Remove the regrtest check that turns any ImportError into a skipped test.
[python.git] / Lib / collections.py
blobd77aff5a23805fe7a5c6719bd877418445700586
1 __all__ = ['Counter', 'deque', 'defaultdict', 'namedtuple', 'OrderedDict']
2 # For bootstrapping reasons, the collection ABCs are defined in _abcoll.py.
3 # They should however be considered an integral part of collections.py.
4 from _abcoll import *
5 import _abcoll
6 __all__ += _abcoll.__all__
8 from _collections import deque, defaultdict
9 from operator import itemgetter as _itemgetter, eq as _eq
10 from keyword import iskeyword as _iskeyword
11 import sys as _sys
12 import heapq as _heapq
13 from weakref import proxy as _proxy
14 from itertools import repeat as _repeat, chain as _chain, starmap as _starmap, \
15 ifilter as _ifilter, imap as _imap, izip as _izip
17 ################################################################################
18 ### OrderedDict
19 ################################################################################
21 class _Link(object):
22 __slots__ = 'prev', 'next', 'key', '__weakref__'
24 class OrderedDict(dict, MutableMapping):
25 'Dictionary that remembers insertion order'
26 # An inherited dict maps keys to values.
27 # The inherited dict provides __getitem__, __len__, __contains__, and get.
28 # The remaining methods are order-aware.
29 # Big-O running times for all methods are the same as for regular dictionaries.
31 # The internal self.__map dictionary maps keys to links in a doubly linked list.
32 # The circular doubly linked list starts and ends with a sentinel element.
33 # The sentinel element never gets deleted (this simplifies the algorithm).
34 # The prev/next links are weakref proxies (to prevent circular references).
35 # Individual links are kept alive by the hard reference in self.__map.
36 # Those hard references disappear when a key is deleted from an OrderedDict.
38 def __init__(self, *args, **kwds):
39 if len(args) > 1:
40 raise TypeError('expected at most 1 arguments, got %d' % len(args))
41 try:
42 self.__root
43 except AttributeError:
44 self.__root = root = _Link() # sentinel node for the doubly linked list
45 root.prev = root.next = root
46 self.__map = {}
47 self.update(*args, **kwds)
49 def clear(self):
50 root = self.__root
51 root.prev = root.next = root
52 self.__map.clear()
53 dict.clear(self)
55 def __setitem__(self, key, value):
56 # Setting a new item creates a new link which goes at the end of the linked
57 # list, and the inherited dictionary is updated with the new key/value pair.
58 if key not in self:
59 self.__map[key] = link = _Link()
60 root = self.__root
61 last = root.prev
62 link.prev, link.next, link.key = last, root, key
63 last.next = root.prev = _proxy(link)
64 dict.__setitem__(self, key, value)
66 def __delitem__(self, key):
67 # Deleting an existing item uses self.__map to find the link which is
68 # then removed by updating the links in the predecessor and successor nodes.
69 dict.__delitem__(self, key)
70 link = self.__map.pop(key)
71 link.prev.next = link.next
72 link.next.prev = link.prev
74 def __iter__(self):
75 # Traverse the linked list in order.
76 root = self.__root
77 curr = root.next
78 while curr is not root:
79 yield curr.key
80 curr = curr.next
82 def __reversed__(self):
83 # Traverse the linked list in reverse order.
84 root = self.__root
85 curr = root.prev
86 while curr is not root:
87 yield curr.key
88 curr = curr.prev
90 def __reduce__(self):
91 items = [[k, self[k]] for k in self]
92 tmp = self.__map, self.__root
93 del self.__map, self.__root
94 inst_dict = vars(self).copy()
95 self.__map, self.__root = tmp
96 if inst_dict:
97 return (self.__class__, (items,), inst_dict)
98 return self.__class__, (items,)
100 setdefault = MutableMapping.setdefault
101 update = MutableMapping.update
102 pop = MutableMapping.pop
103 keys = MutableMapping.keys
104 values = MutableMapping.values
105 items = MutableMapping.items
106 iterkeys = MutableMapping.iterkeys
107 itervalues = MutableMapping.itervalues
108 iteritems = MutableMapping.iteritems
109 __ne__ = MutableMapping.__ne__
111 def popitem(self, last=True):
112 if not self:
113 raise KeyError('dictionary is empty')
114 key = next(reversed(self)) if last else next(iter(self))
115 value = self.pop(key)
116 return key, value
118 def __repr__(self):
119 if not self:
120 return '%s()' % (self.__class__.__name__,)
121 return '%s(%r)' % (self.__class__.__name__, self.items())
123 def copy(self):
124 return self.__class__(self)
126 @classmethod
127 def fromkeys(cls, iterable, value=None):
128 d = cls()
129 for key in iterable:
130 d[key] = value
131 return d
133 def __eq__(self, other):
134 if isinstance(other, OrderedDict):
135 return len(self)==len(other) and \
136 all(_imap(_eq, self.iteritems(), other.iteritems()))
137 return dict.__eq__(self, other)
141 ################################################################################
142 ### namedtuple
143 ################################################################################
145 def namedtuple(typename, field_names, verbose=False, rename=False):
146 """Returns a new subclass of tuple with named fields.
148 >>> Point = namedtuple('Point', 'x y')
149 >>> Point.__doc__ # docstring for the new class
150 'Point(x, y)'
151 >>> p = Point(11, y=22) # instantiate with positional args or keywords
152 >>> p[0] + p[1] # indexable like a plain tuple
154 >>> x, y = p # unpack like a regular tuple
155 >>> x, y
156 (11, 22)
157 >>> p.x + p.y # fields also accessable by name
159 >>> d = p._asdict() # convert to a dictionary
160 >>> d['x']
162 >>> Point(**d) # convert from a dictionary
163 Point(x=11, y=22)
164 >>> p._replace(x=100) # _replace() is like str.replace() but targets named fields
165 Point(x=100, y=22)
169 # Parse and validate the field names. Validation serves two purposes,
170 # generating informative error messages and preventing template injection attacks.
171 if isinstance(field_names, basestring):
172 field_names = field_names.replace(',', ' ').split() # names separated by whitespace and/or commas
173 field_names = tuple(map(str, field_names))
174 if rename:
175 names = list(field_names)
176 seen = set()
177 for i, name in enumerate(names):
178 if (not all(c.isalnum() or c=='_' for c in name) or _iskeyword(name)
179 or not name or name[0].isdigit() or name.startswith('_')
180 or name in seen):
181 names[i] = '_%d' % (i+1)
182 seen.add(name)
183 field_names = tuple(names)
184 for name in (typename,) + field_names:
185 if not all(c.isalnum() or c=='_' for c in name):
186 raise ValueError('Type names and field names can only contain alphanumeric characters and underscores: %r' % name)
187 if _iskeyword(name):
188 raise ValueError('Type names and field names cannot be a keyword: %r' % name)
189 if name[0].isdigit():
190 raise ValueError('Type names and field names cannot start with a number: %r' % name)
191 seen_names = set()
192 for name in field_names:
193 if name.startswith('_') and not rename:
194 raise ValueError('Field names cannot start with an underscore: %r' % name)
195 if name in seen_names:
196 raise ValueError('Encountered duplicate field name: %r' % name)
197 seen_names.add(name)
199 # Create and fill-in the class template
200 numfields = len(field_names)
201 argtxt = repr(field_names).replace("'", "")[1:-1] # tuple repr without parens or quotes
202 reprtxt = ', '.join('%s=%%r' % name for name in field_names)
203 template = '''class %(typename)s(tuple):
204 '%(typename)s(%(argtxt)s)' \n
205 __slots__ = () \n
206 _fields = %(field_names)r \n
207 def __new__(cls, %(argtxt)s):
208 return tuple.__new__(cls, (%(argtxt)s)) \n
209 @classmethod
210 def _make(cls, iterable, new=tuple.__new__, len=len):
211 'Make a new %(typename)s object from a sequence or iterable'
212 result = new(cls, iterable)
213 if len(result) != %(numfields)d:
214 raise TypeError('Expected %(numfields)d arguments, got %%d' %% len(result))
215 return result \n
216 def __repr__(self):
217 return '%(typename)s(%(reprtxt)s)' %% self \n
218 def _asdict(self):
219 'Return a new OrderedDict which maps field names to their values'
220 return OrderedDict(zip(self._fields, self)) \n
221 def _replace(self, **kwds):
222 'Return a new %(typename)s object replacing specified fields with new values'
223 result = self._make(map(kwds.pop, %(field_names)r, self))
224 if kwds:
225 raise ValueError('Got unexpected field names: %%r' %% kwds.keys())
226 return result \n
227 def __getnewargs__(self):
228 return tuple(self) \n\n''' % locals()
229 for i, name in enumerate(field_names):
230 template += ' %s = property(itemgetter(%d))\n' % (name, i)
231 if verbose:
232 print template
234 # Execute the template string in a temporary namespace and
235 # support tracing utilities by setting a value for frame.f_globals['__name__']
236 namespace = dict(itemgetter=_itemgetter, __name__='namedtuple_%s' % typename,
237 OrderedDict=OrderedDict)
238 try:
239 exec template in namespace
240 except SyntaxError, e:
241 raise SyntaxError(e.message + ':\n' + template)
242 result = namespace[typename]
244 # For pickling to work, the __module__ variable needs to be set to the frame
245 # where the named tuple is created. Bypass this step in enviroments where
246 # sys._getframe is not defined (Jython for example).
247 if hasattr(_sys, '_getframe'):
248 result.__module__ = _sys._getframe(1).f_globals.get('__name__', '__main__')
250 return result
253 ########################################################################
254 ### Counter
255 ########################################################################
257 class Counter(dict):
258 '''Dict subclass for counting hashable items. Sometimes called a bag
259 or multiset. Elements are stored as dictionary keys and their counts
260 are stored as dictionary values.
262 >>> c = Counter('abracadabra') # count elements from a string
264 >>> c.most_common(3) # three most common elements
265 [('a', 5), ('r', 2), ('b', 2)]
266 >>> sorted(c) # list all unique elements
267 ['a', 'b', 'c', 'd', 'r']
268 >>> ''.join(sorted(c.elements())) # list elements with repetitions
269 'aaaaabbcdrr'
270 >>> sum(c.values()) # total of all counts
273 >>> c['a'] # count of letter 'a'
275 >>> for elem in 'shazam': # update counts from an iterable
276 ... c[elem] += 1 # by adding 1 to each element's count
277 >>> c['a'] # now there are seven 'a'
279 >>> del c['r'] # remove all 'r'
280 >>> c['r'] # now there are zero 'r'
283 >>> d = Counter('simsalabim') # make another counter
284 >>> c.update(d) # add in the second counter
285 >>> c['a'] # now there are nine 'a'
288 >>> c.clear() # empty the counter
289 >>> c
290 Counter()
292 Note: If a count is set to zero or reduced to zero, it will remain
293 in the counter until the entry is deleted or the counter is cleared:
295 >>> c = Counter('aaabbc')
296 >>> c['b'] -= 2 # reduce the count of 'b' by two
297 >>> c.most_common() # 'b' is still in, but its count is zero
298 [('a', 3), ('c', 1), ('b', 0)]
301 # References:
302 # http://en.wikipedia.org/wiki/Multiset
303 # http://www.gnu.org/software/smalltalk/manual-base/html_node/Bag.html
304 # http://www.demo2s.com/Tutorial/Cpp/0380__set-multiset/Catalog0380__set-multiset.htm
305 # http://code.activestate.com/recipes/259174/
306 # Knuth, TAOCP Vol. II section 4.6.3
308 def __init__(self, iterable=None, **kwds):
309 '''Create a new, empty Counter object. And if given, count elements
310 from an input iterable. Or, initialize the count from another mapping
311 of elements to their counts.
313 >>> c = Counter() # a new, empty counter
314 >>> c = Counter('gallahad') # a new counter from an iterable
315 >>> c = Counter({'a': 4, 'b': 2}) # a new counter from a mapping
316 >>> c = Counter(a=4, b=2) # a new counter from keyword args
319 self.update(iterable, **kwds)
321 def __missing__(self, key):
322 'The count of elements not in the Counter is zero.'
323 # Needed so that self[missing_item] does not raise KeyError
324 return 0
326 def most_common(self, n=None):
327 '''List the n most common elements and their counts from the most
328 common to the least. If n is None, then list all element counts.
330 >>> Counter('abracadabra').most_common(3)
331 [('a', 5), ('r', 2), ('b', 2)]
334 # Emulate Bag.sortedByCount from Smalltalk
335 if n is None:
336 return sorted(self.iteritems(), key=_itemgetter(1), reverse=True)
337 return _heapq.nlargest(n, self.iteritems(), key=_itemgetter(1))
339 def elements(self):
340 '''Iterator over elements repeating each as many times as its count.
342 >>> c = Counter('ABCABC')
343 >>> sorted(c.elements())
344 ['A', 'A', 'B', 'B', 'C', 'C']
346 # Knuth's example for prime factors of 1836: 2**2 * 3**3 * 17**1
347 >>> prime_factors = Counter({2: 2, 3: 3, 17: 1})
348 >>> product = 1
349 >>> for factor in prime_factors.elements(): # loop over factors
350 ... product *= factor # and multiply them
351 >>> product
352 1836
354 Note, if an element's count has been set to zero or is a negative
355 number, elements() will ignore it.
358 # Emulate Bag.do from Smalltalk and Multiset.begin from C++.
359 return _chain.from_iterable(_starmap(_repeat, self.iteritems()))
361 # Override dict methods where necessary
363 @classmethod
364 def fromkeys(cls, iterable, v=None):
365 # There is no equivalent method for counters because setting v=1
366 # means that no element can have a count greater than one.
367 raise NotImplementedError(
368 'Counter.fromkeys() is undefined. Use Counter(iterable) instead.')
370 def update(self, iterable=None, **kwds):
371 '''Like dict.update() but add counts instead of replacing them.
373 Source can be an iterable, a dictionary, or another Counter instance.
375 >>> c = Counter('which')
376 >>> c.update('witch') # add elements from another iterable
377 >>> d = Counter('watch')
378 >>> c.update(d) # add elements from another counter
379 >>> c['h'] # four 'h' in which, witch, and watch
383 # The regular dict.update() operation makes no sense here because the
384 # replace behavior results in the some of original untouched counts
385 # being mixed-in with all of the other counts for a mismash that
386 # doesn't have a straight-forward interpretation in most counting
387 # contexts. Instead, we implement straight-addition. Both the inputs
388 # and outputs are allowed to contain zero and negative counts.
390 if iterable is not None:
391 if isinstance(iterable, Mapping):
392 if self:
393 for elem, count in iterable.iteritems():
394 self[elem] += count
395 else:
396 dict.update(self, iterable) # fast path when counter is empty
397 else:
398 for elem in iterable:
399 self[elem] += 1
400 if kwds:
401 self.update(kwds)
403 def copy(self):
404 'Like dict.copy() but returns a Counter instance instead of a dict.'
405 return Counter(self)
407 def __delitem__(self, elem):
408 'Like dict.__delitem__() but does not raise KeyError for missing values.'
409 if elem in self:
410 dict.__delitem__(self, elem)
412 def __repr__(self):
413 if not self:
414 return '%s()' % self.__class__.__name__
415 items = ', '.join(map('%r: %r'.__mod__, self.most_common()))
416 return '%s({%s})' % (self.__class__.__name__, items)
418 # Multiset-style mathematical operations discussed in:
419 # Knuth TAOCP Volume II section 4.6.3 exercise 19
420 # and at http://en.wikipedia.org/wiki/Multiset
422 # Outputs guaranteed to only include positive counts.
424 # To strip negative and zero counts, add-in an empty counter:
425 # c += Counter()
427 def __add__(self, other):
428 '''Add counts from two counters.
430 >>> Counter('abbb') + Counter('bcc')
431 Counter({'b': 4, 'c': 2, 'a': 1})
434 if not isinstance(other, Counter):
435 return NotImplemented
436 result = Counter()
437 for elem in set(self) | set(other):
438 newcount = self[elem] + other[elem]
439 if newcount > 0:
440 result[elem] = newcount
441 return result
443 def __sub__(self, other):
444 ''' Subtract count, but keep only results with positive counts.
446 >>> Counter('abbbc') - Counter('bccd')
447 Counter({'b': 2, 'a': 1})
450 if not isinstance(other, Counter):
451 return NotImplemented
452 result = Counter()
453 for elem in set(self) | set(other):
454 newcount = self[elem] - other[elem]
455 if newcount > 0:
456 result[elem] = newcount
457 return result
459 def __or__(self, other):
460 '''Union is the maximum of value in either of the input counters.
462 >>> Counter('abbb') | Counter('bcc')
463 Counter({'b': 3, 'c': 2, 'a': 1})
466 if not isinstance(other, Counter):
467 return NotImplemented
468 _max = max
469 result = Counter()
470 for elem in set(self) | set(other):
471 newcount = _max(self[elem], other[elem])
472 if newcount > 0:
473 result[elem] = newcount
474 return result
476 def __and__(self, other):
477 ''' Intersection is the minimum of corresponding counts.
479 >>> Counter('abbb') & Counter('bcc')
480 Counter({'b': 1})
483 if not isinstance(other, Counter):
484 return NotImplemented
485 _min = min
486 result = Counter()
487 if len(self) < len(other):
488 self, other = other, self
489 for elem in _ifilter(self.__contains__, other):
490 newcount = _min(self[elem], other[elem])
491 if newcount > 0:
492 result[elem] = newcount
493 return result
496 if __name__ == '__main__':
497 # verify that instances can be pickled
498 from cPickle import loads, dumps
499 Point = namedtuple('Point', 'x, y', True)
500 p = Point(x=10, y=20)
501 assert p == loads(dumps(p))
503 # test and demonstrate ability to override methods
504 class Point(namedtuple('Point', 'x y')):
505 __slots__ = ()
506 @property
507 def hypot(self):
508 return (self.x ** 2 + self.y ** 2) ** 0.5
509 def __str__(self):
510 return 'Point: x=%6.3f y=%6.3f hypot=%6.3f' % (self.x, self.y, self.hypot)
512 for p in Point(3, 4), Point(14, 5/7.):
513 print p
515 class Point(namedtuple('Point', 'x y')):
516 'Point class with optimized _make() and _replace() without error-checking'
517 __slots__ = ()
518 _make = classmethod(tuple.__new__)
519 def _replace(self, _map=map, **kwds):
520 return self._make(_map(kwds.get, ('x', 'y'), self))
522 print Point(11, 22)._replace(x=100)
524 Point3D = namedtuple('Point3D', Point._fields + ('z',))
525 print Point3D.__doc__
527 import doctest
528 TestResults = namedtuple('TestResults', 'failed attempted')
529 print TestResults(*doctest.testmod())