2 /* audioopmodule - Module to detect peak values in arrays */
8 typedef unsigned int Py_UInt32
;
11 typedef long Py_Int32
;
12 typedef unsigned long Py_UInt32
;
14 #error "No 4-byte integral type"
18 typedef short PyInt16
;
20 #if defined(__CHAR_UNSIGNED__)
22 /* This module currently does not work on systems where only unsigned
23 characters are available. Take it out of Setup. Sorry. */
27 /* Code shamelessly stolen from sox, 12.17.7, g711.c
28 ** (c) Craig Reese, Joe Campbell and Jeff Poskanzer 1989 */
33 * Functions linear2alaw, linear2ulaw have been updated to correctly
34 * convert unquantized 16 bit values.
35 * Tables for direct u- to A-law and A- to u-law conversions have been
37 * Borge Lindberg, Center for PersonKommunikation, Aalborg University.
41 #define BIAS 0x84 /* define the add-in bias for 16 bit samples */
43 #define SIGN_BIT (0x80) /* Sign bit for a A-law byte. */
44 #define QUANT_MASK (0xf) /* Quantization field mask. */
45 #define SEG_SHIFT (4) /* Left shift for segment number. */
46 #define SEG_MASK (0x70) /* Segment field mask. */
48 static PyInt16 seg_aend
[8] = {0x1F, 0x3F, 0x7F, 0xFF,
49 0x1FF, 0x3FF, 0x7FF, 0xFFF};
50 static PyInt16 seg_uend
[8] = {0x3F, 0x7F, 0xFF, 0x1FF,
51 0x3FF, 0x7FF, 0xFFF, 0x1FFF};
54 search(PyInt16 val
, PyInt16
*table
, int size
)
58 for (i
= 0; i
< size
; i
++) {
64 #define st_ulaw2linear16(uc) (_st_ulaw2linear16[uc])
65 #define st_alaw2linear16(uc) (_st_alaw2linear16[uc])
67 static PyInt16 _st_ulaw2linear16
[256] = {
68 -32124, -31100, -30076, -29052, -28028, -27004, -25980,
69 -24956, -23932, -22908, -21884, -20860, -19836, -18812,
70 -17788, -16764, -15996, -15484, -14972, -14460, -13948,
71 -13436, -12924, -12412, -11900, -11388, -10876, -10364,
72 -9852, -9340, -8828, -8316, -7932, -7676, -7420,
73 -7164, -6908, -6652, -6396, -6140, -5884, -5628,
74 -5372, -5116, -4860, -4604, -4348, -4092, -3900,
75 -3772, -3644, -3516, -3388, -3260, -3132, -3004,
76 -2876, -2748, -2620, -2492, -2364, -2236, -2108,
77 -1980, -1884, -1820, -1756, -1692, -1628, -1564,
78 -1500, -1436, -1372, -1308, -1244, -1180, -1116,
79 -1052, -988, -924, -876, -844, -812, -780,
80 -748, -716, -684, -652, -620, -588, -556,
81 -524, -492, -460, -428, -396, -372, -356,
82 -340, -324, -308, -292, -276, -260, -244,
83 -228, -212, -196, -180, -164, -148, -132,
84 -120, -112, -104, -96, -88, -80, -72,
85 -64, -56, -48, -40, -32, -24, -16,
86 -8, 0, 32124, 31100, 30076, 29052, 28028,
87 27004, 25980, 24956, 23932, 22908, 21884, 20860,
88 19836, 18812, 17788, 16764, 15996, 15484, 14972,
89 14460, 13948, 13436, 12924, 12412, 11900, 11388,
90 10876, 10364, 9852, 9340, 8828, 8316, 7932,
91 7676, 7420, 7164, 6908, 6652, 6396, 6140,
92 5884, 5628, 5372, 5116, 4860, 4604, 4348,
93 4092, 3900, 3772, 3644, 3516, 3388, 3260,
94 3132, 3004, 2876, 2748, 2620, 2492, 2364,
95 2236, 2108, 1980, 1884, 1820, 1756, 1692,
96 1628, 1564, 1500, 1436, 1372, 1308, 1244,
97 1180, 1116, 1052, 988, 924, 876, 844,
98 812, 780, 748, 716, 684, 652, 620,
99 588, 556, 524, 492, 460, 428, 396,
100 372, 356, 340, 324, 308, 292, 276,
101 260, 244, 228, 212, 196, 180, 164,
102 148, 132, 120, 112, 104, 96, 88,
103 80, 72, 64, 56, 48, 40, 32,
108 * linear2ulaw() accepts a 14-bit signed integer and encodes it as u-law data
109 * stored in a unsigned char. This function should only be called with
110 * the data shifted such that it only contains information in the lower
113 * In order to simplify the encoding process, the original linear magnitude
114 * is biased by adding 33 which shifts the encoding range from (0 - 8158) to
115 * (33 - 8191). The result can be seen in the following encoding table:
117 * Biased Linear Input Code Compressed Code
118 * ------------------------ ---------------
119 * 00000001wxyza 000wxyz
120 * 0000001wxyzab 001wxyz
121 * 000001wxyzabc 010wxyz
122 * 00001wxyzabcd 011wxyz
123 * 0001wxyzabcde 100wxyz
124 * 001wxyzabcdef 101wxyz
125 * 01wxyzabcdefg 110wxyz
126 * 1wxyzabcdefgh 111wxyz
128 * Each biased linear code has a leading 1 which identifies the segment
129 * number. The value of the segment number is equal to 7 minus the number
130 * of leading 0's. The quantization interval is directly available as the
131 * four bits wxyz. * The trailing bits (a - h) are ignored.
133 * Ordinarily the complement of the resulting code word is used for
134 * transmission, and so the code word is complemented before it is returned.
136 * For further information see John C. Bellamy's Digital Telephony, 1982,
137 * John Wiley & Sons, pps 98-111 and 472-476.
140 st_14linear2ulaw(PyInt16 pcm_val
) /* 2's complement (14-bit range) */
146 /* The original sox code does this in the calling function, not here */
147 pcm_val
= pcm_val
>> 2;
149 /* u-law inverts all bits */
150 /* Get the sign and the magnitude of the value. */
157 if ( pcm_val
> CLIP
) pcm_val
= CLIP
; /* clip the magnitude */
158 pcm_val
+= (BIAS
>> 2);
160 /* Convert the scaled magnitude to segment number. */
161 seg
= search(pcm_val
, seg_uend
, 8);
164 * Combine the sign, segment, quantization bits;
165 * and complement the code word.
167 if (seg
>= 8) /* out of range, return maximum value. */
168 return (unsigned char) (0x7F ^ mask
);
170 uval
= (unsigned char) (seg
<< 4) | ((pcm_val
>> (seg
+ 1)) & 0xF);
171 return (uval
^ mask
);
176 static PyInt16 _st_alaw2linear16
[256] = {
177 -5504, -5248, -6016, -5760, -4480, -4224, -4992,
178 -4736, -7552, -7296, -8064, -7808, -6528, -6272,
179 -7040, -6784, -2752, -2624, -3008, -2880, -2240,
180 -2112, -2496, -2368, -3776, -3648, -4032, -3904,
181 -3264, -3136, -3520, -3392, -22016, -20992, -24064,
182 -23040, -17920, -16896, -19968, -18944, -30208, -29184,
183 -32256, -31232, -26112, -25088, -28160, -27136, -11008,
184 -10496, -12032, -11520, -8960, -8448, -9984, -9472,
185 -15104, -14592, -16128, -15616, -13056, -12544, -14080,
186 -13568, -344, -328, -376, -360, -280, -264,
187 -312, -296, -472, -456, -504, -488, -408,
188 -392, -440, -424, -88, -72, -120, -104,
189 -24, -8, -56, -40, -216, -200, -248,
190 -232, -152, -136, -184, -168, -1376, -1312,
191 -1504, -1440, -1120, -1056, -1248, -1184, -1888,
192 -1824, -2016, -1952, -1632, -1568, -1760, -1696,
193 -688, -656, -752, -720, -560, -528, -624,
194 -592, -944, -912, -1008, -976, -816, -784,
195 -880, -848, 5504, 5248, 6016, 5760, 4480,
196 4224, 4992, 4736, 7552, 7296, 8064, 7808,
197 6528, 6272, 7040, 6784, 2752, 2624, 3008,
198 2880, 2240, 2112, 2496, 2368, 3776, 3648,
199 4032, 3904, 3264, 3136, 3520, 3392, 22016,
200 20992, 24064, 23040, 17920, 16896, 19968, 18944,
201 30208, 29184, 32256, 31232, 26112, 25088, 28160,
202 27136, 11008, 10496, 12032, 11520, 8960, 8448,
203 9984, 9472, 15104, 14592, 16128, 15616, 13056,
204 12544, 14080, 13568, 344, 328, 376, 360,
205 280, 264, 312, 296, 472, 456, 504,
206 488, 408, 392, 440, 424, 88, 72,
207 120, 104, 24, 8, 56, 40, 216,
208 200, 248, 232, 152, 136, 184, 168,
209 1376, 1312, 1504, 1440, 1120, 1056, 1248,
210 1184, 1888, 1824, 2016, 1952, 1632, 1568,
211 1760, 1696, 688, 656, 752, 720, 560,
212 528, 624, 592, 944, 912, 1008, 976,
217 * linear2alaw() accepts an 13-bit signed integer and encodes it as A-law data
218 * stored in a unsigned char. This function should only be called with
219 * the data shifted such that it only contains information in the lower
222 * Linear Input Code Compressed Code
223 * ------------------------ ---------------
224 * 0000000wxyza 000wxyz
225 * 0000001wxyza 001wxyz
226 * 000001wxyzab 010wxyz
227 * 00001wxyzabc 011wxyz
228 * 0001wxyzabcd 100wxyz
229 * 001wxyzabcde 101wxyz
230 * 01wxyzabcdef 110wxyz
231 * 1wxyzabcdefg 111wxyz
233 * For further information see John C. Bellamy's Digital Telephony, 1982,
234 * John Wiley & Sons, pps 98-111 and 472-476.
237 st_linear2alaw(PyInt16 pcm_val
) /* 2's complement (13-bit range) */
243 /* The original sox code does this in the calling function, not here */
244 pcm_val
= pcm_val
>> 3;
246 /* A-law using even bit inversion */
248 mask
= 0xD5; /* sign (7th) bit = 1 */
250 mask
= 0x55; /* sign bit = 0 */
251 pcm_val
= -pcm_val
- 1;
254 /* Convert the scaled magnitude to segment number. */
255 seg
= search(pcm_val
, seg_aend
, 8);
257 /* Combine the sign, segment, and quantization bits. */
259 if (seg
>= 8) /* out of range, return maximum value. */
260 return (unsigned char) (0x7F ^ mask
);
262 aval
= (unsigned char) seg
<< SEG_SHIFT
;
264 aval
|= (pcm_val
>> 1) & QUANT_MASK
;
266 aval
|= (pcm_val
>> seg
) & QUANT_MASK
;
267 return (aval
^ mask
);
270 /* End of code taken from sox */
272 /* Intel ADPCM step variation table */
273 static int indexTable
[16] = {
274 -1, -1, -1, -1, 2, 4, 6, 8,
275 -1, -1, -1, -1, 2, 4, 6, 8,
278 static int stepsizeTable
[89] = {
279 7, 8, 9, 10, 11, 12, 13, 14, 16, 17,
280 19, 21, 23, 25, 28, 31, 34, 37, 41, 45,
281 50, 55, 60, 66, 73, 80, 88, 97, 107, 118,
282 130, 143, 157, 173, 190, 209, 230, 253, 279, 307,
283 337, 371, 408, 449, 494, 544, 598, 658, 724, 796,
284 876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066,
285 2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358,
286 5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899,
287 15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767
290 #define CHARP(cp, i) ((signed char *)(cp+i))
291 #define SHORTP(cp, i) ((short *)(cp+i))
292 #define LONGP(cp, i) ((Py_Int32 *)(cp+i))
296 static PyObject
*AudioopError
;
299 audioop_getsample(PyObject
*self
, PyObject
*args
)
302 int len
, size
, val
= 0;
305 if ( !PyArg_ParseTuple(args
, "s#ii:getsample", &cp
, &len
, &size
, &i
) )
307 if ( size
!= 1 && size
!= 2 && size
!= 4 ) {
308 PyErr_SetString(AudioopError
, "Size should be 1, 2 or 4");
311 if ( i
< 0 || i
>= len
/size
) {
312 PyErr_SetString(AudioopError
, "Index out of range");
315 if ( size
== 1 ) val
= (int)*CHARP(cp
, i
);
316 else if ( size
== 2 ) val
= (int)*SHORTP(cp
, i
*2);
317 else if ( size
== 4 ) val
= (int)*LONGP(cp
, i
*4);
318 return PyInt_FromLong(val
);
322 audioop_max(PyObject
*self
, PyObject
*args
)
325 int len
, size
, val
= 0;
329 if ( !PyArg_ParseTuple(args
, "s#i:max", &cp
, &len
, &size
) )
331 if ( size
!= 1 && size
!= 2 && size
!= 4 ) {
332 PyErr_SetString(AudioopError
, "Size should be 1, 2 or 4");
335 for ( i
=0; i
<len
; i
+= size
) {
336 if ( size
== 1 ) val
= (int)*CHARP(cp
, i
);
337 else if ( size
== 2 ) val
= (int)*SHORTP(cp
, i
);
338 else if ( size
== 4 ) val
= (int)*LONGP(cp
, i
);
339 if ( val
< 0 ) val
= (-val
);
340 if ( val
> max
) max
= val
;
342 return PyInt_FromLong(max
);
346 audioop_minmax(PyObject
*self
, PyObject
*args
)
349 int len
, size
, val
= 0;
351 int min
= 0x7fffffff, max
= -0x7fffffff;
353 if (!PyArg_ParseTuple(args
, "s#i:minmax", &cp
, &len
, &size
))
355 if (size
!= 1 && size
!= 2 && size
!= 4) {
356 PyErr_SetString(AudioopError
, "Size should be 1, 2 or 4");
359 for (i
= 0; i
< len
; i
+= size
) {
360 if (size
== 1) val
= (int) *CHARP(cp
, i
);
361 else if (size
== 2) val
= (int) *SHORTP(cp
, i
);
362 else if (size
== 4) val
= (int) *LONGP(cp
, i
);
363 if (val
> max
) max
= val
;
364 if (val
< min
) min
= val
;
366 return Py_BuildValue("(ii)", min
, max
);
370 audioop_avg(PyObject
*self
, PyObject
*args
)
373 int len
, size
, val
= 0;
377 if ( !PyArg_ParseTuple(args
, "s#i:avg", &cp
, &len
, &size
) )
379 if ( size
!= 1 && size
!= 2 && size
!= 4 ) {
380 PyErr_SetString(AudioopError
, "Size should be 1, 2 or 4");
383 for ( i
=0; i
<len
; i
+= size
) {
384 if ( size
== 1 ) val
= (int)*CHARP(cp
, i
);
385 else if ( size
== 2 ) val
= (int)*SHORTP(cp
, i
);
386 else if ( size
== 4 ) val
= (int)*LONGP(cp
, i
);
392 val
= (int)(avg
/ (double)(len
/size
));
393 return PyInt_FromLong(val
);
397 audioop_rms(PyObject
*self
, PyObject
*args
)
400 int len
, size
, val
= 0;
402 double sum_squares
= 0.0;
404 if ( !PyArg_ParseTuple(args
, "s#i:rms", &cp
, &len
, &size
) )
406 if ( size
!= 1 && size
!= 2 && size
!= 4 ) {
407 PyErr_SetString(AudioopError
, "Size should be 1, 2 or 4");
410 for ( i
=0; i
<len
; i
+= size
) {
411 if ( size
== 1 ) val
= (int)*CHARP(cp
, i
);
412 else if ( size
== 2 ) val
= (int)*SHORTP(cp
, i
);
413 else if ( size
== 4 ) val
= (int)*LONGP(cp
, i
);
414 sum_squares
+= (double)val
*(double)val
;
419 val
= (int)sqrt(sum_squares
/ (double)(len
/size
));
420 return PyInt_FromLong(val
);
423 static double _sum2(short *a
, short *b
, int len
)
428 for( i
=0; i
<len
; i
++) {
429 sum
= sum
+ (double)a
[i
]*(double)b
[i
];
435 ** Findfit tries to locate a sample within another sample. Its main use
436 ** is in echo-cancellation (to find the feedback of the output signal in
437 ** the input signal).
438 ** The method used is as follows:
440 ** let R be the reference signal (length n) and A the input signal (length N)
441 ** with N > n, and let all sums be over i from 0 to n-1.
443 ** Now, for each j in {0..N-n} we compute a factor fj so that -fj*R matches A
444 ** as good as possible, i.e. sum( (A[j+i]+fj*R[i])^2 ) is minimal. This
445 ** equation gives fj = sum( A[j+i]R[i] ) / sum(R[i]^2).
447 ** Next, we compute the relative distance between the original signal and
448 ** the modified signal and minimize that over j:
449 ** vj = sum( (A[j+i]-fj*R[i])^2 ) / sum( A[j+i]^2 ) =>
450 ** vj = ( sum(A[j+i]^2)*sum(R[i]^2) - sum(A[j+i]R[i])^2 ) / sum( A[j+i]^2 )
452 ** In the code variables correspond as follows:
459 ** sum_ri_2 sum(R[i]^2)
460 ** sum_aij_2 sum(A[i+j]^2)
461 ** sum_aij_ri sum(A[i+j]R[i])
463 ** sum_ri is calculated once, sum_aij_2 is updated each step and sum_aij_ri
464 ** is completely recalculated each step.
467 audioop_findfit(PyObject
*self
, PyObject
*args
)
472 double aj_m1
, aj_lm1
;
473 double sum_ri_2
, sum_aij_2
, sum_aij_ri
, result
, best_result
, factor
;
475 /* Passing a short** for an 's' argument is correct only
476 if the string contents is aligned for interpretation
477 as short[]. Due to the definition of PyStringObject,
478 this is currently (Python 2.6) the case. */
479 if ( !PyArg_ParseTuple(args
, "s#s#:findfit",
480 (char**)&cp1
, &len1
, (char**)&cp2
, &len2
) )
482 if ( len1
& 1 || len2
& 1 ) {
483 PyErr_SetString(AudioopError
, "Strings should be even-sized");
490 PyErr_SetString(AudioopError
, "First sample should be longer");
493 sum_ri_2
= _sum2(cp2
, cp2
, len2
);
494 sum_aij_2
= _sum2(cp1
, cp1
, len2
);
495 sum_aij_ri
= _sum2(cp1
, cp2
, len2
);
497 result
= (sum_ri_2
*sum_aij_2
- sum_aij_ri
*sum_aij_ri
) / sum_aij_2
;
499 best_result
= result
;
503 for ( j
=1; j
<=len1
-len2
; j
++) {
504 aj_m1
= (double)cp1
[j
-1];
505 aj_lm1
= (double)cp1
[j
+len2
-1];
507 sum_aij_2
= sum_aij_2
+ aj_lm1
*aj_lm1
- aj_m1
*aj_m1
;
508 sum_aij_ri
= _sum2(cp1
+j
, cp2
, len2
);
510 result
= (sum_ri_2
*sum_aij_2
- sum_aij_ri
*sum_aij_ri
)
513 if ( result
< best_result
) {
514 best_result
= result
;
520 factor
= _sum2(cp1
+best_j
, cp2
, len2
) / sum_ri_2
;
522 return Py_BuildValue("(if)", best_j
, factor
);
526 ** findfactor finds a factor f so that the energy in A-fB is minimal.
527 ** See the comment for findfit for details.
530 audioop_findfactor(PyObject
*self
, PyObject
*args
)
534 double sum_ri_2
, sum_aij_ri
, result
;
536 if ( !PyArg_ParseTuple(args
, "s#s#:findfactor",
537 (char**)&cp1
, &len1
, (char**)&cp2
, &len2
) )
539 if ( len1
& 1 || len2
& 1 ) {
540 PyErr_SetString(AudioopError
, "Strings should be even-sized");
543 if ( len1
!= len2
) {
544 PyErr_SetString(AudioopError
, "Samples should be same size");
548 sum_ri_2
= _sum2(cp2
, cp2
, len2
);
549 sum_aij_ri
= _sum2(cp1
, cp2
, len2
);
551 result
= sum_aij_ri
/ sum_ri_2
;
553 return PyFloat_FromDouble(result
);
557 ** findmax returns the index of the n-sized segment of the input sample
558 ** that contains the most energy.
561 audioop_findmax(PyObject
*self
, PyObject
*args
)
566 double aj_m1
, aj_lm1
;
567 double result
, best_result
;
569 if ( !PyArg_ParseTuple(args
, "s#i:findmax",
570 (char**)&cp1
, &len1
, &len2
) )
573 PyErr_SetString(AudioopError
, "Strings should be even-sized");
578 if ( len2
< 0 || len1
< len2
) {
579 PyErr_SetString(AudioopError
, "Input sample should be longer");
583 result
= _sum2(cp1
, cp1
, len2
);
585 best_result
= result
;
589 for ( j
=1; j
<=len1
-len2
; j
++) {
590 aj_m1
= (double)cp1
[j
-1];
591 aj_lm1
= (double)cp1
[j
+len2
-1];
593 result
= result
+ aj_lm1
*aj_lm1
- aj_m1
*aj_m1
;
595 if ( result
> best_result
) {
596 best_result
= result
;
602 return PyInt_FromLong(best_j
);
606 audioop_avgpp(PyObject
*self
, PyObject
*args
)
609 int len
, size
, val
= 0, prevval
= 0, prevextremevalid
= 0,
613 int diff
, prevdiff
, extremediff
, nextreme
= 0;
615 if ( !PyArg_ParseTuple(args
, "s#i:avgpp", &cp
, &len
, &size
) )
617 if ( size
!= 1 && size
!= 2 && size
!= 4 ) {
618 PyErr_SetString(AudioopError
, "Size should be 1, 2 or 4");
621 /* Compute first delta value ahead. Also automatically makes us
622 ** skip the first extreme value
624 if ( size
== 1 ) prevval
= (int)*CHARP(cp
, 0);
625 else if ( size
== 2 ) prevval
= (int)*SHORTP(cp
, 0);
626 else if ( size
== 4 ) prevval
= (int)*LONGP(cp
, 0);
627 if ( size
== 1 ) val
= (int)*CHARP(cp
, size
);
628 else if ( size
== 2 ) val
= (int)*SHORTP(cp
, size
);
629 else if ( size
== 4 ) val
= (int)*LONGP(cp
, size
);
630 prevdiff
= val
- prevval
;
632 for ( i
=size
; i
<len
; i
+= size
) {
633 if ( size
== 1 ) val
= (int)*CHARP(cp
, i
);
634 else if ( size
== 2 ) val
= (int)*SHORTP(cp
, i
);
635 else if ( size
== 4 ) val
= (int)*LONGP(cp
, i
);
636 diff
= val
- prevval
;
637 if ( diff
*prevdiff
< 0 ) {
638 /* Derivative changed sign. Compute difference to last
639 ** extreme value and remember.
641 if ( prevextremevalid
) {
642 extremediff
= prevval
- prevextreme
;
643 if ( extremediff
< 0 )
644 extremediff
= -extremediff
;
648 prevextremevalid
= 1;
649 prevextreme
= prevval
;
658 val
= (int)(avg
/ (double)nextreme
);
659 return PyInt_FromLong(val
);
663 audioop_maxpp(PyObject
*self
, PyObject
*args
)
666 int len
, size
, val
= 0, prevval
= 0, prevextremevalid
= 0,
670 int diff
, prevdiff
, extremediff
;
672 if ( !PyArg_ParseTuple(args
, "s#i:maxpp", &cp
, &len
, &size
) )
674 if ( size
!= 1 && size
!= 2 && size
!= 4 ) {
675 PyErr_SetString(AudioopError
, "Size should be 1, 2 or 4");
678 /* Compute first delta value ahead. Also automatically makes us
679 ** skip the first extreme value
681 if ( size
== 1 ) prevval
= (int)*CHARP(cp
, 0);
682 else if ( size
== 2 ) prevval
= (int)*SHORTP(cp
, 0);
683 else if ( size
== 4 ) prevval
= (int)*LONGP(cp
, 0);
684 if ( size
== 1 ) val
= (int)*CHARP(cp
, size
);
685 else if ( size
== 2 ) val
= (int)*SHORTP(cp
, size
);
686 else if ( size
== 4 ) val
= (int)*LONGP(cp
, size
);
687 prevdiff
= val
- prevval
;
689 for ( i
=size
; i
<len
; i
+= size
) {
690 if ( size
== 1 ) val
= (int)*CHARP(cp
, i
);
691 else if ( size
== 2 ) val
= (int)*SHORTP(cp
, i
);
692 else if ( size
== 4 ) val
= (int)*LONGP(cp
, i
);
693 diff
= val
- prevval
;
694 if ( diff
*prevdiff
< 0 ) {
695 /* Derivative changed sign. Compute difference to
696 ** last extreme value and remember.
698 if ( prevextremevalid
) {
699 extremediff
= prevval
- prevextreme
;
700 if ( extremediff
< 0 )
701 extremediff
= -extremediff
;
702 if ( extremediff
> max
)
705 prevextremevalid
= 1;
706 prevextreme
= prevval
;
712 return PyInt_FromLong(max
);
716 audioop_cross(PyObject
*self
, PyObject
*args
)
719 int len
, size
, val
= 0;
723 if ( !PyArg_ParseTuple(args
, "s#i:cross", &cp
, &len
, &size
) )
725 if ( size
!= 1 && size
!= 2 && size
!= 4 ) {
726 PyErr_SetString(AudioopError
, "Size should be 1, 2 or 4");
730 prevval
= 17; /* Anything <> 0,1 */
731 for ( i
=0; i
<len
; i
+= size
) {
732 if ( size
== 1 ) val
= ((int)*CHARP(cp
, i
)) >> 7;
733 else if ( size
== 2 ) val
= ((int)*SHORTP(cp
, i
)) >> 15;
734 else if ( size
== 4 ) val
= ((int)*LONGP(cp
, i
)) >> 31;
736 if ( val
!= prevval
) ncross
++;
739 return PyInt_FromLong(ncross
);
743 audioop_mul(PyObject
*self
, PyObject
*args
)
745 signed char *cp
, *ncp
;
746 int len
, size
, val
= 0;
747 double factor
, fval
, maxval
;
751 if ( !PyArg_ParseTuple(args
, "s#id:mul", &cp
, &len
, &size
, &factor
) )
754 if ( size
== 1 ) maxval
= (double) 0x7f;
755 else if ( size
== 2 ) maxval
= (double) 0x7fff;
756 else if ( size
== 4 ) maxval
= (double) 0x7fffffff;
758 PyErr_SetString(AudioopError
, "Size should be 1, 2 or 4");
762 rv
= PyString_FromStringAndSize(NULL
, len
);
765 ncp
= (signed char *)PyString_AsString(rv
);
768 for ( i
=0; i
< len
; i
+= size
) {
769 if ( size
== 1 ) val
= (int)*CHARP(cp
, i
);
770 else if ( size
== 2 ) val
= (int)*SHORTP(cp
, i
);
771 else if ( size
== 4 ) val
= (int)*LONGP(cp
, i
);
772 fval
= (double)val
*factor
;
773 if ( fval
> maxval
) fval
= maxval
;
774 else if ( fval
< -maxval
) fval
= -maxval
;
776 if ( size
== 1 ) *CHARP(ncp
, i
) = (signed char)val
;
777 else if ( size
== 2 ) *SHORTP(ncp
, i
) = (short)val
;
778 else if ( size
== 4 ) *LONGP(ncp
, i
) = (Py_Int32
)val
;
784 audioop_tomono(PyObject
*self
, PyObject
*args
)
786 signed char *cp
, *ncp
;
787 int len
, size
, val1
= 0, val2
= 0;
788 double fac1
, fac2
, fval
, maxval
;
792 if ( !PyArg_ParseTuple(args
, "s#idd:tomono",
793 &cp
, &len
, &size
, &fac1
, &fac2
) )
796 if ( size
== 1 ) maxval
= (double) 0x7f;
797 else if ( size
== 2 ) maxval
= (double) 0x7fff;
798 else if ( size
== 4 ) maxval
= (double) 0x7fffffff;
800 PyErr_SetString(AudioopError
, "Size should be 1, 2 or 4");
804 rv
= PyString_FromStringAndSize(NULL
, len
/2);
807 ncp
= (signed char *)PyString_AsString(rv
);
810 for ( i
=0; i
< len
; i
+= size
*2 ) {
811 if ( size
== 1 ) val1
= (int)*CHARP(cp
, i
);
812 else if ( size
== 2 ) val1
= (int)*SHORTP(cp
, i
);
813 else if ( size
== 4 ) val1
= (int)*LONGP(cp
, i
);
814 if ( size
== 1 ) val2
= (int)*CHARP(cp
, i
+1);
815 else if ( size
== 2 ) val2
= (int)*SHORTP(cp
, i
+2);
816 else if ( size
== 4 ) val2
= (int)*LONGP(cp
, i
+4);
817 fval
= (double)val1
*fac1
+ (double)val2
*fac2
;
818 if ( fval
> maxval
) fval
= maxval
;
819 else if ( fval
< -maxval
) fval
= -maxval
;
821 if ( size
== 1 ) *CHARP(ncp
, i
/2) = (signed char)val1
;
822 else if ( size
== 2 ) *SHORTP(ncp
, i
/2) = (short)val1
;
823 else if ( size
== 4 ) *LONGP(ncp
, i
/2)= (Py_Int32
)val1
;
829 audioop_tostereo(PyObject
*self
, PyObject
*args
)
831 signed char *cp
, *ncp
;
832 int len
, new_len
, size
, val1
, val2
, val
= 0;
833 double fac1
, fac2
, fval
, maxval
;
837 if ( !PyArg_ParseTuple(args
, "s#idd:tostereo",
838 &cp
, &len
, &size
, &fac1
, &fac2
) )
841 if ( size
== 1 ) maxval
= (double) 0x7f;
842 else if ( size
== 2 ) maxval
= (double) 0x7fff;
843 else if ( size
== 4 ) maxval
= (double) 0x7fffffff;
845 PyErr_SetString(AudioopError
, "Size should be 1, 2 or 4");
851 PyErr_SetString(PyExc_MemoryError
,
852 "not enough memory for output buffer");
856 rv
= PyString_FromStringAndSize(NULL
, new_len
);
859 ncp
= (signed char *)PyString_AsString(rv
);
862 for ( i
=0; i
< len
; i
+= size
) {
863 if ( size
== 1 ) val
= (int)*CHARP(cp
, i
);
864 else if ( size
== 2 ) val
= (int)*SHORTP(cp
, i
);
865 else if ( size
== 4 ) val
= (int)*LONGP(cp
, i
);
867 fval
= (double)val
*fac1
;
868 if ( fval
> maxval
) fval
= maxval
;
869 else if ( fval
< -maxval
) fval
= -maxval
;
872 fval
= (double)val
*fac2
;
873 if ( fval
> maxval
) fval
= maxval
;
874 else if ( fval
< -maxval
) fval
= -maxval
;
877 if ( size
== 1 ) *CHARP(ncp
, i
*2) = (signed char)val1
;
878 else if ( size
== 2 ) *SHORTP(ncp
, i
*2) = (short)val1
;
879 else if ( size
== 4 ) *LONGP(ncp
, i
*2) = (Py_Int32
)val1
;
881 if ( size
== 1 ) *CHARP(ncp
, i
*2+1) = (signed char)val2
;
882 else if ( size
== 2 ) *SHORTP(ncp
, i
*2+2) = (short)val2
;
883 else if ( size
== 4 ) *LONGP(ncp
, i
*2+4) = (Py_Int32
)val2
;
889 audioop_add(PyObject
*self
, PyObject
*args
)
891 signed char *cp1
, *cp2
, *ncp
;
892 int len1
, len2
, size
, val1
= 0, val2
= 0, maxval
, newval
;
896 if ( !PyArg_ParseTuple(args
, "s#s#i:add",
897 &cp1
, &len1
, &cp2
, &len2
, &size
) )
900 if ( len1
!= len2
) {
901 PyErr_SetString(AudioopError
, "Lengths should be the same");
905 if ( size
== 1 ) maxval
= 0x7f;
906 else if ( size
== 2 ) maxval
= 0x7fff;
907 else if ( size
== 4 ) maxval
= 0x7fffffff;
909 PyErr_SetString(AudioopError
, "Size should be 1, 2 or 4");
913 rv
= PyString_FromStringAndSize(NULL
, len1
);
916 ncp
= (signed char *)PyString_AsString(rv
);
918 for ( i
=0; i
< len1
; i
+= size
) {
919 if ( size
== 1 ) val1
= (int)*CHARP(cp1
, i
);
920 else if ( size
== 2 ) val1
= (int)*SHORTP(cp1
, i
);
921 else if ( size
== 4 ) val1
= (int)*LONGP(cp1
, i
);
923 if ( size
== 1 ) val2
= (int)*CHARP(cp2
, i
);
924 else if ( size
== 2 ) val2
= (int)*SHORTP(cp2
, i
);
925 else if ( size
== 4 ) val2
= (int)*LONGP(cp2
, i
);
927 newval
= val1
+ val2
;
928 /* truncate in case of overflow */
929 if (newval
> maxval
) newval
= maxval
;
930 else if (newval
< -maxval
) newval
= -maxval
;
931 else if (size
== 4 && (newval
^val1
) < 0 && (newval
^val2
) < 0)
932 newval
= val1
> 0 ? maxval
: - maxval
;
934 if ( size
== 1 ) *CHARP(ncp
, i
) = (signed char)newval
;
935 else if ( size
== 2 ) *SHORTP(ncp
, i
) = (short)newval
;
936 else if ( size
== 4 ) *LONGP(ncp
, i
) = (Py_Int32
)newval
;
942 audioop_bias(PyObject
*self
, PyObject
*args
)
944 signed char *cp
, *ncp
;
945 int len
, size
, val
= 0;
950 if ( !PyArg_ParseTuple(args
, "s#ii:bias",
951 &cp
, &len
, &size
, &bias
) )
954 if ( size
!= 1 && size
!= 2 && size
!= 4) {
955 PyErr_SetString(AudioopError
, "Size should be 1, 2 or 4");
959 rv
= PyString_FromStringAndSize(NULL
, len
);
962 ncp
= (signed char *)PyString_AsString(rv
);
965 for ( i
=0; i
< len
; i
+= size
) {
966 if ( size
== 1 ) val
= (int)*CHARP(cp
, i
);
967 else if ( size
== 2 ) val
= (int)*SHORTP(cp
, i
);
968 else if ( size
== 4 ) val
= (int)*LONGP(cp
, i
);
970 if ( size
== 1 ) *CHARP(ncp
, i
) = (signed char)(val
+bias
);
971 else if ( size
== 2 ) *SHORTP(ncp
, i
) = (short)(val
+bias
);
972 else if ( size
== 4 ) *LONGP(ncp
, i
) = (Py_Int32
)(val
+bias
);
978 audioop_reverse(PyObject
*self
, PyObject
*args
)
982 int len
, size
, val
= 0;
986 if ( !PyArg_ParseTuple(args
, "s#i:reverse",
990 if ( size
!= 1 && size
!= 2 && size
!= 4 ) {
991 PyErr_SetString(AudioopError
, "Size should be 1, 2 or 4");
995 rv
= PyString_FromStringAndSize(NULL
, len
);
998 ncp
= (unsigned char *)PyString_AsString(rv
);
1000 for ( i
=0; i
< len
; i
+= size
) {
1001 if ( size
== 1 ) val
= ((int)*CHARP(cp
, i
)) << 8;
1002 else if ( size
== 2 ) val
= (int)*SHORTP(cp
, i
);
1003 else if ( size
== 4 ) val
= ((int)*LONGP(cp
, i
)) >> 16;
1007 if ( size
== 1 ) *CHARP(ncp
, j
) = (signed char)(val
>> 8);
1008 else if ( size
== 2 ) *SHORTP(ncp
, j
) = (short)(val
);
1009 else if ( size
== 4 ) *LONGP(ncp
, j
) = (Py_Int32
)(val
<<16);
1015 audioop_lin2lin(PyObject
*self
, PyObject
*args
)
1019 int len
, new_len
, size
, size2
, val
= 0;
1023 if ( !PyArg_ParseTuple(args
, "s#ii:lin2lin",
1024 &cp
, &len
, &size
, &size2
) )
1027 if ( (size
!= 1 && size
!= 2 && size
!= 4) ||
1028 (size2
!= 1 && size2
!= 2 && size2
!= 4)) {
1029 PyErr_SetString(AudioopError
, "Size should be 1, 2 or 4");
1033 new_len
= (len
/size
)*size2
;
1035 PyErr_SetString(PyExc_MemoryError
,
1036 "not enough memory for output buffer");
1039 rv
= PyString_FromStringAndSize(NULL
, new_len
);
1042 ncp
= (unsigned char *)PyString_AsString(rv
);
1044 for ( i
=0, j
=0; i
< len
; i
+= size
, j
+= size2
) {
1045 if ( size
== 1 ) val
= ((int)*CHARP(cp
, i
)) << 8;
1046 else if ( size
== 2 ) val
= (int)*SHORTP(cp
, i
);
1047 else if ( size
== 4 ) val
= ((int)*LONGP(cp
, i
)) >> 16;
1049 if ( size2
== 1 ) *CHARP(ncp
, j
) = (signed char)(val
>> 8);
1050 else if ( size2
== 2 ) *SHORTP(ncp
, j
) = (short)(val
);
1051 else if ( size2
== 4 ) *LONGP(ncp
, j
) = (Py_Int32
)(val
<<16);
1068 audioop_ratecv(PyObject
*self
, PyObject
*args
)
1071 int len
, size
, nchannels
, inrate
, outrate
, weightA
, weightB
;
1072 int chan
, d
, *prev_i
, *cur_i
, cur_o
;
1073 PyObject
*state
, *samps
, *str
, *rv
= NULL
;
1074 int bytes_per_frame
;
1079 if (!PyArg_ParseTuple(args
, "s#iiiiO|ii:ratecv", &cp
, &len
, &size
,
1080 &nchannels
, &inrate
, &outrate
, &state
,
1081 &weightA
, &weightB
))
1083 if (size
!= 1 && size
!= 2 && size
!= 4) {
1084 PyErr_SetString(AudioopError
, "Size should be 1, 2 or 4");
1087 if (nchannels
< 1) {
1088 PyErr_SetString(AudioopError
, "# of channels should be >= 1");
1091 bytes_per_frame
= size
* nchannels
;
1092 if (bytes_per_frame
/ nchannels
!= size
) {
1093 /* This overflow test is rigorously correct because
1094 both multiplicands are >= 1. Use the argument names
1095 from the docs for the error msg. */
1096 PyErr_SetString(PyExc_OverflowError
,
1097 "width * nchannels too big for a C int");
1100 if (weightA
< 1 || weightB
< 0) {
1101 PyErr_SetString(AudioopError
,
1102 "weightA should be >= 1, weightB should be >= 0");
1105 if (len
% bytes_per_frame
!= 0) {
1106 PyErr_SetString(AudioopError
, "not a whole number of frames");
1109 if (inrate
<= 0 || outrate
<= 0) {
1110 PyErr_SetString(AudioopError
, "sampling rate not > 0");
1113 /* divide inrate and outrate by their greatest common divisor */
1114 d
= gcd(inrate
, outrate
);
1118 alloc_size
= sizeof(int) * (unsigned)nchannels
;
1119 if (alloc_size
< nchannels
) {
1120 PyErr_SetString(PyExc_MemoryError
,
1121 "not enough memory for output buffer");
1124 prev_i
= (int *) malloc(alloc_size
);
1125 cur_i
= (int *) malloc(alloc_size
);
1126 if (prev_i
== NULL
|| cur_i
== NULL
) {
1127 (void) PyErr_NoMemory();
1131 len
/= bytes_per_frame
; /* # of frames */
1133 if (state
== Py_None
) {
1135 for (chan
= 0; chan
< nchannels
; chan
++)
1136 prev_i
[chan
] = cur_i
[chan
] = 0;
1139 if (!PyArg_ParseTuple(state
,
1140 "iO!;audioop.ratecv: illegal state argument",
1141 &d
, &PyTuple_Type
, &samps
))
1143 if (PyTuple_Size(samps
) != nchannels
) {
1144 PyErr_SetString(AudioopError
,
1145 "illegal state argument");
1148 for (chan
= 0; chan
< nchannels
; chan
++) {
1149 if (!PyArg_ParseTuple(PyTuple_GetItem(samps
, chan
),
1150 "ii:ratecv", &prev_i
[chan
],
1156 /* str <- Space for the output buffer. */
1158 /* There are len input frames, so we need (mathematically)
1159 ceiling(len*outrate/inrate) output frames, and each frame
1160 requires bytes_per_frame bytes. Computing this
1161 without spurious overflow is the challenge; we can
1162 settle for a reasonable upper bound, though. */
1163 int ceiling
; /* the number of output frames */
1164 int nbytes
; /* the number of output bytes needed */
1165 int q
= len
/ inrate
;
1166 /* Now len = q * inrate + r exactly (with r = len % inrate),
1167 and this is less than q * inrate + inrate = (q+1)*inrate.
1168 So a reasonable upper bound on len*outrate/inrate is
1169 ((q+1)*inrate)*outrate/inrate =
1172 ceiling
= (q
+1) * outrate
;
1173 nbytes
= ceiling
* bytes_per_frame
;
1174 /* See whether anything overflowed; if not, get the space. */
1176 ceiling
/ outrate
!= q
+1 ||
1177 nbytes
/ bytes_per_frame
!= ceiling
)
1180 str
= PyString_FromStringAndSize(NULL
, nbytes
);
1183 PyErr_SetString(PyExc_MemoryError
,
1184 "not enough memory for output buffer");
1188 ncp
= PyString_AsString(str
);
1193 samps
= PyTuple_New(nchannels
);
1196 for (chan
= 0; chan
< nchannels
; chan
++)
1197 PyTuple_SetItem(samps
, chan
,
1198 Py_BuildValue("(ii)",
1201 if (PyErr_Occurred())
1203 /* We have checked before that the length
1204 * of the string fits into int. */
1205 len
= (int)(ncp
- PyString_AsString(str
));
1207 /*don't want to resize to zero length*/
1208 rv
= PyString_FromStringAndSize("", 0);
1211 } else if (_PyString_Resize(&str
, len
) < 0)
1213 rv
= Py_BuildValue("(O(iO))", str
, d
, samps
);
1216 goto exit
; /* return rv */
1218 for (chan
= 0; chan
< nchannels
; chan
++) {
1219 prev_i
[chan
] = cur_i
[chan
];
1221 cur_i
[chan
] = ((int)*CHARP(cp
, 0)) << 8;
1223 cur_i
[chan
] = (int)*SHORTP(cp
, 0);
1225 cur_i
[chan
] = ((int)*LONGP(cp
, 0)) >> 16;
1227 /* implements a simple digital filter */
1229 (weightA
* cur_i
[chan
] +
1230 weightB
* prev_i
[chan
]) /
1231 (weightA
+ weightB
);
1237 for (chan
= 0; chan
< nchannels
; chan
++) {
1238 cur_o
= (prev_i
[chan
] * d
+
1239 cur_i
[chan
] * (outrate
- d
)) /
1242 *CHARP(ncp
, 0) = (signed char)(cur_o
>> 8);
1244 *SHORTP(ncp
, 0) = (short)(cur_o
);
1246 *LONGP(ncp
, 0) = (Py_Int32
)(cur_o
<<16);
1261 audioop_lin2ulaw(PyObject
*self
, PyObject
*args
)
1265 int len
, size
, val
= 0;
1269 if ( !PyArg_ParseTuple(args
, "s#i:lin2ulaw",
1273 if ( size
!= 1 && size
!= 2 && size
!= 4) {
1274 PyErr_SetString(AudioopError
, "Size should be 1, 2 or 4");
1278 rv
= PyString_FromStringAndSize(NULL
, len
/size
);
1281 ncp
= (unsigned char *)PyString_AsString(rv
);
1283 for ( i
=0; i
< len
; i
+= size
) {
1284 if ( size
== 1 ) val
= ((int)*CHARP(cp
, i
)) << 8;
1285 else if ( size
== 2 ) val
= (int)*SHORTP(cp
, i
);
1286 else if ( size
== 4 ) val
= ((int)*LONGP(cp
, i
)) >> 16;
1288 *ncp
++ = st_14linear2ulaw(val
);
1294 audioop_ulaw2lin(PyObject
*self
, PyObject
*args
)
1299 int len
, new_len
, size
, val
;
1303 if ( !PyArg_ParseTuple(args
, "s#i:ulaw2lin",
1307 if ( size
!= 1 && size
!= 2 && size
!= 4) {
1308 PyErr_SetString(AudioopError
, "Size should be 1, 2 or 4");
1314 PyErr_SetString(PyExc_MemoryError
,
1315 "not enough memory for output buffer");
1318 rv
= PyString_FromStringAndSize(NULL
, new_len
);
1321 ncp
= (signed char *)PyString_AsString(rv
);
1323 for ( i
=0; i
< new_len
; i
+= size
) {
1325 val
= st_ulaw2linear16(cval
);
1327 if ( size
== 1 ) *CHARP(ncp
, i
) = (signed char)(val
>> 8);
1328 else if ( size
== 2 ) *SHORTP(ncp
, i
) = (short)(val
);
1329 else if ( size
== 4 ) *LONGP(ncp
, i
) = (Py_Int32
)(val
<<16);
1335 audioop_lin2alaw(PyObject
*self
, PyObject
*args
)
1339 int len
, size
, val
= 0;
1343 if ( !PyArg_ParseTuple(args
, "s#i:lin2alaw",
1347 if ( size
!= 1 && size
!= 2 && size
!= 4) {
1348 PyErr_SetString(AudioopError
, "Size should be 1, 2 or 4");
1352 rv
= PyString_FromStringAndSize(NULL
, len
/size
);
1355 ncp
= (unsigned char *)PyString_AsString(rv
);
1357 for ( i
=0; i
< len
; i
+= size
) {
1358 if ( size
== 1 ) val
= ((int)*CHARP(cp
, i
)) << 8;
1359 else if ( size
== 2 ) val
= (int)*SHORTP(cp
, i
);
1360 else if ( size
== 4 ) val
= ((int)*LONGP(cp
, i
)) >> 16;
1362 *ncp
++ = st_linear2alaw(val
);
1368 audioop_alaw2lin(PyObject
*self
, PyObject
*args
)
1373 int len
, new_len
, size
, val
;
1377 if ( !PyArg_ParseTuple(args
, "s#i:alaw2lin",
1381 if ( size
!= 1 && size
!= 2 && size
!= 4) {
1382 PyErr_SetString(AudioopError
, "Size should be 1, 2 or 4");
1388 PyErr_SetString(PyExc_MemoryError
,
1389 "not enough memory for output buffer");
1392 rv
= PyString_FromStringAndSize(NULL
, new_len
);
1395 ncp
= (signed char *)PyString_AsString(rv
);
1397 for ( i
=0; i
< new_len
; i
+= size
) {
1399 val
= st_alaw2linear16(cval
);
1401 if ( size
== 1 ) *CHARP(ncp
, i
) = (signed char)(val
>> 8);
1402 else if ( size
== 2 ) *SHORTP(ncp
, i
) = (short)(val
);
1403 else if ( size
== 4 ) *LONGP(ncp
, i
) = (Py_Int32
)(val
<<16);
1409 audioop_lin2adpcm(PyObject
*self
, PyObject
*args
)
1413 int len
, size
, val
= 0, step
, valpred
, delta
,
1414 index
, sign
, vpdiff
, diff
;
1415 PyObject
*rv
, *state
, *str
;
1416 int i
, outputbuffer
= 0, bufferstep
;
1418 if ( !PyArg_ParseTuple(args
, "s#iO:lin2adpcm",
1419 &cp
, &len
, &size
, &state
) )
1423 if ( size
!= 1 && size
!= 2 && size
!= 4) {
1424 PyErr_SetString(AudioopError
, "Size should be 1, 2 or 4");
1428 str
= PyString_FromStringAndSize(NULL
, len
/(size
*2));
1431 ncp
= (signed char *)PyString_AsString(str
);
1433 /* Decode state, should have (value, step) */
1434 if ( state
== Py_None
) {
1435 /* First time, it seems. Set defaults */
1439 } else if ( !PyArg_ParseTuple(state
, "ii", &valpred
, &index
) )
1442 step
= stepsizeTable
[index
];
1445 for ( i
=0; i
< len
; i
+= size
) {
1446 if ( size
== 1 ) val
= ((int)*CHARP(cp
, i
)) << 8;
1447 else if ( size
== 2 ) val
= (int)*SHORTP(cp
, i
);
1448 else if ( size
== 4 ) val
= ((int)*LONGP(cp
, i
)) >> 16;
1450 /* Step 1 - compute difference with previous value */
1451 diff
= val
- valpred
;
1452 sign
= (diff
< 0) ? 8 : 0;
1453 if ( sign
) diff
= (-diff
);
1455 /* Step 2 - Divide and clamp */
1457 ** This code *approximately* computes:
1458 ** delta = diff*4/step;
1459 ** vpdiff = (delta+0.5)*step/4;
1460 ** but in shift step bits are dropped. The net result of this
1461 ** is that even if you have fast mul/div hardware you cannot
1462 ** put it to good use since the fixup would be too expensive.
1465 vpdiff
= (step
>> 3);
1467 if ( diff
>= step
) {
1473 if ( diff
>= step
) {
1479 if ( diff
>= step
) {
1484 /* Step 3 - Update previous value */
1490 /* Step 4 - Clamp previous value to 16 bits */
1491 if ( valpred
> 32767 )
1493 else if ( valpred
< -32768 )
1496 /* Step 5 - Assemble value, update index and step values */
1499 index
+= indexTable
[delta
];
1500 if ( index
< 0 ) index
= 0;
1501 if ( index
> 88 ) index
= 88;
1502 step
= stepsizeTable
[index
];
1504 /* Step 6 - Output value */
1506 outputbuffer
= (delta
<< 4) & 0xf0;
1508 *ncp
++ = (delta
& 0x0f) | outputbuffer
;
1510 bufferstep
= !bufferstep
;
1512 rv
= Py_BuildValue("(O(ii))", str
, valpred
, index
);
1518 audioop_adpcm2lin(PyObject
*self
, PyObject
*args
)
1522 int len
, new_len
, size
, valpred
, step
, delta
, index
, sign
, vpdiff
;
1523 PyObject
*rv
, *str
, *state
;
1524 int i
, inputbuffer
= 0, bufferstep
;
1526 if ( !PyArg_ParseTuple(args
, "s#iO:adpcm2lin",
1527 &cp
, &len
, &size
, &state
) )
1530 if ( size
!= 1 && size
!= 2 && size
!= 4) {
1531 PyErr_SetString(AudioopError
, "Size should be 1, 2 or 4");
1535 /* Decode state, should have (value, step) */
1536 if ( state
== Py_None
) {
1537 /* First time, it seems. Set defaults */
1541 } else if ( !PyArg_ParseTuple(state
, "ii", &valpred
, &index
) )
1544 new_len
= len
*size
*2;
1546 PyErr_SetString(PyExc_MemoryError
,
1547 "not enough memory for output buffer");
1550 str
= PyString_FromStringAndSize(NULL
, new_len
);
1553 ncp
= (signed char *)PyString_AsString(str
);
1555 step
= stepsizeTable
[index
];
1558 for ( i
=0; i
< new_len
; i
+= size
) {
1559 /* Step 1 - get the delta value and compute next index */
1561 delta
= inputbuffer
& 0xf;
1563 inputbuffer
= *cp
++;
1564 delta
= (inputbuffer
>> 4) & 0xf;
1567 bufferstep
= !bufferstep
;
1569 /* Step 2 - Find new index value (for later) */
1570 index
+= indexTable
[delta
];
1571 if ( index
< 0 ) index
= 0;
1572 if ( index
> 88 ) index
= 88;
1574 /* Step 3 - Separate sign and magnitude */
1578 /* Step 4 - Compute difference and new predicted value */
1580 ** Computes 'vpdiff = (delta+0.5)*step/4', but see comment
1584 if ( delta
& 4 ) vpdiff
+= step
;
1585 if ( delta
& 2 ) vpdiff
+= step
>>1;
1586 if ( delta
& 1 ) vpdiff
+= step
>>2;
1593 /* Step 5 - clamp output value */
1594 if ( valpred
> 32767 )
1596 else if ( valpred
< -32768 )
1599 /* Step 6 - Update step value */
1600 step
= stepsizeTable
[index
];
1602 /* Step 6 - Output value */
1603 if ( size
== 1 ) *CHARP(ncp
, i
) = (signed char)(valpred
>> 8);
1604 else if ( size
== 2 ) *SHORTP(ncp
, i
) = (short)(valpred
);
1605 else if ( size
== 4 ) *LONGP(ncp
, i
) = (Py_Int32
)(valpred
<<16);
1608 rv
= Py_BuildValue("(O(ii))", str
, valpred
, index
);
1613 static PyMethodDef audioop_methods
[] = {
1614 { "max", audioop_max
, METH_VARARGS
},
1615 { "minmax", audioop_minmax
, METH_VARARGS
},
1616 { "avg", audioop_avg
, METH_VARARGS
},
1617 { "maxpp", audioop_maxpp
, METH_VARARGS
},
1618 { "avgpp", audioop_avgpp
, METH_VARARGS
},
1619 { "rms", audioop_rms
, METH_VARARGS
},
1620 { "findfit", audioop_findfit
, METH_VARARGS
},
1621 { "findmax", audioop_findmax
, METH_VARARGS
},
1622 { "findfactor", audioop_findfactor
, METH_VARARGS
},
1623 { "cross", audioop_cross
, METH_VARARGS
},
1624 { "mul", audioop_mul
, METH_VARARGS
},
1625 { "add", audioop_add
, METH_VARARGS
},
1626 { "bias", audioop_bias
, METH_VARARGS
},
1627 { "ulaw2lin", audioop_ulaw2lin
, METH_VARARGS
},
1628 { "lin2ulaw", audioop_lin2ulaw
, METH_VARARGS
},
1629 { "alaw2lin", audioop_alaw2lin
, METH_VARARGS
},
1630 { "lin2alaw", audioop_lin2alaw
, METH_VARARGS
},
1631 { "lin2lin", audioop_lin2lin
, METH_VARARGS
},
1632 { "adpcm2lin", audioop_adpcm2lin
, METH_VARARGS
},
1633 { "lin2adpcm", audioop_lin2adpcm
, METH_VARARGS
},
1634 { "tomono", audioop_tomono
, METH_VARARGS
},
1635 { "tostereo", audioop_tostereo
, METH_VARARGS
},
1636 { "getsample", audioop_getsample
, METH_VARARGS
},
1637 { "reverse", audioop_reverse
, METH_VARARGS
},
1638 { "ratecv", audioop_ratecv
, METH_VARARGS
},
1646 m
= Py_InitModule("audioop", audioop_methods
);
1649 d
= PyModule_GetDict(m
);
1652 AudioopError
= PyErr_NewException("audioop.error", NULL
, NULL
);
1653 if (AudioopError
!= NULL
)
1654 PyDict_SetItemString(d
,"error",AudioopError
);