PyErr_SetString(PyExc_SystemError, "unknown opcode");
2734 why = WHY_EXCEPTION;
2735 break;
2737 #ifdef CASE_TOO_BIG
2739 #endif
2741 } /* switch */
2743 on_error:
2745 READ_TIMESTAMP(inst1);
2747 /* Quickly continue if no error occurred */
2749 if (why == WHY_NOT) {
2750 if (err == 0 && x != NULL) {
2751 #ifdef CHECKEXC
2752 /* This check is expensive! */
2753 if (PyErr_Occurred())
2754 fprintf(stderr,
2755 "XXX undetected error\n");
2756 else {
2757 #endif
2758 READ_TIMESTAMP(loop1);
2759 continue; /* Normal, fast path */
2760 #ifdef CHECKEXC
2762 #endif
2764 why = WHY_EXCEPTION;
2765 x = Py_None;
2766 err = 0;
2769 /* Double-check exception status */
2771 if (why == WHY_EXCEPTION || why == WHY_RERAISE) {
2772 if (!PyErr_Occurred()) {
2773 PyErr_SetString(PyExc_SystemError,
2774 "error return without exception set");
2775 why = WHY_EXCEPTION;
2778 #ifdef CHECKEXC
2779 else {
2780 /* This check is expensive! */
2781 if (PyErr_Occurred()) {
2782 char buf[128];
2783 sprintf(buf, "Stack unwind with exception "
2784 "set and why=%d", why);
2785 Py_FatalError(buf);
2788 #endif
2790 /* Log traceback info if this is a real exception */
2792 if (why == WHY_EXCEPTION) {
2793 PyTraceBack_Here(f);
2795 if (tstate->c_tracefunc != NULL)
2796 call_exc_trace(tstate->c_tracefunc,
2797 tstate->c_traceobj, f);
2800 /* For the rest, treat WHY_RERAISE as WHY_EXCEPTION */
2802 if (why == WHY_RERAISE)
2803 why = WHY_EXCEPTION;
2805 /* Unwind stacks if a (pseudo) exception occurred */
2807 fast_block_end:
2808 while (why != WHY_NOT && f->f_iblock > 0) {
2809 /* Peek at the current block. */
2810 PyTryBlock *b = &f->f_blockstack[f->f_iblock - 1];
2812 assert(why != WHY_YIELD);
2813 if (b->b_type == SETUP_LOOP && why == WHY_CONTINUE) {
2814 why = WHY_NOT;
2815 JUMPTO(PyInt_AS_LONG(retval));
2816 Py_DECREF(retval);
2817 break;
2820 /* Now we have to pop the block. */
2821 f->f_iblock--;
2823 while (STACK_LEVEL() > b->b_level) {
2824 v = POP();
2825 Py_XDECREF(v);
2827 if (b->b_type == SETUP_LOOP && why == WHY_BREAK) {
2828 why = WHY_NOT;
2829 JUMPTO(b->b_handler);
2830 break;
2832 if (b->b_type == SETUP_FINALLY ||
2833 (b->b_type == SETUP_EXCEPT &&
2834 why == WHY_EXCEPTION)) {
2835 if (why == WHY_EXCEPTION) {
2836 PyObject *exc, *val, *tb;
2837 PyErr_Fetch(&exc, &val, &tb);
2838 if (val == NULL) {
2839 val = Py_None;
2840 Py_INCREF(val);
2842 /* Make the raw exception data
2843 available to the handler,
2844 so a program can emulate the
2845 Python main loop. Don't do
2846 this for 'finally'. */
2847 if (b->b_type == SETUP_EXCEPT) {
2848 PyErr_NormalizeException(
2849 &exc, &val, &tb);
2850 set_exc_info(tstate,
2851 exc, val, tb);
2853 if (tb == NULL) {
2854 Py_INCREF(Py_None);
2855 PUSH(Py_None);
2856 } else
2857 PUSH(tb);
2858 PUSH(val);
2859 PUSH(exc);
2861 else {
2862 if (why & (WHY_RETURN | WHY_CONTINUE))
2863 PUSH(retval);
2864 v = PyInt_FromLong((long)why);
2865 PUSH(v);
2867 why = WHY_NOT;
2868 JUMPTO(b->b_handler);
2869 break;
2871 } /* unwind stack */
2873 /* End the loop if we still have an error (or return) */
2875 if (why != WHY_NOT)
2876 break;
2877 READ_TIMESTAMP(loop1);
2879 } /* main loop */
2881 assert(why != WHY_YIELD);
2882 /* Pop remaining stack entries. */
2883 while (!EMPTY()) {
2884 v = POP();
2885 Py_XDECREF(v);
2888 if (why != WHY_RETURN)
2889 retval = NULL;
2891 fast_yield:
2892 if (tstate->use_tracing) {
2893 if (tstate->c_tracefunc) {
2894 if (why == WHY_RETURN || why == WHY_YIELD) {
2895 if (call_trace(tstate->c_tracefunc,
2896 tstate->c_traceobj, f,
2897 PyTrace_RETURN, retval)) {
2898 Py_XDECREF(retval);
2899 retval = NULL;
2900 why = WHY_EXCEPTION;
2903 else if (why == WHY_EXCEPTION) {
2904 call_trace_protected(tstate->c_tracefunc,
2905 tstate->c_traceobj, f,
2906 PyTrace_RETURN, NULL);
2909 if (tstate->c_profilefunc) {
2910 if (why == WHY_EXCEPTION)
2911 call_trace_protected(tstate->c_profilefunc,
2912 tstate->c_profileobj, f,
2913 PyTrace_RETURN, NULL);
2914 else if (call_trace(tstate->c_profilefunc,
2915 tstate->c_profileobj, f,
2916 PyTrace_RETURN, retval)) {
2917 Py_XDECREF(retval);
2918 retval = NULL;
2919 why = WHY_EXCEPTION;
2924 if (tstate->frame->f_exc_type != NULL)
2925 reset_exc_info(tstate);
2926 else {
2927 assert(tstate->frame->f_exc_value == NULL);
2928 assert(tstate->frame->f_exc_traceback == NULL);
2931 /* pop frame */
2932 exit_eval_frame:
2933 Py_LeaveRecursiveCall();
2934 tstate->frame = f->f_back;
2936 return retval;
2939 /* This is gonna seem *real weird*, but if you put some other code between
2940 PyEval_EvalFrame() and PyEval_EvalCodeEx() you will need to adjust
2941 the test in the if statements in Misc/gdbinit (pystack and pystackv). */
2943 PyObject *
2944 PyEval_EvalCodeEx(PyCodeObject *co, PyObject *globals, PyObject *locals,
2945 PyObject **args, int argcount, PyObject **kws, int kwcount,
2946 PyObject **defs, int defcount, PyObject *closure)
2948 register PyFrameObject *f;
2949 register PyObject *retval = NULL;
2950 register PyObject **fastlocals, **freevars;
2951 PyThreadState *tstate = PyThreadState_GET();
2952 PyObject *x, *u;
2954 if (globals == NULL) {
2955 PyErr_SetString(PyExc_SystemError,
2956 "PyEval_EvalCodeEx: NULL globals");
2957 return NULL;
2960 assert(tstate != NULL);
2961 assert(globals != NULL);
2962 f = PyFrame_New(tstate, co, globals, locals);
2963 if (f == NULL)
2964 return NULL;
2966 fastlocals = f->f_localsplus;
2967 freevars = f->f_localsplus + co->co_nlocals;
2969 if (co->co_argcount > 0 ||
2970 co->co_flags & (CO_VARARGS | CO_VARKEYWORDS)) {
2971 int i;
2972 int n = argcount;
2973 PyObject *kwdict = NULL;
2974 if (co->co_flags & CO_VARKEYWORDS) {
2975 kwdict = PyDict_New();
2976 if (kwdict == NULL)
2977 goto fail;
2978 i = co->co_argcount;
2979 if (co->co_flags & CO_VARARGS)
2980 i++;
2981 SETLOCAL(i, kwdict);
2983 if (argcount > co->co_argcount) {
2984 if (!(co->co_flags & CO_VARARGS)) {
2985 PyErr_Format(PyExc_TypeError,
2986 "%.200s() takes %s %d "
2987 "%sargument%s (%d given)",
2988 PyString_AsString(co->co_name),
2989 defcount ? "at most" : "exactly",
2990 co->co_argcount,
2991 kwcount ? "non-keyword " : "",
2992 co->co_argcount == 1 ? "" : "s",
2993 argcount);
2994 goto fail;
2996 n = co->co_argcount;
2998 for (i = 0; i < n; i++) {
2999 x = args[i];
3000 Py_INCREF(x);
3001 SETLOCAL(i, x);
3003 if (co->co_flags & CO_VARARGS) {
3004 u = PyTuple_New(argcount - n);
3005 if (u == NULL)
3006 goto fail;
3007 SETLOCAL(co->co_argcount, u);
3008 for (i = n; i < argcount; i++) {
3009 x = args[i];
3010 Py_INCREF(x);
3011 PyTuple_SET_ITEM(u, i-n, x);
3014 for (i = 0; i < kwcount; i++) {
3015 PyObject **co_varnames;
3016 PyObject *keyword = kws[2*i];
3017 PyObject *value = kws[2*i + 1];
3018 int j;
3019 if (keyword == NULL || !(PyString_Check(keyword)
3020 #ifdef Py_USING_UNICODE
3021 || PyUnicode_Check(keyword)
3022 #endif
3023 )) {
3024 PyErr_Format(PyExc_TypeError,
3025 "%.200s() keywords must be strings",
3026 PyString_AsString(co->co_name));
3027 goto fail;
3029 /* Speed hack: do raw pointer compares. As names are
3030 normally interned this should almost always hit. */
3031 co_varnames = PySequence_Fast_ITEMS(co->co_varnames);
3032 for (j = 0; j < co->co_argcount; j++) {
3033 PyObject *nm = co_varnames[j];
3034 if (nm == keyword)
3035 goto kw_found;
3037 /* Slow fallback, just in case */
3038 for (j = 0; j < co->co_argcount; j++) {
3039 PyObject *nm = co_varnames[j];
3040 int cmp = PyObject_RichCompareBool(
3041 keyword, nm, Py_EQ);
3042 if (cmp > 0)
3043 goto kw_found;
3044 else if (cmp < 0)
3045 goto fail;
3047 /* Check errors from Compare */
3048 if (PyErr_Occurred())
3049 goto fail;
3050 if (j >= co->co_argcount) {
3051 if (kwdict == NULL) {
3052 PyObject *kwd_str = kwd_as_string(keyword);
3053 if (kwd_str) {
3054 PyErr_Format(PyExc_TypeError,
3055 "%.200s() got an unexpected "
3056 "keyword argument '%.400s'",
3057 PyString_AsString(co->co_name),
3058 PyString_AsString(kwd_str));
3059 Py_DECREF(kwd_str);
3061 goto fail;
3063 PyDict_SetItem(kwdict, keyword, value);
3064 continue;
3066 kw_found:
3067 if (GETLOCAL(j) != NULL) {
3068 PyObject *kwd_str = kwd_as_string(keyword);
3069 if (kwd_str) {
3070 PyErr_Format(PyExc_TypeError,
3071 "%.200s() got multiple "
3072 "values for keyword "
3073 "argument '%.400s'",
3074 PyString_AsString(co->co_name),
3075 PyString_AsString(kwd_str));
3076 Py_DECREF(kwd_str);
3078 goto fail;
3080 Py_INCREF(value);
3081 SETLOCAL(j, value);
3083 if (argcount < co->co_argcount) {
3084 int m = co->co_argcount - defcount;
3085 for (i = argcount; i < m; i++) {
3086 if (GETLOCAL(i) == NULL) {
3087 PyErr_Format(PyExc_TypeError,
3088 "%.200s() takes %s %d "
3089 "%sargument%s (%d given)",
3090 PyString_AsString(co->co_name),
3091 ((co->co_flags & CO_VARARGS) ||
3092 defcount) ? "at least"
3093 : "exactly",
3094 m, kwcount ? "non-keyword " : "",
3095 m == 1 ? "" : "s", i);
3096 goto fail;
3099 if (n > m)
3100 i = n - m;
3101 else
3102 i = 0;
3103 for (; i < defcount; i++) {
3104 if (GETLOCAL(m+i) == NULL) {
3105 PyObject *def = defs[i];
3106 Py_INCREF(def);
3107 SETLOCAL(m+i, def);
3112 else {
3113 if (argcount > 0 || kwcount > 0) {
3114 PyErr_Format(PyExc_TypeError,
3115 "%.200s() takes no arguments (%d given)",
3116 PyString_AsString(co->co_name),
3117 argcount + kwcount);
3118 goto fail;
3121 /* Allocate and initialize storage for cell vars, and copy free
3122 vars into frame. This isn't too efficient right now. */
3123 if (PyTuple_GET_SIZE(co->co_cellvars)) {
3124 int i, j, nargs, found;
3125 char *cellname, *argname;
3126 PyObject *c;
3128 nargs = co->co_argcount;
3129 if (co->co_flags & CO_VARARGS)
3130 nargs++;
3131 if (co->co_flags & CO_VARKEYWORDS)
3132 nargs++;
3134 /* Initialize each cell var, taking into account
3135 cell vars that are initialized from arguments.
3137 Should arrange for the compiler to put cellvars
3138 that are arguments at the beginning of the cellvars
3139 list so that we can march over it more efficiently?
3141 for (i = 0; i < PyTuple_GET_SIZE(co->co_cellvars); ++i) {
3142 cellname = PyString_AS_STRING(
3143 PyTuple_GET_ITEM(co->co_cellvars, i));
3144 found = 0;
3145 for (j = 0; j < nargs; j++) {
3146 argname = PyString_AS_STRING(
3147 PyTuple_GET_ITEM(co->co_varnames, j));
3148 if (strcmp(cellname, argname) == 0) {
3149 c = PyCell_New(GETLOCAL(j));
3150 if (c == NULL)
3151 goto fail;
3152 GETLOCAL(co->co_nlocals + i) = c;
3153 found = 1;
3154 break;
3157 if (found == 0) {
3158 c = PyCell_New(NULL);
3159 if (c == NULL)
3160 goto fail;
3161 SETLOCAL(co->co_nlocals + i, c);
3165 if (PyTuple_GET_SIZE(co->co_freevars)) {
3166 int i;
3167 for (i = 0; i < PyTuple_GET_SIZE(co->co_freevars); ++i) {
3168 PyObject *o = PyTuple_GET_ITEM(closure, i);
3169 Py_INCREF(o);
3170 freevars[PyTuple_GET_SIZE(co->co_cellvars) + i] = o;
3174 if (co->co_flags & CO_GENERATOR) {
3175 /* Don't need to keep the reference to f_back, it will be set
3176 * when the generator is resumed. */
3177 Py_XDECREF(f->f_back);
3178 f->f_back = NULL;
3180 PCALL(PCALL_GENERATOR);
3182 /* Create a new generator that owns the ready to run frame
3183 * and return that as the value. */
3184 return PyGen_New(f);
3187 retval = PyEval_EvalFrameEx(f,0);
3189 fail: /* Jump here from prelude on failure */
3191 /* decref'ing the frame can cause __del__ methods to get invoked,
3192 which can call back into Python. While we're done with the
3193 current Python frame (f), the associated C stack is still in use,
3194 so recursion_depth must be boosted for the duration.
3196 assert(tstate != NULL);
3197 ++tstate->recursion_depth;
3198 Py_DECREF(f);
3199 --tstate->recursion_depth;
3200 return retval;
3204 static PyObject *
3205 special_lookup(PyObject *o, char *meth, PyObject **cache)
3207 PyObject *res;
3208 if (PyInstance_Check(o)) {
3209 if (!*cache)
3210 return PyObject_GetAttrString(o, meth);
3211 else
3212 return PyObject_GetAttr(o, *cache);
3214 res = _PyObject_LookupSpecial(o, meth, cache);
3215 if (res == NULL && !PyErr_Occurred()) {
3216 PyErr_SetObject(PyExc_AttributeError, *cache);
3217 return NULL;
3219 return res;
3223 static PyObject *
3224 kwd_as_string(PyObject *kwd) {
3225 #ifdef Py_USING_UNICODE
3226 if (PyString_Check(kwd)) {
3227 #else
3228 assert(PyString_Check(kwd));
3229 #endif
3230 Py_INCREF(kwd);
3231 return kwd;
3232 #ifdef Py_USING_UNICODE
3234 return _PyUnicode_AsDefaultEncodedString(kwd, "replace");
3235 #endif
3239 /* Implementation notes for set_exc_info() and reset_exc_info():
3241 - Below, 'exc_ZZZ' stands for 'exc_type', 'exc_value' and
3242 'exc_traceback'. These always travel together.
3244 - tstate->curexc_ZZZ is the "hot" exception that is set by
3245 PyErr_SetString(), cleared by PyErr_Clear(), and so on.
3247 - Once an exception is caught by an except clause, it is transferred
3248 from tstate->curexc_ZZZ to tstate->exc_ZZZ, from which sys.exc_info()
3249 can pick it up. This is the primary task of set_exc_info().
3250 XXX That can't be right: set_exc_info() doesn't look at tstate->curexc_ZZZ.
3252 - Now let me explain the complicated dance with frame->f_exc_ZZZ.
3254 Long ago, when none of this existed, there were just a few globals:
3255 one set corresponding to the "hot" exception, and one set
3256 corresponding to sys.exc_ZZZ. (Actually, the latter weren't C
3257 globals; they were simply stored as sys.exc_ZZZ. For backwards
3258 compatibility, they still are!) The problem was that in code like
3259 this:
3261 try:
3262 "something that may fail"
3263 except "some exception":
3264 "do something else first"
3265 "print the exception from sys.exc_ZZZ."
3267 if "do something else first" invoked something that raised and caught
3268 an exception, sys.exc_ZZZ were overwritten. That was a frequent
3269 cause of subtle bugs. I fixed this by changing the semantics as
3270 follows:
3272 - Within one frame, sys.exc_ZZZ will hold the last exception caught
3273 *in that frame*.
3275 - But initially, and as long as no exception is caught in a given
3276 frame, sys.exc_ZZZ will hold the last exception caught in the
3277 previous frame (or the frame before that, etc.).
3279 The first bullet fixed the bug in the above example. The second
3280 bullet was for backwards compatibility: it was (and is) common to
3281 have a function that is called when an exception is caught, and to
3282 have that function access the caught exception via sys.exc_ZZZ.
3283 (Example: traceback.print_exc()).
3285 At the same time I fixed the problem that sys.exc_ZZZ weren't
3286 thread-safe, by introducing sys.exc_info() which gets it from tstate;
3287 but that's really a separate improvement.
3289 The reset_exc_info() function in ceval.c restores the tstate->exc_ZZZ
3290 variables to what they were before the current frame was called. The
3291 set_exc_info() function saves them on the frame so that
3292 reset_exc_info() can restore them. The invariant is that
3293 frame->f_exc_ZZZ is NULL iff the current frame never caught an
3294 exception (where "catching" an exception applies only to successful
3295 except clauses); and if the current frame ever caught an exception,
3296 frame->f_exc_ZZZ is the exception that was stored in tstate->exc_ZZZ
3297 at the start of the current frame.
3301 static void
3302 set_exc_info(PyThreadState *tstate,
3303 PyObject *type, PyObject *value, PyObject *tb)
3305 PyFrameObject *frame = tstate->frame;
3306 PyObject *tmp_type, *tmp_value, *tmp_tb;
3308 assert(type != NULL);
3309 assert(frame != NULL);
3310 if (frame->f_exc_type == NULL) {
3311 assert(frame->f_exc_value == NULL);
3312 assert(frame->f_exc_traceback == NULL);
3313 /* This frame didn't catch an exception before. */
3314 /* Save previous exception of this thread in this frame. */
3315 if (tstate->exc_type == NULL) {
3316 /* XXX Why is this set to Py_None? */
3317 Py_INCREF(Py_None);
3318 tstate->exc_type = Py_None;
3320 Py_INCREF(tstate->exc_type);
3321 Py_XINCREF(tstate->exc_value);
3322 Py_XINCREF(tstate->exc_traceback);
3323 frame->f_exc_type = tstate->exc_type;
3324 frame->f_exc_value = tstate->exc_value;
3325 frame->f_exc_traceback = tstate->exc_traceback;
3327 /* Set new exception for this thread. */
3328 tmp_type = tstate->exc_type;
3329 tmp_value = tstate->exc_value;
3330 tmp_tb = tstate->exc_traceback;
3331 Py_INCREF(type);
3332 Py_XINCREF(value);
3333 Py_XINCREF(tb);
3334 tstate->exc_type = type;
3335 tstate->exc_value = value;
3336 tstate->exc_traceback = tb;
3337 Py_XDECREF(tmp_type);
3338 Py_XDECREF(tmp_value);
3339 Py_XDECREF(tmp_tb);
3340 /* For b/w compatibility */
3341 PySys_SetObject("exc_type", type);
3342 PySys_SetObject("exc_value", value);
3343 PySys_SetObject("exc_traceback", tb);
3346 static void
3347 reset_exc_info(PyThreadState *tstate)
3349 PyFrameObject *frame;
3350 PyObject *tmp_type, *tmp_value, *tmp_tb;
3352 /* It's a precondition that the thread state's frame caught an
3353 * exception -- verify in a debug build.
3355 assert(tstate != NULL);
3356 frame = tstate->frame;
3357 assert(frame != NULL);
3358 assert(frame->f_exc_type != NULL);
3360 /* Copy the frame's exception info back to the thread state. */
3361 tmp_type = tstate->exc_type;
3362 tmp_value = tstate->exc_value;
3363 tmp_tb = tstate->exc_traceback;
3364 Py_INCREF(frame->f_exc_type);
3365 Py_XINCREF(frame->f_exc_value);
3366 Py_XINCREF(frame->f_exc_traceback);
3367 tstate->exc_type = frame->f_exc_type;
3368 tstate->exc_value = frame->f_exc_value;
3369 tstate->exc_traceback = frame->f_exc_traceback;
3370 Py_XDECREF(tmp_type);
3371 Py_XDECREF(tmp_value);
3372 Py_XDECREF(tmp_tb);
3374 /* For b/w compatibility */
3375 PySys_SetObject("exc_type", frame->f_exc_type);
3376 PySys_SetObject("exc_value", frame->f_exc_value);
3377 PySys_SetObject("exc_traceback", frame->f_exc_traceback);
3379 /* Clear the frame's exception info. */
3380 tmp_type = frame->f_exc_type;
3381 tmp_value = frame->f_exc_value;
3382 tmp_tb = frame->f_exc_traceback;
3383 frame->f_exc_type = NULL;
3384 frame->f_exc_value = NULL;
3385 frame->f_exc_traceback = NULL;
3386 Py_DECREF(tmp_type);
3387 Py_XDECREF(tmp_value);
3388 Py_XDECREF(tmp_tb);
3391 /* Logic for the raise statement (too complicated for inlining).
3392 This *consumes* a reference count to each of its arguments. */
3393 static enum why_code
3394 do_raise(PyObject *type, PyObject *value, PyObject *tb)
3396 if (type == NULL) {
3397 /* Reraise */
3398 PyThreadState *tstate = PyThreadState_GET();
3399 type = tstate->exc_type == NULL ? Py_None : tstate->exc_type;
3400 value = tstate->exc_value;
3401 tb = tstate->exc_traceback;
3402 Py_XINCREF(type);
3403 Py_XINCREF(value);
3404 Py_XINCREF(tb);
3407 /* We support the following forms of raise:
3408 raise <class>, <classinstance>
3409 raise <class>, <argument tuple>
3410 raise <class>, None
3411 raise <class>, <argument>
3412 raise <classinstance>, None
3413 raise <string>, <object>
3414 raise <string>, None
3416 An omitted second argument is the same as None.
3418 In addition, raise <tuple>, <anything> is the same as
3419 raising the tuple's first item (and it better have one!);
3420 this rule is applied recursively.
3422 Finally, an optional third argument can be supplied, which
3423 gives the traceback to be substituted (useful when
3424 re-raising an exception after examining it). */
3426 /* First, check the traceback argument, replacing None with
3427 NULL. */
3428 if (tb == Py_None) {
3429 Py_DECREF(tb);
3430 tb = NULL;
3432 else if (tb != NULL && !PyTraceBack_Check(tb)) {
3433 PyErr_SetString(PyExc_TypeError,
3434 "raise: arg 3 must be a traceback or None");
3435 goto raise_error;
3438 /* Next, replace a missing value with None */
3439 if (value == NULL) {
3440 value = Py_None;
3441 Py_INCREF(value);
3444 /* Next, repeatedly, replace a tuple exception with its first item */
3445 while (PyTuple_Check(type) && PyTuple_Size(type) > 0) {
3446 PyObject *tmp = type;
3447 type = PyTuple_GET_ITEM(type, 0);
3448 Py_INCREF(type);
3449 Py_DECREF(tmp);
3452 if (PyExceptionClass_Check(type))
3453 PyErr_NormalizeException(&type, &value, &tb);
3455 else if (PyExceptionInstance_Check(type)) {
3456 /* Raising an instance. The value should be a dummy. */
3457 if (value != Py_None) {
3458 PyErr_SetString(PyExc_TypeError,
3459 "instance exception may not have a separate value");
3460 goto raise_error;
3462 else {
3463 /* Normalize to raise <class>, <instance> */
3464 Py_DECREF(value);
3465 value = type;
3466 type = PyExceptionInstance_Class(type);
3467 Py_INCREF(type);
3470 else {
3471 /* Not something you can raise. You get an exception
3472 anyway, just not what you specified :-) */
3473 PyErr_Format(PyExc_TypeError,
3474 "exceptions must be classes or instances, not %s",
3475 type->ob_type->tp_name);
3476 goto raise_error;
3479 assert(PyExceptionClass_Check(type));
3480 if (Py_Py3kWarningFlag && PyClass_Check(type)) {
3481 if (PyErr_WarnEx(PyExc_DeprecationWarning,
3482 "exceptions must derive from BaseException "
3483 "in 3.x", 1) < 0)
3484 goto raise_error;
3487 PyErr_Restore(type, value, tb);
3488 if (tb == NULL)
3489 return WHY_EXCEPTION;
3490 else
3491 return WHY_RERAISE;
3492 raise_error:
3493 Py_XDECREF(value);
3494 Py_XDECREF(type);
3495 Py_XDECREF(tb);
3496 return WHY_EXCEPTION;
3499 /* Iterate v argcnt times and store the results on the stack (via decreasing
3500 sp). Return 1 for success, 0 if error. */
3502 static int
3503 unpack_iterable(PyObject *v, int argcnt, PyObject **sp)
3505 int i = 0;
3506 PyObject *it; /* iter(v) */
3507 PyObject *w;
3509 assert(v != NULL);
3511 it = PyObject_GetIter(v);
3512 if (it == NULL)
3513 goto Error;
3515 for (; i < argcnt; i++) {
3516 w = PyIter_Next(it);
3517 if (w == NULL) {
3518 /* Iterator done, via error or exhaustion. */
3519 if (!PyErr_Occurred()) {
3520 PyErr_Format(PyExc_ValueError,
3521 "need more than %d value%s to unpack",
3522 i, i == 1 ? "" : "s");
3524 goto Error;
3526 *--sp = w;
3529 /* We better have exhausted the iterator now. */
3530 w = PyIter_Next(it);
3531 if (w == NULL) {
3532 if (PyErr_Occurred())
3533 goto Error;
3534 Py_DECREF(it);
3535 return 1;
3537 Py_DECREF(w);
3538 PyErr_SetString(PyExc_ValueError, "too many values to unpack");
3539 /* fall through */
3540 Error:
3541 for (; i > 0; i--, sp++)
3542 Py_DECREF(*sp);
3543 Py_XDECREF(it);
3544 return 0;
3548 #ifdef LLTRACE
3549 static int
3550 prtrace(PyObject *v, char *str)
3552 printf("%s ", str);
3553 if (PyObject_Print(v, stdout, 0) != 0)
3554 PyErr_Clear(); /* Don't know what else to do */
3555 printf("\n");
3556 return 1;
3558 #endif
3560 static void
3561 call_exc_trace(Py_tracefunc func, PyObject *self, PyFrameObject *f)
3563 PyObject *type, *value, *traceback, *arg;
3564 int err;
3565 PyErr_Fetch(&type, &value, &traceback);
3566 if (value == NULL) {
3567 value = Py_None;
3568 Py_INCREF(value);
3570 arg = PyTuple_Pack(3, type, value, traceback);
3571 if (arg == NULL) {
3572 PyErr_Restore(type, value, traceback);
3573 return;
3575 err = call_trace(func, self, f, PyTrace_EXCEPTION, arg);
3576 Py_DECREF(arg);
3577 if (err == 0)
3578 PyErr_Restore(type, value, traceback);
3579 else {
3580 Py_XDECREF(type);
3581 Py_XDECREF(value);
3582 Py_XDECREF(traceback);
3586 static int
3587 call_trace_protected(Py_tracefunc func, PyObject *obj, PyFrameObject *frame,
3588 int what, PyObject *arg)
3590 PyObject *type, *value, *traceback;
3591 int err;
3592 PyErr_Fetch(&type, &value, &traceback);
3593 err = call_trace(func, obj, frame, what, arg);
3594 if (err == 0)
3596 PyErr_Restore(type, value, traceback);
3597 return 0;
3599 else {
3600 Py_XDECREF(type);
3601 Py_XDECREF(value);
3602 Py_XDECREF(traceback);
3603 return -1;
3607 static int
3608 call_trace(Py_tracefunc func, PyObject *obj, PyFrameObject *frame,
3609 int what, PyObject *arg)
3611 register PyThreadState *tstate = frame->f_tstate;
3612 int result;
3613 if (tstate->tracing)
3614 return 0;
3615 tstate->tracing++;
3616 tstate->use_tracing = 0;
3617 result = func(obj, frame, what, arg);
3618 tstate->use_tracing = ((tstate->c_tracefunc != NULL)
3619 || (tstate->c_profilefunc != NULL));
3620 tstate->tracing--;
3621 return result;
3624 PyObject *
3625 _PyEval_CallTracing(PyObject *func, PyObject *args)
3627 PyFrameObject *frame = PyEval_GetFrame();
3628 PyThreadState *tstate = frame->f_tstate;
3629 int save_tracing = tstate->tracing;
3630 int save_use_tracing = tstate->use_tracing;
3631 PyObject *result;
3633 tstate->tracing = 0;
3634 tstate->use_tracing = ((tstate->c_tracefunc != NULL)
3635 || (tstate->c_profilefunc != NULL));
3636 result = PyObject_Call(func, args, NULL);
3637 tstate->tracing = save_tracing;
3638 tstate->use_tracing = save_use_tracing;
3639 return result;
3642 /* See Objects/lnotab_notes.txt for a description of how tracing works. */
3643 static int
3644 maybe_call_line_trace(Py_tracefunc func, PyObject *obj,
3645 PyFrameObject *frame, int *instr_lb, int *instr_ub,
3646 int *instr_prev)
3648 int result = 0;
3649 int line = frame->f_lineno;
3651 /* If the last instruction executed isn't in the current
3652 instruction window, reset the window.
3654 if (frame->f_lasti < *instr_lb || frame->f_lasti >= *instr_ub) {
3655 PyAddrPair bounds;
3656 line = _PyCode_CheckLineNumber(frame->f_code, frame->f_lasti,
3657 &bounds);
3658 *instr_lb = bounds.ap_lower;
3659 *instr_ub = bounds.ap_upper;
3661 /* If the last instruction falls at the start of a line or if
3662 it represents a jump backwards, update the frame's line
3663 number and call the trace function. */
3664 if (frame->f_lasti == *instr_lb || frame->f_lasti < *instr_prev) {
3665 frame->f_lineno = line;
3666 result = call_trace(func, obj, frame, PyTrace_LINE, Py_None);
3668 *instr_prev = frame->f_lasti;
3669 return result;
3672 void
3673 PyEval_SetProfile(Py_tracefunc func, PyObject *arg)
3675 PyThreadState *tstate = PyThreadState_GET();
3676 PyObject *temp = tstate->c_profileobj;
3677 Py_XINCREF(arg);
3678 tstate->c_profilefunc = NULL;
3679 tstate->c_profileobj = NULL;
3680 /* Must make sure that tracing is not ignored if 'temp' is freed */
3681 tstate->use_tracing = tstate->c_tracefunc != NULL;
3682 Py_XDECREF(temp);
3683 tstate->c_profilefunc = func;
3684 tstate->c_profileobj = arg;
3685 /* Flag that tracing or profiling is turned on */
3686 tstate->use_tracing = (func != NULL) || (tstate->c_tracefunc != NULL);
3689 void
3690 PyEval_SetTrace(Py_tracefunc func, PyObject *arg)
3692 PyThreadState *tstate = PyThreadState_GET();
3693 PyObject *temp = tstate->c_traceobj;
3694 _Py_TracingPossible += (func != NULL) - (tstate->c_tracefunc != NULL);
3695 Py_XINCREF(arg);
3696 tstate->c_tracefunc = NULL;
3697 tstate->c_traceobj = NULL;
3698 /* Must make sure that profiling is not ignored if 'temp' is freed */
3699 tstate->use_tracing = tstate->c_profilefunc != NULL;
3700 Py_XDECREF(temp);
3701 tstate->c_tracefunc = func;
3702 tstate->c_traceobj = arg;
3703 /* Flag that tracing or profiling is turned on */
3704 tstate->use_tracing = ((func != NULL)
3705 || (tstate->c_profilefunc != NULL));
3708 PyObject *
3709 PyEval_GetBuiltins(void)
3711 PyFrameObject *current_frame = PyEval_GetFrame();
3712 if (current_frame == NULL)
3713 return PyThreadState_GET()->interp->builtins;
3714 else
3715 return current_frame->f_builtins;
3718 PyObject *
3719 PyEval_GetLocals(void)
3721 PyFrameObject *current_frame = PyEval_GetFrame();
3722 if (current_frame == NULL)
3723 return NULL;
3724 PyFrame_FastToLocals(current_frame);
3725 return current_frame->f_locals;
3728 PyObject *
3729 PyEval_GetGlobals(void)
3731 PyFrameObject *current_frame = PyEval_GetFrame();
3732 if (current_frame == NULL)
3733 return NULL;
3734 else
3735 return current_frame->f_globals;
3738 PyFrameObject *
3739 PyEval_GetFrame(void)
3741 PyThreadState *tstate = PyThreadState_GET();
3742 return _PyThreadState_GetFrame(tstate);
3746 PyEval_GetRestricted(void)
3748 PyFrameObject *current_frame = PyEval_GetFrame();
3749 return current_frame == NULL ? 0 : PyFrame_IsRestricted(current_frame);
3753 PyEval_MergeCompilerFlags(PyCompilerFlags *cf)
3755 PyFrameObject *current_frame = PyEval_GetFrame();
3756 int result = cf->cf_flags != 0;
3758 if (current_frame != NULL) {
3759 const int codeflags = current_frame->f_code->co_flags;
3760 const int compilerflags = codeflags & PyCF_MASK;
3761 if (compilerflags) {
3762 result = 1;
3763 cf->cf_flags |= compilerflags;
3765 #if 0 /* future keyword */
3766 if (codeflags & CO_GENERATOR_ALLOWED) {
3767 result = 1;
3768 cf->cf_flags |= CO_GENERATOR_ALLOWED;
3770 #endif
3772 return result;
3776 Py_FlushLine(void)
3778 PyObject *f = PySys_GetObject("stdout");
3779 if (f == NULL)
3780 return 0;
3781 if (!PyFile_SoftSpace(f, 0))
3782 return 0;
3783 return PyFile_WriteString("\n", f);
3787 /* External interface to call any callable object.
3788 The arg must be a tuple or NULL. */
3790 #undef PyEval_CallObject
3791 /* for backward compatibility: export this interface */
3793 PyObject *
3794 PyEval_CallObject(PyObject *func, PyObject *arg)
3796 return PyEval_CallObjectWithKeywords(func, arg, (PyObject *)NULL);
3798 #define PyEval_CallObject(func,arg) \
3799 PyEval_CallObjectWithKeywords(func, arg, (PyObject *)NULL)
3801 PyObject *
3802 PyEval_CallObjectWithKeywords(PyObject *func, PyObject *arg, PyObject *kw)
3804 PyObject *result;
3806 if (arg == NULL) {
3807 arg = PyTuple_New(0);
3808 if (arg == NULL)
3809 return NULL;
3811 else if (!PyTuple_Check(arg)) {
3812 PyErr_SetString(PyExc_TypeError,
3813 "argument list must be a tuple");
3814 return NULL;
3816 else
3817 Py_INCREF(arg);
3819 if (kw != NULL && !PyDict_Check(kw)) {
3820 PyErr_SetString(PyExc_TypeError,
3821 "keyword list must be a dictionary");
3822 Py_DECREF(arg);
3823 return NULL;
3826 result = PyObject_Call(func, arg, kw);
3827 Py_DECREF(arg);
3828 return result;
3831 const char *
3832 PyEval_GetFuncName(PyObject *func)
3834 if (PyMethod_Check(func))
3835 return PyEval_GetFuncName(PyMethod_GET_FUNCTION(func));
3836 else if (PyFunction_Check(func))
3837 return PyString_AsString(((PyFunctionObject*)func)->func_name);
3838 else if (PyCFunction_Check(func))
3839 return ((PyCFunctionObject*)func)->m_ml->ml_name;
3840 else if (PyClass_Check(func))
3841 return PyString_AsString(((PyClassObject*)func)->cl_name);
3842 else if (PyInstance_Check(func)) {
3843 return PyString_AsString(
3844 ((PyInstanceObject*)func)->in_class->cl_name);
3845 } else {
3846 return func->ob_type->tp_name;
3850 const char *
3851 PyEval_GetFuncDesc(PyObject *func)
3853 if (PyMethod_Check(func))
3854 return "()";
3855 else if (PyFunction_Check(func))
3856 return "()";
3857 else if (PyCFunction_Check(func))
3858 return "()";
3859 else if (PyClass_Check(func))
3860 return " constructor";
3861 else if (PyInstance_Check(func)) {
3862 return " instance";
3863 } else {
3864 return " object";
3868 static void
3869 err_args(PyObject *func, int flags, int nargs)
3871 if (flags & METH_NOARGS)
3872 PyErr_Format(PyExc_TypeError,
3873 "%.200s() takes no arguments (%d given)",
3874 ((PyCFunctionObject *)func)->m_ml->ml_name,
3875 nargs);
3876 else
3877 PyErr_Format(PyExc_TypeError,
3878 "%.200s() takes exactly one argument (%d given)",
3879 ((PyCFunctionObject *)func)->m_ml->ml_name,
3880 nargs);
3883 #define C_TRACE(x, call) \
3884 if (tstate->use_tracing && tstate->c_profilefunc) { \
3885 if (call_trace(tstate->c_profilefunc, \
3886 tstate->c_profileobj, \
3887 tstate->frame, PyTrace_C_CALL, \
3888 func)) { \
3889 x = NULL; \
3891 else { \
3892 x = call; \
3893 if (tstate->c_profilefunc != NULL) { \
3894 if (x == NULL) { \
3895 call_trace_protected(tstate->c_profilefunc, \
3896 tstate->c_profileobj, \
3897 tstate->frame, PyTrace_C_EXCEPTION, \
3898 func); \
3899 /* XXX should pass (type, value, tb) */ \
3900 } else { \
3901 if (call_trace(tstate->c_profilefunc, \
3902 tstate->c_profileobj, \
3903 tstate->frame, PyTrace_C_RETURN, \
3904 func)) { \
3905 Py_DECREF(x); \
3906 x = NULL; \
3911 } else { \
3912 x = call; \
3915 static PyObject *
3916 call_function(PyObject ***pp_stack, int oparg
3917 #ifdef WITH_TSC
3918 , uint64* pintr0, uint64* pintr1
3919 #endif
3922 int na = oparg & 0xff;
3923 int nk = (oparg>>8) & 0xff;
3924 int n = na + 2 * nk;
3925 PyObject **pfunc = (*pp_stack) - n - 1;
3926 PyObject *func = *pfunc;
3927 PyObject *x, *w;
3929 /* Always dispatch PyCFunction first, because these are
3930 presumed to be the most frequent callable object.
3932 if (PyCFunction_Check(func) && nk == 0) {
3933 int flags = PyCFunction_GET_FLAGS(func);
3934 PyThreadState *tstate = PyThreadState_GET();
3936 PCALL(PCALL_CFUNCTION);
3937 if (flags & (METH_NOARGS | METH_O)) {
3938 PyCFunction meth = PyCFunction_GET_FUNCTION(func);
3939 PyObject *self = PyCFunction_GET_SELF(func);
3940 if (flags & METH_NOARGS && na == 0) {
3941 C_TRACE(x, (*meth)(self,NULL));
3943 else if (flags & METH_O && na == 1) {
3944 PyObject *arg = EXT_POP(*pp_stack);
3945 C_TRACE(x, (*meth)(self,arg));
3946 Py_DECREF(arg);
3948 else {
3949 err_args(func, flags, na);
3950 x = NULL;
3953 else {
3954 PyObject *callargs;
3955 callargs = load_args(pp_stack, na);
3956 READ_TIMESTAMP(*pintr0);
3957 C_TRACE(x, PyCFunction_Call(func,callargs,NULL));
3958 READ_TIMESTAMP(*pintr1);
3959 Py_XDECREF(callargs);
3961 } else {
3962 if (PyMethod_Check(func) && PyMethod_GET_SELF(func) != NULL) {
3963 /* optimize access to bound methods */
3964 PyObject *self = PyMethod_GET_SELF(func);
3965 PCALL(PCALL_METHOD);
3966 PCALL(PCALL_BOUND_METHOD);
3967 Py_INCREF(self);
3968 func = PyMethod_GET_FUNCTION(func);
3969 Py_INCREF(func);
3970 Py_DECREF(*pfunc);
3971 *pfunc = self;
3972 na++;
3973 n++;
3974 } else
3975 Py_INCREF(func);
3976 READ_TIMESTAMP(*pintr0);
3977 if (PyFunction_Check(func))
3978 x = fast_function(func, pp_stack, n, na, nk);
3979 else
3980 x = do_call(func, pp_stack, na, nk);
3981 READ_TIMESTAMP(*pintr1);
3982 Py_DECREF(func);
3985 /* Clear the stack of the function object. Also removes
3986 the arguments in case they weren't consumed already
3987 (fast_function() and err_args() leave them on the stack).
3989 while ((*pp_stack) > pfunc) {
3990 w = EXT_POP(*pp_stack);
3991 Py_DECREF(w);
3992 PCALL(PCALL_POP);
3994 return x;
3997 /* The fast_function() function optimize calls for which no argument
3998 tuple is necessary; the objects are passed directly from the stack.
3999 For the simplest case -- a function that takes only positional
4000 arguments and is called with only positional arguments -- it
4001 inlines the most primitive frame setup code from
4002 PyEval_EvalCodeEx(), which vastly reduces the checks that must be
4003 done before evaluating the frame.
4006 static PyObject *
4007 fast_function(PyObject *func, PyObject ***pp_stack, int n, int na, int nk)
4009 PyCodeObject *co = (PyCodeObject *)PyFunction_GET_CODE(func);
4010 PyObject *globals = PyFunction_GET_GLOBALS(func);
4011 PyObject *argdefs = PyFunction_GET_DEFAULTS(func);
4012 PyObject **d = NULL;
4013 int nd = 0;
4015 PCALL(PCALL_FUNCTION);
4016 PCALL(PCALL_FAST_FUNCTION);
4017 if (argdefs == NULL && co->co_argcount == n && nk==0 &&
4018 co->co_flags == (CO_OPTIMIZED | CO_NEWLOCALS | CO_NOFREE)) {
4019 PyFrameObject *f;
4020 PyObject *retval = NULL;
4021 PyThreadState *tstate = PyThreadState_GET();
4022 PyObject **fastlocals, **stack;
4023 int i;
4025 PCALL(PCALL_FASTER_FUNCTION);
4026 assert(globals != NULL);
4027 /* XXX Perhaps we should create a specialized
4028 PyFrame_New() that doesn't take locals, but does
4029 take builtins without sanity checking them.
4031 assert(tstate != NULL);
4032 f = PyFrame_New(tstate, co, globals, NULL);
4033 if (f == NULL)
4034 return NULL;
4036 fastlocals = f->f_localsplus;
4037 stack = (*pp_stack) - n;
4039 for (i = 0; i < n; i++) {
4040 Py_INCREF(*stack);
4041 fastlocals[i] = *stack++;
4043 retval = PyEval_EvalFrameEx(f,0);
4044 ++tstate->recursion_depth;
4045 Py_DECREF(f);
4046 --tstate->recursion_depth;
4047 return retval;
4049 if (argdefs != NULL) {
4050 d = &PyTuple_GET_ITEM(argdefs, 0);
4051 nd = Py_SIZE(argdefs);
4053 return PyEval_EvalCodeEx(co, globals,
4054 (PyObject *)NULL, (*pp_stack)-n, na,
4055 (*pp_stack)-2*nk, nk, d, nd,
4056 PyFunction_GET_CLOSURE(func));
4059 static PyObject *
4060 update_keyword_args(PyObject *orig_kwdict, int nk, PyObject ***pp_stack,
4061 PyObject *func)
4063 PyObject *kwdict = NULL;
4064 if (orig_kwdict == NULL)
4065 kwdict = PyDict_New();
4066 else {
4067 kwdict = PyDict_Copy(orig_kwdict);
4068 Py_DECREF(orig_kwdict);
4070 if (kwdict == NULL)
4071 return NULL;
4072 while (--nk >= 0) {
4073 int err;
4074 PyObject *value = EXT_POP(*pp_stack);
4075 PyObject *key = EXT_POP(*pp_stack);
4076 if (PyDict_GetItem(kwdict, key) != NULL) {
4077 PyErr_Format(PyExc_TypeError,
4078 "%.200s%s got multiple values "
4079 "for keyword argument '%.200s'",
4080 PyEval_GetFuncName(func),
4081 PyEval_GetFuncDesc(func),
4082 PyString_AsString(key));
4083 Py_DECREF(key);
4084 Py_DECREF(value);
4085 Py_DECREF(kwdict);
4086 return NULL;
4088 err = PyDict_SetItem(kwdict, key, value);
4089 Py_DECREF(key);
4090 Py_DECREF(value);
4091 if (err) {
4092 Py_DECREF(kwdict);
4093 return NULL;
4096 return kwdict;
4099 static PyObject *
4100 update_star_args(int nstack, int nstar, PyObject *stararg,
4101 PyObject ***pp_stack)
4103 PyObject *callargs, *w;
4105 callargs = PyTuple_New(nstack + nstar);
4106 if (callargs == NULL) {
4107 return NULL;
4109 if (nstar) {
4110 int i;
4111 for (i = 0; i < nstar; i++) {
4112 PyObject *a = PyTuple_GET_ITEM(stararg, i);
4113 Py_INCREF(a);
4114 PyTuple_SET_ITEM(callargs, nstack + i, a);
4117 while (--nstack >= 0) {
4118 w = EXT_POP(*pp_stack);
4119 PyTuple_SET_ITEM(callargs, nstack, w);
4121 return callargs;
4124 static PyObject *
4125 load_args(PyObject ***pp_stack, int na)
4127 PyObject *args = PyTuple_New(na);
4128 PyObject *w;
4130 if (args == NULL)
4131 return NULL;
4132 while (--na >= 0) {
4133 w = EXT_POP(*pp_stack);
4134 PyTuple_SET_ITEM(args, na, w);
4136 return args;
4139 static PyObject *
4140 do_call(PyObject *func, PyObject ***pp_stack, int na, int nk)
4142 PyObject *callargs = NULL;
4143 PyObject *kwdict = NULL;
4144 PyObject *result = NULL;
4146 if (nk > 0) {
4147 kwdict = update_keyword_args(NULL, nk, pp_stack, func);
4148 if (kwdict == NULL)
4149 goto call_fail;
4151 callargs = load_args(pp_stack, na);
4152 if (callargs == NULL)
4153 goto call_fail;
4154 #ifdef CALL_PROFILE
4155 /* At this point, we have to look at the type of func to
4156 update the call stats properly. Do it here so as to avoid
4157 exposing the call stats machinery outside ceval.c
4159 if (PyFunction_Check(func))
4160 PCALL(PCALL_FUNCTION);
4161 else if (PyMethod_Check(func))
4162 PCALL(PCALL_METHOD);
4163 else if (PyType_Check(func))
4164 PCALL(PCALL_TYPE);
4165 else if (PyCFunction_Check(func))
4166 PCALL(PCALL_CFUNCTION);
4167 else
4168 PCALL(PCALL_OTHER);
4169 #endif
4170 if (PyCFunction_Check(func)) {
4171 PyThreadState *tstate = PyThreadState_GET();
4172 C_TRACE(result, PyCFunction_Call(func, callargs, kwdict));
4174 else
4175 result = PyObject_Call(func, callargs, kwdict);
4176 call_fail:
4177 Py_XDECREF(callargs);
4178 Py_XDECREF(kwdict);
4179 return result;
4182 static PyObject *
4183 ext_do_call(PyObject *func, PyObject ***pp_stack, int flags, int na, int nk)
4185 int nstar = 0;
4186 PyObject *callargs = NULL;
4187 PyObject *stararg = NULL;
4188 PyObject *kwdict = NULL;
4189 PyObject *result = NULL;
4191 if (flags & CALL_FLAG_KW) {
4192 kwdict = EXT_POP(*pp_stack);
4193 if (!PyDict_Check(kwdict)) {
4194 PyObject *d;
4195 d = PyDict_New();
4196 if (d == NULL)
4197 goto ext_call_fail;
4198 if (PyDict_Update(d, kwdict) != 0) {
4199 Py_DECREF(d);
4200 /* PyDict_Update raises attribute
4201 * error (percolated from an attempt
4202 * to get 'keys' attribute) instead of
4203 * a type error if its second argument
4204 * is not a mapping.
4206 if (PyErr_ExceptionMatches(PyExc_AttributeError)) {
4207 PyErr_Format(PyExc_TypeError,
4208 "%.200s%.200s argument after ** "
4209 "must be a mapping, not %.200s",
4210 PyEval_GetFuncName(func),
4211 PyEval_GetFuncDesc(func),
4212 kwdict->ob_type->tp_name);
4214 goto ext_call_fail;
4216 Py_DECREF(kwdict);
4217 kwdict = d;
4220 if (flags & CALL_FLAG_VAR) {
4221 stararg = EXT_POP(*pp_stack);
4222 if (!PyTuple_Check(stararg)) {
4223 PyObject *t = NULL;
4224 t = PySequence_Tuple(stararg);
4225 if (t == NULL) {
4226 if (PyErr_ExceptionMatches(PyExc_TypeError)) {
4227 PyErr_Format(PyExc_TypeError,
4228 "%.200s%.200s argument after * "
4229 "must be a sequence, not %200s",
4230 PyEval_GetFuncName(func),
4231 PyEval_GetFuncDesc(func),
4232 stararg->ob_type->tp_name);
4234 goto ext_call_fail;
4236 Py_DECREF(stararg);
4237 stararg = t;
4239 nstar = PyTuple_GET_SIZE(stararg);
4241 if (nk > 0) {
4242 kwdict = update_keyword_args(kwdict, nk, pp_stack, func);
4243 if (kwdict == NULL)
4244 goto ext_call_fail;
4246 callargs = update_star_args(na, nstar, stararg, pp_stack);
4247 if (callargs == NULL)
4248 goto ext_call_fail;
4249 #ifdef CALL_PROFILE
4250 /* At this point, we have to look at the type of func to
4251 update the call stats properly. Do it here so as to avoid
4252 exposing the call stats machinery outside ceval.c
4254 if (PyFunction_Check(func))
4255 PCALL(PCALL_FUNCTION);
4256 else if (PyMethod_Check(func))
4257 PCALL(PCALL_METHOD);
4258 else if (PyType_Check(func))
4259 PCALL(PCALL_TYPE);
4260 else if (PyCFunction_Check(func))
4261 PCALL(PCALL_CFUNCTION);
4262 else
4263 PCALL(PCALL_OTHER);
4264 #endif
4265 if (PyCFunction_Check(func)) {
4266 PyThreadState *tstate = PyThreadState_GET();
4267 C_TRACE(result, PyCFunction_Call(func, callargs, kwdict));
4269 else
4270 result = PyObject_Call(func, callargs, kwdict);
4271 ext_call_fail:
4272 Py_XDECREF(callargs);
4273 Py_XDECREF(kwdict);
4274 Py_XDECREF(stararg);
4275 return result;
4278 /* Extract a slice index from a PyInt or PyLong or an object with the
4279 nb_index slot defined, and store in *pi.
4280 Silently reduce values larger than PY_SSIZE_T_MAX to PY_SSIZE_T_MAX,
4281 and silently boost values less than -PY_SSIZE_T_MAX-1 to -PY_SSIZE_T_MAX-1.
4282 Return 0 on error, 1 on success.
4284 /* Note: If v is NULL, return success without storing into *pi. This
4285 is because_PyEval_SliceIndex() is called by apply_slice(), which can be
4286 called by the SLICE opcode with v and/or w equal to NULL.
4289 _PyEval_SliceIndex(PyObject *v, Py_ssize_t *pi)
4291 if (v != NULL) {
4292 Py_ssize_t x;
4293 if (PyInt_Check(v)) {
4294 /* XXX(nnorwitz): I think PyInt_AS_LONG is correct,
4295 however, it looks like it should be AsSsize_t.
4296 There should be a comment here explaining why.
4298 x = PyInt_AS_LONG(v);
4300 else if (PyIndex_Check(v)) {
4301 x = PyNumber_AsSsize_t(v, NULL);
4302 if (x == -1 && PyErr_Occurred())
4303 return 0;
4305 else {
4306 PyErr_SetString(PyExc_TypeError,
4307 "slice indices must be integers or "
4308 "None or have an __index__ method");
4309 return 0;
4311 *pi = x;
4313 return 1;
4316 #undef ISINDEX
4317 #define ISINDEX(x) ((x) == NULL || \
4318 PyInt_Check(x) || PyLong_Check(x) || PyIndex_Check(x))
4320 static PyObject *
4321 apply_slice(PyObject *u, PyObject *v, PyObject *w) /* return u[v:w] */
4323 PyTypeObject *tp = u->ob_type;
4324 PySequenceMethods *sq = tp->tp_as_sequence;
4326 if (sq && sq->sq_slice && ISINDEX(v) && ISINDEX(w)) {
4327 Py_ssize_t ilow = 0, ihigh = PY_SSIZE_T_MAX;
4328 if (!_PyEval_SliceIndex(v, &ilow))
4329 return NULL;
4330 if (!_PyEval_SliceIndex(w, &ihigh))
4331 return NULL;
4332 return PySequence_GetSlice(u, ilow, ihigh);
4334 else {
4335 PyObject *slice = PySlice_New(v, w, NULL);
4336 if (slice != NULL) {
4337 PyObject *res = PyObject_GetItem(u, slice);
4338 Py_DECREF(slice);
4339 return res;
4341 else
4342 return NULL;
4346 static int
4347 assign_slice(PyObject *u, PyObject *v, PyObject *w, PyObject *x)
4348 /* u[v:w] = x */
4350 PyTypeObject *tp = u->ob_type;
4351 PySequenceMethods *sq = tp->tp_as_sequence;
4353 if (sq && sq->sq_ass_slice && ISINDEX(v) && ISINDEX(w)) {
4354 Py_ssize_t ilow = 0, ihigh = PY_SSIZE_T_MAX;
4355 if (!_PyEval_SliceIndex(v, &ilow))
4356 return -1;
4357 if (!_PyEval_SliceIndex(w, &ihigh))
4358 return -1;
4359 if (x == NULL)
4360 return PySequence_DelSlice(u, ilow, ihigh);
4361 else
4362 return PySequence_SetSlice(u, ilow, ihigh, x);
4364 else {
4365 PyObject *slice = PySlice_New(v, w, NULL);
4366 if (slice != NULL) {
4367 int res;
4368 if (x != NULL)
4369 res = PyObject_SetItem(u, slice, x);
4370 else
4371 res = PyObject_DelItem(u, slice);
4372 Py_DECREF(slice);
4373 return res;
4375 else
4376 return -1;
4380 #define Py3kExceptionClass_Check(x) \
4381 (PyType_Check((x)) && \
4382 PyType_FastSubclass((PyTypeObject*)(x), Py_TPFLAGS_BASE_EXC_SUBCLASS))
4384 #define CANNOT_CATCH_MSG "catching classes that don't inherit from " \
4385 "BaseException is not allowed in 3.x"
4387 static PyObject *
4388 cmp_outcome(int op, register PyObject *v, register PyObject *w)
4390 int res = 0;
4391 switch (op) {
4392 case PyCmp_IS:
4393 res = (v == w);
4394 break;
4395 case PyCmp_IS_NOT:
4396 res = (v != w);
4397 break;
4398 case PyCmp_IN:
4399 res = PySequence_Contains(w, v);
4400 if (res < 0)
4401 return NULL;
4402 break;
4403 case PyCmp_NOT_IN:
4404 res = PySequence_Contains(w, v);
4405 if (res < 0)
4406 return NULL;
4407 res = !res;
4408 break;
4409 case PyCmp_EXC_MATCH:
4410 if (PyTuple_Check(w)) {
4411 Py_ssize_t i, length;
4412 length = PyTuple_Size(w);
4413 for (i = 0; i < length; i += 1) {
4414 PyObject *exc = PyTuple_GET_ITEM(w, i);
4415 if (PyString_Check(exc)) {
4416 int ret_val;
4417 ret_val = PyErr_WarnEx(
4418 PyExc_DeprecationWarning,
4419 "catching of string "
4420 "exceptions is deprecated", 1);
4421 if (ret_val < 0)
4422 return NULL;
4424 else if (Py_Py3kWarningFlag &&
4425 !PyTuple_Check(exc) &&
4426 !Py3kExceptionClass_Check(exc))
4428 int ret_val;
4429 ret_val = PyErr_WarnEx(
4430 PyExc_DeprecationWarning,
4431 CANNOT_CATCH_MSG, 1);
4432 if (ret_val < 0)
4433 return NULL;
4437 else {
4438 if (PyString_Check(w)) {
4439 int ret_val;
4440 ret_val = PyErr_WarnEx(
4441 PyExc_DeprecationWarning,
4442 "catching of string "
4443 "exceptions is deprecated", 1);
4444 if (ret_val < 0)
4445 return NULL;
4447 else if (Py_Py3kWarningFlag &&
4448 !PyTuple_Check(w) &&
4449 !Py3kExceptionClass_Check(w))
4451 int ret_val;
4452 ret_val = PyErr_WarnEx(
4453 PyExc_DeprecationWarning,
4454 CANNOT_CATCH_MSG, 1);
4455 if (ret_val < 0)
4456 return NULL;
4459 res = PyErr_GivenExceptionMatches(v, w);
4460 break;
4461 default:
4462 return PyObject_RichCompare(v, w, op);
4464 v = res ? Py_True : Py_False;
4465 Py_INCREF(v);
4466 return v;
4469 static PyObject *
4470 import_from(PyObject *v, PyObject *name)
4472 PyObject *x;
4474 x = PyObject_GetAttr(v, name);
4475 if (x == NULL && PyErr_ExceptionMatches(PyExc_AttributeError)) {
4476 PyErr_Format(PyExc_ImportError,
4477 "cannot import name %.230s",
4478 PyString_AsString(name));
4480 return x;
4483 static int
4484 import_all_from(PyObject *locals, PyObject *v)
4486 PyObject *all = PyObject_GetAttrString(v, "__all__");
4487 PyObject *dict, *name, *value;
4488 int skip_leading_underscores = 0;
4489 int pos, err;
4491 if (all == NULL) {
4492 if (!PyErr_ExceptionMatches(PyExc_AttributeError))
4493 return -1; /* Unexpected error */
4494 PyErr_Clear();
4495 dict = PyObject_GetAttrString(v, "__dict__");
4496 if (dict == NULL) {
4497 if (!PyErr_ExceptionMatches(PyExc_AttributeError))
4498 return -1;
4499 PyErr_SetString(PyExc_ImportError,
4500 "from-import-* object has no __dict__ and no __all__");
4501 return -1;
4503 all = PyMapping_Keys(dict);
4504 Py_DECREF(dict);
4505 if (all == NULL)
4506 return -1;
4507 skip_leading_underscores = 1;
4510 for (pos = 0, err = 0; ; pos++) {
4511 name = PySequence_GetItem(all, pos);
4512 if (name == NULL) {
4513 if (!PyErr_ExceptionMatches(PyExc_IndexError))
4514 err = -1;
4515 else
4516 PyErr_Clear();
4517 break;
4519 if (skip_leading_underscores &&
4520 PyString_Check(name) &&
4521 PyString_AS_STRING(name)[0] == '_')
4523 Py_DECREF(name);
4524 continue;
4526 value = PyObject_GetAttr(v, name);
4527 if (value == NULL)
4528 err = -1;
4529 else if (PyDict_CheckExact(locals))
4530 err = PyDict_SetItem(locals, name, value);
4531 else
4532 err = PyObject_SetItem(locals, name, value);
4533 Py_DECREF(name);
4534 Py_XDECREF(value);
4535 if (err != 0)
4536 break;
4538 Py_DECREF(all);
4539 return err;
4542 static PyObject *
4543 build_class(PyObject *methods, PyObject *bases, PyObject *name)
4545 PyObject *metaclass = NULL, *result, *base;
4547 if (PyDict_Check(methods))
4548 metaclass = PyDict_GetItemString(methods, "__metaclass__");
4549 if (metaclass != NULL)
4550 Py_INCREF(metaclass);
4551 else if (PyTuple_Check(bases) && PyTuple_GET_SIZE(bases) > 0) {
4552 base = PyTuple_GET_ITEM(bases, 0);
4553 metaclass = PyObject_GetAttrString(base, "__class__");
4554 if (metaclass == NULL) {
4555 PyErr_Clear();
4556 metaclass = (PyObject *)base->ob_type;
4557 Py_INCREF(metaclass);
4560 else {
4561 PyObject *g = PyEval_GetGlobals();
4562 if (g != NULL && PyDict_Check(g))
4563 metaclass = PyDict_GetItemString(g, "__metaclass__");
4564 if (metaclass == NULL)
4565 metaclass = (PyObject *) &PyClass_Type;
4566 Py_INCREF(metaclass);
4568 result = PyObject_CallFunctionObjArgs(metaclass, name, bases, methods,
4569 NULL);
4570 Py_DECREF(metaclass);
4571 if (result == NULL && PyErr_ExceptionMatches(PyExc_TypeError)) {
4572 /* A type error here likely means that the user passed
4573 in a base that was not a class (such the random module
4574 instead of the random.random type). Help them out with
4575 by augmenting the error message with more information.*/
4577 PyObject *ptype, *pvalue, *ptraceback;
4579 PyErr_Fetch(&ptype, &pvalue, &ptraceback);
4580 if (PyString_Check(pvalue)) {
4581 PyObject *newmsg;
4582 newmsg = PyString_FromFormat(
4583 "Error when calling the metaclass bases\n"
4584 " %s",
4585 PyString_AS_STRING(pvalue));
4586 if (newmsg != NULL) {
4587 Py_DECREF(pvalue);
4588 pvalue = newmsg;
4591 PyErr_Restore(ptype, pvalue, ptraceback);
4593 return result;
4596 static int
4597 exec_statement(PyFrameObject *f, PyObject *prog, PyObject *globals,
4598 PyObject *locals)
4600 int n;
4601 PyObject *v;
4602 int plain = 0;
4604 if (PyTuple_Check(prog) && globals == Py_None && locals == Py_None &&
4605 ((n = PyTuple_Size(prog)) == 2 || n == 3)) {
4606 /* Backward compatibility hack */
4607 globals = PyTuple_GetItem(prog, 1);
4608 if (n == 3)
4609 locals = PyTuple_GetItem(prog, 2);
4610 prog = PyTuple_GetItem(prog, 0);
4612 if (globals == Py_None) {
4613 globals = PyEval_GetGlobals();
4614 if (locals == Py_None) {
4615 locals = PyEval_GetLocals();
4616 plain = 1;
4618 if (!globals || !locals) {
4619 PyErr_SetString(PyExc_SystemError,
4620 "globals and locals cannot be NULL");
4621 return -1;
4624 else if (locals == Py_None)
4625 locals = globals;
4626 if (!PyString_Check(prog) &&
4627 #ifdef Py_USING_UNICODE
4628 !PyUnicode_Check(prog) &&
4629 #endif
4630 !PyCode_Check(prog) &&
4631 !PyFile_Check(prog)) {
4632 PyErr_SetString(PyExc_TypeError,
4633 "exec: arg 1 must be a string, file, or code object");
4634 return -1;
4636 if (!PyDict_Check(globals)) {
4637 PyErr_SetString(PyExc_TypeError,
4638 "exec: arg 2 must be a dictionary or None");
4639 return -1;
4641 if (!PyMapping_Check(locals)) {
4642 PyErr_SetString(PyExc_TypeError,
4643 "exec: arg 3 must be a mapping or None");
4644 return -1;
4646 if (PyDict_GetItemString(globals, "__builtins__") == NULL)
4647 PyDict_SetItemString(globals, "__builtins__", f->f_builtins);
4648 if (PyCode_Check(prog)) {
4649 if (PyCode_GetNumFree((PyCodeObject *)prog) > 0) {
4650 PyErr_SetString(PyExc_TypeError,
4651 "code object passed to exec may not contain free variables");
4652 return -1;
4654 v = PyEval_EvalCode((PyCodeObject *) prog, globals, locals);
4656 else if (PyFile_Check(prog)) {
4657 FILE *fp = PyFile_AsFile(prog);
4658 char *name = PyString_AsString(PyFile_Name(prog));
4659 PyCompilerFlags cf;
4660 if (name == NULL)
4661 return -1;
4662 cf.cf_flags = 0;
4663 if (PyEval_MergeCompilerFlags(&cf))
4664 v = PyRun_FileFlags(fp, name, Py_file_input, globals,
4665 locals, &cf);
4666 else
4667 v = PyRun_File(fp, name, Py_file_input, globals,
4668 locals);
4670 else {
4671 PyObject *tmp = NULL;
4672 char *str;
4673 PyCompilerFlags cf;
4674 cf.cf_flags = 0;
4675 #ifdef Py_USING_UNICODE
4676 if (PyUnicode_Check(prog)) {
4677 tmp = PyUnicode_AsUTF8String(prog);
4678 if (tmp == NULL)
4679 return -1;
4680 prog = tmp;
4681 cf.cf_flags |= PyCF_SOURCE_IS_UTF8;
4683 #endif
4684 if (PyString_AsStringAndSize(prog, &str, NULL))
4685 return -1;
4686 if (PyEval_MergeCompilerFlags(&cf))
4687 v = PyRun_StringFlags(str, Py_file_input, globals,
4688 locals, &cf);
4689 else
4690 v = PyRun_String(str, Py_file_input, globals, locals);
4691 Py_XDECREF(tmp);
4693 if (plain)
4694 PyFrame_LocalsToFast(f, 0);
4695 if (v == NULL)
4696 return -1;
4697 Py_DECREF(v);
4698 return 0;
4701 static void
4702 format_exc_check_arg(PyObject *exc, char *format_str, PyObject *obj)
4704 char *obj_str;
4706 if (!obj)
4707 return;
4709 obj_str = PyString_AsString(obj);
4710 if (!obj_str)
4711 return;
4713 PyErr_Format(exc, format_str, obj_str);
4716 static PyObject *
4717 string_concatenate(PyObject *v, PyObject *w,
4718 PyFrameObject *f, unsigned char *next_instr)
4720 /* This function implements 'variable += expr' when both arguments
4721 are strings. */
4722 Py_ssize_t v_len = PyString_GET_SIZE(v);
4723 Py_ssize_t w_len = PyString_GET_SIZE(w);
4724 Py_ssize_t new_len = v_len + w_len;
4725 if (new_len < 0) {
4726 PyErr_SetString(PyExc_OverflowError,
4727 "strings are too large to concat");
4728 return NULL;
4731 if (v->ob_refcnt == 2) {
4732 /* In the common case, there are 2 references to the value
4733 * stored in 'variable' when the += is performed: one on the
4734 * value stack (in 'v') and one still stored in the
4735 * 'variable'. We try to delete the variable now to reduce
4736 * the refcnt to 1.
4738 switch (*next_instr) {
4739 case STORE_FAST:
4741 int oparg = PEEKARG();
4742 PyObject **fastlocals = f->f_localsplus;
4743 if (GETLOCAL(oparg) == v)
4744 SETLOCAL(oparg, NULL);
4745 break;
4747 case STORE_DEREF:
4749 PyObject **freevars = (f->f_localsplus +
4750 f->f_code->co_nlocals);
4751 PyObject *c = freevars[PEEKARG()];
4752 if (PyCell_GET(c) == v)
4753 PyCell_Set(c, NULL);
4754 break;
4756 case STORE_NAME:
4758 PyObject *names = f->f_code->co_names;
4759 PyObject *name = GETITEM(names, PEEKARG());
4760 PyObject *locals = f->f_locals;
4761 if (PyDict_CheckExact(locals) &&
4762 PyDict_GetItem(locals, name) == v) {
4763 if (PyDict_DelItem(locals, name) != 0) {
4764 PyErr_Clear();
4767 break;
4772 if (v->ob_refcnt == 1 && !PyString_CHECK_INTERNED(v)) {
4773 /* Now we own the last reference to 'v', so we can resize it
4774 * in-place.
4776 if (_PyString_Resize(&v, new_len) != 0) {
4777 /* XXX if _PyString_Resize() fails, 'v' has been
4778 * deallocated so it cannot be put back into
4779 * 'variable'. The MemoryError is raised when there
4780 * is no value in 'variable', which might (very
4781 * remotely) be a cause of incompatibilities.
4783 return NULL;
4785 /* copy 'w' into the newly allocated area of 'v' */
4786 memcpy(PyString_AS_STRING(v) + v_len,
4787 PyString_AS_STRING(w), w_len);
4788 return v;
4790 else {
4791 /* When in-place resizing is not an option. */
4792 PyString_Concat(&v, w);
4793 return v;
4797 #ifdef DYNAMIC_EXECUTION_PROFILE
4799 static PyObject *
4800 getarray(long a[256])
4802 int i;
4803 PyObject *l = PyList_New(256);
4804 if (l == NULL) return NULL;
4805 for (i = 0; i < 256; i++) {
4806 PyObject *x = PyInt_FromLong(a[i]);
4807 if (x == NULL) {
4808 Py_DECREF(l);
4809 return NULL;
4811 PyList_SetItem(l, i, x);
4813 for (i = 0; i < 256; i++)
4814 a[i] = 0;
4815 return l;
4818 PyObject *
4819 _Py_GetDXProfile(PyObject *self, PyObject *args)
4821 #ifndef DXPAIRS
4822 return getarray(dxp);
4823 #else
4824 int i;
4825 PyObject *l = PyList_New(257);
4826 if (l == NULL) return NULL;
4827 for (i = 0; i < 257; i++) {
4828 PyObject *x = getarray(dxpairs[i]);
4829 if (x == NULL) {
4830 Py_DECREF(l);
4831 return NULL;
4833 PyList_SetItem(l, i, x);
4835 return l;
4836 #endif
4839 #endif