1 /* Type object implementation */
4 #include "structmember.h"
9 /* Support type attribute cache */
11 /* The cache can keep references to the names alive for longer than
12 they normally would. This is why the maximum size is limited to
13 MCACHE_MAX_ATTR_SIZE, since it might be a problem if very large
14 strings are used as attribute names. */
15 #define MCACHE_MAX_ATTR_SIZE 100
16 #define MCACHE_SIZE_EXP 10
17 #define MCACHE_HASH(version, name_hash) \
18 (((unsigned int)(version) * (unsigned int)(name_hash)) \
19 >> (8*sizeof(unsigned int) - MCACHE_SIZE_EXP))
20 #define MCACHE_HASH_METHOD(type, name) \
21 MCACHE_HASH((type)->tp_version_tag, \
22 ((PyStringObject *)(name))->ob_shash)
23 #define MCACHE_CACHEABLE_NAME(name) \
24 PyString_CheckExact(name) && \
25 PyString_GET_SIZE(name) <= MCACHE_MAX_ATTR_SIZE
27 struct method_cache_entry
{
29 PyObject
*name
; /* reference to exactly a str or None */
30 PyObject
*value
; /* borrowed */
33 static struct method_cache_entry method_cache
[1 << MCACHE_SIZE_EXP
];
34 static unsigned int next_version_tag
= 0;
37 PyType_ClearCache(void)
40 unsigned int cur_version_tag
= next_version_tag
- 1;
42 for (i
= 0; i
< (1 << MCACHE_SIZE_EXP
); i
++) {
43 method_cache
[i
].version
= 0;
44 Py_CLEAR(method_cache
[i
].name
);
45 method_cache
[i
].value
= NULL
;
48 /* mark all version tags as invalid */
49 PyType_Modified(&PyBaseObject_Type
);
50 return cur_version_tag
;
54 PyType_Modified(PyTypeObject
*type
)
56 /* Invalidate any cached data for the specified type and all
57 subclasses. This function is called after the base
58 classes, mro, or attributes of the type are altered.
62 - Py_TPFLAGS_VALID_VERSION_TAG is never set if
63 Py_TPFLAGS_HAVE_VERSION_TAG is not set (e.g. on type
64 objects coming from non-recompiled extension modules)
66 - before Py_TPFLAGS_VALID_VERSION_TAG can be set on a type,
67 it must first be set on all super types.
69 This function clears the Py_TPFLAGS_VALID_VERSION_TAG of a
70 type (so it must first clear it on all subclasses). The
71 tp_version_tag value is meaningless unless this flag is set.
72 We don't assign new version tags eagerly, but only as
78 if (!PyType_HasFeature(type
, Py_TPFLAGS_VALID_VERSION_TAG
))
81 raw
= type
->tp_subclasses
;
83 n
= PyList_GET_SIZE(raw
);
84 for (i
= 0; i
< n
; i
++) {
85 ref
= PyList_GET_ITEM(raw
, i
);
86 ref
= PyWeakref_GET_OBJECT(ref
);
88 PyType_Modified((PyTypeObject
*)ref
);
92 type
->tp_flags
&= ~Py_TPFLAGS_VALID_VERSION_TAG
;
96 type_mro_modified(PyTypeObject
*type
, PyObject
*bases
) {
98 Check that all base classes or elements of the mro of type are
99 able to be cached. This function is called after the base
100 classes or mro of the type are altered.
102 Unset HAVE_VERSION_TAG and VALID_VERSION_TAG if the type
103 inherits from an old-style class, either directly or if it
104 appears in the MRO of a new-style class. No support either for
105 custom MROs that include types that are not officially super
108 Called from mro_internal, which will subsequently be called on
109 each subclass when their mro is recursively updated.
114 if (!PyType_HasFeature(type
, Py_TPFLAGS_HAVE_VERSION_TAG
))
117 n
= PyTuple_GET_SIZE(bases
);
118 for (i
= 0; i
< n
; i
++) {
119 PyObject
*b
= PyTuple_GET_ITEM(bases
, i
);
122 if (!PyType_Check(b
) ) {
127 cls
= (PyTypeObject
*)b
;
129 if (!PyType_HasFeature(cls
, Py_TPFLAGS_HAVE_VERSION_TAG
) ||
130 !PyType_IsSubtype(type
, cls
)) {
137 type
->tp_flags
&= ~(Py_TPFLAGS_HAVE_VERSION_TAG
|
138 Py_TPFLAGS_VALID_VERSION_TAG
);
142 assign_version_tag(PyTypeObject
*type
)
144 /* Ensure that the tp_version_tag is valid and set
145 Py_TPFLAGS_VALID_VERSION_TAG. To respect the invariant, this
146 must first be done on all super classes. Return 0 if this
147 cannot be done, 1 if Py_TPFLAGS_VALID_VERSION_TAG.
152 if (PyType_HasFeature(type
, Py_TPFLAGS_VALID_VERSION_TAG
))
154 if (!PyType_HasFeature(type
, Py_TPFLAGS_HAVE_VERSION_TAG
))
156 if (!PyType_HasFeature(type
, Py_TPFLAGS_READY
))
159 type
->tp_version_tag
= next_version_tag
++;
160 /* for stress-testing: next_version_tag &= 0xFF; */
162 if (type
->tp_version_tag
== 0) {
163 /* wrap-around or just starting Python - clear the whole
164 cache by filling names with references to Py_None.
165 Values are also set to NULL for added protection, as they
166 are borrowed reference */
167 for (i
= 0; i
< (1 << MCACHE_SIZE_EXP
); i
++) {
168 method_cache
[i
].value
= NULL
;
169 Py_XDECREF(method_cache
[i
].name
);
170 method_cache
[i
].name
= Py_None
;
173 /* mark all version tags as invalid */
174 PyType_Modified(&PyBaseObject_Type
);
177 bases
= type
->tp_bases
;
178 n
= PyTuple_GET_SIZE(bases
);
179 for (i
= 0; i
< n
; i
++) {
180 PyObject
*b
= PyTuple_GET_ITEM(bases
, i
);
181 assert(PyType_Check(b
));
182 if (!assign_version_tag((PyTypeObject
*)b
))
185 type
->tp_flags
|= Py_TPFLAGS_VALID_VERSION_TAG
;
190 static PyMemberDef type_members
[] = {
191 {"__basicsize__", T_INT
, offsetof(PyTypeObject
,tp_basicsize
),READONLY
},
192 {"__itemsize__", T_INT
, offsetof(PyTypeObject
, tp_itemsize
), READONLY
},
193 {"__flags__", T_LONG
, offsetof(PyTypeObject
, tp_flags
), READONLY
},
194 {"__weakrefoffset__", T_LONG
,
195 offsetof(PyTypeObject
, tp_weaklistoffset
), READONLY
},
196 {"__base__", T_OBJECT
, offsetof(PyTypeObject
, tp_base
), READONLY
},
197 {"__dictoffset__", T_LONG
,
198 offsetof(PyTypeObject
, tp_dictoffset
), READONLY
},
199 {"__mro__", T_OBJECT
, offsetof(PyTypeObject
, tp_mro
), READONLY
},
204 type_name(PyTypeObject
*type
, void *context
)
208 if (type
->tp_flags
& Py_TPFLAGS_HEAPTYPE
) {
209 PyHeapTypeObject
* et
= (PyHeapTypeObject
*)type
;
211 Py_INCREF(et
->ht_name
);
215 s
= strrchr(type
->tp_name
, '.');
220 return PyString_FromString(s
);
225 type_set_name(PyTypeObject
*type
, PyObject
*value
, void *context
)
227 PyHeapTypeObject
* et
;
229 if (!(type
->tp_flags
& Py_TPFLAGS_HEAPTYPE
)) {
230 PyErr_Format(PyExc_TypeError
,
231 "can't set %s.__name__", type
->tp_name
);
235 PyErr_Format(PyExc_TypeError
,
236 "can't delete %s.__name__", type
->tp_name
);
239 if (!PyString_Check(value
)) {
240 PyErr_Format(PyExc_TypeError
,
241 "can only assign string to %s.__name__, not '%s'",
242 type
->tp_name
, Py_TYPE(value
)->tp_name
);
245 if (strlen(PyString_AS_STRING(value
))
246 != (size_t)PyString_GET_SIZE(value
)) {
247 PyErr_Format(PyExc_ValueError
,
248 "__name__ must not contain null bytes");
252 et
= (PyHeapTypeObject
*)type
;
256 Py_DECREF(et
->ht_name
);
259 type
->tp_name
= PyString_AS_STRING(value
);
265 type_module(PyTypeObject
*type
, void *context
)
270 if (type
->tp_flags
& Py_TPFLAGS_HEAPTYPE
) {
271 mod
= PyDict_GetItemString(type
->tp_dict
, "__module__");
273 PyErr_Format(PyExc_AttributeError
, "__module__");
280 s
= strrchr(type
->tp_name
, '.');
282 return PyString_FromStringAndSize(
283 type
->tp_name
, (Py_ssize_t
)(s
- type
->tp_name
));
284 return PyString_FromString("__builtin__");
289 type_set_module(PyTypeObject
*type
, PyObject
*value
, void *context
)
291 if (!(type
->tp_flags
& Py_TPFLAGS_HEAPTYPE
)) {
292 PyErr_Format(PyExc_TypeError
,
293 "can't set %s.__module__", type
->tp_name
);
297 PyErr_Format(PyExc_TypeError
,
298 "can't delete %s.__module__", type
->tp_name
);
302 PyType_Modified(type
);
304 return PyDict_SetItemString(type
->tp_dict
, "__module__", value
);
308 type_abstractmethods(PyTypeObject
*type
, void *context
)
310 PyObject
*mod
= PyDict_GetItemString(type
->tp_dict
,
311 "__abstractmethods__");
313 PyErr_Format(PyExc_AttributeError
, "__abstractmethods__");
321 type_set_abstractmethods(PyTypeObject
*type
, PyObject
*value
, void *context
)
323 /* __abstractmethods__ should only be set once on a type, in
324 abc.ABCMeta.__new__, so this function doesn't do anything
325 special to update subclasses.
327 int res
= PyDict_SetItemString(type
->tp_dict
,
328 "__abstractmethods__", value
);
330 PyType_Modified(type
);
331 if (value
&& PyObject_IsTrue(value
)) {
332 type
->tp_flags
|= Py_TPFLAGS_IS_ABSTRACT
;
335 type
->tp_flags
&= ~Py_TPFLAGS_IS_ABSTRACT
;
342 type_get_bases(PyTypeObject
*type
, void *context
)
344 Py_INCREF(type
->tp_bases
);
345 return type
->tp_bases
;
348 static PyTypeObject
*best_base(PyObject
*);
349 static int mro_internal(PyTypeObject
*);
350 static int compatible_for_assignment(PyTypeObject
*, PyTypeObject
*, char *);
351 static int add_subclass(PyTypeObject
*, PyTypeObject
*);
352 static void remove_subclass(PyTypeObject
*, PyTypeObject
*);
353 static void update_all_slots(PyTypeObject
*);
355 typedef int (*update_callback
)(PyTypeObject
*, void *);
356 static int update_subclasses(PyTypeObject
*type
, PyObject
*name
,
357 update_callback callback
, void *data
);
358 static int recurse_down_subclasses(PyTypeObject
*type
, PyObject
*name
,
359 update_callback callback
, void *data
);
362 mro_subclasses(PyTypeObject
*type
, PyObject
* temp
)
364 PyTypeObject
*subclass
;
365 PyObject
*ref
, *subclasses
, *old_mro
;
368 subclasses
= type
->tp_subclasses
;
369 if (subclasses
== NULL
)
371 assert(PyList_Check(subclasses
));
372 n
= PyList_GET_SIZE(subclasses
);
373 for (i
= 0; i
< n
; i
++) {
374 ref
= PyList_GET_ITEM(subclasses
, i
);
375 assert(PyWeakref_CheckRef(ref
));
376 subclass
= (PyTypeObject
*)PyWeakref_GET_OBJECT(ref
);
377 assert(subclass
!= NULL
);
378 if ((PyObject
*)subclass
== Py_None
)
380 assert(PyType_Check(subclass
));
381 old_mro
= subclass
->tp_mro
;
382 if (mro_internal(subclass
) < 0) {
383 subclass
->tp_mro
= old_mro
;
388 tuple
= PyTuple_Pack(2, subclass
, old_mro
);
392 if (PyList_Append(temp
, tuple
) < 0)
396 if (mro_subclasses(subclass
, temp
) < 0)
403 type_set_bases(PyTypeObject
*type
, PyObject
*value
, void *context
)
408 PyTypeObject
*new_base
, *old_base
;
409 PyObject
*old_bases
, *old_mro
;
411 if (!(type
->tp_flags
& Py_TPFLAGS_HEAPTYPE
)) {
412 PyErr_Format(PyExc_TypeError
,
413 "can't set %s.__bases__", type
->tp_name
);
417 PyErr_Format(PyExc_TypeError
,
418 "can't delete %s.__bases__", type
->tp_name
);
421 if (!PyTuple_Check(value
)) {
422 PyErr_Format(PyExc_TypeError
,
423 "can only assign tuple to %s.__bases__, not %s",
424 type
->tp_name
, Py_TYPE(value
)->tp_name
);
427 if (PyTuple_GET_SIZE(value
) == 0) {
428 PyErr_Format(PyExc_TypeError
,
429 "can only assign non-empty tuple to %s.__bases__, not ()",
433 for (i
= 0; i
< PyTuple_GET_SIZE(value
); i
++) {
434 ob
= PyTuple_GET_ITEM(value
, i
);
435 if (!PyClass_Check(ob
) && !PyType_Check(ob
)) {
438 "%s.__bases__ must be tuple of old- or new-style classes, not '%s'",
439 type
->tp_name
, Py_TYPE(ob
)->tp_name
);
442 if (PyType_Check(ob
)) {
443 if (PyType_IsSubtype((PyTypeObject
*)ob
, type
)) {
444 PyErr_SetString(PyExc_TypeError
,
445 "a __bases__ item causes an inheritance cycle");
451 new_base
= best_base(value
);
457 if (!compatible_for_assignment(type
->tp_base
, new_base
, "__bases__"))
463 old_bases
= type
->tp_bases
;
464 old_base
= type
->tp_base
;
465 old_mro
= type
->tp_mro
;
467 type
->tp_bases
= value
;
468 type
->tp_base
= new_base
;
470 if (mro_internal(type
) < 0) {
474 temp
= PyList_New(0);
478 r
= mro_subclasses(type
, temp
);
481 for (i
= 0; i
< PyList_Size(temp
); i
++) {
484 PyArg_UnpackTuple(PyList_GET_ITEM(temp
, i
),
485 "", 2, 2, &cls
, &mro
);
497 /* any base that was in __bases__ but now isn't, we
498 need to remove |type| from its tp_subclasses.
499 conversely, any class now in __bases__ that wasn't
500 needs to have |type| added to its subclasses. */
502 /* for now, sod that: just remove from all old_bases,
503 add to all new_bases */
505 for (i
= PyTuple_GET_SIZE(old_bases
) - 1; i
>= 0; i
--) {
506 ob
= PyTuple_GET_ITEM(old_bases
, i
);
507 if (PyType_Check(ob
)) {
509 (PyTypeObject
*)ob
, type
);
513 for (i
= PyTuple_GET_SIZE(value
) - 1; i
>= 0; i
--) {
514 ob
= PyTuple_GET_ITEM(value
, i
);
515 if (PyType_Check(ob
)) {
516 if (add_subclass((PyTypeObject
*)ob
, type
) < 0)
521 update_all_slots(type
);
523 Py_DECREF(old_bases
);
530 Py_DECREF(type
->tp_bases
);
531 Py_DECREF(type
->tp_base
);
532 if (type
->tp_mro
!= old_mro
) {
533 Py_DECREF(type
->tp_mro
);
536 type
->tp_bases
= old_bases
;
537 type
->tp_base
= old_base
;
538 type
->tp_mro
= old_mro
;
544 type_dict(PyTypeObject
*type
, void *context
)
546 if (type
->tp_dict
== NULL
) {
550 return PyDictProxy_New(type
->tp_dict
);
554 type_get_doc(PyTypeObject
*type
, void *context
)
557 if (!(type
->tp_flags
& Py_TPFLAGS_HEAPTYPE
) && type
->tp_doc
!= NULL
)
558 return PyString_FromString(type
->tp_doc
);
559 result
= PyDict_GetItemString(type
->tp_dict
, "__doc__");
560 if (result
== NULL
) {
564 else if (Py_TYPE(result
)->tp_descr_get
) {
565 result
= Py_TYPE(result
)->tp_descr_get(result
, NULL
,
575 type___instancecheck__(PyObject
*type
, PyObject
*inst
)
577 switch (_PyObject_RealIsInstance(inst
, type
)) {
589 type_get_instancecheck(PyObject
*type
, void *context
)
591 static PyMethodDef ml
= {"__instancecheck__",
592 type___instancecheck__
, METH_O
};
593 return PyCFunction_New(&ml
, type
);
597 type___subclasscheck__(PyObject
*type
, PyObject
*inst
)
599 switch (_PyObject_RealIsSubclass(inst
, type
)) {
610 type_get_subclasscheck(PyObject
*type
, void *context
)
612 static PyMethodDef ml
= {"__subclasscheck__",
613 type___subclasscheck__
, METH_O
};
614 return PyCFunction_New(&ml
, type
);
617 static PyGetSetDef type_getsets
[] = {
618 {"__name__", (getter
)type_name
, (setter
)type_set_name
, NULL
},
619 {"__bases__", (getter
)type_get_bases
, (setter
)type_set_bases
, NULL
},
620 {"__module__", (getter
)type_module
, (setter
)type_set_module
, NULL
},
621 {"__abstractmethods__", (getter
)type_abstractmethods
,
622 (setter
)type_set_abstractmethods
, NULL
},
623 {"__dict__", (getter
)type_dict
, NULL
, NULL
},
624 {"__doc__", (getter
)type_get_doc
, NULL
, NULL
},
625 {"__instancecheck__", (getter
)type_get_instancecheck
, NULL
, NULL
},
626 {"__subclasscheck__", (getter
)type_get_subclasscheck
, NULL
, NULL
},
631 type_compare(PyObject
*v
, PyObject
*w
)
633 /* This is called with type objects only. So we
634 can just compare the addresses. */
635 Py_uintptr_t vv
= (Py_uintptr_t
)v
;
636 Py_uintptr_t ww
= (Py_uintptr_t
)w
;
637 return (vv
< ww
) ? -1 : (vv
> ww
) ? 1 : 0;
641 type_richcompare(PyObject
*v
, PyObject
*w
, int op
)
647 /* Make sure both arguments are types. */
648 if (!PyType_Check(v
) || !PyType_Check(w
)) {
649 result
= Py_NotImplemented
;
653 /* Py3K warning if comparison isn't == or != */
654 if (Py_Py3kWarningFlag
&& op
!= Py_EQ
&& op
!= Py_NE
&&
655 PyErr_WarnEx(PyExc_DeprecationWarning
,
656 "type inequality comparisons not supported "
661 /* Compare addresses */
662 vv
= (Py_uintptr_t
)v
;
663 ww
= (Py_uintptr_t
)w
;
665 case Py_LT
: c
= vv
< ww
; break;
666 case Py_LE
: c
= vv
<= ww
; break;
667 case Py_EQ
: c
= vv
== ww
; break;
668 case Py_NE
: c
= vv
!= ww
; break;
669 case Py_GT
: c
= vv
> ww
; break;
670 case Py_GE
: c
= vv
>= ww
; break;
672 result
= Py_NotImplemented
;
675 result
= c
? Py_True
: Py_False
;
677 /* incref and return */
684 type_repr(PyTypeObject
*type
)
686 PyObject
*mod
, *name
, *rtn
;
689 mod
= type_module(type
, NULL
);
692 else if (!PyString_Check(mod
)) {
696 name
= type_name(type
, NULL
);
700 if (type
->tp_flags
& Py_TPFLAGS_HEAPTYPE
)
705 if (mod
!= NULL
&& strcmp(PyString_AS_STRING(mod
), "__builtin__")) {
706 rtn
= PyString_FromFormat("<%s '%s.%s'>",
708 PyString_AS_STRING(mod
),
709 PyString_AS_STRING(name
));
712 rtn
= PyString_FromFormat("<%s '%s'>", kind
, type
->tp_name
);
720 type_call(PyTypeObject
*type
, PyObject
*args
, PyObject
*kwds
)
724 if (type
->tp_new
== NULL
) {
725 PyErr_Format(PyExc_TypeError
,
726 "cannot create '%.100s' instances",
731 obj
= type
->tp_new(type
, args
, kwds
);
733 /* Ugly exception: when the call was type(something),
734 don't call tp_init on the result. */
735 if (type
== &PyType_Type
&&
736 PyTuple_Check(args
) && PyTuple_GET_SIZE(args
) == 1 &&
738 (PyDict_Check(kwds
) && PyDict_Size(kwds
) == 0)))
740 /* If the returned object is not an instance of type,
741 it won't be initialized. */
742 if (!PyType_IsSubtype(obj
->ob_type
, type
))
745 if (PyType_HasFeature(type
, Py_TPFLAGS_HAVE_CLASS
) &&
746 type
->tp_init
!= NULL
&&
747 type
->tp_init(obj
, args
, kwds
) < 0) {
756 PyType_GenericAlloc(PyTypeObject
*type
, Py_ssize_t nitems
)
759 const size_t size
= _PyObject_VAR_SIZE(type
, nitems
+1);
760 /* note that we need to add one, for the sentinel */
762 if (PyType_IS_GC(type
))
763 obj
= _PyObject_GC_Malloc(size
);
765 obj
= (PyObject
*)PyObject_MALLOC(size
);
768 return PyErr_NoMemory();
770 memset(obj
, '\0', size
);
772 if (type
->tp_flags
& Py_TPFLAGS_HEAPTYPE
)
775 if (type
->tp_itemsize
== 0)
776 PyObject_INIT(obj
, type
);
778 (void) PyObject_INIT_VAR((PyVarObject
*)obj
, type
, nitems
);
780 if (PyType_IS_GC(type
))
781 _PyObject_GC_TRACK(obj
);
786 PyType_GenericNew(PyTypeObject
*type
, PyObject
*args
, PyObject
*kwds
)
788 return type
->tp_alloc(type
, 0);
791 /* Helpers for subtyping */
794 traverse_slots(PyTypeObject
*type
, PyObject
*self
, visitproc visit
, void *arg
)
800 mp
= PyHeapType_GET_MEMBERS((PyHeapTypeObject
*)type
);
801 for (i
= 0; i
< n
; i
++, mp
++) {
802 if (mp
->type
== T_OBJECT_EX
) {
803 char *addr
= (char *)self
+ mp
->offset
;
804 PyObject
*obj
= *(PyObject
**)addr
;
806 int err
= visit(obj
, arg
);
816 subtype_traverse(PyObject
*self
, visitproc visit
, void *arg
)
818 PyTypeObject
*type
, *base
;
819 traverseproc basetraverse
;
821 /* Find the nearest base with a different tp_traverse,
822 and traverse slots while we're at it */
823 type
= Py_TYPE(self
);
825 while ((basetraverse
= base
->tp_traverse
) == subtype_traverse
) {
827 int err
= traverse_slots(base
, self
, visit
, arg
);
831 base
= base
->tp_base
;
835 if (type
->tp_dictoffset
!= base
->tp_dictoffset
) {
836 PyObject
**dictptr
= _PyObject_GetDictPtr(self
);
837 if (dictptr
&& *dictptr
)
841 if (type
->tp_flags
& Py_TPFLAGS_HEAPTYPE
)
842 /* For a heaptype, the instances count as references
843 to the type. Traverse the type so the collector
844 can find cycles involving this link. */
848 return basetraverse(self
, visit
, arg
);
853 clear_slots(PyTypeObject
*type
, PyObject
*self
)
859 mp
= PyHeapType_GET_MEMBERS((PyHeapTypeObject
*)type
);
860 for (i
= 0; i
< n
; i
++, mp
++) {
861 if (mp
->type
== T_OBJECT_EX
&& !(mp
->flags
& READONLY
)) {
862 char *addr
= (char *)self
+ mp
->offset
;
863 PyObject
*obj
= *(PyObject
**)addr
;
865 *(PyObject
**)addr
= NULL
;
873 subtype_clear(PyObject
*self
)
875 PyTypeObject
*type
, *base
;
878 /* Find the nearest base with a different tp_clear
879 and clear slots while we're at it */
880 type
= Py_TYPE(self
);
882 while ((baseclear
= base
->tp_clear
) == subtype_clear
) {
884 clear_slots(base
, self
);
885 base
= base
->tp_base
;
889 /* There's no need to clear the instance dict (if any);
890 the collector will call its tp_clear handler. */
893 return baseclear(self
);
898 subtype_dealloc(PyObject
*self
)
900 PyTypeObject
*type
, *base
;
901 destructor basedealloc
;
903 /* Extract the type; we expect it to be a heap type */
904 type
= Py_TYPE(self
);
905 assert(type
->tp_flags
& Py_TPFLAGS_HEAPTYPE
);
907 /* Test whether the type has GC exactly once */
909 if (!PyType_IS_GC(type
)) {
910 /* It's really rare to find a dynamic type that doesn't have
911 GC; it can only happen when deriving from 'object' and not
912 adding any slots or instance variables. This allows
913 certain simplifications: there's no need to call
914 clear_slots(), or DECREF the dict, or clear weakrefs. */
916 /* Maybe call finalizer; exit early if resurrected */
919 if (self
->ob_refcnt
> 0)
923 /* Find the nearest base with a different tp_dealloc */
925 while ((basedealloc
= base
->tp_dealloc
) == subtype_dealloc
) {
926 assert(Py_SIZE(base
) == 0);
927 base
= base
->tp_base
;
931 /* Call the base tp_dealloc() */
935 /* Can't reference self beyond this point */
942 /* We get here only if the type has GC */
944 /* UnTrack and re-Track around the trashcan macro, alas */
945 /* See explanation at end of function for full disclosure */
946 PyObject_GC_UnTrack(self
);
947 ++_PyTrash_delete_nesting
;
948 Py_TRASHCAN_SAFE_BEGIN(self
);
949 --_PyTrash_delete_nesting
;
950 /* DO NOT restore GC tracking at this point. weakref callbacks
951 * (if any, and whether directly here or indirectly in something we
952 * call) may trigger GC, and if self is tracked at that point, it
953 * will look like trash to GC and GC will try to delete self again.
956 /* Find the nearest base with a different tp_dealloc */
958 while ((basedealloc
= base
->tp_dealloc
) == subtype_dealloc
) {
959 base
= base
->tp_base
;
963 /* If we added a weaklist, we clear it. Do this *before* calling
964 the finalizer (__del__), clearing slots, or clearing the instance
967 if (type
->tp_weaklistoffset
&& !base
->tp_weaklistoffset
)
968 PyObject_ClearWeakRefs(self
);
970 /* Maybe call finalizer; exit early if resurrected */
972 _PyObject_GC_TRACK(self
);
974 if (self
->ob_refcnt
> 0)
975 goto endlabel
; /* resurrected */
977 _PyObject_GC_UNTRACK(self
);
978 /* New weakrefs could be created during the finalizer call.
979 If this occurs, clear them out without calling their
980 finalizers since they might rely on part of the object
981 being finalized that has already been destroyed. */
982 if (type
->tp_weaklistoffset
&& !base
->tp_weaklistoffset
) {
983 /* Modeled after GET_WEAKREFS_LISTPTR() */
984 PyWeakReference
**list
= (PyWeakReference
**) \
985 PyObject_GET_WEAKREFS_LISTPTR(self
);
987 _PyWeakref_ClearRef(*list
);
991 /* Clear slots up to the nearest base with a different tp_dealloc */
993 while ((basedealloc
= base
->tp_dealloc
) == subtype_dealloc
) {
995 clear_slots(base
, self
);
996 base
= base
->tp_base
;
1000 /* If we added a dict, DECREF it */
1001 if (type
->tp_dictoffset
&& !base
->tp_dictoffset
) {
1002 PyObject
**dictptr
= _PyObject_GetDictPtr(self
);
1003 if (dictptr
!= NULL
) {
1004 PyObject
*dict
= *dictptr
;
1012 /* Call the base tp_dealloc(); first retrack self if
1013 * basedealloc knows about gc.
1015 if (PyType_IS_GC(base
))
1016 _PyObject_GC_TRACK(self
);
1017 assert(basedealloc
);
1020 /* Can't reference self beyond this point */
1024 ++_PyTrash_delete_nesting
;
1025 Py_TRASHCAN_SAFE_END(self
);
1026 --_PyTrash_delete_nesting
;
1028 /* Explanation of the weirdness around the trashcan macros:
1030 Q. What do the trashcan macros do?
1032 A. Read the comment titled "Trashcan mechanism" in object.h.
1033 For one, this explains why there must be a call to GC-untrack
1034 before the trashcan begin macro. Without understanding the
1035 trashcan code, the answers to the following questions don't make
1038 Q. Why do we GC-untrack before the trashcan and then immediately
1039 GC-track again afterward?
1041 A. In the case that the base class is GC-aware, the base class
1042 probably GC-untracks the object. If it does that using the
1043 UNTRACK macro, this will crash when the object is already
1044 untracked. Because we don't know what the base class does, the
1045 only safe thing is to make sure the object is tracked when we
1046 call the base class dealloc. But... The trashcan begin macro
1047 requires that the object is *untracked* before it is called. So
1054 Q. Why did the last question say "immediately GC-track again"?
1055 It's nowhere near immediately.
1057 A. Because the code *used* to re-track immediately. Bad Idea.
1058 self has a refcount of 0, and if gc ever gets its hands on it
1059 (which can happen if any weakref callback gets invoked), it
1060 looks like trash to gc too, and gc also tries to delete self
1061 then. But we're already deleting self. Double dealloction is
1064 Q. Why the bizarre (net-zero) manipulation of
1065 _PyTrash_delete_nesting around the trashcan macros?
1067 A. Some base classes (e.g. list) also use the trashcan mechanism.
1068 The following scenario used to be possible:
1070 - suppose the trashcan level is one below the trashcan limit
1072 - subtype_dealloc() is called
1074 - the trashcan limit is not yet reached, so the trashcan level
1075 is incremented and the code between trashcan begin and end is
1078 - this destroys much of the object's contents, including its
1081 - basedealloc() is called; this is really list_dealloc(), or
1082 some other type which also uses the trashcan macros
1084 - the trashcan limit is now reached, so the object is put on the
1085 trashcan's to-be-deleted-later list
1087 - basedealloc() returns
1089 - subtype_dealloc() decrefs the object's type
1091 - subtype_dealloc() returns
1093 - later, the trashcan code starts deleting the objects from its
1094 to-be-deleted-later list
1096 - subtype_dealloc() is called *AGAIN* for the same object
1098 - at the very least (if the destroyed slots and __dict__ don't
1099 cause problems) the object's type gets decref'ed a second
1100 time, which is *BAD*!!!
1102 The remedy is to make sure that if the code between trashcan
1103 begin and end in subtype_dealloc() is called, the code between
1104 trashcan begin and end in basedealloc() will also be called.
1105 This is done by decrementing the level after passing into the
1106 trashcan block, and incrementing it just before leaving the
1109 But now it's possible that a chain of objects consisting solely
1110 of objects whose deallocator is subtype_dealloc() will defeat
1111 the trashcan mechanism completely: the decremented level means
1112 that the effective level never reaches the limit. Therefore, we
1113 *increment* the level *before* entering the trashcan block, and
1114 matchingly decrement it after leaving. This means the trashcan
1115 code will trigger a little early, but that's no big deal.
1117 Q. Are there any live examples of code in need of all this
1120 A. Yes. See SF bug 668433 for code that crashed (when Python was
1121 compiled in debug mode) before the trashcan level manipulations
1122 were added. For more discussion, see SF patches 581742, 575073
1127 static PyTypeObject
*solid_base(PyTypeObject
*type
);
1129 /* type test with subclassing support */
1132 PyType_IsSubtype(PyTypeObject
*a
, PyTypeObject
*b
)
1136 if (!(a
->tp_flags
& Py_TPFLAGS_HAVE_CLASS
))
1137 return b
== a
|| b
== &PyBaseObject_Type
;
1141 /* Deal with multiple inheritance without recursion
1142 by walking the MRO tuple */
1144 assert(PyTuple_Check(mro
));
1145 n
= PyTuple_GET_SIZE(mro
);
1146 for (i
= 0; i
< n
; i
++) {
1147 if (PyTuple_GET_ITEM(mro
, i
) == (PyObject
*)b
)
1153 /* a is not completely initilized yet; follow tp_base */
1158 } while (a
!= NULL
);
1159 return b
== &PyBaseObject_Type
;
1163 /* Internal routines to do a method lookup in the type
1164 without looking in the instance dictionary
1165 (so we can't use PyObject_GetAttr) but still binding
1166 it to the instance. The arguments are the object,
1167 the method name as a C string, and the address of a
1168 static variable used to cache the interned Python string.
1172 - lookup_maybe() returns NULL without raising an exception
1173 when the _PyType_Lookup() call fails;
1175 - lookup_method() always raises an exception upon errors.
1179 lookup_maybe(PyObject
*self
, char *attrstr
, PyObject
**attrobj
)
1183 if (*attrobj
== NULL
) {
1184 *attrobj
= PyString_InternFromString(attrstr
);
1185 if (*attrobj
== NULL
)
1188 res
= _PyType_Lookup(Py_TYPE(self
), *attrobj
);
1191 if ((f
= Py_TYPE(res
)->tp_descr_get
) == NULL
)
1194 res
= f(res
, self
, (PyObject
*)(Py_TYPE(self
)));
1200 lookup_method(PyObject
*self
, char *attrstr
, PyObject
**attrobj
)
1202 PyObject
*res
= lookup_maybe(self
, attrstr
, attrobj
);
1203 if (res
== NULL
&& !PyErr_Occurred())
1204 PyErr_SetObject(PyExc_AttributeError
, *attrobj
);
1208 /* A variation of PyObject_CallMethod that uses lookup_method()
1209 instead of PyObject_GetAttrString(). This uses the same convention
1210 as lookup_method to cache the interned name string object. */
1213 call_method(PyObject
*o
, char *name
, PyObject
**nameobj
, char *format
, ...)
1216 PyObject
*args
, *func
= 0, *retval
;
1217 va_start(va
, format
);
1219 func
= lookup_maybe(o
, name
, nameobj
);
1222 if (!PyErr_Occurred())
1223 PyErr_SetObject(PyExc_AttributeError
, *nameobj
);
1227 if (format
&& *format
)
1228 args
= Py_VaBuildValue(format
, va
);
1230 args
= PyTuple_New(0);
1237 assert(PyTuple_Check(args
));
1238 retval
= PyObject_Call(func
, args
, NULL
);
1246 /* Clone of call_method() that returns NotImplemented when the lookup fails. */
1249 call_maybe(PyObject
*o
, char *name
, PyObject
**nameobj
, char *format
, ...)
1252 PyObject
*args
, *func
= 0, *retval
;
1253 va_start(va
, format
);
1255 func
= lookup_maybe(o
, name
, nameobj
);
1258 if (!PyErr_Occurred()) {
1259 Py_INCREF(Py_NotImplemented
);
1260 return Py_NotImplemented
;
1265 if (format
&& *format
)
1266 args
= Py_VaBuildValue(format
, va
);
1268 args
= PyTuple_New(0);
1275 assert(PyTuple_Check(args
));
1276 retval
= PyObject_Call(func
, args
, NULL
);
1285 fill_classic_mro(PyObject
*mro
, PyObject
*cls
)
1287 PyObject
*bases
, *base
;
1290 assert(PyList_Check(mro
));
1291 assert(PyClass_Check(cls
));
1292 i
= PySequence_Contains(mro
, cls
);
1296 if (PyList_Append(mro
, cls
) < 0)
1299 bases
= ((PyClassObject
*)cls
)->cl_bases
;
1300 assert(bases
&& PyTuple_Check(bases
));
1301 n
= PyTuple_GET_SIZE(bases
);
1302 for (i
= 0; i
< n
; i
++) {
1303 base
= PyTuple_GET_ITEM(bases
, i
);
1304 if (fill_classic_mro(mro
, base
) < 0)
1311 classic_mro(PyObject
*cls
)
1315 assert(PyClass_Check(cls
));
1316 mro
= PyList_New(0);
1318 if (fill_classic_mro(mro
, cls
) == 0)
1326 Method resolution order algorithm C3 described in
1327 "A Monotonic Superclass Linearization for Dylan",
1328 by Kim Barrett, Bob Cassel, Paul Haahr,
1329 David A. Moon, Keith Playford, and P. Tucker Withington.
1332 Some notes about the rules implied by C3:
1335 It isn't legal to repeat a class in a list of base classes.
1337 The next three properties are the 3 constraints in "C3".
1339 Local precendece order.
1340 If A precedes B in C's MRO, then A will precede B in the MRO of all
1344 The MRO of a class must be an extension without reordering of the
1345 MRO of each of its superclasses.
1347 Extended Precedence Graph (EPG).
1348 Linearization is consistent if there is a path in the EPG from
1349 each class to all its successors in the linearization. See
1350 the paper for definition of EPG.
1354 tail_contains(PyObject
*list
, int whence
, PyObject
*o
) {
1356 size
= PyList_GET_SIZE(list
);
1358 for (j
= whence
+1; j
< size
; j
++) {
1359 if (PyList_GET_ITEM(list
, j
) == o
)
1366 class_name(PyObject
*cls
)
1368 PyObject
*name
= PyObject_GetAttrString(cls
, "__name__");
1372 name
= PyObject_Repr(cls
);
1376 if (!PyString_Check(name
)) {
1384 check_duplicates(PyObject
*list
)
1387 /* Let's use a quadratic time algorithm,
1388 assuming that the bases lists is short.
1390 n
= PyList_GET_SIZE(list
);
1391 for (i
= 0; i
< n
; i
++) {
1392 PyObject
*o
= PyList_GET_ITEM(list
, i
);
1393 for (j
= i
+ 1; j
< n
; j
++) {
1394 if (PyList_GET_ITEM(list
, j
) == o
) {
1396 PyErr_Format(PyExc_TypeError
,
1397 "duplicate base class %s",
1398 o
? PyString_AS_STRING(o
) : "?");
1407 /* Raise a TypeError for an MRO order disagreement.
1409 It's hard to produce a good error message. In the absence of better
1410 insight into error reporting, report the classes that were candidates
1411 to be put next into the MRO. There is some conflict between the
1412 order in which they should be put in the MRO, but it's hard to
1413 diagnose what constraint can't be satisfied.
1417 set_mro_error(PyObject
*to_merge
, int *remain
)
1419 Py_ssize_t i
, n
, off
, to_merge_size
;
1422 PyObject
*set
= PyDict_New();
1425 to_merge_size
= PyList_GET_SIZE(to_merge
);
1426 for (i
= 0; i
< to_merge_size
; i
++) {
1427 PyObject
*L
= PyList_GET_ITEM(to_merge
, i
);
1428 if (remain
[i
] < PyList_GET_SIZE(L
)) {
1429 PyObject
*c
= PyList_GET_ITEM(L
, remain
[i
]);
1430 if (PyDict_SetItem(set
, c
, Py_None
) < 0) {
1436 n
= PyDict_Size(set
);
1438 off
= PyOS_snprintf(buf
, sizeof(buf
), "Cannot create a \
1439 consistent method resolution\norder (MRO) for bases");
1441 while (PyDict_Next(set
, &i
, &k
, &v
) && (size_t)off
< sizeof(buf
)) {
1442 PyObject
*name
= class_name(k
);
1443 off
+= PyOS_snprintf(buf
+ off
, sizeof(buf
) - off
, " %s",
1444 name
? PyString_AS_STRING(name
) : "?");
1446 if (--n
&& (size_t)(off
+1) < sizeof(buf
)) {
1451 PyErr_SetString(PyExc_TypeError
, buf
);
1456 pmerge(PyObject
*acc
, PyObject
* to_merge
) {
1457 Py_ssize_t i
, j
, to_merge_size
, empty_cnt
;
1461 to_merge_size
= PyList_GET_SIZE(to_merge
);
1463 /* remain stores an index into each sublist of to_merge.
1464 remain[i] is the index of the next base in to_merge[i]
1465 that is not included in acc.
1467 remain
= (int *)PyMem_MALLOC(SIZEOF_INT
*to_merge_size
);
1470 for (i
= 0; i
< to_merge_size
; i
++)
1475 for (i
= 0; i
< to_merge_size
; i
++) {
1476 PyObject
*candidate
;
1478 PyObject
*cur_list
= PyList_GET_ITEM(to_merge
, i
);
1480 if (remain
[i
] >= PyList_GET_SIZE(cur_list
)) {
1485 /* Choose next candidate for MRO.
1487 The input sequences alone can determine the choice.
1488 If not, choose the class which appears in the MRO
1489 of the earliest direct superclass of the new class.
1492 candidate
= PyList_GET_ITEM(cur_list
, remain
[i
]);
1493 for (j
= 0; j
< to_merge_size
; j
++) {
1494 PyObject
*j_lst
= PyList_GET_ITEM(to_merge
, j
);
1495 if (tail_contains(j_lst
, remain
[j
], candidate
)) {
1496 goto skip
; /* continue outer loop */
1499 ok
= PyList_Append(acc
, candidate
);
1504 for (j
= 0; j
< to_merge_size
; j
++) {
1505 PyObject
*j_lst
= PyList_GET_ITEM(to_merge
, j
);
1506 if (remain
[j
] < PyList_GET_SIZE(j_lst
) &&
1507 PyList_GET_ITEM(j_lst
, remain
[j
]) == candidate
) {
1515 if (empty_cnt
== to_merge_size
) {
1519 set_mro_error(to_merge
, remain
);
1525 mro_implementation(PyTypeObject
*type
)
1529 PyObject
*bases
, *result
;
1530 PyObject
*to_merge
, *bases_aslist
;
1532 if (type
->tp_dict
== NULL
) {
1533 if (PyType_Ready(type
) < 0)
1537 /* Find a superclass linearization that honors the constraints
1538 of the explicit lists of bases and the constraints implied by
1541 to_merge is a list of lists, where each list is a superclass
1542 linearization implied by a base class. The last element of
1543 to_merge is the declared list of bases.
1546 bases
= type
->tp_bases
;
1547 n
= PyTuple_GET_SIZE(bases
);
1549 to_merge
= PyList_New(n
+1);
1550 if (to_merge
== NULL
)
1553 for (i
= 0; i
< n
; i
++) {
1554 PyObject
*base
= PyTuple_GET_ITEM(bases
, i
);
1555 PyObject
*parentMRO
;
1556 if (PyType_Check(base
))
1557 parentMRO
= PySequence_List(
1558 ((PyTypeObject
*)base
)->tp_mro
);
1560 parentMRO
= classic_mro(base
);
1561 if (parentMRO
== NULL
) {
1562 Py_DECREF(to_merge
);
1566 PyList_SET_ITEM(to_merge
, i
, parentMRO
);
1569 bases_aslist
= PySequence_List(bases
);
1570 if (bases_aslist
== NULL
) {
1571 Py_DECREF(to_merge
);
1574 /* This is just a basic sanity check. */
1575 if (check_duplicates(bases_aslist
) < 0) {
1576 Py_DECREF(to_merge
);
1577 Py_DECREF(bases_aslist
);
1580 PyList_SET_ITEM(to_merge
, n
, bases_aslist
);
1582 result
= Py_BuildValue("[O]", (PyObject
*)type
);
1583 if (result
== NULL
) {
1584 Py_DECREF(to_merge
);
1588 ok
= pmerge(result
, to_merge
);
1589 Py_DECREF(to_merge
);
1599 mro_external(PyObject
*self
)
1601 PyTypeObject
*type
= (PyTypeObject
*)self
;
1603 return mro_implementation(type
);
1607 mro_internal(PyTypeObject
*type
)
1609 PyObject
*mro
, *result
, *tuple
;
1612 if (Py_TYPE(type
) == &PyType_Type
) {
1613 result
= mro_implementation(type
);
1616 static PyObject
*mro_str
;
1618 mro
= lookup_method((PyObject
*)type
, "mro", &mro_str
);
1621 result
= PyObject_CallObject(mro
, NULL
);
1626 tuple
= PySequence_Tuple(result
);
1633 PyTypeObject
*solid
;
1635 solid
= solid_base(type
);
1637 len
= PyTuple_GET_SIZE(tuple
);
1639 for (i
= 0; i
< len
; i
++) {
1641 cls
= PyTuple_GET_ITEM(tuple
, i
);
1642 if (PyClass_Check(cls
))
1644 else if (!PyType_Check(cls
)) {
1645 PyErr_Format(PyExc_TypeError
,
1646 "mro() returned a non-class ('%.500s')",
1647 Py_TYPE(cls
)->tp_name
);
1651 t
= (PyTypeObject
*)cls
;
1652 if (!PyType_IsSubtype(solid
, solid_base(t
))) {
1653 PyErr_Format(PyExc_TypeError
,
1654 "mro() returned base with unsuitable layout ('%.500s')",
1661 type
->tp_mro
= tuple
;
1663 type_mro_modified(type
, type
->tp_mro
);
1664 /* corner case: the old-style super class might have been hidden
1665 from the custom MRO */
1666 type_mro_modified(type
, type
->tp_bases
);
1668 PyType_Modified(type
);
1674 /* Calculate the best base amongst multiple base classes.
1675 This is the first one that's on the path to the "solid base". */
1677 static PyTypeObject
*
1678 best_base(PyObject
*bases
)
1681 PyTypeObject
*base
, *winner
, *candidate
, *base_i
;
1682 PyObject
*base_proto
;
1684 assert(PyTuple_Check(bases
));
1685 n
= PyTuple_GET_SIZE(bases
);
1689 for (i
= 0; i
< n
; i
++) {
1690 base_proto
= PyTuple_GET_ITEM(bases
, i
);
1691 if (PyClass_Check(base_proto
))
1693 if (!PyType_Check(base_proto
)) {
1696 "bases must be types");
1699 base_i
= (PyTypeObject
*)base_proto
;
1700 if (base_i
->tp_dict
== NULL
) {
1701 if (PyType_Ready(base_i
) < 0)
1704 candidate
= solid_base(base_i
);
1705 if (winner
== NULL
) {
1709 else if (PyType_IsSubtype(winner
, candidate
))
1711 else if (PyType_IsSubtype(candidate
, winner
)) {
1718 "multiple bases have "
1719 "instance lay-out conflict");
1724 PyErr_SetString(PyExc_TypeError
,
1725 "a new-style class can't have only classic bases");
1730 extra_ivars(PyTypeObject
*type
, PyTypeObject
*base
)
1732 size_t t_size
= type
->tp_basicsize
;
1733 size_t b_size
= base
->tp_basicsize
;
1735 assert(t_size
>= b_size
); /* Else type smaller than base! */
1736 if (type
->tp_itemsize
|| base
->tp_itemsize
) {
1737 /* If itemsize is involved, stricter rules */
1738 return t_size
!= b_size
||
1739 type
->tp_itemsize
!= base
->tp_itemsize
;
1741 if (type
->tp_weaklistoffset
&& base
->tp_weaklistoffset
== 0 &&
1742 type
->tp_weaklistoffset
+ sizeof(PyObject
*) == t_size
&&
1743 type
->tp_flags
& Py_TPFLAGS_HEAPTYPE
)
1744 t_size
-= sizeof(PyObject
*);
1745 if (type
->tp_dictoffset
&& base
->tp_dictoffset
== 0 &&
1746 type
->tp_dictoffset
+ sizeof(PyObject
*) == t_size
&&
1747 type
->tp_flags
& Py_TPFLAGS_HEAPTYPE
)
1748 t_size
-= sizeof(PyObject
*);
1750 return t_size
!= b_size
;
1753 static PyTypeObject
*
1754 solid_base(PyTypeObject
*type
)
1759 base
= solid_base(type
->tp_base
);
1761 base
= &PyBaseObject_Type
;
1762 if (extra_ivars(type
, base
))
1768 static void object_dealloc(PyObject
*);
1769 static int object_init(PyObject
*, PyObject
*, PyObject
*);
1770 static int update_slot(PyTypeObject
*, PyObject
*);
1771 static void fixup_slot_dispatchers(PyTypeObject
*);
1774 * Helpers for __dict__ descriptor. We don't want to expose the dicts
1775 * inherited from various builtin types. The builtin base usually provides
1776 * its own __dict__ descriptor, so we use that when we can.
1778 static PyTypeObject
*
1779 get_builtin_base_with_dict(PyTypeObject
*type
)
1781 while (type
->tp_base
!= NULL
) {
1782 if (type
->tp_dictoffset
!= 0 &&
1783 !(type
->tp_flags
& Py_TPFLAGS_HEAPTYPE
))
1785 type
= type
->tp_base
;
1791 get_dict_descriptor(PyTypeObject
*type
)
1793 static PyObject
*dict_str
;
1796 if (dict_str
== NULL
) {
1797 dict_str
= PyString_InternFromString("__dict__");
1798 if (dict_str
== NULL
)
1801 descr
= _PyType_Lookup(type
, dict_str
);
1802 if (descr
== NULL
|| !PyDescr_IsData(descr
))
1809 raise_dict_descr_error(PyObject
*obj
)
1811 PyErr_Format(PyExc_TypeError
,
1812 "this __dict__ descriptor does not support "
1813 "'%.200s' objects", obj
->ob_type
->tp_name
);
1817 subtype_dict(PyObject
*obj
, void *context
)
1823 base
= get_builtin_base_with_dict(obj
->ob_type
);
1826 PyObject
*descr
= get_dict_descriptor(base
);
1827 if (descr
== NULL
) {
1828 raise_dict_descr_error(obj
);
1831 func
= descr
->ob_type
->tp_descr_get
;
1833 raise_dict_descr_error(obj
);
1836 return func(descr
, obj
, (PyObject
*)(obj
->ob_type
));
1839 dictptr
= _PyObject_GetDictPtr(obj
);
1840 if (dictptr
== NULL
) {
1841 PyErr_SetString(PyExc_AttributeError
,
1842 "This object has no __dict__");
1847 *dictptr
= dict
= PyDict_New();
1853 subtype_setdict(PyObject
*obj
, PyObject
*value
, void *context
)
1859 base
= get_builtin_base_with_dict(obj
->ob_type
);
1862 PyObject
*descr
= get_dict_descriptor(base
);
1863 if (descr
== NULL
) {
1864 raise_dict_descr_error(obj
);
1867 func
= descr
->ob_type
->tp_descr_set
;
1869 raise_dict_descr_error(obj
);
1872 return func(descr
, obj
, value
);
1875 dictptr
= _PyObject_GetDictPtr(obj
);
1876 if (dictptr
== NULL
) {
1877 PyErr_SetString(PyExc_AttributeError
,
1878 "This object has no __dict__");
1881 if (value
!= NULL
&& !PyDict_Check(value
)) {
1882 PyErr_Format(PyExc_TypeError
,
1883 "__dict__ must be set to a dictionary, "
1884 "not a '%.200s'", Py_TYPE(value
)->tp_name
);
1895 subtype_getweakref(PyObject
*obj
, void *context
)
1897 PyObject
**weaklistptr
;
1900 if (Py_TYPE(obj
)->tp_weaklistoffset
== 0) {
1901 PyErr_SetString(PyExc_AttributeError
,
1902 "This object has no __weakref__");
1905 assert(Py_TYPE(obj
)->tp_weaklistoffset
> 0);
1906 assert(Py_TYPE(obj
)->tp_weaklistoffset
+ sizeof(PyObject
*) <=
1907 (size_t)(Py_TYPE(obj
)->tp_basicsize
));
1908 weaklistptr
= (PyObject
**)
1909 ((char *)obj
+ Py_TYPE(obj
)->tp_weaklistoffset
);
1910 if (*weaklistptr
== NULL
)
1913 result
= *weaklistptr
;
1918 /* Three variants on the subtype_getsets list. */
1920 static PyGetSetDef subtype_getsets_full
[] = {
1921 {"__dict__", subtype_dict
, subtype_setdict
,
1922 PyDoc_STR("dictionary for instance variables (if defined)")},
1923 {"__weakref__", subtype_getweakref
, NULL
,
1924 PyDoc_STR("list of weak references to the object (if defined)")},
1928 static PyGetSetDef subtype_getsets_dict_only
[] = {
1929 {"__dict__", subtype_dict
, subtype_setdict
,
1930 PyDoc_STR("dictionary for instance variables (if defined)")},
1934 static PyGetSetDef subtype_getsets_weakref_only
[] = {
1935 {"__weakref__", subtype_getweakref
, NULL
,
1936 PyDoc_STR("list of weak references to the object (if defined)")},
1941 valid_identifier(PyObject
*s
)
1946 if (!PyString_Check(s
)) {
1947 PyErr_Format(PyExc_TypeError
,
1948 "__slots__ items must be strings, not '%.200s'",
1949 Py_TYPE(s
)->tp_name
);
1952 p
= (unsigned char *) PyString_AS_STRING(s
);
1953 n
= PyString_GET_SIZE(s
);
1954 /* We must reject an empty name. As a hack, we bump the
1955 length to 1 so that the loop will balk on the trailing \0. */
1958 for (i
= 0; i
< n
; i
++, p
++) {
1959 if (!(i
== 0 ? isalpha(*p
) : isalnum(*p
)) && *p
!= '_') {
1960 PyErr_SetString(PyExc_TypeError
,
1961 "__slots__ must be identifiers");
1968 #ifdef Py_USING_UNICODE
1969 /* Replace Unicode objects in slots. */
1972 _unicode_to_string(PyObject
*slots
, Py_ssize_t nslots
)
1974 PyObject
*tmp
= NULL
;
1975 PyObject
*slot_name
, *new_name
;
1978 for (i
= 0; i
< nslots
; i
++) {
1979 if (PyUnicode_Check(slot_name
= PyTuple_GET_ITEM(slots
, i
))) {
1981 tmp
= PySequence_List(slots
);
1985 new_name
= _PyUnicode_AsDefaultEncodedString(slot_name
,
1987 if (new_name
== NULL
) {
1991 Py_INCREF(new_name
);
1992 PyList_SET_ITEM(tmp
, i
, new_name
);
1993 Py_DECREF(slot_name
);
1997 slots
= PyList_AsTuple(tmp
);
2006 object_init(PyObject
*self
, PyObject
*args
, PyObject
*kwds
);
2009 type_init(PyObject
*cls
, PyObject
*args
, PyObject
*kwds
)
2013 assert(args
!= NULL
&& PyTuple_Check(args
));
2014 assert(kwds
== NULL
|| PyDict_Check(kwds
));
2016 if (kwds
!= NULL
&& PyDict_Check(kwds
) && PyDict_Size(kwds
) != 0) {
2017 PyErr_SetString(PyExc_TypeError
,
2018 "type.__init__() takes no keyword arguments");
2022 if (args
!= NULL
&& PyTuple_Check(args
) &&
2023 (PyTuple_GET_SIZE(args
) != 1 && PyTuple_GET_SIZE(args
) != 3)) {
2024 PyErr_SetString(PyExc_TypeError
,
2025 "type.__init__() takes 1 or 3 arguments");
2029 /* Call object.__init__(self) now. */
2030 /* XXX Could call super(type, cls).__init__() but what's the point? */
2031 args
= PyTuple_GetSlice(args
, 0, 0);
2032 res
= object_init(cls
, args
, NULL
);
2038 type_new(PyTypeObject
*metatype
, PyObject
*args
, PyObject
*kwds
)
2040 PyObject
*name
, *bases
, *dict
;
2041 static char *kwlist
[] = {"name", "bases", "dict", 0};
2042 PyObject
*slots
, *tmp
, *newslots
;
2043 PyTypeObject
*type
, *base
, *tmptype
, *winner
;
2044 PyHeapTypeObject
*et
;
2046 Py_ssize_t i
, nbases
, nslots
, slotoffset
, add_dict
, add_weak
;
2047 int j
, may_add_dict
, may_add_weak
;
2049 assert(args
!= NULL
&& PyTuple_Check(args
));
2050 assert(kwds
== NULL
|| PyDict_Check(kwds
));
2052 /* Special case: type(x) should return x->ob_type */
2054 const Py_ssize_t nargs
= PyTuple_GET_SIZE(args
);
2055 const Py_ssize_t nkwds
= kwds
== NULL
? 0 : PyDict_Size(kwds
);
2057 if (PyType_CheckExact(metatype
) && nargs
== 1 && nkwds
== 0) {
2058 PyObject
*x
= PyTuple_GET_ITEM(args
, 0);
2059 Py_INCREF(Py_TYPE(x
));
2060 return (PyObject
*) Py_TYPE(x
);
2063 /* SF bug 475327 -- if that didn't trigger, we need 3
2064 arguments. but PyArg_ParseTupleAndKeywords below may give
2065 a msg saying type() needs exactly 3. */
2066 if (nargs
+ nkwds
!= 3) {
2067 PyErr_SetString(PyExc_TypeError
,
2068 "type() takes 1 or 3 arguments");
2073 /* Check arguments: (name, bases, dict) */
2074 if (!PyArg_ParseTupleAndKeywords(args
, kwds
, "SO!O!:type", kwlist
,
2076 &PyTuple_Type
, &bases
,
2077 &PyDict_Type
, &dict
))
2080 /* Determine the proper metatype to deal with this,
2081 and check for metatype conflicts while we're at it.
2082 Note that if some other metatype wins to contract,
2083 it's possible that its instances are not types. */
2084 nbases
= PyTuple_GET_SIZE(bases
);
2086 for (i
= 0; i
< nbases
; i
++) {
2087 tmp
= PyTuple_GET_ITEM(bases
, i
);
2088 tmptype
= tmp
->ob_type
;
2089 if (tmptype
== &PyClass_Type
)
2090 continue; /* Special case classic classes */
2091 if (PyType_IsSubtype(winner
, tmptype
))
2093 if (PyType_IsSubtype(tmptype
, winner
)) {
2097 PyErr_SetString(PyExc_TypeError
,
2098 "metaclass conflict: "
2099 "the metaclass of a derived class "
2100 "must be a (non-strict) subclass "
2101 "of the metaclasses of all its bases");
2104 if (winner
!= metatype
) {
2105 if (winner
->tp_new
!= type_new
) /* Pass it to the winner */
2106 return winner
->tp_new(winner
, args
, kwds
);
2110 /* Adjust for empty tuple bases */
2112 bases
= PyTuple_Pack(1, &PyBaseObject_Type
);
2120 /* XXX From here until type is allocated, "return NULL" leaks bases! */
2122 /* Calculate best base, and check that all bases are type objects */
2123 base
= best_base(bases
);
2128 if (!PyType_HasFeature(base
, Py_TPFLAGS_BASETYPE
)) {
2129 PyErr_Format(PyExc_TypeError
,
2130 "type '%.100s' is not an acceptable base type",
2136 /* Check for a __slots__ sequence variable in dict, and count it */
2137 slots
= PyDict_GetItemString(dict
, "__slots__");
2141 may_add_dict
= base
->tp_dictoffset
== 0;
2142 may_add_weak
= base
->tp_weaklistoffset
== 0 && base
->tp_itemsize
== 0;
2143 if (slots
== NULL
) {
2154 /* Make it into a tuple */
2155 if (PyString_Check(slots
) || PyUnicode_Check(slots
))
2156 slots
= PyTuple_Pack(1, slots
);
2158 slots
= PySequence_Tuple(slots
);
2159 if (slots
== NULL
) {
2163 assert(PyTuple_Check(slots
));
2165 /* Are slots allowed? */
2166 nslots
= PyTuple_GET_SIZE(slots
);
2167 if (nslots
> 0 && base
->tp_itemsize
!= 0) {
2168 PyErr_Format(PyExc_TypeError
,
2169 "nonempty __slots__ "
2170 "not supported for subtype of '%s'",
2178 #ifdef Py_USING_UNICODE
2179 tmp
= _unicode_to_string(slots
, nslots
);
2187 /* Check for valid slot names and two special cases */
2188 for (i
= 0; i
< nslots
; i
++) {
2189 PyObject
*tmp
= PyTuple_GET_ITEM(slots
, i
);
2191 if (!valid_identifier(tmp
))
2193 assert(PyString_Check(tmp
));
2194 s
= PyString_AS_STRING(tmp
);
2195 if (strcmp(s
, "__dict__") == 0) {
2196 if (!may_add_dict
|| add_dict
) {
2197 PyErr_SetString(PyExc_TypeError
,
2198 "__dict__ slot disallowed: "
2199 "we already got one");
2204 if (strcmp(s
, "__weakref__") == 0) {
2205 if (!may_add_weak
|| add_weak
) {
2206 PyErr_SetString(PyExc_TypeError
,
2207 "__weakref__ slot disallowed: "
2208 "either we already got one, "
2209 "or __itemsize__ != 0");
2216 /* Copy slots into a list, mangle names and sort them.
2217 Sorted names are needed for __class__ assignment.
2218 Convert them back to tuple at the end.
2220 newslots
= PyList_New(nslots
- add_dict
- add_weak
);
2221 if (newslots
== NULL
)
2223 for (i
= j
= 0; i
< nslots
; i
++) {
2225 tmp
= PyTuple_GET_ITEM(slots
, i
);
2226 s
= PyString_AS_STRING(tmp
);
2227 if ((add_dict
&& strcmp(s
, "__dict__") == 0) ||
2228 (add_weak
&& strcmp(s
, "__weakref__") == 0))
2230 tmp
=_Py_Mangle(name
, tmp
);
2233 PyList_SET_ITEM(newslots
, j
, tmp
);
2236 assert(j
== nslots
- add_dict
- add_weak
);
2239 if (PyList_Sort(newslots
) == -1) {
2241 Py_DECREF(newslots
);
2244 slots
= PyList_AsTuple(newslots
);
2245 Py_DECREF(newslots
);
2246 if (slots
== NULL
) {
2251 /* Secondary bases may provide weakrefs or dict */
2253 ((may_add_dict
&& !add_dict
) ||
2254 (may_add_weak
&& !add_weak
))) {
2255 for (i
= 0; i
< nbases
; i
++) {
2256 tmp
= PyTuple_GET_ITEM(bases
, i
);
2257 if (tmp
== (PyObject
*)base
)
2258 continue; /* Skip primary base */
2259 if (PyClass_Check(tmp
)) {
2260 /* Classic base class provides both */
2261 if (may_add_dict
&& !add_dict
)
2263 if (may_add_weak
&& !add_weak
)
2267 assert(PyType_Check(tmp
));
2268 tmptype
= (PyTypeObject
*)tmp
;
2269 if (may_add_dict
&& !add_dict
&&
2270 tmptype
->tp_dictoffset
!= 0)
2272 if (may_add_weak
&& !add_weak
&&
2273 tmptype
->tp_weaklistoffset
!= 0)
2275 if (may_add_dict
&& !add_dict
)
2277 if (may_add_weak
&& !add_weak
)
2279 /* Nothing more to check */
2285 /* XXX From here until type is safely allocated,
2286 "return NULL" may leak slots! */
2288 /* Allocate the type object */
2289 type
= (PyTypeObject
*)metatype
->tp_alloc(metatype
, nslots
);
2296 /* Keep name and slots alive in the extended type object */
2297 et
= (PyHeapTypeObject
*)type
;
2300 et
->ht_slots
= slots
;
2302 /* Initialize tp_flags */
2303 type
->tp_flags
= Py_TPFLAGS_DEFAULT
| Py_TPFLAGS_HEAPTYPE
|
2304 Py_TPFLAGS_BASETYPE
;
2305 if (base
->tp_flags
& Py_TPFLAGS_HAVE_GC
)
2306 type
->tp_flags
|= Py_TPFLAGS_HAVE_GC
;
2308 /* It's a new-style number unless it specifically inherits any
2309 old-style numeric behavior */
2310 if ((base
->tp_flags
& Py_TPFLAGS_CHECKTYPES
) ||
2311 (base
->tp_as_number
== NULL
))
2312 type
->tp_flags
|= Py_TPFLAGS_CHECKTYPES
;
2314 /* Initialize essential fields */
2315 type
->tp_as_number
= &et
->as_number
;
2316 type
->tp_as_sequence
= &et
->as_sequence
;
2317 type
->tp_as_mapping
= &et
->as_mapping
;
2318 type
->tp_as_buffer
= &et
->as_buffer
;
2319 type
->tp_name
= PyString_AS_STRING(name
);
2321 /* Set tp_base and tp_bases */
2322 type
->tp_bases
= bases
;
2324 type
->tp_base
= base
;
2326 /* Initialize tp_dict from passed-in dict */
2327 type
->tp_dict
= dict
= PyDict_Copy(dict
);
2333 /* Set __module__ in the dict */
2334 if (PyDict_GetItemString(dict
, "__module__") == NULL
) {
2335 tmp
= PyEval_GetGlobals();
2337 tmp
= PyDict_GetItemString(tmp
, "__name__");
2339 if (PyDict_SetItemString(dict
, "__module__",
2346 /* Set tp_doc to a copy of dict['__doc__'], if the latter is there
2347 and is a string. The __doc__ accessor will first look for tp_doc;
2348 if that fails, it will still look into __dict__.
2351 PyObject
*doc
= PyDict_GetItemString(dict
, "__doc__");
2352 if (doc
!= NULL
&& PyString_Check(doc
)) {
2353 const size_t n
= (size_t)PyString_GET_SIZE(doc
);
2354 char *tp_doc
= (char *)PyObject_MALLOC(n
+1);
2355 if (tp_doc
== NULL
) {
2359 memcpy(tp_doc
, PyString_AS_STRING(doc
), n
+1);
2360 type
->tp_doc
= tp_doc
;
2364 /* Special-case __new__: if it's a plain function,
2365 make it a static function */
2366 tmp
= PyDict_GetItemString(dict
, "__new__");
2367 if (tmp
!= NULL
&& PyFunction_Check(tmp
)) {
2368 tmp
= PyStaticMethod_New(tmp
);
2373 PyDict_SetItemString(dict
, "__new__", tmp
);
2377 /* Add descriptors for custom slots from __slots__, or for __dict__ */
2378 mp
= PyHeapType_GET_MEMBERS(et
);
2379 slotoffset
= base
->tp_basicsize
;
2380 if (slots
!= NULL
) {
2381 for (i
= 0; i
< nslots
; i
++, mp
++) {
2382 mp
->name
= PyString_AS_STRING(
2383 PyTuple_GET_ITEM(slots
, i
));
2384 mp
->type
= T_OBJECT_EX
;
2385 mp
->offset
= slotoffset
;
2387 /* __dict__ and __weakref__ are already filtered out */
2388 assert(strcmp(mp
->name
, "__dict__") != 0);
2389 assert(strcmp(mp
->name
, "__weakref__") != 0);
2391 slotoffset
+= sizeof(PyObject
*);
2395 if (base
->tp_itemsize
)
2396 type
->tp_dictoffset
= -(long)sizeof(PyObject
*);
2398 type
->tp_dictoffset
= slotoffset
;
2399 slotoffset
+= sizeof(PyObject
*);
2402 assert(!base
->tp_itemsize
);
2403 type
->tp_weaklistoffset
= slotoffset
;
2404 slotoffset
+= sizeof(PyObject
*);
2406 type
->tp_basicsize
= slotoffset
;
2407 type
->tp_itemsize
= base
->tp_itemsize
;
2408 type
->tp_members
= PyHeapType_GET_MEMBERS(et
);
2410 if (type
->tp_weaklistoffset
&& type
->tp_dictoffset
)
2411 type
->tp_getset
= subtype_getsets_full
;
2412 else if (type
->tp_weaklistoffset
&& !type
->tp_dictoffset
)
2413 type
->tp_getset
= subtype_getsets_weakref_only
;
2414 else if (!type
->tp_weaklistoffset
&& type
->tp_dictoffset
)
2415 type
->tp_getset
= subtype_getsets_dict_only
;
2417 type
->tp_getset
= NULL
;
2419 /* Special case some slots */
2420 if (type
->tp_dictoffset
!= 0 || nslots
> 0) {
2421 if (base
->tp_getattr
== NULL
&& base
->tp_getattro
== NULL
)
2422 type
->tp_getattro
= PyObject_GenericGetAttr
;
2423 if (base
->tp_setattr
== NULL
&& base
->tp_setattro
== NULL
)
2424 type
->tp_setattro
= PyObject_GenericSetAttr
;
2426 type
->tp_dealloc
= subtype_dealloc
;
2428 /* Enable GC unless there are really no instance variables possible */
2429 if (!(type
->tp_basicsize
== sizeof(PyObject
) &&
2430 type
->tp_itemsize
== 0))
2431 type
->tp_flags
|= Py_TPFLAGS_HAVE_GC
;
2433 /* Always override allocation strategy to use regular heap */
2434 type
->tp_alloc
= PyType_GenericAlloc
;
2435 if (type
->tp_flags
& Py_TPFLAGS_HAVE_GC
) {
2436 type
->tp_free
= PyObject_GC_Del
;
2437 type
->tp_traverse
= subtype_traverse
;
2438 type
->tp_clear
= subtype_clear
;
2441 type
->tp_free
= PyObject_Del
;
2443 /* Initialize the rest */
2444 if (PyType_Ready(type
) < 0) {
2449 /* Put the proper slots in place */
2450 fixup_slot_dispatchers(type
);
2452 return (PyObject
*)type
;
2455 /* Internal API to look for a name through the MRO.
2456 This returns a borrowed reference, and doesn't set an exception! */
2458 _PyType_Lookup(PyTypeObject
*type
, PyObject
*name
)
2461 PyObject
*mro
, *res
, *base
, *dict
;
2464 if (MCACHE_CACHEABLE_NAME(name
) &&
2465 PyType_HasFeature(type
, Py_TPFLAGS_VALID_VERSION_TAG
)) {
2467 h
= MCACHE_HASH_METHOD(type
, name
);
2468 if (method_cache
[h
].version
== type
->tp_version_tag
&&
2469 method_cache
[h
].name
== name
)
2470 return method_cache
[h
].value
;
2473 /* Look in tp_dict of types in MRO */
2476 /* If mro is NULL, the type is either not yet initialized
2477 by PyType_Ready(), or already cleared by type_clear().
2478 Either way the safest thing to do is to return NULL. */
2483 assert(PyTuple_Check(mro
));
2484 n
= PyTuple_GET_SIZE(mro
);
2485 for (i
= 0; i
< n
; i
++) {
2486 base
= PyTuple_GET_ITEM(mro
, i
);
2487 if (PyClass_Check(base
))
2488 dict
= ((PyClassObject
*)base
)->cl_dict
;
2490 assert(PyType_Check(base
));
2491 dict
= ((PyTypeObject
*)base
)->tp_dict
;
2493 assert(dict
&& PyDict_Check(dict
));
2494 res
= PyDict_GetItem(dict
, name
);
2499 if (MCACHE_CACHEABLE_NAME(name
) && assign_version_tag(type
)) {
2500 h
= MCACHE_HASH_METHOD(type
, name
);
2501 method_cache
[h
].version
= type
->tp_version_tag
;
2502 method_cache
[h
].value
= res
; /* borrowed */
2504 Py_DECREF(method_cache
[h
].name
);
2505 method_cache
[h
].name
= name
;
2510 /* This is similar to PyObject_GenericGetAttr(),
2511 but uses _PyType_Lookup() instead of just looking in type->tp_dict. */
2513 type_getattro(PyTypeObject
*type
, PyObject
*name
)
2515 PyTypeObject
*metatype
= Py_TYPE(type
);
2516 PyObject
*meta_attribute
, *attribute
;
2517 descrgetfunc meta_get
;
2519 /* Initialize this type (we'll assume the metatype is initialized) */
2520 if (type
->tp_dict
== NULL
) {
2521 if (PyType_Ready(type
) < 0)
2525 /* No readable descriptor found yet */
2528 /* Look for the attribute in the metatype */
2529 meta_attribute
= _PyType_Lookup(metatype
, name
);
2531 if (meta_attribute
!= NULL
) {
2532 meta_get
= Py_TYPE(meta_attribute
)->tp_descr_get
;
2534 if (meta_get
!= NULL
&& PyDescr_IsData(meta_attribute
)) {
2535 /* Data descriptors implement tp_descr_set to intercept
2536 * writes. Assume the attribute is not overridden in
2537 * type's tp_dict (and bases): call the descriptor now.
2539 return meta_get(meta_attribute
, (PyObject
*)type
,
2540 (PyObject
*)metatype
);
2542 Py_INCREF(meta_attribute
);
2545 /* No data descriptor found on metatype. Look in tp_dict of this
2546 * type and its bases */
2547 attribute
= _PyType_Lookup(type
, name
);
2548 if (attribute
!= NULL
) {
2549 /* Implement descriptor functionality, if any */
2550 descrgetfunc local_get
= Py_TYPE(attribute
)->tp_descr_get
;
2552 Py_XDECREF(meta_attribute
);
2554 if (local_get
!= NULL
) {
2555 /* NULL 2nd argument indicates the descriptor was
2556 * found on the target object itself (or a base) */
2557 return local_get(attribute
, (PyObject
*)NULL
,
2561 Py_INCREF(attribute
);
2565 /* No attribute found in local __dict__ (or bases): use the
2566 * descriptor from the metatype, if any */
2567 if (meta_get
!= NULL
) {
2569 res
= meta_get(meta_attribute
, (PyObject
*)type
,
2570 (PyObject
*)metatype
);
2571 Py_DECREF(meta_attribute
);
2575 /* If an ordinary attribute was found on the metatype, return it now */
2576 if (meta_attribute
!= NULL
) {
2577 return meta_attribute
;
2581 PyErr_Format(PyExc_AttributeError
,
2582 "type object '%.50s' has no attribute '%.400s'",
2583 type
->tp_name
, PyString_AS_STRING(name
));
2588 type_setattro(PyTypeObject
*type
, PyObject
*name
, PyObject
*value
)
2590 if (!(type
->tp_flags
& Py_TPFLAGS_HEAPTYPE
)) {
2593 "can't set attributes of built-in/extension type '%s'",
2597 if (PyObject_GenericSetAttr((PyObject
*)type
, name
, value
) < 0)
2599 return update_slot(type
, name
);
2603 type_dealloc(PyTypeObject
*type
)
2605 PyHeapTypeObject
*et
;
2607 /* Assert this is a heap-allocated type object */
2608 assert(type
->tp_flags
& Py_TPFLAGS_HEAPTYPE
);
2609 _PyObject_GC_UNTRACK(type
);
2610 PyObject_ClearWeakRefs((PyObject
*)type
);
2611 et
= (PyHeapTypeObject
*)type
;
2612 Py_XDECREF(type
->tp_base
);
2613 Py_XDECREF(type
->tp_dict
);
2614 Py_XDECREF(type
->tp_bases
);
2615 Py_XDECREF(type
->tp_mro
);
2616 Py_XDECREF(type
->tp_cache
);
2617 Py_XDECREF(type
->tp_subclasses
);
2618 /* A type's tp_doc is heap allocated, unlike the tp_doc slots
2619 * of most other objects. It's okay to cast it to char *.
2621 PyObject_Free((char *)type
->tp_doc
);
2622 Py_XDECREF(et
->ht_name
);
2623 Py_XDECREF(et
->ht_slots
);
2624 Py_TYPE(type
)->tp_free((PyObject
*)type
);
2628 type_subclasses(PyTypeObject
*type
, PyObject
*args_ignored
)
2630 PyObject
*list
, *raw
, *ref
;
2633 list
= PyList_New(0);
2636 raw
= type
->tp_subclasses
;
2639 assert(PyList_Check(raw
));
2640 n
= PyList_GET_SIZE(raw
);
2641 for (i
= 0; i
< n
; i
++) {
2642 ref
= PyList_GET_ITEM(raw
, i
);
2643 assert(PyWeakref_CheckRef(ref
));
2644 ref
= PyWeakref_GET_OBJECT(ref
);
2645 if (ref
!= Py_None
) {
2646 if (PyList_Append(list
, ref
) < 0) {
2655 static PyMethodDef type_methods
[] = {
2656 {"mro", (PyCFunction
)mro_external
, METH_NOARGS
,
2657 PyDoc_STR("mro() -> list\nreturn a type's method resolution order")},
2658 {"__subclasses__", (PyCFunction
)type_subclasses
, METH_NOARGS
,
2659 PyDoc_STR("__subclasses__() -> list of immediate subclasses")},
2663 PyDoc_STRVAR(type_doc
,
2664 "type(object) -> the object's type\n"
2665 "type(name, bases, dict) -> a new type");
2668 type_traverse(PyTypeObject
*type
, visitproc visit
, void *arg
)
2670 /* Because of type_is_gc(), the collector only calls this
2672 assert(type
->tp_flags
& Py_TPFLAGS_HEAPTYPE
);
2674 Py_VISIT(type
->tp_dict
);
2675 Py_VISIT(type
->tp_cache
);
2676 Py_VISIT(type
->tp_mro
);
2677 Py_VISIT(type
->tp_bases
);
2678 Py_VISIT(type
->tp_base
);
2680 /* There's no need to visit type->tp_subclasses or
2681 ((PyHeapTypeObject *)type)->ht_slots, because they can't be involved
2682 in cycles; tp_subclasses is a list of weak references,
2683 and slots is a tuple of strings. */
2689 type_clear(PyTypeObject
*type
)
2691 /* Because of type_is_gc(), the collector only calls this
2693 assert(type
->tp_flags
& Py_TPFLAGS_HEAPTYPE
);
2695 /* The only field we need to clear is tp_mro, which is part of a
2696 hard cycle (its first element is the class itself) that won't
2697 be broken otherwise (it's a tuple and tuples don't have a
2698 tp_clear handler). None of the other fields need to be
2699 cleared, and here's why:
2702 It is a dict, so the collector will call its tp_clear.
2705 Not used; if it were, it would be a dict.
2708 If these are involved in a cycle, there must be at least
2709 one other, mutable object in the cycle, e.g. a base
2710 class's dict; the cycle will be broken that way.
2713 A list of weak references can't be part of a cycle; and
2714 lists have their own tp_clear.
2716 slots (in PyHeapTypeObject):
2717 A tuple of strings can't be part of a cycle.
2720 Py_CLEAR(type
->tp_mro
);
2726 type_is_gc(PyTypeObject
*type
)
2728 return type
->tp_flags
& Py_TPFLAGS_HEAPTYPE
;
2731 PyTypeObject PyType_Type
= {
2732 PyVarObject_HEAD_INIT(&PyType_Type
, 0)
2733 "type", /* tp_name */
2734 sizeof(PyHeapTypeObject
), /* tp_basicsize */
2735 sizeof(PyMemberDef
), /* tp_itemsize */
2736 (destructor
)type_dealloc
, /* tp_dealloc */
2740 type_compare
, /* tp_compare */
2741 (reprfunc
)type_repr
, /* tp_repr */
2742 0, /* tp_as_number */
2743 0, /* tp_as_sequence */
2744 0, /* tp_as_mapping */
2745 (hashfunc
)_Py_HashPointer
, /* tp_hash */
2746 (ternaryfunc
)type_call
, /* tp_call */
2748 (getattrofunc
)type_getattro
, /* tp_getattro */
2749 (setattrofunc
)type_setattro
, /* tp_setattro */
2750 0, /* tp_as_buffer */
2751 Py_TPFLAGS_DEFAULT
| Py_TPFLAGS_HAVE_GC
|
2752 Py_TPFLAGS_BASETYPE
| Py_TPFLAGS_TYPE_SUBCLASS
, /* tp_flags */
2753 type_doc
, /* tp_doc */
2754 (traverseproc
)type_traverse
, /* tp_traverse */
2755 (inquiry
)type_clear
, /* tp_clear */
2756 type_richcompare
, /* tp_richcompare */
2757 offsetof(PyTypeObject
, tp_weaklist
), /* tp_weaklistoffset */
2759 0, /* tp_iternext */
2760 type_methods
, /* tp_methods */
2761 type_members
, /* tp_members */
2762 type_getsets
, /* tp_getset */
2765 0, /* tp_descr_get */
2766 0, /* tp_descr_set */
2767 offsetof(PyTypeObject
, tp_dict
), /* tp_dictoffset */
2768 type_init
, /* tp_init */
2770 type_new
, /* tp_new */
2771 PyObject_GC_Del
, /* tp_free */
2772 (inquiry
)type_is_gc
, /* tp_is_gc */
2776 /* The base type of all types (eventually)... except itself. */
2778 /* You may wonder why object.__new__() only complains about arguments
2779 when object.__init__() is not overridden, and vice versa.
2781 Consider the use cases:
2783 1. When neither is overridden, we want to hear complaints about
2784 excess (i.e., any) arguments, since their presence could
2785 indicate there's a bug.
2787 2. When defining an Immutable type, we are likely to override only
2788 __new__(), since __init__() is called too late to initialize an
2789 Immutable object. Since __new__() defines the signature for the
2790 type, it would be a pain to have to override __init__() just to
2791 stop it from complaining about excess arguments.
2793 3. When defining a Mutable type, we are likely to override only
2794 __init__(). So here the converse reasoning applies: we don't
2795 want to have to override __new__() just to stop it from
2798 4. When __init__() is overridden, and the subclass __init__() calls
2799 object.__init__(), the latter should complain about excess
2800 arguments; ditto for __new__().
2802 Use cases 2 and 3 make it unattractive to unconditionally check for
2803 excess arguments. The best solution that addresses all four use
2804 cases is as follows: __init__() complains about excess arguments
2805 unless __new__() is overridden and __init__() is not overridden
2806 (IOW, if __init__() is overridden or __new__() is not overridden);
2807 symmetrically, __new__() complains about excess arguments unless
2808 __init__() is overridden and __new__() is not overridden
2809 (IOW, if __new__() is overridden or __init__() is not overridden).
2811 However, for backwards compatibility, this breaks too much code.
2812 Therefore, in 2.6, we'll *warn* about excess arguments when both
2813 methods are overridden; for all other cases we'll use the above
2820 object_new(PyTypeObject
*type
, PyObject
*args
, PyObject
*kwds
);
2823 excess_args(PyObject
*args
, PyObject
*kwds
)
2825 return PyTuple_GET_SIZE(args
) ||
2826 (kwds
&& PyDict_Check(kwds
) && PyDict_Size(kwds
));
2830 object_init(PyObject
*self
, PyObject
*args
, PyObject
*kwds
)
2833 if (excess_args(args
, kwds
)) {
2834 PyTypeObject
*type
= Py_TYPE(self
);
2835 if (type
->tp_init
!= object_init
&&
2836 type
->tp_new
!= object_new
)
2838 err
= PyErr_WarnEx(PyExc_DeprecationWarning
,
2839 "object.__init__() takes no parameters",
2842 else if (type
->tp_init
!= object_init
||
2843 type
->tp_new
== object_new
)
2845 PyErr_SetString(PyExc_TypeError
,
2846 "object.__init__() takes no parameters");
2854 object_new(PyTypeObject
*type
, PyObject
*args
, PyObject
*kwds
)
2857 if (excess_args(args
, kwds
)) {
2858 if (type
->tp_new
!= object_new
&&
2859 type
->tp_init
!= object_init
)
2861 err
= PyErr_WarnEx(PyExc_DeprecationWarning
,
2862 "object.__new__() takes no parameters",
2865 else if (type
->tp_new
!= object_new
||
2866 type
->tp_init
== object_init
)
2868 PyErr_SetString(PyExc_TypeError
,
2869 "object.__new__() takes no parameters");
2876 if (type
->tp_flags
& Py_TPFLAGS_IS_ABSTRACT
) {
2877 static PyObject
*comma
= NULL
;
2878 PyObject
*abstract_methods
= NULL
;
2881 PyObject
*sorted_methods
= NULL
;
2882 PyObject
*joined
= NULL
;
2883 const char *joined_str
;
2885 /* Compute ", ".join(sorted(type.__abstractmethods__))
2887 abstract_methods
= type_abstractmethods(type
, NULL
);
2888 if (abstract_methods
== NULL
)
2890 builtins
= PyEval_GetBuiltins();
2891 if (builtins
== NULL
)
2893 sorted
= PyDict_GetItemString(builtins
, "sorted");
2896 sorted_methods
= PyObject_CallFunctionObjArgs(sorted
,
2899 if (sorted_methods
== NULL
)
2901 if (comma
== NULL
) {
2902 comma
= PyString_InternFromString(", ");
2906 joined
= PyObject_CallMethod(comma
, "join",
2907 "O", sorted_methods
);
2910 joined_str
= PyString_AsString(joined
);
2911 if (joined_str
== NULL
)
2914 PyErr_Format(PyExc_TypeError
,
2915 "Can't instantiate abstract class %s "
2916 "with abstract methods %s",
2921 Py_XDECREF(sorted_methods
);
2922 Py_XDECREF(abstract_methods
);
2925 return type
->tp_alloc(type
, 0);
2929 object_dealloc(PyObject
*self
)
2931 Py_TYPE(self
)->tp_free(self
);
2935 object_repr(PyObject
*self
)
2938 PyObject
*mod
, *name
, *rtn
;
2940 type
= Py_TYPE(self
);
2941 mod
= type_module(type
, NULL
);
2944 else if (!PyString_Check(mod
)) {
2948 name
= type_name(type
, NULL
);
2951 if (mod
!= NULL
&& strcmp(PyString_AS_STRING(mod
), "__builtin__"))
2952 rtn
= PyString_FromFormat("<%s.%s object at %p>",
2953 PyString_AS_STRING(mod
),
2954 PyString_AS_STRING(name
),
2957 rtn
= PyString_FromFormat("<%s object at %p>",
2958 type
->tp_name
, self
);
2965 object_str(PyObject
*self
)
2969 f
= Py_TYPE(self
)->tp_repr
;
2976 object_get_class(PyObject
*self
, void *closure
)
2978 Py_INCREF(Py_TYPE(self
));
2979 return (PyObject
*)(Py_TYPE(self
));
2983 equiv_structs(PyTypeObject
*a
, PyTypeObject
*b
)
2988 a
->tp_basicsize
== b
->tp_basicsize
&&
2989 a
->tp_itemsize
== b
->tp_itemsize
&&
2990 a
->tp_dictoffset
== b
->tp_dictoffset
&&
2991 a
->tp_weaklistoffset
== b
->tp_weaklistoffset
&&
2992 ((a
->tp_flags
& Py_TPFLAGS_HAVE_GC
) ==
2993 (b
->tp_flags
& Py_TPFLAGS_HAVE_GC
)));
2997 same_slots_added(PyTypeObject
*a
, PyTypeObject
*b
)
2999 PyTypeObject
*base
= a
->tp_base
;
3001 PyObject
*slots_a
, *slots_b
;
3003 if (base
!= b
->tp_base
)
3005 if (equiv_structs(a
, base
) && equiv_structs(b
, base
))
3007 size
= base
->tp_basicsize
;
3008 if (a
->tp_dictoffset
== size
&& b
->tp_dictoffset
== size
)
3009 size
+= sizeof(PyObject
*);
3010 if (a
->tp_weaklistoffset
== size
&& b
->tp_weaklistoffset
== size
)
3011 size
+= sizeof(PyObject
*);
3013 /* Check slots compliance */
3014 slots_a
= ((PyHeapTypeObject
*)a
)->ht_slots
;
3015 slots_b
= ((PyHeapTypeObject
*)b
)->ht_slots
;
3016 if (slots_a
&& slots_b
) {
3017 if (PyObject_Compare(slots_a
, slots_b
) != 0)
3019 size
+= sizeof(PyObject
*) * PyTuple_GET_SIZE(slots_a
);
3021 return size
== a
->tp_basicsize
&& size
== b
->tp_basicsize
;
3025 compatible_for_assignment(PyTypeObject
* oldto
, PyTypeObject
* newto
, char* attr
)
3027 PyTypeObject
*newbase
, *oldbase
;
3029 if (newto
->tp_dealloc
!= oldto
->tp_dealloc
||
3030 newto
->tp_free
!= oldto
->tp_free
)
3032 PyErr_Format(PyExc_TypeError
,
3034 "'%s' deallocator differs from '%s'",
3042 while (equiv_structs(newbase
, newbase
->tp_base
))
3043 newbase
= newbase
->tp_base
;
3044 while (equiv_structs(oldbase
, oldbase
->tp_base
))
3045 oldbase
= oldbase
->tp_base
;
3046 if (newbase
!= oldbase
&&
3047 (newbase
->tp_base
!= oldbase
->tp_base
||
3048 !same_slots_added(newbase
, oldbase
))) {
3049 PyErr_Format(PyExc_TypeError
,
3051 "'%s' object layout differs from '%s'",
3062 object_set_class(PyObject
*self
, PyObject
*value
, void *closure
)
3064 PyTypeObject
*oldto
= Py_TYPE(self
);
3065 PyTypeObject
*newto
;
3067 if (value
== NULL
) {
3068 PyErr_SetString(PyExc_TypeError
,
3069 "can't delete __class__ attribute");
3072 if (!PyType_Check(value
)) {
3073 PyErr_Format(PyExc_TypeError
,
3074 "__class__ must be set to new-style class, not '%s' object",
3075 Py_TYPE(value
)->tp_name
);
3078 newto
= (PyTypeObject
*)value
;
3079 if (!(newto
->tp_flags
& Py_TPFLAGS_HEAPTYPE
) ||
3080 !(oldto
->tp_flags
& Py_TPFLAGS_HEAPTYPE
))
3082 PyErr_Format(PyExc_TypeError
,
3083 "__class__ assignment: only for heap types");
3086 if (compatible_for_assignment(newto
, oldto
, "__class__")) {
3088 Py_TYPE(self
) = newto
;
3097 static PyGetSetDef object_getsets
[] = {
3098 {"__class__", object_get_class
, object_set_class
,
3099 PyDoc_STR("the object's class")},
3104 /* Stuff to implement __reduce_ex__ for pickle protocols >= 2.
3105 We fall back to helpers in copy_reg for:
3106 - pickle protocols < 2
3107 - calculating the list of slot names (done only once per class)
3108 - the __newobj__ function (which is used as a token but never called)
3112 import_copyreg(void)
3114 static PyObject
*copyreg_str
;
3117 copyreg_str
= PyString_InternFromString("copy_reg");
3118 if (copyreg_str
== NULL
)
3122 return PyImport_Import(copyreg_str
);
3126 slotnames(PyObject
*cls
)
3130 PyObject
*slotnames
;
3132 if (!PyType_Check(cls
)) {
3137 clsdict
= ((PyTypeObject
*)cls
)->tp_dict
;
3138 slotnames
= PyDict_GetItemString(clsdict
, "__slotnames__");
3139 if (slotnames
!= NULL
&& PyList_Check(slotnames
)) {
3140 Py_INCREF(slotnames
);
3144 copyreg
= import_copyreg();
3145 if (copyreg
== NULL
)
3148 slotnames
= PyObject_CallMethod(copyreg
, "_slotnames", "O", cls
);
3150 if (slotnames
!= NULL
&&
3151 slotnames
!= Py_None
&&
3152 !PyList_Check(slotnames
))
3154 PyErr_SetString(PyExc_TypeError
,
3155 "copy_reg._slotnames didn't return a list or None");
3156 Py_DECREF(slotnames
);
3164 reduce_2(PyObject
*obj
)
3166 PyObject
*cls
, *getnewargs
;
3167 PyObject
*args
= NULL
, *args2
= NULL
;
3168 PyObject
*getstate
= NULL
, *state
= NULL
, *names
= NULL
;
3169 PyObject
*slots
= NULL
, *listitems
= NULL
, *dictitems
= NULL
;
3170 PyObject
*copyreg
= NULL
, *newobj
= NULL
, *res
= NULL
;
3173 cls
= PyObject_GetAttrString(obj
, "__class__");
3177 getnewargs
= PyObject_GetAttrString(obj
, "__getnewargs__");
3178 if (getnewargs
!= NULL
) {
3179 args
= PyObject_CallObject(getnewargs
, NULL
);
3180 Py_DECREF(getnewargs
);
3181 if (args
!= NULL
&& !PyTuple_Check(args
)) {
3182 PyErr_Format(PyExc_TypeError
,
3183 "__getnewargs__ should return a tuple, "
3184 "not '%.200s'", Py_TYPE(args
)->tp_name
);
3190 args
= PyTuple_New(0);
3195 getstate
= PyObject_GetAttrString(obj
, "__getstate__");
3196 if (getstate
!= NULL
) {
3197 state
= PyObject_CallObject(getstate
, NULL
);
3198 Py_DECREF(getstate
);
3204 state
= PyObject_GetAttrString(obj
, "__dict__");
3205 if (state
== NULL
) {
3210 names
= slotnames(cls
);
3213 if (names
!= Py_None
) {
3214 assert(PyList_Check(names
));
3215 slots
= PyDict_New();
3219 /* Can't pre-compute the list size; the list
3220 is stored on the class so accessible to other
3221 threads, which may be run by DECREF */
3222 for (i
= 0; i
< PyList_GET_SIZE(names
); i
++) {
3223 PyObject
*name
, *value
;
3224 name
= PyList_GET_ITEM(names
, i
);
3225 value
= PyObject_GetAttr(obj
, name
);
3229 int err
= PyDict_SetItem(slots
, name
,
3238 state
= Py_BuildValue("(NO)", state
, slots
);
3245 if (!PyList_Check(obj
)) {
3246 listitems
= Py_None
;
3247 Py_INCREF(listitems
);
3250 listitems
= PyObject_GetIter(obj
);
3251 if (listitems
== NULL
)
3255 if (!PyDict_Check(obj
)) {
3256 dictitems
= Py_None
;
3257 Py_INCREF(dictitems
);
3260 dictitems
= PyObject_CallMethod(obj
, "iteritems", "");
3261 if (dictitems
== NULL
)
3265 copyreg
= import_copyreg();
3266 if (copyreg
== NULL
)
3268 newobj
= PyObject_GetAttrString(copyreg
, "__newobj__");
3272 n
= PyTuple_GET_SIZE(args
);
3273 args2
= PyTuple_New(n
+1);
3276 PyTuple_SET_ITEM(args2
, 0, cls
);
3278 for (i
= 0; i
< n
; i
++) {
3279 PyObject
*v
= PyTuple_GET_ITEM(args
, i
);
3281 PyTuple_SET_ITEM(args2
, i
+1, v
);
3284 res
= PyTuple_Pack(5, newobj
, args2
, state
, listitems
, dictitems
);
3293 Py_XDECREF(listitems
);
3294 Py_XDECREF(dictitems
);
3295 Py_XDECREF(copyreg
);
3301 * There were two problems when object.__reduce__ and object.__reduce_ex__
3302 * were implemented in the same function:
3303 * - trying to pickle an object with a custom __reduce__ method that
3304 * fell back to object.__reduce__ in certain circumstances led to
3305 * infinite recursion at Python level and eventual RuntimeError.
3306 * - Pickling objects that lied about their type by overwriting the
3307 * __class__ descriptor could lead to infinite recursion at C level
3308 * and eventual segfault.
3310 * Because of backwards compatibility, the two methods still have to
3311 * behave in the same way, even if this is not required by the pickle
3312 * protocol. This common functionality was moved to the _common_reduce
3316 _common_reduce(PyObject
*self
, int proto
)
3318 PyObject
*copyreg
, *res
;
3321 return reduce_2(self
);
3323 copyreg
= import_copyreg();
3327 res
= PyEval_CallMethod(copyreg
, "_reduce_ex", "(Oi)", self
, proto
);
3334 object_reduce(PyObject
*self
, PyObject
*args
)
3338 if (!PyArg_ParseTuple(args
, "|i:__reduce__", &proto
))
3341 return _common_reduce(self
, proto
);
3345 object_reduce_ex(PyObject
*self
, PyObject
*args
)
3347 PyObject
*reduce
, *res
;
3350 if (!PyArg_ParseTuple(args
, "|i:__reduce_ex__", &proto
))
3353 reduce
= PyObject_GetAttrString(self
, "__reduce__");
3357 PyObject
*cls
, *clsreduce
, *objreduce
;
3359 cls
= PyObject_GetAttrString(self
, "__class__");
3364 clsreduce
= PyObject_GetAttrString(cls
, "__reduce__");
3366 if (clsreduce
== NULL
) {
3370 objreduce
= PyDict_GetItemString(PyBaseObject_Type
.tp_dict
,
3372 override
= (clsreduce
!= objreduce
);
3373 Py_DECREF(clsreduce
);
3375 res
= PyObject_CallObject(reduce
, NULL
);
3383 return _common_reduce(self
, proto
);
3387 object_subclasshook(PyObject
*cls
, PyObject
*args
)
3389 Py_INCREF(Py_NotImplemented
);
3390 return Py_NotImplemented
;
3393 PyDoc_STRVAR(object_subclasshook_doc
,
3394 "Abstract classes can override this to customize issubclass().\n"
3396 "This is invoked early on by abc.ABCMeta.__subclasscheck__().\n"
3397 "It should return True, False or NotImplemented. If it returns\n"
3398 "NotImplemented, the normal algorithm is used. Otherwise, it\n"
3399 "overrides the normal algorithm (and the outcome is cached).\n");
3402 from PEP 3101, this code implements:
3405 def __format__(self, format_spec):
3406 if isinstance(format_spec, str):
3407 return format(str(self), format_spec)
3408 elif isinstance(format_spec, unicode):
3409 return format(unicode(self), format_spec)
3412 object_format(PyObject
*self
, PyObject
*args
)
3414 PyObject
*format_spec
;
3415 PyObject
*self_as_str
= NULL
;
3416 PyObject
*result
= NULL
;
3417 PyObject
*format_meth
= NULL
;
3419 if (!PyArg_ParseTuple(args
, "O:__format__", &format_spec
))
3421 if (PyUnicode_Check(format_spec
)) {
3422 self_as_str
= PyObject_Unicode(self
);
3423 } else if (PyString_Check(format_spec
)) {
3424 self_as_str
= PyObject_Str(self
);
3426 PyErr_SetString(PyExc_TypeError
, "argument to __format__ must be unicode or str");
3430 if (self_as_str
!= NULL
) {
3431 /* find the format function */
3432 format_meth
= PyObject_GetAttrString(self_as_str
, "__format__");
3433 if (format_meth
!= NULL
) {
3435 result
= PyObject_CallFunctionObjArgs(format_meth
, format_spec
, NULL
);
3439 Py_XDECREF(self_as_str
);
3440 Py_XDECREF(format_meth
);
3446 object_sizeof(PyObject
*self
, PyObject
*args
)
3448 Py_ssize_t res
, isize
;
3451 isize
= self
->ob_type
->tp_itemsize
;
3453 res
= self
->ob_type
->ob_size
* isize
;
3454 res
+= self
->ob_type
->tp_basicsize
;
3456 return PyInt_FromSsize_t(res
);
3459 static PyMethodDef object_methods
[] = {
3460 {"__reduce_ex__", object_reduce_ex
, METH_VARARGS
,
3461 PyDoc_STR("helper for pickle")},
3462 {"__reduce__", object_reduce
, METH_VARARGS
,
3463 PyDoc_STR("helper for pickle")},
3464 {"__subclasshook__", object_subclasshook
, METH_CLASS
| METH_VARARGS
,
3465 object_subclasshook_doc
},
3466 {"__format__", object_format
, METH_VARARGS
,
3467 PyDoc_STR("default object formatter")},
3468 {"__sizeof__", object_sizeof
, METH_NOARGS
,
3469 PyDoc_STR("__sizeof__() -> size of object in memory, in bytes")},
3474 PyTypeObject PyBaseObject_Type
= {
3475 PyVarObject_HEAD_INIT(&PyType_Type
, 0)
3476 "object", /* tp_name */
3477 sizeof(PyObject
), /* tp_basicsize */
3478 0, /* tp_itemsize */
3479 object_dealloc
, /* tp_dealloc */
3484 object_repr
, /* tp_repr */
3485 0, /* tp_as_number */
3486 0, /* tp_as_sequence */
3487 0, /* tp_as_mapping */
3488 (hashfunc
)_Py_HashPointer
, /* tp_hash */
3490 object_str
, /* tp_str */
3491 PyObject_GenericGetAttr
, /* tp_getattro */
3492 PyObject_GenericSetAttr
, /* tp_setattro */
3493 0, /* tp_as_buffer */
3494 Py_TPFLAGS_DEFAULT
| Py_TPFLAGS_BASETYPE
, /* tp_flags */
3495 PyDoc_STR("The most base type"), /* tp_doc */
3496 0, /* tp_traverse */
3498 0, /* tp_richcompare */
3499 0, /* tp_weaklistoffset */
3501 0, /* tp_iternext */
3502 object_methods
, /* tp_methods */
3504 object_getsets
, /* tp_getset */
3507 0, /* tp_descr_get */
3508 0, /* tp_descr_set */
3509 0, /* tp_dictoffset */
3510 object_init
, /* tp_init */
3511 PyType_GenericAlloc
, /* tp_alloc */
3512 object_new
, /* tp_new */
3513 PyObject_Del
, /* tp_free */
3517 /* Initialize the __dict__ in a type object */
3520 add_methods(PyTypeObject
*type
, PyMethodDef
*meth
)
3522 PyObject
*dict
= type
->tp_dict
;
3524 for (; meth
->ml_name
!= NULL
; meth
++) {
3526 if (PyDict_GetItemString(dict
, meth
->ml_name
) &&
3527 !(meth
->ml_flags
& METH_COEXIST
))
3529 if (meth
->ml_flags
& METH_CLASS
) {
3530 if (meth
->ml_flags
& METH_STATIC
) {
3531 PyErr_SetString(PyExc_ValueError
,
3532 "method cannot be both class and static");
3535 descr
= PyDescr_NewClassMethod(type
, meth
);
3537 else if (meth
->ml_flags
& METH_STATIC
) {
3538 PyObject
*cfunc
= PyCFunction_New(meth
, NULL
);
3541 descr
= PyStaticMethod_New(cfunc
);
3545 descr
= PyDescr_NewMethod(type
, meth
);
3549 if (PyDict_SetItemString(dict
, meth
->ml_name
, descr
) < 0)
3557 add_members(PyTypeObject
*type
, PyMemberDef
*memb
)
3559 PyObject
*dict
= type
->tp_dict
;
3561 for (; memb
->name
!= NULL
; memb
++) {
3563 if (PyDict_GetItemString(dict
, memb
->name
))
3565 descr
= PyDescr_NewMember(type
, memb
);
3568 if (PyDict_SetItemString(dict
, memb
->name
, descr
) < 0)
3576 add_getset(PyTypeObject
*type
, PyGetSetDef
*gsp
)
3578 PyObject
*dict
= type
->tp_dict
;
3580 for (; gsp
->name
!= NULL
; gsp
++) {
3582 if (PyDict_GetItemString(dict
, gsp
->name
))
3584 descr
= PyDescr_NewGetSet(type
, gsp
);
3588 if (PyDict_SetItemString(dict
, gsp
->name
, descr
) < 0)
3596 inherit_special(PyTypeObject
*type
, PyTypeObject
*base
)
3598 Py_ssize_t oldsize
, newsize
;
3600 /* Special flag magic */
3601 if (!type
->tp_as_buffer
&& base
->tp_as_buffer
) {
3602 type
->tp_flags
&= ~Py_TPFLAGS_HAVE_GETCHARBUFFER
;
3604 base
->tp_flags
& Py_TPFLAGS_HAVE_GETCHARBUFFER
;
3606 if (!type
->tp_as_sequence
&& base
->tp_as_sequence
) {
3607 type
->tp_flags
&= ~Py_TPFLAGS_HAVE_SEQUENCE_IN
;
3608 type
->tp_flags
|= base
->tp_flags
& Py_TPFLAGS_HAVE_SEQUENCE_IN
;
3610 if ((type
->tp_flags
& Py_TPFLAGS_HAVE_INPLACEOPS
) !=
3611 (base
->tp_flags
& Py_TPFLAGS_HAVE_INPLACEOPS
)) {
3612 if ((!type
->tp_as_number
&& base
->tp_as_number
) ||
3613 (!type
->tp_as_sequence
&& base
->tp_as_sequence
)) {
3614 type
->tp_flags
&= ~Py_TPFLAGS_HAVE_INPLACEOPS
;
3615 if (!type
->tp_as_number
&& !type
->tp_as_sequence
) {
3616 type
->tp_flags
|= base
->tp_flags
&
3617 Py_TPFLAGS_HAVE_INPLACEOPS
;
3622 if (!type
->tp_as_number
&& base
->tp_as_number
) {
3623 type
->tp_flags
&= ~Py_TPFLAGS_CHECKTYPES
;
3624 type
->tp_flags
|= base
->tp_flags
& Py_TPFLAGS_CHECKTYPES
;
3627 /* Copying basicsize is connected to the GC flags */
3628 oldsize
= base
->tp_basicsize
;
3629 newsize
= type
->tp_basicsize
? type
->tp_basicsize
: oldsize
;
3630 if (!(type
->tp_flags
& Py_TPFLAGS_HAVE_GC
) &&
3631 (base
->tp_flags
& Py_TPFLAGS_HAVE_GC
) &&
3632 (type
->tp_flags
& Py_TPFLAGS_HAVE_RICHCOMPARE
/*GC slots exist*/) &&
3633 (!type
->tp_traverse
&& !type
->tp_clear
)) {
3634 type
->tp_flags
|= Py_TPFLAGS_HAVE_GC
;
3635 if (type
->tp_traverse
== NULL
)
3636 type
->tp_traverse
= base
->tp_traverse
;
3637 if (type
->tp_clear
== NULL
)
3638 type
->tp_clear
= base
->tp_clear
;
3640 if (type
->tp_flags
& base
->tp_flags
& Py_TPFLAGS_HAVE_CLASS
) {
3641 /* The condition below could use some explanation.
3642 It appears that tp_new is not inherited for static types
3643 whose base class is 'object'; this seems to be a precaution
3644 so that old extension types don't suddenly become
3645 callable (object.__new__ wouldn't insure the invariants
3646 that the extension type's own factory function ensures).
3647 Heap types, of course, are under our control, so they do
3648 inherit tp_new; static extension types that specify some
3649 other built-in type as the default are considered
3650 new-style-aware so they also inherit object.__new__. */
3651 if (base
!= &PyBaseObject_Type
||
3652 (type
->tp_flags
& Py_TPFLAGS_HEAPTYPE
)) {
3653 if (type
->tp_new
== NULL
)
3654 type
->tp_new
= base
->tp_new
;
3657 type
->tp_basicsize
= newsize
;
3659 /* Copy other non-function slots */
3662 #define COPYVAL(SLOT) \
3663 if (type->SLOT == 0) type->SLOT = base->SLOT
3665 COPYVAL(tp_itemsize
);
3666 if (type
->tp_flags
& base
->tp_flags
& Py_TPFLAGS_HAVE_WEAKREFS
) {
3667 COPYVAL(tp_weaklistoffset
);
3669 if (type
->tp_flags
& base
->tp_flags
& Py_TPFLAGS_HAVE_CLASS
) {
3670 COPYVAL(tp_dictoffset
);
3673 /* Setup fast subclass flags */
3674 if (PyType_IsSubtype(base
, (PyTypeObject
*)PyExc_BaseException
))
3675 type
->tp_flags
|= Py_TPFLAGS_BASE_EXC_SUBCLASS
;
3676 else if (PyType_IsSubtype(base
, &PyType_Type
))
3677 type
->tp_flags
|= Py_TPFLAGS_TYPE_SUBCLASS
;
3678 else if (PyType_IsSubtype(base
, &PyInt_Type
))
3679 type
->tp_flags
|= Py_TPFLAGS_INT_SUBCLASS
;
3680 else if (PyType_IsSubtype(base
, &PyLong_Type
))
3681 type
->tp_flags
|= Py_TPFLAGS_LONG_SUBCLASS
;
3682 else if (PyType_IsSubtype(base
, &PyString_Type
))
3683 type
->tp_flags
|= Py_TPFLAGS_STRING_SUBCLASS
;
3684 #ifdef Py_USING_UNICODE
3685 else if (PyType_IsSubtype(base
, &PyUnicode_Type
))
3686 type
->tp_flags
|= Py_TPFLAGS_UNICODE_SUBCLASS
;
3688 else if (PyType_IsSubtype(base
, &PyTuple_Type
))
3689 type
->tp_flags
|= Py_TPFLAGS_TUPLE_SUBCLASS
;
3690 else if (PyType_IsSubtype(base
, &PyList_Type
))
3691 type
->tp_flags
|= Py_TPFLAGS_LIST_SUBCLASS
;
3692 else if (PyType_IsSubtype(base
, &PyDict_Type
))
3693 type
->tp_flags
|= Py_TPFLAGS_DICT_SUBCLASS
;
3697 overrides_name(PyTypeObject
*type
, char *name
)
3699 PyObject
*dict
= type
->tp_dict
;
3701 assert(dict
!= NULL
);
3702 if (PyDict_GetItemString(dict
, name
) != NULL
) {
3708 #define OVERRIDES_HASH(x) overrides_name(x, "__hash__")
3709 #define OVERRIDES_CMP(x) overrides_name(x, "__cmp__")
3710 #define OVERRIDES_EQ(x) overrides_name(x, "__eq__")
3713 inherit_slots(PyTypeObject
*type
, PyTypeObject
*base
)
3715 PyTypeObject
*basebase
;
3724 #define SLOTDEFINED(SLOT) \
3725 (base->SLOT != 0 && \
3726 (basebase == NULL || base->SLOT != basebase->SLOT))
3728 #define COPYSLOT(SLOT) \
3729 if (!type->SLOT && SLOTDEFINED(SLOT)) type->SLOT = base->SLOT
3731 #define COPYNUM(SLOT) COPYSLOT(tp_as_number->SLOT)
3732 #define COPYSEQ(SLOT) COPYSLOT(tp_as_sequence->SLOT)
3733 #define COPYMAP(SLOT) COPYSLOT(tp_as_mapping->SLOT)
3734 #define COPYBUF(SLOT) COPYSLOT(tp_as_buffer->SLOT)
3736 /* This won't inherit indirect slots (from tp_as_number etc.)
3737 if type doesn't provide the space. */
3739 if (type
->tp_as_number
!= NULL
&& base
->tp_as_number
!= NULL
) {
3740 basebase
= base
->tp_base
;
3741 if (basebase
->tp_as_number
== NULL
)
3744 COPYNUM(nb_subtract
);
3745 COPYNUM(nb_multiply
);
3747 COPYNUM(nb_remainder
);
3750 COPYNUM(nb_negative
);
3751 COPYNUM(nb_positive
);
3752 COPYNUM(nb_absolute
);
3753 COPYNUM(nb_nonzero
);
3766 COPYNUM(nb_inplace_add
);
3767 COPYNUM(nb_inplace_subtract
);
3768 COPYNUM(nb_inplace_multiply
);
3769 COPYNUM(nb_inplace_divide
);
3770 COPYNUM(nb_inplace_remainder
);
3771 COPYNUM(nb_inplace_power
);
3772 COPYNUM(nb_inplace_lshift
);
3773 COPYNUM(nb_inplace_rshift
);
3774 COPYNUM(nb_inplace_and
);
3775 COPYNUM(nb_inplace_xor
);
3776 COPYNUM(nb_inplace_or
);
3777 if (base
->tp_flags
& Py_TPFLAGS_CHECKTYPES
) {
3778 COPYNUM(nb_true_divide
);
3779 COPYNUM(nb_floor_divide
);
3780 COPYNUM(nb_inplace_true_divide
);
3781 COPYNUM(nb_inplace_floor_divide
);
3783 if (base
->tp_flags
& Py_TPFLAGS_HAVE_INDEX
) {
3788 if (type
->tp_as_sequence
!= NULL
&& base
->tp_as_sequence
!= NULL
) {
3789 basebase
= base
->tp_base
;
3790 if (basebase
->tp_as_sequence
== NULL
)
3797 COPYSEQ(sq_ass_item
);
3798 COPYSEQ(sq_ass_slice
);
3799 COPYSEQ(sq_contains
);
3800 COPYSEQ(sq_inplace_concat
);
3801 COPYSEQ(sq_inplace_repeat
);
3804 if (type
->tp_as_mapping
!= NULL
&& base
->tp_as_mapping
!= NULL
) {
3805 basebase
= base
->tp_base
;
3806 if (basebase
->tp_as_mapping
== NULL
)
3809 COPYMAP(mp_subscript
);
3810 COPYMAP(mp_ass_subscript
);
3813 if (type
->tp_as_buffer
!= NULL
&& base
->tp_as_buffer
!= NULL
) {
3814 basebase
= base
->tp_base
;
3815 if (basebase
->tp_as_buffer
== NULL
)
3817 COPYBUF(bf_getreadbuffer
);
3818 COPYBUF(bf_getwritebuffer
);
3819 COPYBUF(bf_getsegcount
);
3820 COPYBUF(bf_getcharbuffer
);
3821 COPYBUF(bf_getbuffer
);
3822 COPYBUF(bf_releasebuffer
);
3825 basebase
= base
->tp_base
;
3827 COPYSLOT(tp_dealloc
);
3829 if (type
->tp_getattr
== NULL
&& type
->tp_getattro
== NULL
) {
3830 type
->tp_getattr
= base
->tp_getattr
;
3831 type
->tp_getattro
= base
->tp_getattro
;
3833 if (type
->tp_setattr
== NULL
&& type
->tp_setattro
== NULL
) {
3834 type
->tp_setattr
= base
->tp_setattr
;
3835 type
->tp_setattro
= base
->tp_setattro
;
3837 /* tp_compare see tp_richcompare */
3839 /* tp_hash see tp_richcompare */
3842 if (type
->tp_flags
& base
->tp_flags
& Py_TPFLAGS_HAVE_RICHCOMPARE
) {
3843 if (type
->tp_compare
== NULL
&&
3844 type
->tp_richcompare
== NULL
&&
3845 type
->tp_hash
== NULL
)
3847 type
->tp_compare
= base
->tp_compare
;
3848 type
->tp_richcompare
= base
->tp_richcompare
;
3849 type
->tp_hash
= base
->tp_hash
;
3850 /* Check for changes to inherited methods in Py3k*/
3851 if (Py_Py3kWarningFlag
) {
3852 if (base
->tp_hash
&&
3853 (base
->tp_hash
!= PyObject_HashNotImplemented
) &&
3854 !OVERRIDES_HASH(type
)) {
3855 if (OVERRIDES_CMP(type
)) {
3856 PyErr_WarnPy3k("Overriding "
3857 "__cmp__ blocks inheritance "
3858 "of __hash__ in 3.x",
3861 if (OVERRIDES_EQ(type
)) {
3862 PyErr_WarnPy3k("Overriding "
3863 "__eq__ blocks inheritance "
3864 "of __hash__ in 3.x",
3872 COPYSLOT(tp_compare
);
3874 if (type
->tp_flags
& base
->tp_flags
& Py_TPFLAGS_HAVE_ITER
) {
3876 COPYSLOT(tp_iternext
);
3878 if (type
->tp_flags
& base
->tp_flags
& Py_TPFLAGS_HAVE_CLASS
) {
3879 COPYSLOT(tp_descr_get
);
3880 COPYSLOT(tp_descr_set
);
3881 COPYSLOT(tp_dictoffset
);
3885 if ((type
->tp_flags
& Py_TPFLAGS_HAVE_GC
) ==
3886 (base
->tp_flags
& Py_TPFLAGS_HAVE_GC
)) {
3887 /* They agree about gc. */
3890 else if ((type
->tp_flags
& Py_TPFLAGS_HAVE_GC
) &&
3891 type
->tp_free
== NULL
&&
3892 base
->tp_free
== _PyObject_Del
) {
3893 /* A bit of magic to plug in the correct default
3894 * tp_free function when a derived class adds gc,
3895 * didn't define tp_free, and the base uses the
3896 * default non-gc tp_free.
3898 type
->tp_free
= PyObject_GC_Del
;
3900 /* else they didn't agree about gc, and there isn't something
3901 * obvious to be done -- the type is on its own.
3906 static int add_operators(PyTypeObject
*);
3909 PyType_Ready(PyTypeObject
*type
)
3911 PyObject
*dict
, *bases
;
3915 if (type
->tp_flags
& Py_TPFLAGS_READY
) {
3916 assert(type
->tp_dict
!= NULL
);
3919 assert((type
->tp_flags
& Py_TPFLAGS_READYING
) == 0);
3921 type
->tp_flags
|= Py_TPFLAGS_READYING
;
3923 #ifdef Py_TRACE_REFS
3924 /* PyType_Ready is the closest thing we have to a choke point
3925 * for type objects, so is the best place I can think of to try
3926 * to get type objects into the doubly-linked list of all objects.
3927 * Still, not all type objects go thru PyType_Ready.
3929 _Py_AddToAllObjects((PyObject
*)type
, 0);
3932 /* Initialize tp_base (defaults to BaseObject unless that's us) */
3933 base
= type
->tp_base
;
3934 if (base
== NULL
&& type
!= &PyBaseObject_Type
) {
3935 base
= type
->tp_base
= &PyBaseObject_Type
;
3939 /* Now the only way base can still be NULL is if type is
3940 * &PyBaseObject_Type.
3943 /* Initialize the base class */
3944 if (base
&& base
->tp_dict
== NULL
) {
3945 if (PyType_Ready(base
) < 0)
3949 /* Initialize ob_type if NULL. This means extensions that want to be
3950 compilable separately on Windows can call PyType_Ready() instead of
3951 initializing the ob_type field of their type objects. */
3952 /* The test for base != NULL is really unnecessary, since base is only
3953 NULL when type is &PyBaseObject_Type, and we know its ob_type is
3954 not NULL (it's initialized to &PyType_Type). But coverity doesn't
3956 if (Py_TYPE(type
) == NULL
&& base
!= NULL
)
3957 Py_TYPE(type
) = Py_TYPE(base
);
3959 /* Initialize tp_bases */
3960 bases
= type
->tp_bases
;
3961 if (bases
== NULL
) {
3963 bases
= PyTuple_New(0);
3965 bases
= PyTuple_Pack(1, base
);
3968 type
->tp_bases
= bases
;
3971 /* Initialize tp_dict */
3972 dict
= type
->tp_dict
;
3974 dict
= PyDict_New();
3977 type
->tp_dict
= dict
;
3980 /* Add type-specific descriptors to tp_dict */
3981 if (add_operators(type
) < 0)
3983 if (type
->tp_methods
!= NULL
) {
3984 if (add_methods(type
, type
->tp_methods
) < 0)
3987 if (type
->tp_members
!= NULL
) {
3988 if (add_members(type
, type
->tp_members
) < 0)
3991 if (type
->tp_getset
!= NULL
) {
3992 if (add_getset(type
, type
->tp_getset
) < 0)
3996 /* Calculate method resolution order */
3997 if (mro_internal(type
) < 0) {
4001 /* Inherit special flags from dominant base */
4002 if (type
->tp_base
!= NULL
)
4003 inherit_special(type
, type
->tp_base
);
4005 /* Initialize tp_dict properly */
4006 bases
= type
->tp_mro
;
4007 assert(bases
!= NULL
);
4008 assert(PyTuple_Check(bases
));
4009 n
= PyTuple_GET_SIZE(bases
);
4010 for (i
= 1; i
< n
; i
++) {
4011 PyObject
*b
= PyTuple_GET_ITEM(bases
, i
);
4012 if (PyType_Check(b
))
4013 inherit_slots(type
, (PyTypeObject
*)b
);
4016 /* Sanity check for tp_free. */
4017 if (PyType_IS_GC(type
) && (type
->tp_flags
& Py_TPFLAGS_BASETYPE
) &&
4018 (type
->tp_free
== NULL
|| type
->tp_free
== PyObject_Del
)) {
4019 /* This base class needs to call tp_free, but doesn't have
4020 * one, or its tp_free is for non-gc'ed objects.
4022 PyErr_Format(PyExc_TypeError
, "type '%.100s' participates in "
4023 "gc and is a base type but has inappropriate "
4029 /* if the type dictionary doesn't contain a __doc__, set it from
4032 if (PyDict_GetItemString(type
->tp_dict
, "__doc__") == NULL
) {
4033 if (type
->tp_doc
!= NULL
) {
4034 PyObject
*doc
= PyString_FromString(type
->tp_doc
);
4037 PyDict_SetItemString(type
->tp_dict
, "__doc__", doc
);
4040 PyDict_SetItemString(type
->tp_dict
,
4041 "__doc__", Py_None
);
4045 /* Some more special stuff */
4046 base
= type
->tp_base
;
4048 if (type
->tp_as_number
== NULL
)
4049 type
->tp_as_number
= base
->tp_as_number
;
4050 if (type
->tp_as_sequence
== NULL
)
4051 type
->tp_as_sequence
= base
->tp_as_sequence
;
4052 if (type
->tp_as_mapping
== NULL
)
4053 type
->tp_as_mapping
= base
->tp_as_mapping
;
4054 if (type
->tp_as_buffer
== NULL
)
4055 type
->tp_as_buffer
= base
->tp_as_buffer
;
4058 /* Link into each base class's list of subclasses */
4059 bases
= type
->tp_bases
;
4060 n
= PyTuple_GET_SIZE(bases
);
4061 for (i
= 0; i
< n
; i
++) {
4062 PyObject
*b
= PyTuple_GET_ITEM(bases
, i
);
4063 if (PyType_Check(b
) &&
4064 add_subclass((PyTypeObject
*)b
, type
) < 0)
4068 /* All done -- set the ready flag */
4069 assert(type
->tp_dict
!= NULL
);
4071 (type
->tp_flags
& ~Py_TPFLAGS_READYING
) | Py_TPFLAGS_READY
;
4075 type
->tp_flags
&= ~Py_TPFLAGS_READYING
;
4080 add_subclass(PyTypeObject
*base
, PyTypeObject
*type
)
4084 PyObject
*list
, *ref
, *newobj
;
4086 list
= base
->tp_subclasses
;
4088 base
->tp_subclasses
= list
= PyList_New(0);
4092 assert(PyList_Check(list
));
4093 newobj
= PyWeakref_NewRef((PyObject
*)type
, NULL
);
4094 i
= PyList_GET_SIZE(list
);
4096 ref
= PyList_GET_ITEM(list
, i
);
4097 assert(PyWeakref_CheckRef(ref
));
4098 if (PyWeakref_GET_OBJECT(ref
) == Py_None
)
4099 return PyList_SetItem(list
, i
, newobj
);
4101 result
= PyList_Append(list
, newobj
);
4107 remove_subclass(PyTypeObject
*base
, PyTypeObject
*type
)
4110 PyObject
*list
, *ref
;
4112 list
= base
->tp_subclasses
;
4116 assert(PyList_Check(list
));
4117 i
= PyList_GET_SIZE(list
);
4119 ref
= PyList_GET_ITEM(list
, i
);
4120 assert(PyWeakref_CheckRef(ref
));
4121 if (PyWeakref_GET_OBJECT(ref
) == (PyObject
*)type
) {
4122 /* this can't fail, right? */
4123 PySequence_DelItem(list
, i
);
4130 check_num_args(PyObject
*ob
, int n
)
4132 if (!PyTuple_CheckExact(ob
)) {
4133 PyErr_SetString(PyExc_SystemError
,
4134 "PyArg_UnpackTuple() argument list is not a tuple");
4137 if (n
== PyTuple_GET_SIZE(ob
))
4141 "expected %d arguments, got %zd", n
, PyTuple_GET_SIZE(ob
));
4145 /* Generic wrappers for overloadable 'operators' such as __getitem__ */
4147 /* There's a wrapper *function* for each distinct function typedef used
4148 for type object slots (e.g. binaryfunc, ternaryfunc, etc.). There's a
4149 wrapper *table* for each distinct operation (e.g. __len__, __add__).
4150 Most tables have only one entry; the tables for binary operators have two
4151 entries, one regular and one with reversed arguments. */
4154 wrap_lenfunc(PyObject
*self
, PyObject
*args
, void *wrapped
)
4156 lenfunc func
= (lenfunc
)wrapped
;
4159 if (!check_num_args(args
, 0))
4161 res
= (*func
)(self
);
4162 if (res
== -1 && PyErr_Occurred())
4164 return PyInt_FromLong((long)res
);
4168 wrap_inquirypred(PyObject
*self
, PyObject
*args
, void *wrapped
)
4170 inquiry func
= (inquiry
)wrapped
;
4173 if (!check_num_args(args
, 0))
4175 res
= (*func
)(self
);
4176 if (res
== -1 && PyErr_Occurred())
4178 return PyBool_FromLong((long)res
);
4182 wrap_binaryfunc(PyObject
*self
, PyObject
*args
, void *wrapped
)
4184 binaryfunc func
= (binaryfunc
)wrapped
;
4187 if (!check_num_args(args
, 1))
4189 other
= PyTuple_GET_ITEM(args
, 0);
4190 return (*func
)(self
, other
);
4194 wrap_binaryfunc_l(PyObject
*self
, PyObject
*args
, void *wrapped
)
4196 binaryfunc func
= (binaryfunc
)wrapped
;
4199 if (!check_num_args(args
, 1))
4201 other
= PyTuple_GET_ITEM(args
, 0);
4202 if (!(self
->ob_type
->tp_flags
& Py_TPFLAGS_CHECKTYPES
) &&
4203 !PyType_IsSubtype(other
->ob_type
, self
->ob_type
)) {
4204 Py_INCREF(Py_NotImplemented
);
4205 return Py_NotImplemented
;
4207 return (*func
)(self
, other
);
4211 wrap_binaryfunc_r(PyObject
*self
, PyObject
*args
, void *wrapped
)
4213 binaryfunc func
= (binaryfunc
)wrapped
;
4216 if (!check_num_args(args
, 1))
4218 other
= PyTuple_GET_ITEM(args
, 0);
4219 if (!(self
->ob_type
->tp_flags
& Py_TPFLAGS_CHECKTYPES
) &&
4220 !PyType_IsSubtype(other
->ob_type
, self
->ob_type
)) {
4221 Py_INCREF(Py_NotImplemented
);
4222 return Py_NotImplemented
;
4224 return (*func
)(other
, self
);
4228 wrap_coercefunc(PyObject
*self
, PyObject
*args
, void *wrapped
)
4230 coercion func
= (coercion
)wrapped
;
4231 PyObject
*other
, *res
;
4234 if (!check_num_args(args
, 1))
4236 other
= PyTuple_GET_ITEM(args
, 0);
4237 ok
= func(&self
, &other
);
4241 Py_INCREF(Py_NotImplemented
);
4242 return Py_NotImplemented
;
4244 res
= PyTuple_New(2);
4250 PyTuple_SET_ITEM(res
, 0, self
);
4251 PyTuple_SET_ITEM(res
, 1, other
);
4256 wrap_ternaryfunc(PyObject
*self
, PyObject
*args
, void *wrapped
)
4258 ternaryfunc func
= (ternaryfunc
)wrapped
;
4260 PyObject
*third
= Py_None
;
4262 /* Note: This wrapper only works for __pow__() */
4264 if (!PyArg_UnpackTuple(args
, "", 1, 2, &other
, &third
))
4266 return (*func
)(self
, other
, third
);
4270 wrap_ternaryfunc_r(PyObject
*self
, PyObject
*args
, void *wrapped
)
4272 ternaryfunc func
= (ternaryfunc
)wrapped
;
4274 PyObject
*third
= Py_None
;
4276 /* Note: This wrapper only works for __pow__() */
4278 if (!PyArg_UnpackTuple(args
, "", 1, 2, &other
, &third
))
4280 return (*func
)(other
, self
, third
);
4284 wrap_unaryfunc(PyObject
*self
, PyObject
*args
, void *wrapped
)
4286 unaryfunc func
= (unaryfunc
)wrapped
;
4288 if (!check_num_args(args
, 0))
4290 return (*func
)(self
);
4294 wrap_indexargfunc(PyObject
*self
, PyObject
*args
, void *wrapped
)
4296 ssizeargfunc func
= (ssizeargfunc
)wrapped
;
4300 if (!PyArg_UnpackTuple(args
, "", 1, 1, &o
))
4302 i
= PyNumber_AsSsize_t(o
, PyExc_OverflowError
);
4303 if (i
== -1 && PyErr_Occurred())
4305 return (*func
)(self
, i
);
4309 getindex(PyObject
*self
, PyObject
*arg
)
4313 i
= PyNumber_AsSsize_t(arg
, PyExc_OverflowError
);
4314 if (i
== -1 && PyErr_Occurred())
4317 PySequenceMethods
*sq
= Py_TYPE(self
)->tp_as_sequence
;
4318 if (sq
&& sq
->sq_length
) {
4319 Py_ssize_t n
= (*sq
->sq_length
)(self
);
4329 wrap_sq_item(PyObject
*self
, PyObject
*args
, void *wrapped
)
4331 ssizeargfunc func
= (ssizeargfunc
)wrapped
;
4335 if (PyTuple_GET_SIZE(args
) == 1) {
4336 arg
= PyTuple_GET_ITEM(args
, 0);
4337 i
= getindex(self
, arg
);
4338 if (i
== -1 && PyErr_Occurred())
4340 return (*func
)(self
, i
);
4342 check_num_args(args
, 1);
4343 assert(PyErr_Occurred());
4348 wrap_ssizessizeargfunc(PyObject
*self
, PyObject
*args
, void *wrapped
)
4350 ssizessizeargfunc func
= (ssizessizeargfunc
)wrapped
;
4353 if (!PyArg_ParseTuple(args
, "nn", &i
, &j
))
4355 return (*func
)(self
, i
, j
);
4359 wrap_sq_setitem(PyObject
*self
, PyObject
*args
, void *wrapped
)
4361 ssizeobjargproc func
= (ssizeobjargproc
)wrapped
;
4364 PyObject
*arg
, *value
;
4366 if (!PyArg_UnpackTuple(args
, "", 2, 2, &arg
, &value
))
4368 i
= getindex(self
, arg
);
4369 if (i
== -1 && PyErr_Occurred())
4371 res
= (*func
)(self
, i
, value
);
4372 if (res
== -1 && PyErr_Occurred())
4379 wrap_sq_delitem(PyObject
*self
, PyObject
*args
, void *wrapped
)
4381 ssizeobjargproc func
= (ssizeobjargproc
)wrapped
;
4386 if (!check_num_args(args
, 1))
4388 arg
= PyTuple_GET_ITEM(args
, 0);
4389 i
= getindex(self
, arg
);
4390 if (i
== -1 && PyErr_Occurred())
4392 res
= (*func
)(self
, i
, NULL
);
4393 if (res
== -1 && PyErr_Occurred())
4400 wrap_ssizessizeobjargproc(PyObject
*self
, PyObject
*args
, void *wrapped
)
4402 ssizessizeobjargproc func
= (ssizessizeobjargproc
)wrapped
;
4407 if (!PyArg_ParseTuple(args
, "nnO", &i
, &j
, &value
))
4409 res
= (*func
)(self
, i
, j
, value
);
4410 if (res
== -1 && PyErr_Occurred())
4417 wrap_delslice(PyObject
*self
, PyObject
*args
, void *wrapped
)
4419 ssizessizeobjargproc func
= (ssizessizeobjargproc
)wrapped
;
4423 if (!PyArg_ParseTuple(args
, "nn", &i
, &j
))
4425 res
= (*func
)(self
, i
, j
, NULL
);
4426 if (res
== -1 && PyErr_Occurred())
4432 /* XXX objobjproc is a misnomer; should be objargpred */
4434 wrap_objobjproc(PyObject
*self
, PyObject
*args
, void *wrapped
)
4436 objobjproc func
= (objobjproc
)wrapped
;
4440 if (!check_num_args(args
, 1))
4442 value
= PyTuple_GET_ITEM(args
, 0);
4443 res
= (*func
)(self
, value
);
4444 if (res
== -1 && PyErr_Occurred())
4447 return PyBool_FromLong(res
);
4451 wrap_objobjargproc(PyObject
*self
, PyObject
*args
, void *wrapped
)
4453 objobjargproc func
= (objobjargproc
)wrapped
;
4455 PyObject
*key
, *value
;
4457 if (!PyArg_UnpackTuple(args
, "", 2, 2, &key
, &value
))
4459 res
= (*func
)(self
, key
, value
);
4460 if (res
== -1 && PyErr_Occurred())
4467 wrap_delitem(PyObject
*self
, PyObject
*args
, void *wrapped
)
4469 objobjargproc func
= (objobjargproc
)wrapped
;
4473 if (!check_num_args(args
, 1))
4475 key
= PyTuple_GET_ITEM(args
, 0);
4476 res
= (*func
)(self
, key
, NULL
);
4477 if (res
== -1 && PyErr_Occurred())
4484 wrap_cmpfunc(PyObject
*self
, PyObject
*args
, void *wrapped
)
4486 cmpfunc func
= (cmpfunc
)wrapped
;
4490 if (!check_num_args(args
, 1))
4492 other
= PyTuple_GET_ITEM(args
, 0);
4493 if (Py_TYPE(other
)->tp_compare
!= func
&&
4494 !PyType_IsSubtype(Py_TYPE(other
), Py_TYPE(self
))) {
4497 "%s.__cmp__(x,y) requires y to be a '%s', not a '%s'",
4498 Py_TYPE(self
)->tp_name
,
4499 Py_TYPE(self
)->tp_name
,
4500 Py_TYPE(other
)->tp_name
);
4503 res
= (*func
)(self
, other
);
4504 if (PyErr_Occurred())
4506 return PyInt_FromLong((long)res
);
4509 /* Helper to check for object.__setattr__ or __delattr__ applied to a type.
4510 This is called the Carlo Verre hack after its discoverer. */
4512 hackcheck(PyObject
*self
, setattrofunc func
, char *what
)
4514 PyTypeObject
*type
= Py_TYPE(self
);
4515 while (type
&& type
->tp_flags
& Py_TPFLAGS_HEAPTYPE
)
4516 type
= type
->tp_base
;
4517 /* If type is NULL now, this is a really weird type.
4518 In the spirit of backwards compatibility (?), just shut up. */
4519 if (type
&& type
->tp_setattro
!= func
) {
4520 PyErr_Format(PyExc_TypeError
,
4521 "can't apply this %s to %s object",
4530 wrap_setattr(PyObject
*self
, PyObject
*args
, void *wrapped
)
4532 setattrofunc func
= (setattrofunc
)wrapped
;
4534 PyObject
*name
, *value
;
4536 if (!PyArg_UnpackTuple(args
, "", 2, 2, &name
, &value
))
4538 if (!hackcheck(self
, func
, "__setattr__"))
4540 res
= (*func
)(self
, name
, value
);
4548 wrap_delattr(PyObject
*self
, PyObject
*args
, void *wrapped
)
4550 setattrofunc func
= (setattrofunc
)wrapped
;
4554 if (!check_num_args(args
, 1))
4556 name
= PyTuple_GET_ITEM(args
, 0);
4557 if (!hackcheck(self
, func
, "__delattr__"))
4559 res
= (*func
)(self
, name
, NULL
);
4567 wrap_hashfunc(PyObject
*self
, PyObject
*args
, void *wrapped
)
4569 hashfunc func
= (hashfunc
)wrapped
;
4572 if (!check_num_args(args
, 0))
4574 res
= (*func
)(self
);
4575 if (res
== -1 && PyErr_Occurred())
4577 return PyInt_FromLong(res
);
4581 wrap_call(PyObject
*self
, PyObject
*args
, void *wrapped
, PyObject
*kwds
)
4583 ternaryfunc func
= (ternaryfunc
)wrapped
;
4585 return (*func
)(self
, args
, kwds
);
4589 wrap_richcmpfunc(PyObject
*self
, PyObject
*args
, void *wrapped
, int op
)
4591 richcmpfunc func
= (richcmpfunc
)wrapped
;
4594 if (!check_num_args(args
, 1))
4596 other
= PyTuple_GET_ITEM(args
, 0);
4597 return (*func
)(self
, other
, op
);
4600 #undef RICHCMP_WRAPPER
4601 #define RICHCMP_WRAPPER(NAME, OP) \
4603 richcmp_##NAME(PyObject *self, PyObject *args, void *wrapped) \
4605 return wrap_richcmpfunc(self, args, wrapped, OP); \
4608 RICHCMP_WRAPPER(lt
, Py_LT
)
4609 RICHCMP_WRAPPER(le
, Py_LE
)
4610 RICHCMP_WRAPPER(eq
, Py_EQ
)
4611 RICHCMP_WRAPPER(ne
, Py_NE
)
4612 RICHCMP_WRAPPER(gt
, Py_GT
)
4613 RICHCMP_WRAPPER(ge
, Py_GE
)
4616 wrap_next(PyObject
*self
, PyObject
*args
, void *wrapped
)
4618 unaryfunc func
= (unaryfunc
)wrapped
;
4621 if (!check_num_args(args
, 0))
4623 res
= (*func
)(self
);
4624 if (res
== NULL
&& !PyErr_Occurred())
4625 PyErr_SetNone(PyExc_StopIteration
);
4630 wrap_descr_get(PyObject
*self
, PyObject
*args
, void *wrapped
)
4632 descrgetfunc func
= (descrgetfunc
)wrapped
;
4634 PyObject
*type
= NULL
;
4636 if (!PyArg_UnpackTuple(args
, "", 1, 2, &obj
, &type
))
4640 if (type
== Py_None
)
4642 if (type
== NULL
&&obj
== NULL
) {
4643 PyErr_SetString(PyExc_TypeError
,
4644 "__get__(None, None) is invalid");
4647 return (*func
)(self
, obj
, type
);
4651 wrap_descr_set(PyObject
*self
, PyObject
*args
, void *wrapped
)
4653 descrsetfunc func
= (descrsetfunc
)wrapped
;
4654 PyObject
*obj
, *value
;
4657 if (!PyArg_UnpackTuple(args
, "", 2, 2, &obj
, &value
))
4659 ret
= (*func
)(self
, obj
, value
);
4667 wrap_descr_delete(PyObject
*self
, PyObject
*args
, void *wrapped
)
4669 descrsetfunc func
= (descrsetfunc
)wrapped
;
4673 if (!check_num_args(args
, 1))
4675 obj
= PyTuple_GET_ITEM(args
, 0);
4676 ret
= (*func
)(self
, obj
, NULL
);
4684 wrap_init(PyObject
*self
, PyObject
*args
, void *wrapped
, PyObject
*kwds
)
4686 initproc func
= (initproc
)wrapped
;
4688 if (func(self
, args
, kwds
) < 0)
4695 tp_new_wrapper(PyObject
*self
, PyObject
*args
, PyObject
*kwds
)
4697 PyTypeObject
*type
, *subtype
, *staticbase
;
4698 PyObject
*arg0
, *res
;
4700 if (self
== NULL
|| !PyType_Check(self
))
4701 Py_FatalError("__new__() called with non-type 'self'");
4702 type
= (PyTypeObject
*)self
;
4703 if (!PyTuple_Check(args
) || PyTuple_GET_SIZE(args
) < 1) {
4704 PyErr_Format(PyExc_TypeError
,
4705 "%s.__new__(): not enough arguments",
4709 arg0
= PyTuple_GET_ITEM(args
, 0);
4710 if (!PyType_Check(arg0
)) {
4711 PyErr_Format(PyExc_TypeError
,
4712 "%s.__new__(X): X is not a type object (%s)",
4714 Py_TYPE(arg0
)->tp_name
);
4717 subtype
= (PyTypeObject
*)arg0
;
4718 if (!PyType_IsSubtype(subtype
, type
)) {
4719 PyErr_Format(PyExc_TypeError
,
4720 "%s.__new__(%s): %s is not a subtype of %s",
4728 /* Check that the use doesn't do something silly and unsafe like
4729 object.__new__(dict). To do this, we check that the
4730 most derived base that's not a heap type is this type. */
4731 staticbase
= subtype
;
4732 while (staticbase
&& (staticbase
->tp_flags
& Py_TPFLAGS_HEAPTYPE
))
4733 staticbase
= staticbase
->tp_base
;
4734 /* If staticbase is NULL now, it is a really weird type.
4735 In the spirit of backwards compatibility (?), just shut up. */
4736 if (staticbase
&& staticbase
->tp_new
!= type
->tp_new
) {
4737 PyErr_Format(PyExc_TypeError
,
4738 "%s.__new__(%s) is not safe, use %s.__new__()",
4741 staticbase
== NULL
? "?" : staticbase
->tp_name
);
4745 args
= PyTuple_GetSlice(args
, 1, PyTuple_GET_SIZE(args
));
4748 res
= type
->tp_new(subtype
, args
, kwds
);
4753 static struct PyMethodDef tp_new_methoddef
[] = {
4754 {"__new__", (PyCFunction
)tp_new_wrapper
, METH_VARARGS
|METH_KEYWORDS
,
4755 PyDoc_STR("T.__new__(S, ...) -> "
4756 "a new object with type S, a subtype of T")},
4761 add_tp_new_wrapper(PyTypeObject
*type
)
4765 if (PyDict_GetItemString(type
->tp_dict
, "__new__") != NULL
)
4767 func
= PyCFunction_New(tp_new_methoddef
, (PyObject
*)type
);
4770 if (PyDict_SetItemString(type
->tp_dict
, "__new__", func
)) {
4778 /* Slot wrappers that call the corresponding __foo__ slot. See comments
4779 below at override_slots() for more explanation. */
4781 #define SLOT0(FUNCNAME, OPSTR) \
4783 FUNCNAME(PyObject *self) \
4785 static PyObject *cache_str; \
4786 return call_method(self, OPSTR, &cache_str, "()"); \
4789 #define SLOT1(FUNCNAME, OPSTR, ARG1TYPE, ARGCODES) \
4791 FUNCNAME(PyObject *self, ARG1TYPE arg1) \
4793 static PyObject *cache_str; \
4794 return call_method(self, OPSTR, &cache_str, "(" ARGCODES ")", arg1); \
4797 /* Boolean helper for SLOT1BINFULL().
4798 right.__class__ is a nontrivial subclass of left.__class__. */
4800 method_is_overloaded(PyObject
*left
, PyObject
*right
, char *name
)
4805 b
= PyObject_GetAttrString((PyObject
*)(Py_TYPE(right
)), name
);
4808 /* If right doesn't have it, it's not overloaded */
4812 a
= PyObject_GetAttrString((PyObject
*)(Py_TYPE(left
)), name
);
4816 /* If right has it but left doesn't, it's overloaded */
4820 ok
= PyObject_RichCompareBool(a
, b
, Py_NE
);
4832 #define SLOT1BINFULL(FUNCNAME, TESTFUNC, SLOTNAME, OPSTR, ROPSTR) \
4834 FUNCNAME(PyObject *self, PyObject *other) \
4836 static PyObject *cache_str, *rcache_str; \
4837 int do_other = Py_TYPE(self) != Py_TYPE(other) && \
4838 Py_TYPE(other)->tp_as_number != NULL && \
4839 Py_TYPE(other)->tp_as_number->SLOTNAME == TESTFUNC; \
4840 if (Py_TYPE(self)->tp_as_number != NULL && \
4841 Py_TYPE(self)->tp_as_number->SLOTNAME == TESTFUNC) { \
4844 PyType_IsSubtype(Py_TYPE(other), Py_TYPE(self)) && \
4845 method_is_overloaded(self, other, ROPSTR)) { \
4847 other, ROPSTR, &rcache_str, "(O)", self); \
4848 if (r != Py_NotImplemented) \
4854 self, OPSTR, &cache_str, "(O)", other); \
4855 if (r != Py_NotImplemented || \
4856 Py_TYPE(other) == Py_TYPE(self)) \
4861 return call_maybe( \
4862 other, ROPSTR, &rcache_str, "(O)", self); \
4864 Py_INCREF(Py_NotImplemented); \
4865 return Py_NotImplemented; \
4868 #define SLOT1BIN(FUNCNAME, SLOTNAME, OPSTR, ROPSTR) \
4869 SLOT1BINFULL(FUNCNAME, FUNCNAME, SLOTNAME, OPSTR, ROPSTR)
4871 #define SLOT2(FUNCNAME, OPSTR, ARG1TYPE, ARG2TYPE, ARGCODES) \
4873 FUNCNAME(PyObject *self, ARG1TYPE arg1, ARG2TYPE arg2) \
4875 static PyObject *cache_str; \
4876 return call_method(self, OPSTR, &cache_str, \
4877 "(" ARGCODES ")", arg1, arg2); \
4881 slot_sq_length(PyObject
*self
)
4883 static PyObject
*len_str
;
4884 PyObject
*res
= call_method(self
, "__len__", &len_str
, "()");
4889 len
= PyInt_AsSsize_t(res
);
4892 if (!PyErr_Occurred())
4893 PyErr_SetString(PyExc_ValueError
,
4894 "__len__() should return >= 0");
4900 /* Super-optimized version of slot_sq_item.
4901 Other slots could do the same... */
4903 slot_sq_item(PyObject
*self
, Py_ssize_t i
)
4905 static PyObject
*getitem_str
;
4906 PyObject
*func
, *args
= NULL
, *ival
= NULL
, *retval
= NULL
;
4909 if (getitem_str
== NULL
) {
4910 getitem_str
= PyString_InternFromString("__getitem__");
4911 if (getitem_str
== NULL
)
4914 func
= _PyType_Lookup(Py_TYPE(self
), getitem_str
);
4916 if ((f
= Py_TYPE(func
)->tp_descr_get
) == NULL
)
4919 func
= f(func
, self
, (PyObject
*)(Py_TYPE(self
)));
4924 ival
= PyInt_FromSsize_t(i
);
4926 args
= PyTuple_New(1);
4928 PyTuple_SET_ITEM(args
, 0, ival
);
4929 retval
= PyObject_Call(func
, args
, NULL
);
4937 PyErr_SetObject(PyExc_AttributeError
, getitem_str
);
4946 slot_sq_slice(PyObject
*self
, Py_ssize_t i
, Py_ssize_t j
)
4948 static PyObject
*getslice_str
;
4950 if (PyErr_WarnPy3k("in 3.x, __getslice__ has been removed; "
4951 "use __getitem__", 1) < 0)
4953 return call_method(self
, "__getslice__", &getslice_str
,
4958 slot_sq_ass_item(PyObject
*self
, Py_ssize_t index
, PyObject
*value
)
4961 static PyObject
*delitem_str
, *setitem_str
;
4964 res
= call_method(self
, "__delitem__", &delitem_str
,
4967 res
= call_method(self
, "__setitem__", &setitem_str
,
4968 "(nO)", index
, value
);
4976 slot_sq_ass_slice(PyObject
*self
, Py_ssize_t i
, Py_ssize_t j
, PyObject
*value
)
4979 static PyObject
*delslice_str
, *setslice_str
;
4981 if (value
== NULL
) {
4982 if (PyErr_WarnPy3k("in 3.x, __delslice__ has been removed; "
4983 "use __delitem__", 1) < 0)
4985 res
= call_method(self
, "__delslice__", &delslice_str
,
4989 if (PyErr_WarnPy3k("in 3.x, __setslice__ has been removed; "
4990 "use __setitem__", 1) < 0)
4992 res
= call_method(self
, "__setslice__", &setslice_str
,
4993 "(nnO)", i
, j
, value
);
5002 slot_sq_contains(PyObject
*self
, PyObject
*value
)
5004 PyObject
*func
, *res
, *args
;
5007 static PyObject
*contains_str
;
5009 func
= lookup_maybe(self
, "__contains__", &contains_str
);
5011 args
= PyTuple_Pack(1, value
);
5015 res
= PyObject_Call(func
, args
, NULL
);
5020 result
= PyObject_IsTrue(res
);
5024 else if (! PyErr_Occurred()) {
5025 /* Possible results: -1 and 1 */
5026 result
= (int)_PySequence_IterSearch(self
, value
,
5027 PY_ITERSEARCH_CONTAINS
);
5032 #define slot_mp_length slot_sq_length
5034 SLOT1(slot_mp_subscript
, "__getitem__", PyObject
*, "O")
5037 slot_mp_ass_subscript(PyObject
*self
, PyObject
*key
, PyObject
*value
)
5040 static PyObject
*delitem_str
, *setitem_str
;
5043 res
= call_method(self
, "__delitem__", &delitem_str
,
5046 res
= call_method(self
, "__setitem__", &setitem_str
,
5047 "(OO)", key
, value
);
5054 SLOT1BIN(slot_nb_add
, nb_add
, "__add__", "__radd__")
5055 SLOT1BIN(slot_nb_subtract
, nb_subtract
, "__sub__", "__rsub__")
5056 SLOT1BIN(slot_nb_multiply
, nb_multiply
, "__mul__", "__rmul__")
5057 SLOT1BIN(slot_nb_divide
, nb_divide
, "__div__", "__rdiv__")
5058 SLOT1BIN(slot_nb_remainder
, nb_remainder
, "__mod__", "__rmod__")
5059 SLOT1BIN(slot_nb_divmod
, nb_divmod
, "__divmod__", "__rdivmod__")
5061 static PyObject
*slot_nb_power(PyObject
*, PyObject
*, PyObject
*);
5063 SLOT1BINFULL(slot_nb_power_binary
, slot_nb_power
,
5064 nb_power
, "__pow__", "__rpow__")
5067 slot_nb_power(PyObject
*self
, PyObject
*other
, PyObject
*modulus
)
5069 static PyObject
*pow_str
;
5071 if (modulus
== Py_None
)
5072 return slot_nb_power_binary(self
, other
);
5073 /* Three-arg power doesn't use __rpow__. But ternary_op
5074 can call this when the second argument's type uses
5075 slot_nb_power, so check before calling self.__pow__. */
5076 if (Py_TYPE(self
)->tp_as_number
!= NULL
&&
5077 Py_TYPE(self
)->tp_as_number
->nb_power
== slot_nb_power
) {
5078 return call_method(self
, "__pow__", &pow_str
,
5079 "(OO)", other
, modulus
);
5081 Py_INCREF(Py_NotImplemented
);
5082 return Py_NotImplemented
;
5085 SLOT0(slot_nb_negative
, "__neg__")
5086 SLOT0(slot_nb_positive
, "__pos__")
5087 SLOT0(slot_nb_absolute
, "__abs__")
5090 slot_nb_nonzero(PyObject
*self
)
5092 PyObject
*func
, *args
;
5093 static PyObject
*nonzero_str
, *len_str
;
5096 func
= lookup_maybe(self
, "__nonzero__", &nonzero_str
);
5098 if (PyErr_Occurred())
5100 func
= lookup_maybe(self
, "__len__", &len_str
);
5102 return PyErr_Occurred() ? -1 : 1;
5104 args
= PyTuple_New(0);
5106 PyObject
*temp
= PyObject_Call(func
, args
, NULL
);
5109 if (PyInt_CheckExact(temp
) || PyBool_Check(temp
))
5110 result
= PyObject_IsTrue(temp
);
5112 PyErr_Format(PyExc_TypeError
,
5113 "__nonzero__ should return "
5114 "bool or int, returned %s",
5115 temp
->ob_type
->tp_name
);
5127 slot_nb_index(PyObject
*self
)
5129 static PyObject
*index_str
;
5130 return call_method(self
, "__index__", &index_str
, "()");
5134 SLOT0(slot_nb_invert
, "__invert__")
5135 SLOT1BIN(slot_nb_lshift
, nb_lshift
, "__lshift__", "__rlshift__")
5136 SLOT1BIN(slot_nb_rshift
, nb_rshift
, "__rshift__", "__rrshift__")
5137 SLOT1BIN(slot_nb_and
, nb_and
, "__and__", "__rand__")
5138 SLOT1BIN(slot_nb_xor
, nb_xor
, "__xor__", "__rxor__")
5139 SLOT1BIN(slot_nb_or
, nb_or
, "__or__", "__ror__")
5142 slot_nb_coerce(PyObject
**a
, PyObject
**b
)
5144 static PyObject
*coerce_str
;
5145 PyObject
*self
= *a
, *other
= *b
;
5147 if (self
->ob_type
->tp_as_number
!= NULL
&&
5148 self
->ob_type
->tp_as_number
->nb_coerce
== slot_nb_coerce
) {
5151 self
, "__coerce__", &coerce_str
, "(O)", other
);
5154 if (r
== Py_NotImplemented
) {
5158 if (!PyTuple_Check(r
) || PyTuple_GET_SIZE(r
) != 2) {
5159 PyErr_SetString(PyExc_TypeError
,
5160 "__coerce__ didn't return a 2-tuple");
5164 *a
= PyTuple_GET_ITEM(r
, 0);
5166 *b
= PyTuple_GET_ITEM(r
, 1);
5172 if (other
->ob_type
->tp_as_number
!= NULL
&&
5173 other
->ob_type
->tp_as_number
->nb_coerce
== slot_nb_coerce
) {
5176 other
, "__coerce__", &coerce_str
, "(O)", self
);
5179 if (r
== Py_NotImplemented
) {
5183 if (!PyTuple_Check(r
) || PyTuple_GET_SIZE(r
) != 2) {
5184 PyErr_SetString(PyExc_TypeError
,
5185 "__coerce__ didn't return a 2-tuple");
5189 *a
= PyTuple_GET_ITEM(r
, 1);
5191 *b
= PyTuple_GET_ITEM(r
, 0);
5199 SLOT0(slot_nb_int
, "__int__")
5200 SLOT0(slot_nb_long
, "__long__")
5201 SLOT0(slot_nb_float
, "__float__")
5202 SLOT0(slot_nb_oct
, "__oct__")
5203 SLOT0(slot_nb_hex
, "__hex__")
5204 SLOT1(slot_nb_inplace_add
, "__iadd__", PyObject
*, "O")
5205 SLOT1(slot_nb_inplace_subtract
, "__isub__", PyObject
*, "O")
5206 SLOT1(slot_nb_inplace_multiply
, "__imul__", PyObject
*, "O")
5207 SLOT1(slot_nb_inplace_divide
, "__idiv__", PyObject
*, "O")
5208 SLOT1(slot_nb_inplace_remainder
, "__imod__", PyObject
*, "O")
5209 /* Can't use SLOT1 here, because nb_inplace_power is ternary */
5211 slot_nb_inplace_power(PyObject
*self
, PyObject
* arg1
, PyObject
*arg2
)
5213 static PyObject
*cache_str
;
5214 return call_method(self
, "__ipow__", &cache_str
, "(" "O" ")", arg1
);
5216 SLOT1(slot_nb_inplace_lshift
, "__ilshift__", PyObject
*, "O")
5217 SLOT1(slot_nb_inplace_rshift
, "__irshift__", PyObject
*, "O")
5218 SLOT1(slot_nb_inplace_and
, "__iand__", PyObject
*, "O")
5219 SLOT1(slot_nb_inplace_xor
, "__ixor__", PyObject
*, "O")
5220 SLOT1(slot_nb_inplace_or
, "__ior__", PyObject
*, "O")
5221 SLOT1BIN(slot_nb_floor_divide
, nb_floor_divide
,
5222 "__floordiv__", "__rfloordiv__")
5223 SLOT1BIN(slot_nb_true_divide
, nb_true_divide
, "__truediv__", "__rtruediv__")
5224 SLOT1(slot_nb_inplace_floor_divide
, "__ifloordiv__", PyObject
*, "O")
5225 SLOT1(slot_nb_inplace_true_divide
, "__itruediv__", PyObject
*, "O")
5228 half_compare(PyObject
*self
, PyObject
*other
)
5230 PyObject
*func
, *args
, *res
;
5231 static PyObject
*cmp_str
;
5234 func
= lookup_method(self
, "__cmp__", &cmp_str
);
5239 args
= PyTuple_Pack(1, other
);
5243 res
= PyObject_Call(func
, args
, NULL
);
5247 if (res
!= Py_NotImplemented
) {
5250 c
= PyInt_AsLong(res
);
5252 if (c
== -1 && PyErr_Occurred())
5254 return (c
< 0) ? -1 : (c
> 0) ? 1 : 0;
5261 /* This slot is published for the benefit of try_3way_compare in object.c */
5263 _PyObject_SlotCompare(PyObject
*self
, PyObject
*other
)
5267 if (Py_TYPE(self
)->tp_compare
== _PyObject_SlotCompare
) {
5268 c
= half_compare(self
, other
);
5272 if (Py_TYPE(other
)->tp_compare
== _PyObject_SlotCompare
) {
5273 c
= half_compare(other
, self
);
5279 return (void *)self
< (void *)other
? -1 :
5280 (void *)self
> (void *)other
? 1 : 0;
5284 slot_tp_repr(PyObject
*self
)
5286 PyObject
*func
, *res
;
5287 static PyObject
*repr_str
;
5289 func
= lookup_method(self
, "__repr__", &repr_str
);
5291 res
= PyEval_CallObject(func
, NULL
);
5296 return PyString_FromFormat("<%s object at %p>",
5297 Py_TYPE(self
)->tp_name
, self
);
5301 slot_tp_str(PyObject
*self
)
5303 PyObject
*func
, *res
;
5304 static PyObject
*str_str
;
5306 func
= lookup_method(self
, "__str__", &str_str
);
5308 res
= PyEval_CallObject(func
, NULL
);
5314 return slot_tp_repr(self
);
5319 slot_tp_hash(PyObject
*self
)
5322 static PyObject
*hash_str
, *eq_str
, *cmp_str
;
5325 func
= lookup_method(self
, "__hash__", &hash_str
);
5327 if (func
!= NULL
&& func
!= Py_None
) {
5328 PyObject
*res
= PyEval_CallObject(func
, NULL
);
5332 if (PyLong_Check(res
))
5333 h
= PyLong_Type
.tp_hash(res
);
5335 h
= PyInt_AsLong(res
);
5339 Py_XDECREF(func
); /* may be None */
5341 func
= lookup_method(self
, "__eq__", &eq_str
);
5344 func
= lookup_method(self
, "__cmp__", &cmp_str
);
5348 return PyObject_HashNotImplemented(self
);
5351 h
= _Py_HashPointer((void *)self
);
5353 if (h
== -1 && !PyErr_Occurred())
5359 slot_tp_call(PyObject
*self
, PyObject
*args
, PyObject
*kwds
)
5361 static PyObject
*call_str
;
5362 PyObject
*meth
= lookup_method(self
, "__call__", &call_str
);
5368 res
= PyObject_Call(meth
, args
, kwds
);
5374 /* There are two slot dispatch functions for tp_getattro.
5376 - slot_tp_getattro() is used when __getattribute__ is overridden
5377 but no __getattr__ hook is present;
5379 - slot_tp_getattr_hook() is used when a __getattr__ hook is present.
5381 The code in update_one_slot() always installs slot_tp_getattr_hook(); this
5382 detects the absence of __getattr__ and then installs the simpler slot if
5386 slot_tp_getattro(PyObject
*self
, PyObject
*name
)
5388 static PyObject
*getattribute_str
= NULL
;
5389 return call_method(self
, "__getattribute__", &getattribute_str
,
5394 call_attribute(PyObject
*self
, PyObject
*attr
, PyObject
*name
)
5396 PyObject
*res
, *descr
= NULL
;
5397 descrgetfunc f
= Py_TYPE(attr
)->tp_descr_get
;
5400 descr
= f(attr
, self
, (PyObject
*)(Py_TYPE(self
)));
5406 res
= PyObject_CallFunctionObjArgs(attr
, name
, NULL
);
5412 slot_tp_getattr_hook(PyObject
*self
, PyObject
*name
)
5414 PyTypeObject
*tp
= Py_TYPE(self
);
5415 PyObject
*getattr
, *getattribute
, *res
;
5416 static PyObject
*getattribute_str
= NULL
;
5417 static PyObject
*getattr_str
= NULL
;
5419 if (getattr_str
== NULL
) {
5420 getattr_str
= PyString_InternFromString("__getattr__");
5421 if (getattr_str
== NULL
)
5424 if (getattribute_str
== NULL
) {
5426 PyString_InternFromString("__getattribute__");
5427 if (getattribute_str
== NULL
)
5430 /* speed hack: we could use lookup_maybe, but that would resolve the
5431 method fully for each attribute lookup for classes with
5432 __getattr__, even when the attribute is present. So we use
5433 _PyType_Lookup and create the method only when needed, with
5435 getattr
= _PyType_Lookup(tp
, getattr_str
);
5436 if (getattr
== NULL
) {
5437 /* No __getattr__ hook: use a simpler dispatcher */
5438 tp
->tp_getattro
= slot_tp_getattro
;
5439 return slot_tp_getattro(self
, name
);
5442 /* speed hack: we could use lookup_maybe, but that would resolve the
5443 method fully for each attribute lookup for classes with
5444 __getattr__, even when self has the default __getattribute__
5445 method. So we use _PyType_Lookup and create the method only when
5446 needed, with call_attribute. */
5447 getattribute
= _PyType_Lookup(tp
, getattribute_str
);
5448 if (getattribute
== NULL
||
5449 (Py_TYPE(getattribute
) == &PyWrapperDescr_Type
&&
5450 ((PyWrapperDescrObject
*)getattribute
)->d_wrapped
==
5451 (void *)PyObject_GenericGetAttr
))
5452 res
= PyObject_GenericGetAttr(self
, name
);
5454 Py_INCREF(getattribute
);
5455 res
= call_attribute(self
, getattribute
, name
);
5456 Py_DECREF(getattribute
);
5458 if (res
== NULL
&& PyErr_ExceptionMatches(PyExc_AttributeError
)) {
5460 res
= call_attribute(self
, getattr
, name
);
5467 slot_tp_setattro(PyObject
*self
, PyObject
*name
, PyObject
*value
)
5470 static PyObject
*delattr_str
, *setattr_str
;
5473 res
= call_method(self
, "__delattr__", &delattr_str
,
5476 res
= call_method(self
, "__setattr__", &setattr_str
,
5477 "(OO)", name
, value
);
5484 static char *name_op
[] = {
5494 half_richcompare(PyObject
*self
, PyObject
*other
, int op
)
5496 PyObject
*func
, *args
, *res
;
5497 static PyObject
*op_str
[6];
5499 func
= lookup_method(self
, name_op
[op
], &op_str
[op
]);
5502 Py_INCREF(Py_NotImplemented
);
5503 return Py_NotImplemented
;
5505 args
= PyTuple_Pack(1, other
);
5509 res
= PyObject_Call(func
, args
, NULL
);
5517 slot_tp_richcompare(PyObject
*self
, PyObject
*other
, int op
)
5521 if (Py_TYPE(self
)->tp_richcompare
== slot_tp_richcompare
) {
5522 res
= half_richcompare(self
, other
, op
);
5523 if (res
!= Py_NotImplemented
)
5527 if (Py_TYPE(other
)->tp_richcompare
== slot_tp_richcompare
) {
5528 res
= half_richcompare(other
, self
, _Py_SwappedOp
[op
]);
5529 if (res
!= Py_NotImplemented
) {
5534 Py_INCREF(Py_NotImplemented
);
5535 return Py_NotImplemented
;
5539 slot_tp_iter(PyObject
*self
)
5541 PyObject
*func
, *res
;
5542 static PyObject
*iter_str
, *getitem_str
;
5544 func
= lookup_method(self
, "__iter__", &iter_str
);
5547 args
= res
= PyTuple_New(0);
5549 res
= PyObject_Call(func
, args
, NULL
);
5556 func
= lookup_method(self
, "__getitem__", &getitem_str
);
5558 PyErr_Format(PyExc_TypeError
,
5559 "'%.200s' object is not iterable",
5560 Py_TYPE(self
)->tp_name
);
5564 return PySeqIter_New(self
);
5568 slot_tp_iternext(PyObject
*self
)
5570 static PyObject
*next_str
;
5571 return call_method(self
, "next", &next_str
, "()");
5575 slot_tp_descr_get(PyObject
*self
, PyObject
*obj
, PyObject
*type
)
5577 PyTypeObject
*tp
= Py_TYPE(self
);
5579 static PyObject
*get_str
= NULL
;
5581 if (get_str
== NULL
) {
5582 get_str
= PyString_InternFromString("__get__");
5583 if (get_str
== NULL
)
5586 get
= _PyType_Lookup(tp
, get_str
);
5588 /* Avoid further slowdowns */
5589 if (tp
->tp_descr_get
== slot_tp_descr_get
)
5590 tp
->tp_descr_get
= NULL
;
5598 return PyObject_CallFunctionObjArgs(get
, self
, obj
, type
, NULL
);
5602 slot_tp_descr_set(PyObject
*self
, PyObject
*target
, PyObject
*value
)
5605 static PyObject
*del_str
, *set_str
;
5608 res
= call_method(self
, "__delete__", &del_str
,
5611 res
= call_method(self
, "__set__", &set_str
,
5612 "(OO)", target
, value
);
5620 slot_tp_init(PyObject
*self
, PyObject
*args
, PyObject
*kwds
)
5622 static PyObject
*init_str
;
5623 PyObject
*meth
= lookup_method(self
, "__init__", &init_str
);
5628 res
= PyObject_Call(meth
, args
, kwds
);
5632 if (res
!= Py_None
) {
5633 PyErr_Format(PyExc_TypeError
,
5634 "__init__() should return None, not '%.200s'",
5635 Py_TYPE(res
)->tp_name
);
5644 slot_tp_new(PyTypeObject
*type
, PyObject
*args
, PyObject
*kwds
)
5646 static PyObject
*new_str
;
5648 PyObject
*newargs
, *x
;
5651 if (new_str
== NULL
) {
5652 new_str
= PyString_InternFromString("__new__");
5653 if (new_str
== NULL
)
5656 func
= PyObject_GetAttr((PyObject
*)type
, new_str
);
5659 assert(PyTuple_Check(args
));
5660 n
= PyTuple_GET_SIZE(args
);
5661 newargs
= PyTuple_New(n
+1);
5662 if (newargs
== NULL
)
5665 PyTuple_SET_ITEM(newargs
, 0, (PyObject
*)type
);
5666 for (i
= 0; i
< n
; i
++) {
5667 x
= PyTuple_GET_ITEM(args
, i
);
5669 PyTuple_SET_ITEM(newargs
, i
+1, x
);
5671 x
= PyObject_Call(func
, newargs
, kwds
);
5678 slot_tp_del(PyObject
*self
)
5680 static PyObject
*del_str
= NULL
;
5681 PyObject
*del
, *res
;
5682 PyObject
*error_type
, *error_value
, *error_traceback
;
5684 /* Temporarily resurrect the object. */
5685 assert(self
->ob_refcnt
== 0);
5686 self
->ob_refcnt
= 1;
5688 /* Save the current exception, if any. */
5689 PyErr_Fetch(&error_type
, &error_value
, &error_traceback
);
5691 /* Execute __del__ method, if any. */
5692 del
= lookup_maybe(self
, "__del__", &del_str
);
5694 res
= PyEval_CallObject(del
, NULL
);
5696 PyErr_WriteUnraisable(del
);
5702 /* Restore the saved exception. */
5703 PyErr_Restore(error_type
, error_value
, error_traceback
);
5705 /* Undo the temporary resurrection; can't use DECREF here, it would
5706 * cause a recursive call.
5708 assert(self
->ob_refcnt
> 0);
5709 if (--self
->ob_refcnt
== 0)
5710 return; /* this is the normal path out */
5712 /* __del__ resurrected it! Make it look like the original Py_DECREF
5716 Py_ssize_t refcnt
= self
->ob_refcnt
;
5717 _Py_NewReference(self
);
5718 self
->ob_refcnt
= refcnt
;
5720 assert(!PyType_IS_GC(Py_TYPE(self
)) ||
5721 _Py_AS_GC(self
)->gc
.gc_refs
!= _PyGC_REFS_UNTRACKED
);
5722 /* If Py_REF_DEBUG, _Py_NewReference bumped _Py_RefTotal, so
5723 * we need to undo that. */
5725 /* If Py_TRACE_REFS, _Py_NewReference re-added self to the object
5726 * chain, so no more to do there.
5727 * If COUNT_ALLOCS, the original decref bumped tp_frees, and
5728 * _Py_NewReference bumped tp_allocs: both of those need to be
5732 --Py_TYPE(self
)->tp_frees
;
5733 --Py_TYPE(self
)->tp_allocs
;
5738 /* Table mapping __foo__ names to tp_foo offsets and slot_tp_foo wrapper
5739 functions. The offsets here are relative to the 'PyHeapTypeObject'
5740 structure, which incorporates the additional structures used for numbers,
5741 sequences and mappings.
5742 Note that multiple names may map to the same slot (e.g. __eq__,
5743 __ne__ etc. all map to tp_richcompare) and one name may map to multiple
5744 slots (e.g. __str__ affects tp_str as well as tp_repr). The table is
5745 terminated with an all-zero entry. (This table is further initialized and
5746 sorted in init_slotdefs() below.) */
5748 typedef struct wrapperbase slotdef
;
5761 #define TPSLOT(NAME, SLOT, FUNCTION, WRAPPER, DOC) \
5762 {NAME, offsetof(PyTypeObject, SLOT), (void *)(FUNCTION), WRAPPER, \
5764 #define FLSLOT(NAME, SLOT, FUNCTION, WRAPPER, DOC, FLAGS) \
5765 {NAME, offsetof(PyTypeObject, SLOT), (void *)(FUNCTION), WRAPPER, \
5766 PyDoc_STR(DOC), FLAGS}
5767 #define ETSLOT(NAME, SLOT, FUNCTION, WRAPPER, DOC) \
5768 {NAME, offsetof(PyHeapTypeObject, SLOT), (void *)(FUNCTION), WRAPPER, \
5770 #define SQSLOT(NAME, SLOT, FUNCTION, WRAPPER, DOC) \
5771 ETSLOT(NAME, as_sequence.SLOT, FUNCTION, WRAPPER, DOC)
5772 #define MPSLOT(NAME, SLOT, FUNCTION, WRAPPER, DOC) \
5773 ETSLOT(NAME, as_mapping.SLOT, FUNCTION, WRAPPER, DOC)
5774 #define NBSLOT(NAME, SLOT, FUNCTION, WRAPPER, DOC) \
5775 ETSLOT(NAME, as_number.SLOT, FUNCTION, WRAPPER, DOC)
5776 #define UNSLOT(NAME, SLOT, FUNCTION, WRAPPER, DOC) \
5777 ETSLOT(NAME, as_number.SLOT, FUNCTION, WRAPPER, \
5778 "x." NAME "() <==> " DOC)
5779 #define IBSLOT(NAME, SLOT, FUNCTION, WRAPPER, DOC) \
5780 ETSLOT(NAME, as_number.SLOT, FUNCTION, WRAPPER, \
5781 "x." NAME "(y) <==> x" DOC "y")
5782 #define BINSLOT(NAME, SLOT, FUNCTION, DOC) \
5783 ETSLOT(NAME, as_number.SLOT, FUNCTION, wrap_binaryfunc_l, \
5784 "x." NAME "(y) <==> x" DOC "y")
5785 #define RBINSLOT(NAME, SLOT, FUNCTION, DOC) \
5786 ETSLOT(NAME, as_number.SLOT, FUNCTION, wrap_binaryfunc_r, \
5787 "x." NAME "(y) <==> y" DOC "x")
5788 #define BINSLOTNOTINFIX(NAME, SLOT, FUNCTION, DOC) \
5789 ETSLOT(NAME, as_number.SLOT, FUNCTION, wrap_binaryfunc_l, \
5790 "x." NAME "(y) <==> " DOC)
5791 #define RBINSLOTNOTINFIX(NAME, SLOT, FUNCTION, DOC) \
5792 ETSLOT(NAME, as_number.SLOT, FUNCTION, wrap_binaryfunc_r, \
5793 "x." NAME "(y) <==> " DOC)
5795 static slotdef slotdefs
[] = {
5796 SQSLOT("__len__", sq_length
, slot_sq_length
, wrap_lenfunc
,
5797 "x.__len__() <==> len(x)"),
5798 /* Heap types defining __add__/__mul__ have sq_concat/sq_repeat == NULL.
5799 The logic in abstract.c always falls back to nb_add/nb_multiply in
5800 this case. Defining both the nb_* and the sq_* slots to call the
5801 user-defined methods has unexpected side-effects, as shown by
5802 test_descr.notimplemented() */
5803 SQSLOT("__add__", sq_concat
, NULL
, wrap_binaryfunc
,
5804 "x.__add__(y) <==> x+y"),
5805 SQSLOT("__mul__", sq_repeat
, NULL
, wrap_indexargfunc
,
5806 "x.__mul__(n) <==> x*n"),
5807 SQSLOT("__rmul__", sq_repeat
, NULL
, wrap_indexargfunc
,
5808 "x.__rmul__(n) <==> n*x"),
5809 SQSLOT("__getitem__", sq_item
, slot_sq_item
, wrap_sq_item
,
5810 "x.__getitem__(y) <==> x[y]"),
5811 SQSLOT("__getslice__", sq_slice
, slot_sq_slice
, wrap_ssizessizeargfunc
,
5812 "x.__getslice__(i, j) <==> x[i:j]\n\
5814 Use of negative indices is not supported."),
5815 SQSLOT("__setitem__", sq_ass_item
, slot_sq_ass_item
, wrap_sq_setitem
,
5816 "x.__setitem__(i, y) <==> x[i]=y"),
5817 SQSLOT("__delitem__", sq_ass_item
, slot_sq_ass_item
, wrap_sq_delitem
,
5818 "x.__delitem__(y) <==> del x[y]"),
5819 SQSLOT("__setslice__", sq_ass_slice
, slot_sq_ass_slice
,
5820 wrap_ssizessizeobjargproc
,
5821 "x.__setslice__(i, j, y) <==> x[i:j]=y\n\
5823 Use of negative indices is not supported."),
5824 SQSLOT("__delslice__", sq_ass_slice
, slot_sq_ass_slice
, wrap_delslice
,
5825 "x.__delslice__(i, j) <==> del x[i:j]\n\
5827 Use of negative indices is not supported."),
5828 SQSLOT("__contains__", sq_contains
, slot_sq_contains
, wrap_objobjproc
,
5829 "x.__contains__(y) <==> y in x"),
5830 SQSLOT("__iadd__", sq_inplace_concat
, NULL
,
5831 wrap_binaryfunc
, "x.__iadd__(y) <==> x+=y"),
5832 SQSLOT("__imul__", sq_inplace_repeat
, NULL
,
5833 wrap_indexargfunc
, "x.__imul__(y) <==> x*=y"),
5835 MPSLOT("__len__", mp_length
, slot_mp_length
, wrap_lenfunc
,
5836 "x.__len__() <==> len(x)"),
5837 MPSLOT("__getitem__", mp_subscript
, slot_mp_subscript
,
5839 "x.__getitem__(y) <==> x[y]"),
5840 MPSLOT("__setitem__", mp_ass_subscript
, slot_mp_ass_subscript
,
5842 "x.__setitem__(i, y) <==> x[i]=y"),
5843 MPSLOT("__delitem__", mp_ass_subscript
, slot_mp_ass_subscript
,
5845 "x.__delitem__(y) <==> del x[y]"),
5847 BINSLOT("__add__", nb_add
, slot_nb_add
,
5849 RBINSLOT("__radd__", nb_add
, slot_nb_add
,
5851 BINSLOT("__sub__", nb_subtract
, slot_nb_subtract
,
5853 RBINSLOT("__rsub__", nb_subtract
, slot_nb_subtract
,
5855 BINSLOT("__mul__", nb_multiply
, slot_nb_multiply
,
5857 RBINSLOT("__rmul__", nb_multiply
, slot_nb_multiply
,
5859 BINSLOT("__div__", nb_divide
, slot_nb_divide
,
5861 RBINSLOT("__rdiv__", nb_divide
, slot_nb_divide
,
5863 BINSLOT("__mod__", nb_remainder
, slot_nb_remainder
,
5865 RBINSLOT("__rmod__", nb_remainder
, slot_nb_remainder
,
5867 BINSLOTNOTINFIX("__divmod__", nb_divmod
, slot_nb_divmod
,
5869 RBINSLOTNOTINFIX("__rdivmod__", nb_divmod
, slot_nb_divmod
,
5871 NBSLOT("__pow__", nb_power
, slot_nb_power
, wrap_ternaryfunc
,
5872 "x.__pow__(y[, z]) <==> pow(x, y[, z])"),
5873 NBSLOT("__rpow__", nb_power
, slot_nb_power
, wrap_ternaryfunc_r
,
5874 "y.__rpow__(x[, z]) <==> pow(x, y[, z])"),
5875 UNSLOT("__neg__", nb_negative
, slot_nb_negative
, wrap_unaryfunc
, "-x"),
5876 UNSLOT("__pos__", nb_positive
, slot_nb_positive
, wrap_unaryfunc
, "+x"),
5877 UNSLOT("__abs__", nb_absolute
, slot_nb_absolute
, wrap_unaryfunc
,
5879 UNSLOT("__nonzero__", nb_nonzero
, slot_nb_nonzero
, wrap_inquirypred
,
5881 UNSLOT("__invert__", nb_invert
, slot_nb_invert
, wrap_unaryfunc
, "~x"),
5882 BINSLOT("__lshift__", nb_lshift
, slot_nb_lshift
, "<<"),
5883 RBINSLOT("__rlshift__", nb_lshift
, slot_nb_lshift
, "<<"),
5884 BINSLOT("__rshift__", nb_rshift
, slot_nb_rshift
, ">>"),
5885 RBINSLOT("__rrshift__", nb_rshift
, slot_nb_rshift
, ">>"),
5886 BINSLOT("__and__", nb_and
, slot_nb_and
, "&"),
5887 RBINSLOT("__rand__", nb_and
, slot_nb_and
, "&"),
5888 BINSLOT("__xor__", nb_xor
, slot_nb_xor
, "^"),
5889 RBINSLOT("__rxor__", nb_xor
, slot_nb_xor
, "^"),
5890 BINSLOT("__or__", nb_or
, slot_nb_or
, "|"),
5891 RBINSLOT("__ror__", nb_or
, slot_nb_or
, "|"),
5892 NBSLOT("__coerce__", nb_coerce
, slot_nb_coerce
, wrap_coercefunc
,
5893 "x.__coerce__(y) <==> coerce(x, y)"),
5894 UNSLOT("__int__", nb_int
, slot_nb_int
, wrap_unaryfunc
,
5896 UNSLOT("__long__", nb_long
, slot_nb_long
, wrap_unaryfunc
,
5898 UNSLOT("__float__", nb_float
, slot_nb_float
, wrap_unaryfunc
,
5900 UNSLOT("__oct__", nb_oct
, slot_nb_oct
, wrap_unaryfunc
,
5902 UNSLOT("__hex__", nb_hex
, slot_nb_hex
, wrap_unaryfunc
,
5904 NBSLOT("__index__", nb_index
, slot_nb_index
, wrap_unaryfunc
,
5905 "x[y:z] <==> x[y.__index__():z.__index__()]"),
5906 IBSLOT("__iadd__", nb_inplace_add
, slot_nb_inplace_add
,
5907 wrap_binaryfunc
, "+"),
5908 IBSLOT("__isub__", nb_inplace_subtract
, slot_nb_inplace_subtract
,
5909 wrap_binaryfunc
, "-"),
5910 IBSLOT("__imul__", nb_inplace_multiply
, slot_nb_inplace_multiply
,
5911 wrap_binaryfunc
, "*"),
5912 IBSLOT("__idiv__", nb_inplace_divide
, slot_nb_inplace_divide
,
5913 wrap_binaryfunc
, "/"),
5914 IBSLOT("__imod__", nb_inplace_remainder
, slot_nb_inplace_remainder
,
5915 wrap_binaryfunc
, "%"),
5916 IBSLOT("__ipow__", nb_inplace_power
, slot_nb_inplace_power
,
5917 wrap_binaryfunc
, "**"),
5918 IBSLOT("__ilshift__", nb_inplace_lshift
, slot_nb_inplace_lshift
,
5919 wrap_binaryfunc
, "<<"),
5920 IBSLOT("__irshift__", nb_inplace_rshift
, slot_nb_inplace_rshift
,
5921 wrap_binaryfunc
, ">>"),
5922 IBSLOT("__iand__", nb_inplace_and
, slot_nb_inplace_and
,
5923 wrap_binaryfunc
, "&"),
5924 IBSLOT("__ixor__", nb_inplace_xor
, slot_nb_inplace_xor
,
5925 wrap_binaryfunc
, "^"),
5926 IBSLOT("__ior__", nb_inplace_or
, slot_nb_inplace_or
,
5927 wrap_binaryfunc
, "|"),
5928 BINSLOT("__floordiv__", nb_floor_divide
, slot_nb_floor_divide
, "//"),
5929 RBINSLOT("__rfloordiv__", nb_floor_divide
, slot_nb_floor_divide
, "//"),
5930 BINSLOT("__truediv__", nb_true_divide
, slot_nb_true_divide
, "/"),
5931 RBINSLOT("__rtruediv__", nb_true_divide
, slot_nb_true_divide
, "/"),
5932 IBSLOT("__ifloordiv__", nb_inplace_floor_divide
,
5933 slot_nb_inplace_floor_divide
, wrap_binaryfunc
, "//"),
5934 IBSLOT("__itruediv__", nb_inplace_true_divide
,
5935 slot_nb_inplace_true_divide
, wrap_binaryfunc
, "/"),
5937 TPSLOT("__str__", tp_str
, slot_tp_str
, wrap_unaryfunc
,
5938 "x.__str__() <==> str(x)"),
5939 TPSLOT("__str__", tp_print
, NULL
, NULL
, ""),
5940 TPSLOT("__repr__", tp_repr
, slot_tp_repr
, wrap_unaryfunc
,
5941 "x.__repr__() <==> repr(x)"),
5942 TPSLOT("__repr__", tp_print
, NULL
, NULL
, ""),
5943 TPSLOT("__cmp__", tp_compare
, _PyObject_SlotCompare
, wrap_cmpfunc
,
5944 "x.__cmp__(y) <==> cmp(x,y)"),
5945 TPSLOT("__hash__", tp_hash
, slot_tp_hash
, wrap_hashfunc
,
5946 "x.__hash__() <==> hash(x)"),
5947 FLSLOT("__call__", tp_call
, slot_tp_call
, (wrapperfunc
)wrap_call
,
5948 "x.__call__(...) <==> x(...)", PyWrapperFlag_KEYWORDS
),
5949 TPSLOT("__getattribute__", tp_getattro
, slot_tp_getattr_hook
,
5950 wrap_binaryfunc
, "x.__getattribute__('name') <==> x.name"),
5951 TPSLOT("__getattribute__", tp_getattr
, NULL
, NULL
, ""),
5952 TPSLOT("__getattr__", tp_getattro
, slot_tp_getattr_hook
, NULL
, ""),
5953 TPSLOT("__getattr__", tp_getattr
, NULL
, NULL
, ""),
5954 TPSLOT("__setattr__", tp_setattro
, slot_tp_setattro
, wrap_setattr
,
5955 "x.__setattr__('name', value) <==> x.name = value"),
5956 TPSLOT("__setattr__", tp_setattr
, NULL
, NULL
, ""),
5957 TPSLOT("__delattr__", tp_setattro
, slot_tp_setattro
, wrap_delattr
,
5958 "x.__delattr__('name') <==> del x.name"),
5959 TPSLOT("__delattr__", tp_setattr
, NULL
, NULL
, ""),
5960 TPSLOT("__lt__", tp_richcompare
, slot_tp_richcompare
, richcmp_lt
,
5961 "x.__lt__(y) <==> x<y"),
5962 TPSLOT("__le__", tp_richcompare
, slot_tp_richcompare
, richcmp_le
,
5963 "x.__le__(y) <==> x<=y"),
5964 TPSLOT("__eq__", tp_richcompare
, slot_tp_richcompare
, richcmp_eq
,
5965 "x.__eq__(y) <==> x==y"),
5966 TPSLOT("__ne__", tp_richcompare
, slot_tp_richcompare
, richcmp_ne
,
5967 "x.__ne__(y) <==> x!=y"),
5968 TPSLOT("__gt__", tp_richcompare
, slot_tp_richcompare
, richcmp_gt
,
5969 "x.__gt__(y) <==> x>y"),
5970 TPSLOT("__ge__", tp_richcompare
, slot_tp_richcompare
, richcmp_ge
,
5971 "x.__ge__(y) <==> x>=y"),
5972 TPSLOT("__iter__", tp_iter
, slot_tp_iter
, wrap_unaryfunc
,
5973 "x.__iter__() <==> iter(x)"),
5974 TPSLOT("next", tp_iternext
, slot_tp_iternext
, wrap_next
,
5975 "x.next() -> the next value, or raise StopIteration"),
5976 TPSLOT("__get__", tp_descr_get
, slot_tp_descr_get
, wrap_descr_get
,
5977 "descr.__get__(obj[, type]) -> value"),
5978 TPSLOT("__set__", tp_descr_set
, slot_tp_descr_set
, wrap_descr_set
,
5979 "descr.__set__(obj, value)"),
5980 TPSLOT("__delete__", tp_descr_set
, slot_tp_descr_set
,
5981 wrap_descr_delete
, "descr.__delete__(obj)"),
5982 FLSLOT("__init__", tp_init
, slot_tp_init
, (wrapperfunc
)wrap_init
,
5983 "x.__init__(...) initializes x; "
5984 "see x.__class__.__doc__ for signature",
5985 PyWrapperFlag_KEYWORDS
),
5986 TPSLOT("__new__", tp_new
, slot_tp_new
, NULL
, ""),
5987 TPSLOT("__del__", tp_del
, slot_tp_del
, NULL
, ""),
5991 /* Given a type pointer and an offset gotten from a slotdef entry, return a
5992 pointer to the actual slot. This is not quite the same as simply adding
5993 the offset to the type pointer, since it takes care to indirect through the
5994 proper indirection pointer (as_buffer, etc.); it returns NULL if the
5995 indirection pointer is NULL. */
5997 slotptr(PyTypeObject
*type
, int ioffset
)
6000 long offset
= ioffset
;
6002 /* Note: this depends on the order of the members of PyHeapTypeObject! */
6003 assert(offset
>= 0);
6004 assert((size_t)offset
< offsetof(PyHeapTypeObject
, as_buffer
));
6005 if ((size_t)offset
>= offsetof(PyHeapTypeObject
, as_sequence
)) {
6006 ptr
= (char *)type
->tp_as_sequence
;
6007 offset
-= offsetof(PyHeapTypeObject
, as_sequence
);
6009 else if ((size_t)offset
>= offsetof(PyHeapTypeObject
, as_mapping
)) {
6010 ptr
= (char *)type
->tp_as_mapping
;
6011 offset
-= offsetof(PyHeapTypeObject
, as_mapping
);
6013 else if ((size_t)offset
>= offsetof(PyHeapTypeObject
, as_number
)) {
6014 ptr
= (char *)type
->tp_as_number
;
6015 offset
-= offsetof(PyHeapTypeObject
, as_number
);
6022 return (void **)ptr
;
6025 /* Length of array of slotdef pointers used to store slots with the
6026 same __name__. There should be at most MAX_EQUIV-1 slotdef entries with
6027 the same __name__, for any __name__. Since that's a static property, it is
6028 appropriate to declare fixed-size arrays for this. */
6029 #define MAX_EQUIV 10
6031 /* Return a slot pointer for a given name, but ONLY if the attribute has
6032 exactly one slot function. The name must be an interned string. */
6034 resolve_slotdups(PyTypeObject
*type
, PyObject
*name
)
6036 /* XXX Maybe this could be optimized more -- but is it worth it? */
6038 /* pname and ptrs act as a little cache */
6039 static PyObject
*pname
;
6040 static slotdef
*ptrs
[MAX_EQUIV
];
6044 if (pname
!= name
) {
6045 /* Collect all slotdefs that match name into ptrs. */
6048 for (p
= slotdefs
; p
->name_strobj
; p
++) {
6049 if (p
->name_strobj
== name
)
6055 /* Look in all matching slots of the type; if exactly one of these has
6056 a filled-in slot, return its value. Otherwise return NULL. */
6058 for (pp
= ptrs
; *pp
; pp
++) {
6059 ptr
= slotptr(type
, (*pp
)->offset
);
6060 if (ptr
== NULL
|| *ptr
== NULL
)
6069 /* Common code for update_slots_callback() and fixup_slot_dispatchers(). This
6070 does some incredibly complex thinking and then sticks something into the
6071 slot. (It sees if the adjacent slotdefs for the same slot have conflicting
6072 interests, and then stores a generic wrapper or a specific function into
6073 the slot.) Return a pointer to the next slotdef with a different offset,
6074 because that's convenient for fixup_slot_dispatchers(). */
6076 update_one_slot(PyTypeObject
*type
, slotdef
*p
)
6079 PyWrapperDescrObject
*d
;
6080 void *generic
= NULL
, *specific
= NULL
;
6081 int use_generic
= 0;
6082 int offset
= p
->offset
;
6083 void **ptr
= slotptr(type
, offset
);
6088 } while (p
->offset
== offset
);
6092 descr
= _PyType_Lookup(type
, p
->name_strobj
);
6095 if (Py_TYPE(descr
) == &PyWrapperDescr_Type
) {
6096 void **tptr
= resolve_slotdups(type
, p
->name_strobj
);
6097 if (tptr
== NULL
|| tptr
== ptr
)
6098 generic
= p
->function
;
6099 d
= (PyWrapperDescrObject
*)descr
;
6100 if (d
->d_base
->wrapper
== p
->wrapper
&&
6101 PyType_IsSubtype(type
, d
->d_type
))
6103 if (specific
== NULL
||
6104 specific
== d
->d_wrapped
)
6105 specific
= d
->d_wrapped
;
6110 else if (Py_TYPE(descr
) == &PyCFunction_Type
&&
6111 PyCFunction_GET_FUNCTION(descr
) ==
6112 (PyCFunction
)tp_new_wrapper
&&
6113 strcmp(p
->name
, "__new__") == 0)
6115 /* The __new__ wrapper is not a wrapper descriptor,
6116 so must be special-cased differently.
6117 If we don't do this, creating an instance will
6118 always use slot_tp_new which will look up
6119 __new__ in the MRO which will call tp_new_wrapper
6120 which will look through the base classes looking
6121 for a static base and call its tp_new (usually
6122 PyType_GenericNew), after performing various
6123 sanity checks and constructing a new argument
6124 list. Cut all that nonsense short -- this speeds
6125 up instance creation tremendously. */
6126 specific
= (void *)type
->tp_new
;
6127 /* XXX I'm not 100% sure that there isn't a hole
6128 in this reasoning that requires additional
6129 sanity checks. I'll buy the first person to
6130 point out a bug in this reasoning a beer. */
6132 else if (descr
== Py_None
&&
6133 strcmp(p
->name
, "__hash__") == 0) {
6134 /* We specifically allow __hash__ to be set to None
6135 to prevent inheritance of the default
6136 implementation from object.__hash__ */
6137 specific
= PyObject_HashNotImplemented
;
6141 generic
= p
->function
;
6143 } while ((++p
)->offset
== offset
);
6144 if (specific
&& !use_generic
)
6151 /* In the type, update the slots whose slotdefs are gathered in the pp array.
6152 This is a callback for update_subclasses(). */
6154 update_slots_callback(PyTypeObject
*type
, void *data
)
6156 slotdef
**pp
= (slotdef
**)data
;
6159 update_one_slot(type
, *pp
);
6163 /* Comparison function for qsort() to compare slotdefs by their offset, and
6164 for equal offset by their address (to force a stable sort). */
6166 slotdef_cmp(const void *aa
, const void *bb
)
6168 const slotdef
*a
= (const slotdef
*)aa
, *b
= (const slotdef
*)bb
;
6169 int c
= a
->offset
- b
->offset
;
6173 /* Cannot use a-b, as this gives off_t,
6174 which may lose precision when converted to int. */
6175 return (a
> b
) ? 1 : (a
< b
) ? -1 : 0;
6178 /* Initialize the slotdefs table by adding interned string objects for the
6179 names and sorting the entries. */
6184 static int initialized
= 0;
6188 for (p
= slotdefs
; p
->name
; p
++) {
6189 p
->name_strobj
= PyString_InternFromString(p
->name
);
6190 if (!p
->name_strobj
)
6191 Py_FatalError("Out of memory interning slotdef names");
6193 qsort((void *)slotdefs
, (size_t)(p
-slotdefs
), sizeof(slotdef
),
6198 /* Update the slots after assignment to a class (type) attribute. */
6200 update_slot(PyTypeObject
*type
, PyObject
*name
)
6202 slotdef
*ptrs
[MAX_EQUIV
];
6207 /* Clear the VALID_VERSION flag of 'type' and all its
6208 subclasses. This could possibly be unified with the
6209 update_subclasses() recursion below, but carefully:
6210 they each have their own conditions on which to stop
6211 recursing into subclasses. */
6212 PyType_Modified(type
);
6216 for (p
= slotdefs
; p
->name
; p
++) {
6217 /* XXX assume name is interned! */
6218 if (p
->name_strobj
== name
)
6222 for (pp
= ptrs
; *pp
; pp
++) {
6225 while (p
> slotdefs
&& (p
-1)->offset
== offset
)
6229 if (ptrs
[0] == NULL
)
6230 return 0; /* Not an attribute that affects any slots */
6231 return update_subclasses(type
, name
,
6232 update_slots_callback
, (void *)ptrs
);
6235 /* Store the proper functions in the slot dispatches at class (type)
6236 definition time, based upon which operations the class overrides in its
6239 fixup_slot_dispatchers(PyTypeObject
*type
)
6244 for (p
= slotdefs
; p
->name
; )
6245 p
= update_one_slot(type
, p
);
6249 update_all_slots(PyTypeObject
* type
)
6254 for (p
= slotdefs
; p
->name
; p
++) {
6255 /* update_slot returns int but can't actually fail */
6256 update_slot(type
, p
->name_strobj
);
6260 /* recurse_down_subclasses() and update_subclasses() are mutually
6261 recursive functions to call a callback for all subclasses,
6262 but refraining from recursing into subclasses that define 'name'. */
6265 update_subclasses(PyTypeObject
*type
, PyObject
*name
,
6266 update_callback callback
, void *data
)
6268 if (callback(type
, data
) < 0)
6270 return recurse_down_subclasses(type
, name
, callback
, data
);
6274 recurse_down_subclasses(PyTypeObject
*type
, PyObject
*name
,
6275 update_callback callback
, void *data
)
6277 PyTypeObject
*subclass
;
6278 PyObject
*ref
, *subclasses
, *dict
;
6281 subclasses
= type
->tp_subclasses
;
6282 if (subclasses
== NULL
)
6284 assert(PyList_Check(subclasses
));
6285 n
= PyList_GET_SIZE(subclasses
);
6286 for (i
= 0; i
< n
; i
++) {
6287 ref
= PyList_GET_ITEM(subclasses
, i
);
6288 assert(PyWeakref_CheckRef(ref
));
6289 subclass
= (PyTypeObject
*)PyWeakref_GET_OBJECT(ref
);
6290 assert(subclass
!= NULL
);
6291 if ((PyObject
*)subclass
== Py_None
)
6293 assert(PyType_Check(subclass
));
6294 /* Avoid recursing down into unaffected classes */
6295 dict
= subclass
->tp_dict
;
6296 if (dict
!= NULL
&& PyDict_Check(dict
) &&
6297 PyDict_GetItem(dict
, name
) != NULL
)
6299 if (update_subclasses(subclass
, name
, callback
, data
) < 0)
6305 /* This function is called by PyType_Ready() to populate the type's
6306 dictionary with method descriptors for function slots. For each
6307 function slot (like tp_repr) that's defined in the type, one or more
6308 corresponding descriptors are added in the type's tp_dict dictionary
6309 under the appropriate name (like __repr__). Some function slots
6310 cause more than one descriptor to be added (for example, the nb_add
6311 slot adds both __add__ and __radd__ descriptors) and some function
6312 slots compete for the same descriptor (for example both sq_item and
6313 mp_subscript generate a __getitem__ descriptor).
6315 In the latter case, the first slotdef entry encoutered wins. Since
6316 slotdef entries are sorted by the offset of the slot in the
6317 PyHeapTypeObject, this gives us some control over disambiguating
6318 between competing slots: the members of PyHeapTypeObject are listed
6319 from most general to least general, so the most general slot is
6320 preferred. In particular, because as_mapping comes before as_sequence,
6321 for a type that defines both mp_subscript and sq_item, mp_subscript
6324 This only adds new descriptors and doesn't overwrite entries in
6325 tp_dict that were previously defined. The descriptors contain a
6326 reference to the C function they must call, so that it's safe if they
6327 are copied into a subtype's __dict__ and the subtype has a different
6328 C function in its slot -- calling the method defined by the
6329 descriptor will call the C function that was used to create it,
6330 rather than the C function present in the slot when it is called.
6331 (This is important because a subtype may have a C function in the
6332 slot that calls the method from the dictionary, and we want to avoid
6333 infinite recursion here.) */
6336 add_operators(PyTypeObject
*type
)
6338 PyObject
*dict
= type
->tp_dict
;
6344 for (p
= slotdefs
; p
->name
; p
++) {
6345 if (p
->wrapper
== NULL
)
6347 ptr
= slotptr(type
, p
->offset
);
6350 if (PyDict_GetItem(dict
, p
->name_strobj
))
6352 if (*ptr
== PyObject_HashNotImplemented
) {
6353 /* Classes may prevent the inheritance of the tp_hash
6354 slot by storing PyObject_HashNotImplemented in it. Make it
6355 visible as a None value for the __hash__ attribute. */
6356 if (PyDict_SetItem(dict
, p
->name_strobj
, Py_None
) < 0)
6360 descr
= PyDescr_NewWrapper(type
, p
, *ptr
);
6363 if (PyDict_SetItem(dict
, p
->name_strobj
, descr
) < 0)
6368 if (type
->tp_new
!= NULL
) {
6369 if (add_tp_new_wrapper(type
) < 0)
6376 /* Cooperative 'super' */
6382 PyTypeObject
*obj_type
;
6385 static PyMemberDef super_members
[] = {
6386 {"__thisclass__", T_OBJECT
, offsetof(superobject
, type
), READONLY
,
6387 "the class invoking super()"},
6388 {"__self__", T_OBJECT
, offsetof(superobject
, obj
), READONLY
,
6389 "the instance invoking super(); may be None"},
6390 {"__self_class__", T_OBJECT
, offsetof(superobject
, obj_type
), READONLY
,
6391 "the type of the instance invoking super(); may be None"},
6396 super_dealloc(PyObject
*self
)
6398 superobject
*su
= (superobject
*)self
;
6400 _PyObject_GC_UNTRACK(self
);
6401 Py_XDECREF(su
->obj
);
6402 Py_XDECREF(su
->type
);
6403 Py_XDECREF(su
->obj_type
);
6404 Py_TYPE(self
)->tp_free(self
);
6408 super_repr(PyObject
*self
)
6410 superobject
*su
= (superobject
*)self
;
6413 return PyString_FromFormat(
6414 "<super: <class '%s'>, <%s object>>",
6415 su
->type
? su
->type
->tp_name
: "NULL",
6416 su
->obj_type
->tp_name
);
6418 return PyString_FromFormat(
6419 "<super: <class '%s'>, NULL>",
6420 su
->type
? su
->type
->tp_name
: "NULL");
6424 super_getattro(PyObject
*self
, PyObject
*name
)
6426 superobject
*su
= (superobject
*)self
;
6427 int skip
= su
->obj_type
== NULL
;
6430 /* We want __class__ to return the class of the super object
6431 (i.e. super, or a subclass), not the class of su->obj. */
6432 skip
= (PyString_Check(name
) &&
6433 PyString_GET_SIZE(name
) == 9 &&
6434 strcmp(PyString_AS_STRING(name
), "__class__") == 0);
6438 PyObject
*mro
, *res
, *tmp
, *dict
;
6439 PyTypeObject
*starttype
;
6443 starttype
= su
->obj_type
;
6444 mro
= starttype
->tp_mro
;
6449 assert(PyTuple_Check(mro
));
6450 n
= PyTuple_GET_SIZE(mro
);
6452 for (i
= 0; i
< n
; i
++) {
6453 if ((PyObject
*)(su
->type
) == PyTuple_GET_ITEM(mro
, i
))
6458 for (; i
< n
; i
++) {
6459 tmp
= PyTuple_GET_ITEM(mro
, i
);
6460 if (PyType_Check(tmp
))
6461 dict
= ((PyTypeObject
*)tmp
)->tp_dict
;
6462 else if (PyClass_Check(tmp
))
6463 dict
= ((PyClassObject
*)tmp
)->cl_dict
;
6466 res
= PyDict_GetItem(dict
, name
);
6469 f
= Py_TYPE(res
)->tp_descr_get
;
6472 /* Only pass 'obj' param if
6473 this is instance-mode super
6476 (su
->obj
== (PyObject
*)
6480 (PyObject
*)starttype
);
6488 return PyObject_GenericGetAttr(self
, name
);
6491 static PyTypeObject
*
6492 supercheck(PyTypeObject
*type
, PyObject
*obj
)
6494 /* Check that a super() call makes sense. Return a type object.
6496 obj can be a new-style class, or an instance of one:
6498 - If it is a class, it must be a subclass of 'type'. This case is
6499 used for class methods; the return value is obj.
6501 - If it is an instance, it must be an instance of 'type'. This is
6502 the normal case; the return value is obj.__class__.
6504 But... when obj is an instance, we want to allow for the case where
6505 Py_TYPE(obj) is not a subclass of type, but obj.__class__ is!
6506 This will allow using super() with a proxy for obj.
6509 /* Check for first bullet above (special case) */
6510 if (PyType_Check(obj
) && PyType_IsSubtype((PyTypeObject
*)obj
, type
)) {
6512 return (PyTypeObject
*)obj
;
6516 if (PyType_IsSubtype(Py_TYPE(obj
), type
)) {
6517 Py_INCREF(Py_TYPE(obj
));
6518 return Py_TYPE(obj
);
6521 /* Try the slow way */
6522 static PyObject
*class_str
= NULL
;
6523 PyObject
*class_attr
;
6525 if (class_str
== NULL
) {
6526 class_str
= PyString_FromString("__class__");
6527 if (class_str
== NULL
)
6531 class_attr
= PyObject_GetAttr(obj
, class_str
);
6533 if (class_attr
!= NULL
&&
6534 PyType_Check(class_attr
) &&
6535 (PyTypeObject
*)class_attr
!= Py_TYPE(obj
))
6537 int ok
= PyType_IsSubtype(
6538 (PyTypeObject
*)class_attr
, type
);
6540 return (PyTypeObject
*)class_attr
;
6543 if (class_attr
== NULL
)
6546 Py_DECREF(class_attr
);
6549 PyErr_SetString(PyExc_TypeError
,
6550 "super(type, obj): "
6551 "obj must be an instance or subtype of type");
6556 super_descr_get(PyObject
*self
, PyObject
*obj
, PyObject
*type
)
6558 superobject
*su
= (superobject
*)self
;
6559 superobject
*newobj
;
6561 if (obj
== NULL
|| obj
== Py_None
|| su
->obj
!= NULL
) {
6562 /* Not binding to an object, or already bound */
6566 if (Py_TYPE(su
) != &PySuper_Type
)
6567 /* If su is an instance of a (strict) subclass of super,
6569 return PyObject_CallFunctionObjArgs((PyObject
*)Py_TYPE(su
),
6570 su
->type
, obj
, NULL
);
6572 /* Inline the common case */
6573 PyTypeObject
*obj_type
= supercheck(su
->type
, obj
);
6574 if (obj_type
== NULL
)
6576 newobj
= (superobject
*)PySuper_Type
.tp_new(&PySuper_Type
,
6580 Py_INCREF(su
->type
);
6582 newobj
->type
= su
->type
;
6584 newobj
->obj_type
= obj_type
;
6585 return (PyObject
*)newobj
;
6590 super_init(PyObject
*self
, PyObject
*args
, PyObject
*kwds
)
6592 superobject
*su
= (superobject
*)self
;
6594 PyObject
*obj
= NULL
;
6595 PyTypeObject
*obj_type
= NULL
;
6597 if (!_PyArg_NoKeywords("super", kwds
))
6599 if (!PyArg_ParseTuple(args
, "O!|O:super", &PyType_Type
, &type
, &obj
))
6604 obj_type
= supercheck(type
, obj
);
6605 if (obj_type
== NULL
)
6612 su
->obj_type
= obj_type
;
6616 PyDoc_STRVAR(super_doc
,
6617 "super(type) -> unbound super object\n"
6618 "super(type, obj) -> bound super object; requires isinstance(obj, type)\n"
6619 "super(type, type2) -> bound super object; requires issubclass(type2, type)\n"
6620 "Typical use to call a cooperative superclass method:\n"
6622 " def meth(self, arg):\n"
6623 " super(C, self).meth(arg)");
6626 super_traverse(PyObject
*self
, visitproc visit
, void *arg
)
6628 superobject
*su
= (superobject
*)self
;
6632 Py_VISIT(su
->obj_type
);
6637 PyTypeObject PySuper_Type
= {
6638 PyVarObject_HEAD_INIT(&PyType_Type
, 0)
6639 "super", /* tp_name */
6640 sizeof(superobject
), /* tp_basicsize */
6641 0, /* tp_itemsize */
6643 super_dealloc
, /* tp_dealloc */
6648 super_repr
, /* tp_repr */
6649 0, /* tp_as_number */
6650 0, /* tp_as_sequence */
6651 0, /* tp_as_mapping */
6655 super_getattro
, /* tp_getattro */
6656 0, /* tp_setattro */
6657 0, /* tp_as_buffer */
6658 Py_TPFLAGS_DEFAULT
| Py_TPFLAGS_HAVE_GC
|
6659 Py_TPFLAGS_BASETYPE
, /* tp_flags */
6660 super_doc
, /* tp_doc */
6661 super_traverse
, /* tp_traverse */
6663 0, /* tp_richcompare */
6664 0, /* tp_weaklistoffset */
6666 0, /* tp_iternext */
6668 super_members
, /* tp_members */
6672 super_descr_get
, /* tp_descr_get */
6673 0, /* tp_descr_set */
6674 0, /* tp_dictoffset */
6675 super_init
, /* tp_init */
6676 PyType_GenericAlloc
, /* tp_alloc */
6677 PyType_GenericNew
, /* tp_new */
6678 PyObject_GC_Del
, /* tp_free */